
THEORETICAL BACKGROUND AND LITERATURE REVIEW
CHAPTER II

2.1 Errors ill Measurement

Measured process data certainly contain some inaccurate information by 
errors during the measurement, processing and transmission of the measured signal. 
Errors in measured data can lead to significant deterioration in plant operation. The 
total error in a measurement which is the difference between the measured value and 
the true value of a variable can be classified into two types, random and gross errors.

2.1.1 Random Errors
True Value

Figure 2.1 Example of random errors

Random errors are errors in measurement that lead to measurable values 
being inconsistent when repeated measures of a constant attribute or quantity are tak­
en. Random errors cannot be completely eliminated and are always present in any 
measurement. Although the measurement is repeated with the same instrument under 
identical process conditions, random errors may be appeared.

Random errors are caused by unpredictable fluctuations in the readings of 
a measurement apparatus, or in the experimenter's interpretation of the instrumental 
reading: these fluctuations may be in part due to interference of the environment with



2.1.2 Gross Errors

the measurement process. And random errors occur high frequently but their magni­
tudes are typically less than the other errors such as gross errors.

Figure 2.2 Example of gross errors.
(http://vvw\v.univie.ac.at/IMG-Wien/daquamap/Interpretation.html)

Gross errors are caused by nonrandom events such as instrument 
malfunctioning, miscalibration. wear or corrosion of sensor, and solid deposits. If the 
measurement is repeated with the same instrument under identical conditions, the 
contribution of a systematic gross error to the measured value will be the same. 
These errors occur less frequently but their magnitudes are typically larger than ran­
dom errors. However, gross errors can be prevented by good installation and main­
tenance procedures.

2.2 Data Improvement Technique

A simplified view of measurement data improvement techniques can be 
divided into three basic steps as shown in Figure 2.3. The first step, variable classifi­
cation. involves determining which variables are observable or unobservable and 
which ones are redundant or underdetermined. Several authors have published algo-

http://vvw/v.univie.ac.at/IMG-Wien/daquamap/Interpretation.html
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rithms for variable classification such as Crowe (1986), Stanley and Mah (1981).
Mali (1990).

Measurement Model

Estimates

Figure 2.3 Steps for data improvement.
(Thomas F. Edgar. "Optimization of chemical processes”. Second Edition. 2011)

If the system is undeterminable, it is not available for improvement but if 
the system is determinable, the next step will be continued: gross errors are all de­
tected and eliminated in this step. Several methods proposed for gross error detection 
have been evaluated by Mah (1990). Rollins el al. (1996) and Tong and Crowe 
( 1997). After that the data reconciliation will be purposed in the final step to remove 
the remaining small, random measurement errors from data.
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2 . 2 . 1  P r o c e s s  V a r i a b l e  C l a s s i f i c a t i o n
It is also important to clarify some concepts in data reconciliation 

techniques. Measured variables are classified as redundant and lion-redundant, whe­
reas unmeasured variables are classified as observable and non-observable. The clas­
sification of process variables is shown in Figure 2.4.

”*■ Redundant

ร» Nonredundant 

Observable

►  Nonobservable

Figlire 2.4 Classification of process variables.
(University of Ottawa & North Carolina State University. "Introduction to Data Re­
conciliation"'. 2003)

Measured variables

Process variables

Unmeasured variables

• A redundant variable is a measured variable that can be estimated by 
other measured variables via process models, in addition to its mea­
surement.

• A lion-redundant variable is a measured variable that cannot be esti­
mated other than by its own measurement.

• An observable variable is an unmeasured variable that can be estimated 
from measured variables through physical models.

• A non-observable variable is a variable for which no information is 
available.
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2 .2 .1 .1 R e d u n d a n cy
Sensor and topological redundancy

•*»
• measurement

Figure 2.5 Sensor redundancy.
(http://en.vvikipedia.org/wiki Data_Validation_and_Reconciliation)

Sensor redundancy arising from multiple sensors of the same 
quantity at the same time at the same place.

