RHEOLOGY OF CATIONIC SURFACTANT AND FATTY ALCOHOL MIXTURES IN THE PRESENCE OF HYDROXYETHYL CELLULOSE

Ms. Jintana Nakarapanich

A Thesis Submitted in Partial Fulfillment of Requirements for the Degree of Master of Science The Petroleum and Petrochemical College Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma and Case Western Reserve University 1998

ISBN 974-638-476-7

I 18132522

Thesis Title	:	Rheology of Cationic Surfactant and Fatty Alcohol	
		Mixtures in the presence of Hydroxyethyl Cellulose	
By	:	Ms. Jintana Nakarapanich	
Program	:	Polymer Science	
Thesis Advisors	:	Prof. Alexander M. Jamieson	
		Assoc. Prof. Anuvat Sirivat	
		Dr. Malika Punyagupta	

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in the Partial Fulfillment of the Requirements for the Degree of Master of Science.

(Prof. Somchai Osuwan)

Thesis Committee

15

(Prof. Alexander M. Jamieson)

(Assoc. Prof. Anuvat Sirivat)

muster Porryagepor

(Dr. Malika Punyagupta) livadance

(Dr. Suwabun Chirachanchai)

ABSTRACT

962003 : POLYMER SCIENCE PROGRAM

KEYWORDS : Cetyltrimethyl ammonium chloride/ CTAC/ Fatty Alcohol/ Hydroxyethyl Cellulose/ HEC/ Rheology of emulsion/ Optical microscope/ Laser scannin microscope/ LSM.

Jintana Nakarapanich : Rheology of Cationic Surfactant and Fatty Alcohol Mixtures in the presence of Hydroxyethyl Cellulose. Thesis Advisors : Prof. Alexander M. Jamieson, Dr. Malika Punyagupta and Assoc. Prof. Anuvat Sirivat, 190 pp. ISBN 974-638-476-7

Emulsion structures and rheological properties of CTAC/FA, CTAC/FA/HEC, CTAC/FA/modified HEC and BTAC/FA were investigated in terms of aging time and concentration. Aging allows a growth of lamellar structures toward equilibrium sizes within seven days. Fatty alcohol induces lamellar or vesicle structures, instead of rod-like micelles in the absence of fatty alcohol content. Both entanglement storage modulus and zero shear viscosity increase with fatty alcohol content until reaching a saturation state in which there is an excess fatty alcohol left, as seen by laser scanning micrographs.

The effect of adding HEC to the ternary systems is to disrupt lamellar formation due to interaction between the polymer and the cationic surfactant, inducing polymer chain expansion and surfactant will not be available to stabilize the lamellar structure. This leads to smaller lamellar sizes. On the other hand, the effect of adding modified HEC is to induce the formation of interconnected lamellar structures by the hydrophobic interaction between cetyl branched chain and hydrophobic part of both CTAC and FA. This effect makes the rheological properties such as the storage modulus and viscosity increase with modified HEC concentration.

In the BTAC/FA systems, we found the beautiful and symmetric sunflower-like structures whereas in the CTAC/FA systems we found the aggregates of lamellar and vesicle structures. The differences in structures between these two systems depend on the nature of the cationic surfactant.

บทคัดย่อ

จินตนา นคราพานิช : การไหลของสารผสมระหว่างสารลดแรงตึงผิวประเภทประจุบวก และอัลกอฮอล์ชนิดไขมันเมื่อมีไฮครอกซีเอธิลเซลลูโลส (Rheology of Cationic Surfactant and Fatty Alcohol Mixtures in the presence of Hydroxyethyl Cellulose) อาจารย์ ที่ปรึกษา : ศ. อเลกซ์ซานเดอร์ เอ็ม เจมิสัน (Prof. Alexander M. Jamieson), รศ.คร. อนุวัฒน์ ศิริวัฒน์ และ คร. มัลลิกา บุณยคุปต์ 190 หน้า ISBN 974-638-476-7