® measurement

Figure 2.6 Topological redundancy.
I http://en. Wikipedia. org/wiki/Data_Validation_and_Reconeiliation)

Topological redundancy arising from model information, using 
the mass conservation constraint a = h  + c. for example one can calculate c. when a 
and h are know n.

Data reconciliation and gross error detection both achieve error 
reduction only by exploiting the redundancy property of measurements. Redundancy 
is a source of information that is used to correct the measurements in order to satisfy 
the process constraints. Redundancy can be due to sensor redundancy, where sensors

http://en.vvikipedia.org/wiki
http://en
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are duplicated in order to have more than one measurement of the same quantity. Re­
dundancy can also arise from topological redundancy, where a single variable can be 
estimated in several independent ways, from separate sets of measurements. Topo­
logical redundancy is intimately linked with the degree of freedom (DOF) of a ma­
thematical system, i.e. the minimum number of pieces of information that are re­
quired in order to calculate all of the system variables. From the example above, the 
flow conservation requires that a  = b + c. and it is clear that one needs to know the 
value of two of the 3 variables in order to calculate the third one. Therefore. DOF in 
that case is equal to 2.

About topological redundancy, we denote X  is the unmeasured va­
riables and V is the measured variables. Then the system of the process constraints 
becomes F (x .v ) =  0 . which is a nonlinear system in V and X .  If the system F (x .y ) = 0  
is calculable with the ท measurements given, then the level of topological redundan­
cy is defined as re d u n d a n c y  = ท -  D O F . the number of additional measurements
which are required in order to just calculate the system. Another way of viewing the 
level of redundancy is to use the definition of DOF, which is the difference between 
the number of variables (measured and unmeasured) and the number of equations. 
Then one gets re d u n d a n c y  = n - D O F  = ท -(ท  + เท- p )  = p - เท. the difference between
the number of equations, p, and the number of unmeasured variables, เท. The level of 
total redundancy is the sum of sensor redundancy and topological redundancy.

In any process, the variables are related to each other through 
physical constraints such as material or energy conservation laws. Given a set of 
such system constraints, a minimum number of measurements are required in order 
to calculate all of the system parameters and variables. If there are more measure­
ments than this minimum, then redundancy exists in the measurements that can be 
exploited. This type of redundancy is called spatial redundancy and the system of 
equations is said to be over-determined.

Data reconciliation cannot be performed without spatial redundan­
cy. With no extra measured information, the system is just determined and no correc­
tion to erroneous measurements is possible. Further, if fewer variables than necessary 
to determine the system is measured, the system is underdetermined and the values



8

of some variables can be estimated only through other means or if additional mea­
surements are provided.

A second type of redundancy is temporal redundancy. This arises 
due to the fact that measurements of process variables are made continually in time 
at a high sampling rate, producing more data than necessary to determine a steady- 
state process. If the process is assumed to be in a steady-state condition, then tem­
poral redundancy can be exploited by simply averaging the measurements, and ap­
plying steady-state data reconciliation to the averaged values. If the process state is 
dynamic, however, the evolution of the process state is described by differential equ­
ations corresponding to mass and energy balances, which provide both spatial and 
temporal redundancy of measured variables.

2 .2 .1.2  E r r o r  R e d u c tio n  M e th o d s
Digital filters have been used to reduce random errors 

(high-frequency noise) in process values. These filters are very helpful tools for data 
conditioning before data reconciliation. Various classical digital filters have been de­
signed. Each type has its own advantages, as well as related defects. Some reduce 
significantly the errors, but with large delay. Others have less delay, but over- 
shoot/undershoot after a true step process change. In general, a compromise between 
the amount of noise attenuation and the time delay in the filtered results is required in 
order to achieve the best performance for any types of filter. This can be accom­
plished by tuning the filter parameters which, unfortunately, is not easy to tune.