โครงสร้างอิมัลชั่นและสมบัติการใหลของ CTAC/FA, CTAC/FA/HEC, CTAC/FA/modified HEC และ BTAC/FA ถูกศึกษาในเทอมของเวลาของการคงตัว (aging time) ทำให้โครงสร้างลาเมลลาเติบโตเข้าสู่ขนาดสมดุลในเวลา 7 วัน อัลกอฮอล์ประเภท น้ำมันเหนี่ยวนำให้ลาเมลลาหรือโครงสร้างแบบปุ่ม (versicle structures) มากกว่าที่จะเป็น ไมเซลล์แบบแท่ง (rod-like micelle) ทั้งมอดูลัสสะสม ณ จุดพันกัน (entanglement storage modulus) และความหนืดที่แรงเฉือนเป็นศูนย์ (zero shear viscosity) เพิ่มขึ้นเมื่อปริมา ณอัลกอฮอล์ประเภทใขมัน (fatty alcohol) เพิ่มขึ้นจนถึงสถานะอิ่มตัว (สถานะที่มีอัลกอฮอล์ ประเภทไขมันมากเกินพอ) ซึ่งจะเห็นได้ชัดจากภาพถ่ายที่ได้จากการกวาดด้วยแสงเลเซอร์ (laser scanning micrograph) การเดิม HEC ลงไปในระบบของผสมจตุภูมิ (ternary system) จะ รบกวนการเกิดถาเมลลาซึ่งเป็นผลจากการเกิดปฏิกิริยาระหว่างพอลิเมอร์กับสารลดแรงตึงผิว ้ประเภทประจุบวก โดยที่สารลดแรงตึงผิวประเภทประจุบวกจะเหนี่ยวนำให้สายโซ่พอลิเมอร์บยาย ้ตัวออกและไม่สามารถทำให้โครงสร้างลาเมลลาคงตัวอยู่ได้ จึงส่งผลให้ลาเมลลามีขนาดเล็ก ใน ทางกลับกัน การเติม modified HEC เหนี่ยวนำให้เกิดการเชื่อมต่อกันระหว่างลาเมลลา (interconnected) โดยปฏิกิริยาระหว่างสายย่อยซีทิล (cetyl branched chain) กับส่วนที่ไม่ ชอบน้ำของทั้ง CTAC และ FA ปรากฏการณ์นี้ทำให้สมบัติการไหล เช่น มอดูลัสสะสมและ ความหนืดเพิ่มขึ้นเมื่อความเข้มข้นของ modified HEC เพิ่ม ในระบบที่มี BTAC/FA จะ สามารถพบการรวมกันเป็นก้อน (aggregate) ของลาเมลลาและโครงสร้างแบบปุ่ม ความแตก ต่างทางโครงสร้างของสองระบบนี้ขึ้นอยู่กับลักษณะของสารลดแรงตึงผิวประเภทประจุบวก

ACKNOWLEDGMENTS

This is a pioneering work on a Rheology of Cationic Surfactant and Fatty Alcohol Mixtures in the presence of Hydroxyethyl Cellulose at Petroleum and Petrochemical College. The author would like to give thanks to the Petroleum and Petrochemical College for the half-scholarship award during the two academic years. She would like to give thank all professors who gave her the knowledge in the Polymer Science Program at the Petroleum and Petrochemical College, Chulalongkorn University.

The author greatly appreciates her advisor, Professor Alexander M. Jamieson of Case Western Reserve University, Cleveland, Ohio. USA, for his valuable suggestions and comments. She would like to give special and sincere thanks to her co-advisors, Dr. Malika Punyagupta, Unilever Thai Holding Co., Ltd. and Associate Professor Anuvat Sirivat for originating this thesis work and their numerous helpful suggestions and proof-readings of thesis writing. She appreciates the Unilever Thai Holding Co., Ltd. for financial support and all raw materials and special thanks to BIOTEC for the training in the optical measurements. She would like to give thanks to Dr. Suwabun Chirachanchai for being one of her thesis committee members.