Data filtering is different from data smoothing which deals with 
the past data. Data filtering estimates the current value based on the current and past 
measurements and it is of primary concern in process control. Data smoothing esti­
mates the value of the central point from past and recent measurements (values from 
both side of the central point) and it is mainly used for fault diagnostic and steady- 
state process optimization.
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2.2.2 Data Reconciliation and Gross Error Detection Technique
In modern petroleum and petrochemical plant consist of a large 

number of process units such as reaction vessels, distillation columns, storage tanks, 
etc., which are interconnected together by a complicated network of streams. Mea­
surements such as flow rates, temperatures, pressures, levels, concentrations of com­
ponents and automatically recorded are routinely made for the purpose of process 
control, online optimization, or process performance evaluation. The use of comput­
ers to collect data not only allows data to be obtained a greater frequency, but has 
also remove errors present in manual recording. Hence, the accuracy and validity of 
process data are greatly improved by using the technique called "Data Reconciliation 
and Gross Error Detection". These two technique have receive considerable attention 
in chemical engineering literature consequently such as Almasy and Szatno (1975). 
Crowe. Campos and Hrymak (1983). Knepper and Gorman (1980). Kuehn and Da­
vidson (1960). Madron. Veverka and Veneeek (1977). Mah, Stanley and Downing 
( 1976). Mah and Tamhane (1982). Murthv ( 1973). Nogita (1972). Reilly and Carpani 
( 1963). Ripps (1965). Romagnoli and Stephanopolous (1981) (Tamhane and Mah. 
1985).

2 .2 .2 .1 D a ta  R e co n c ilia tio n
Data reconciliation is a technique that has been developed 

to improve the accuracy of measurements by reducing the effect of random errors in 
the data. A solution to the data reconciliation problem was first proposed by Kuehn 
and Davison ( 1961 ) who used Lagrange multipliers for the case where all component 
flow rates were measured. Also Crowe et al. (1983) and Crowe ( 1986) proposed an 
approach which computes the optimal solution using matrix projection and so on 
(Kim e t a l.. 1997). The major difference between data reconciliation and other filter­
ing techniques is data reconciliation use the process model constraints and obtains 
estimates of process variables by adjusting process measurements so that the esti­
mates satisfy the constraints and the reconciled estimates would be more accurate 
than the measurements and also consistent with the known relationships between 
process variables as defined by the constraints. The word. "More Accurate’*, is usual­
ly defined as the optimal solution to a constrained least-square or maximum likelih-
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ood objective function. It is important to understand what is wrong with the value 
obtained by measurement and why they must be adjusted (Romagnoli and Sanchez,
1999).

Data reconciliation can make the process data more useful for 
making decision and control by smoothing, eliminating outliers and adjusting for bi­
as and drift, so leading to better quality control, detection of faulty instrumentation 
and increased the profits.

Data reconciliation techniques for error reduction can be applied 
to industrial processes as part of integrated strategy referred to as data conditioning 
or data rectification. Figure 2.7 shows the various operations and the position of data 
reconciliation in data conditioning for online industrial applications.



Figure 2.7 Online data collection and conditioning system.
(Narasimhan and Jordache. "Data Reconciliation & Gross Error Detection", 2000.)

In doing the data reconciliation, it is supposed that the relationship 
between a measurement of variable and its true value can be represented by

y ,  =  G + G (2.1)

From equation 2.1. let y, represent the measured value. 
X[  represent the true value (Estimated reconcile value) and £1represent the random 
measurement error (assuming no gross error existing in the system).



For steady-state data and processes. Kiiehn and Davidson (1961) 
presented the seminal paper describing the data reconciliation problem based on 
least-square optimization. For dynamic data and processes. Kalman filtering (Gelb. 
1974) has been successfully used to recursively smooth measurement data and esti­
mate parameter. Both techniques were developed for linear systems and weighted 
least-square objective function.