She wishes to express her sincere thanks to all of her friends who always gave encouragements to the author. Her thanks also go to all the staff of the College for their helps.

Finally, she wishes to express her deep gratitude to her parents for their great love, understanding, and generous encouragement.

TABLE OF CONTENTS

PAGE

Title Page	i
Abstract	iii
Acknowledgments	v
List of Table	ix
List of Figures	x

CHAPTER

Ι	INT	RODUCTION	
	1.1	Background	1
	1.2	Physical Characteristics of Emulsions	2
		1.2.1 Appearance	2
		1.2.2 Droplet or Particle Sizes	2
		1.2.3 Rheological Properties	4
		1.2.4 Stability	7
	1.3	Emulsifying Agents or Surface Active Agents	8
	1.4	Cationic Surfactants and the lamellar phase	9
	1.5	Water -soluble polymer and the lamellar phase	12
	1.6	Applications	13
	1.7	Literature survey	13
	1.8	Objectives	17

			* * *	UL
II	EXPI	ERIMI	ENTAL SECTION	
	2.1	Mater	ials	19
	2.2	Metho	odology	22
		2.2.1	Sample Preparation of emulsion of CTAC/FA	22
		2.2.2	Sample Preparation of solution of HEC	23
		2.2.3	Sample Preparation of emulsion of	
			CTAC/FA/HEC	24
		2.2.4	Sample Preparation of emulsion of BTAC/FA	25
		2.2.5	Sample Preparation of solution of	
			modified HEC	26
	2.2.6	Samp	le Preparation of emulsion of	
			CTAC/FA/ modified HEC	27
	2.3	Appar	catus	29
		2.3.1	Laser Scanning Microscope	29
		2.3.2	Rheometer	31
	2.4	Exper	imental Conditions	32
		2.4.1	Condition in microscope measurement	32
		2.4.2	Condition in oscillatory measurement	33
		2.4.3	Condition in steady shear measurement	34
	DEG			
m	RESU		AND DISCUSSION	
	3.1	Effect	t of Aging Time on Emulsion Structure	34
		3.1.1	Emulsion of CTAC/FA Systems	36
		3.1.2	Emulsion of CTAC/FA/HEC Systems	41
		3.1.3	Emulsion of CTAC/FA/modified HEC Systems	3 46
		3.1.4	Emulsion of BIAC/FA Systems	50

CHAPTER

CHAPTER				PAGE
	3.2	Pseud	o-Equilibrium Properties of	
		Emul	sion Systems	55
		3.2.1	Effect of CTAC and FA Concentration	55
		3.2.2	Effect of HEC and modified HEC	
			Concentration	62
		3.2.3	Effect of BTAC and FA Concentration	70
IV	IV CONCLUSIONS		77	
	REF	EREN	CES	78
	APP	ENDI	CES	81
		Appe	endix I	81
		Apper	ndix II	249
	CUR	RICUI	LUM VITAE	251

LIST OF TABLE

TABLE		PAGE
1.1	The relationship between appearance	
	and the particle size of emulsion	3

LIST OF FIGURES

FIGURE

PAGE

-

1.1	The two simplest kinds of emulsion:	
	a) Oil-in-water; b) Water-in-oil	2
1.2	Flow behavior of non-Newtonian fluids	6
1.3	Viscosity profiles of time dependent fluids	
	compared with Newtonian fluids	6
1.4	Schematic presentation of emulsion instability	8
1.5	The structure of lamellar liquid crystalline phase	10
1.6	Schematic of lamellar gel structuring of an	
	aqueous emulsion	11
1.7	Relationship between rheology and structure	12
2.1	The chemical structure of CTAC	19
2.2	The chemical structure of BTAC	20
2.3	The structure of Hydroxyethyl cellulose	21
2.4	The structure of modified hydroxyethyl cellulose	21
2.5	The propeller or blade mixer	29
2.6	General view of the LSM systems	30
2.7	Schematic of LSM	31
2.8	The cone-and-plate configuration	32
2.9	The Base System	32
3.1a	Double logarithmic plot of storage modulus	
	against frequency of CTAC/FA = 0.7/3.3%	
	as a function of aging time	36
3.1b	Double logarithmic plot of $tan\theta$ against frequency	
	of CTAC/FA = $0.7/3.3\%$ as a function of aging time	37