The amount of adjustment made to the measurements is mini­
mized since the random errors in the measurements are expected to be small. In gen­
eral. data reconciliation can be formulated by the following constrained weighted 
least-square optimization problem (generalized least-square objective function).

M in  (y — x ) TYl~ i ( y  — x )  (a)

From equation a. if we consider the matrix X to be diagonal, equa­
tion a becomes

M in  ร;.'= 1 พ, ( ^ ) (b)

Subject to 9 k ( x i t U j) =  0 k = l . . . . . m (2.2)
Where พ, are the weights

y  1 is the measured value
Xj is the reconciled estimate for variable, i 
Uj are the estimates of unmeasured variables, j

The objective function, equation b. defines the total weighted sum 
square of adjustments made to measurements. Equation 2.2 defines the set of model 
constraints. The weights. พ, . are chosen depending on the accuracy of different mea­
surements.

The model constraints are generally material and energy balances, 
but could include inequality relations imposed by feasibility of process operations. 
The laws of conservation of mass or energy are typically used as constraints for data
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reconciliation because they are usually known. Empirical or other types of equations 
involving many unmeasured parameters are not recommended, since they are well- 
known only approximately. Forcing the measured variables to obey inexact relations 
can cause inaccurate data reconciliation solution and incorrect gross error diagnosis.

Any mass or energy conservation law can be expressed in the fol­
lowing general form:

In p u t - O u tp u t + G en era tio n  - C o n su m p tio n  - A c c u m u la tio n  = 0  (2.3)

The quantity for which the above equation is written could be the 
overall material flow, the flow of individual components, or the flow of energy. If 
there is no accumulation of any of these quantities, then these constraints are alge­
braic in character and define as steady-state operation. For a dynamic process, how­
ever. the accumulation terms cannot be neglected and the constraints are differential 
equations. For most process units, there is no generation or depletion of material. In 
the case of reactors, the generation or depletion of individual components due to 
reaction should be taken into account.

The types of constraints that are imposed in reconciliation depend 
on the scope of the reconciliation problem and the type of process units. Furthermore, 
the complexity of the solution techniques used depends strongly on the constraints 
imposed. For example, if we are interested in reconciling only the flow rates of all 
streams, then the material balances constraints are linear in the flow variables and 
linear data reconciliation problem results. On the other hand, if we wish to reconcile 
composition, temperature or pressure measurements along with flows, then a nonli­
near data reconciliation problem occurs.

Another important question is whether to perform reconciliation 
using a stead}-state or a dynamic model of the process. Practically, a process is never 
truly at a steady-state condition. However, a plant is normally operated for several 
hours or days in a region around a nominal steady-state operating point. For applica­
tions such as online optimization where reconciliation is performed once every few 
hours, it is appropriate to employ steady-state reconciliation on measurements aver­
aged over the time period of interest.
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During transient conditions (such as during a changeover to a new 
crude type in a refinery) when the departure front steady state is significant, steady- 
state reconciliation should not he applied because it will result in large adjustments to 
measured values. Measurements taken during such transient periods can be recon­
ciled. if necessary, using a dy namic model of the process. Similarly for process con­
trol applications where reconciliation needs to be performed every few minutes, dy­
namic data reconciliation is appropriate.

Figure 2.ร Sub-problems in data reconciliation.
(University of Ottawa & North Carolina State University. "Introduction to Data Re­
conciliation.". 2003 )

Dy namic data reconciliation models were first presented by Stan­
ley and Malt ( 1077). who adapted Kalman filtering in a quasi steady-state condition 

Extended Kalman filtering has been a popular method used to 
solve the dynamic data reconciliation problem (Muske and Edgar. 1998). As an al­
ternative. the nonlinear dynamic data reconciliation problem with a weighted least-



15

square objective function can be expressed as a moving horizon problem (Liebman e t 
ill.. 1992).

The nonlinear objective function is

M in  / (y(t),x(t)) (2.4)

Subject to the dynamic model

And inequality constraints

g ( x ( t ) )  >  0 (2.6)

This problem can be solved using a combined optimization and 
constraint model solution strategy (Muske and Edgar. 1998) by converting the diffe­
rential equations to algebraic constraints using orthogonal collocation or some other 
model discretization approach.

Weiss et al.. (1996) successfully used data reconciliation to an in­
dustrial pyrolysis reactor in linear and nonlinear method. Both methods were used to 
solve the data reconciliation problem. The first method, linear, which included suc­
cessive linearization, yielded results similar to yield from nonlinear method. The 
overall heat transfer coefficient, one of the operating parameters of the pyrolysis 
reactor, calculated by using reconciled data showed a trend consistent with plant ex­
perience and could be used to determine the better regeneration cycle time of the 
reactor.

Bagajewicz e t al.. (2000) presented the comparison of the perfor­
mance of integral approach to dynamic data reconciliation and steady-state data re­
conciliation. Dynamic data, subject to averaging and steady-state reconciliation will 
be compared with the average of the results of dynamic data reconciliation and the
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averages of the true values. It is shown that in the absence of biases and leaks, the 
performance of both approaches is similar. Moreover, it is proven that once the ap­
propriate variance is chosen, both methods are identical in the absence of accumula­
tion terms. Finally, an analysis is made on how large the discrepancies are when 
there are accumulation terms.

Lid e t til., (2008) studied data reconciliation and optimal operation 
of a catalytic naphtha reformer. The reformer also has an important function as the 
producer of hydrogen to the refinery hydrotreaters. A process model based on a unit 
model structure is used for estimation of the process condition using data reconcilia­
tion. The process model is fitted to 21 data sets from the naphtha reformer that col­
lected in a two year period and includes feed and product analysis and process mea­
surements. Measurements are classified as redundant or lion-redundant and the mod­
el variables are classified as observable, barely observable or unobservable. The 
computed uncertainty of the measured and unmeasured variables shows that even if a 
variable is observable it may have a very large uncertainty and may thereby be prac­
tically unobservable.

The general assumptions of data reconciliation are only random 
errors are presented in the measurements which follow a normal (Gaussian) distribu­
tion. with known variances, this means the mean of measurement errors is assumed 
to be zero (Kim e t a!.. 1997). And a system is operated at steady-state condition. If a 
gross error due to a measurement bias is present in some measurement or if a signifi­
cant process leak is present which has not been accounted for in the model con­
straints. then the reconciled data may be very inaccurate. It is therefore necessary to 
identify and remove such gross errors. Therefore no gross errors either in the mea­
surements or in the process model constraints make the data reconciliation effective­
ly

2 .2 .2 .2  G ro ss  E rro r  D e tec tio n
Gross error detection is a companion technique to data re­

conciliation that has been developed to identify and eliminate gross errors. Thus, data 
reconciliation and gross error detection are applied together to improve accuracy of 
measured data.
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From steps for data improvement, as shown in Figure 2.3. show 
that the gross error will be detected and eliminated in the second step but actually in 
practice, gross error detection and elimination are usually performed iteratively along 
with the final step of data reconciliation.

The gross error detection problem has been studied since l%0s. 
There are several review papers on this subject such as Mali (1987). Crowe (1994). 
and Yang (1992). Many methods have been created to solve the problem so they can 
be categorized as follows (Yang e ta l . ,  1995):

• Based on the assumption of data normal distribution:
- Global Test ( 1965)
- Maximum Power Test (1975)
- Constraint or Nodal Test (1976)
- Measurement Test ( 1962)
- Akaike Information Criterion Method (1986)
- Generalized Likelihood Ratios ( 1989)
- Principle Component Analysis ( 1994)

• Based on data abnormal distribution:
- Bivariate Likelihood Distribution ( 1991 )
- Non-central Probability Density Function ( 1993)

• Neural Network Methods:

There are many main methods to do the gross error detection 
based on l in e a r  s te a d y - s ta te  p r o c e s s e s  such as Global Test (GT). Measurement Test 
(MT) and Nodal Test (NT), we will discuss each of them below.
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Global Test (GT)

Jfr

Figure 2.9 Chi-squared distributions. (Montgomery and Runger. 2003)

For detection of gross error, many authors. Almasv and Szatno (1975). 
Madron e t a l. ( 1977). Rip (1965 ). have suggested the use of a global Chi-squared sta­
tistic constructed from the observed discrepancies in the constraints.