3.2a	Double logarithmic plot of viscosity	
	against shear rate of CTAC/FA = $0.7/2.3\%$	
	as a function of aging time	38
3.2b	Plot of stress against shear rate of CTAC/FA = $0.7/2.3\%$	39
3.3	Micrograph of CTAC and CTAC/FA = 0.7/y systems:	
	a) CTAC systems; b) FA = 3.3% at 1 day; c) FA = 3.3%	
	at 7 days; d) FA = 8.0% at 1 day; e) FA = 8.0% at 7 days	40
3.4a	Double logarithmic plot of storage modulus	
	against frequency of CTAC/FA/HEC = 0.7/3.3/0.3%	
	as a function of aging time	41
3.4b	Double logarithmic plot of $tan\theta$ against frequency	
	of CTAC/FA/HEC = $0.7/3.3/0.3\%$ as a function of	
	aging time	42
3.5a	Double logarithmic plot of viscosity against shear rate	
	of CTAC/FA/HEC = $0.7/3.3/0.3\%$ as a function of	
	aging time	43
3.5b	Plot of stress against shear rate of CTAC/FA/HEC	
	= 0.7/3.3/0.3%	44
3.6	Micrograph of CTAC/FA/HEC = $0.7/3.3/z$ systems:	
	a) HEC = 0.075% at 1 day; b) HEC = 0.075% at 7 days;	
	c) HEC = 0.7% at 1 day; d) HEC = 0.7% at 7 days	45
3.7a	Plot of storage modulus against frequency of	
	CTAC/FA/modified HEC = $0.7/3.3/0.7\%$ as a function	
	of aging time	46
3.7b	Plot of tan against frequency of CTAC/FA/modified HEC	
	= 0.7/3.3/0.7% as a function of aging time	47

PAGE

3.8	Plot of viscosity against shear rate of	
	CTAC/FA/modified HEC= 0.7/3.3/0.7%	
	as a function of aging time	47
3.9	Micrograph of CTAC/FA/modified HEC	
	= 0.7/3.3/z systems: a) modified HEC $= 0.075%$ at 1 day;	
	b) modified HEC = 0.075% at 7 days;	
	c) modified HEC = 0.7% at 1 day;	
	d) modified HEC = 0.7% at 7 days	49
3.10a	Double logarithmic plot of storage modulus	
	against frequency of BTAC/FA = 0.7/3.3%	
	as a function of aging time	50
3.10b	Double logarithmic plot of $tan\theta$ against frequency	
	of BTAC/FA = $0.7/3.3\%$ as a function of aging time	51
3.11a	Double logarithmic plot of viscosity	
	against shear rate of BTAC/FA = $0.7/2.3\%$	
	as a function of aging time	51
3.11b	Plot of stress against shear rate of BTAC/FA = $0.7/2.3\%$	
	as a function of aging time	52
3.12	Micrograph of $BTAC/FA = 0.7/y$ systems:	
	a) FA = 3.3% at 1 day; b) FA = 3.3% at 7 days;	
	c) $FA = 8.0\%$ at 1 day; d) $FA = 8.0\%$ at 7 days	54
3.13a	Plot of shear entanglement modulus (G _N ⁰)	
	against FA concentration of CTAC/FA systems	
	at equilibrium	55
3.13b	Plot of tan θ against FA concentration of CTAC/FA	
	systems at equilibrium	57

3.14a

3.14b

3.15

3.16

3.17a

3.17b

3.18a

3.18b

Plot of viscosity against FA concentration	
of CTAC/FA systems at equilibrium	57
Plot of yield stress against FA concentration	
of CTAC/FA systems at equilibrium	58
Micrograph of CTAC/FA = 0.7/y systems	
at equilibrium: a) FA = 2.0%; b) FA = 3.3%;	
c) $FA = 6.0\%$; d) $FA = 8.0\%$	59
Micrograph of CTAC/FA = 1.05/y systems	
at equilibrium: a) FA = 2.0%; b) FA = 3.3%;	
c) $FA = 6.0\%$; d) $FA = 8.0\%$	60
Proposed model of CTAC/FA = $0.7/y$ systems	
at equilibrium: a) FA = 2.0%; b) FA = 3.3%;	
c) $FA = 8.0\%$	61
Proposed model of CTAC/FA = 1.05/y systems	
at equilibrium: a) FA = 2.0%; b) FA = 3.3%;	
c) $FA = 8.0\%$	61
Plot of shear entanglement modulus against	
HEC or modified HEC concentration of	
CTAC/FA/HEC and CTAC/FA/modified HEC	
= 0.7/3.3/z at equilibrium	62
Plot of tan θ against HEC or modified HEC	
concentration of CTAC/FA/HEC and	
CTAC/FA/modified HEC = 0.7/3.3/z at equilibrium	63

3.19 Plot of viscosity against HEC or modified HEC concentration of CTAC/FA/HEC and CTAC/FA/modified HEC = 0.7/3.3/z at equilibrium
65

PAGE

3.20 Micrograph of CTAC/FA/HEC

PAGE

	= 0.7/3.3/z systems at equilibrium:	
	a) HEC = 0%; b) HEC = 0.075%;	
	c) HEC = 0.1% ; d) HEC = 1.0%	66
3.21	Micrograph of CTAC/FA/modified HEC	
	= 0.7/3.3/z systems at equilibrium:	
	a) modified HEC = 0% ; b) modified HEC = 0.075% ;	
	c) modified HEC = 0.1% ; d) modified HEC = 1.0%	67
3.22	Proposed model of CTAC/FA/ HEC	
	= 0.7/3.3/z systems at equilibrium:	
	a) HEC = 0% ; b) the model of chain expansion;	
	c) increasing in HEC concentration	68
3.23	Proposed model of CTAC/FA/ modified HEC	
	= 0.7/3.3/z systems at equilibrium:	
	a) modified HEC = 0% ; b) the model of interconnected	
	of lamellar phase; c) increasing in modified HEC	
	concentration	69
3.24a	Plot of shear entanglement modulus (GN ⁰)	
	against FA concentration of BTAC/FA systems	
	at equilibrium	70
3.24b	Plot of $tan\theta$ against FA concentration of BTAC/FA	
	systems at equilibrium	71
3.25a	Plot of viscosity against FA concentration	
	of BTAC/FA systems at equilibrium	72
3.25b	Plot of yield stress against FA concentration	
	of BTAC/FA systems at equilibrium	72

3.26 Micrograph of BTAC/FA = 0.7/y systems at equilibrium: a) FA = 2.0%; b) FA = 3.3%; c) FA = 6.0%; d) FA = 8.0% 73 3.27 Micrograph of BTAC/FA = 1.05/y systems at equilibrium: a) FA = 2.0%; b) FA = 3.3%; c) FA = 6.0%; d) FA = 8.0%74 3.28a Proposed model of BTAC/FA = 0.7/y systems at equilibrium: a) FA = 2.0%; b) FA = 3.3%; c) FA = 8.0%75 3.28b Proposed model of BTAC/FA = 1.05/y systems at equilibrium: a) FA = 2.0%; b) FA = 3.3%;

c)
$$FA = 8.0\%$$
 75

PAGE