The test is based on the vector of balance residuals, r. which is given by

r = A y - c  (2.7)

Where /• is the vector of residual
A is the vector of balance matrix 
V is the measured value 
c is the true value

Under the null hypothesis. Ho. that there are no gross errors present, the 
vector /• is a multivariate normal distribution with zero mean value and variance- 
covariance matrix, r. given by

V = co v(r) = A T jA t (2.8)

Where ^  is the measurement variance-covariance matrix 

And Global test uses the test statistic given by

Y =  r TV ~ l r (2.9)
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Under Ho. the above statistic follows a Chi-squared distribution with de­
grees of freedom. เ.1 . where jU is the rank of matrix A. If the test criterion is chosen as 
x\_a ,1 . where X1L(r11 is the critical value of Chi-squared distribution at the chosen 
level of significant, a . which generally taken as a = 10%. 5% and 1% (with 5% level 
of significant, it means that 95% is trusted the gross error are absent), then Ho is re­
jected and a gross error is detected, if Y >  x f_ a ,1.

Basic global test statistic (the conventional gross error detection) can be 
applied by using the objective function of linear or nonlinear data reconciliation be­
cause the objective function of data reconciliation by least-square method is also a 
Chi-squared probability distribution, with degree of freedom. /;. which is equal to 
degree of redundancy, where degree of redundancy (DOR) is equal to the number of 
equation discarded by the number of unmeasured variable.

M in  พ , ( ป ี- f  «  (2.10)

If the objective function value is less than x l_ a t1 then gross errors are not 
expected in the system.

Nodal Test (NT)
Reilly and Capani ( 1963) and Mah el ctl. ( 1976) independently proposed 

performing a separate test on each nodal imbalance. The vector /• can also be used to 
derive test statistics, one for each constraint i. given by

z r . i = j v =  i = 1-2...... .ฑ (2.11)

Or. written in vector form

Zy =  [ d i a g ( V ) ] ~  r (2.12)

Where d ia g (J ') is a diagonal matrix whose diagonal elements are V j j
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The nodal test uses the test statistics, z , for gross error detection. It can 
he proved that Zr.i follows a standard normal distribution. If any of the test statistics 
z,., exceed the test criterion Zi_ 0. / 2  where z  1 - . 0; / 2  is the critical value of the standard 
normal distribution for chosen level of significance, a . a gross error is detected.

And the test criterion can be performed in another form by using Sidak 
(1067) inequality to decrease the probability of Type I error, in other words, the 
probability of Type I error may be more than the specified value of a. If we wish to 
control the Type I error probability, the following modified level of significance./?. 
can be used.

For any specified value of a . the modified value f i  can be compute by us­
ing equation 2.13

(3 =  1 — (1 — a ) 1/m (2.13)

Measurement Test (MT)
Mah and Tamhane ( 1082) proposed the measurement test. The test based 

on the vector of measurement adjustment as below.

a  — y  — X ( 2 . 1 4 )

Where reconciled estimates. X. are obtained by using data reconciliation 
technique. Using this solution, tile measurement adjustments can also be showed as

a  =  v A T r ' r  ( 2 . 1 5 )

cl = sy ! a  (2.16)

The result of Cl and cl w ill be the same value if the variance matrix. พ  is 
diagonal matrix and under H,). cl is also generally distributed with zero mean and a 
covariance matrix
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i r  = co v (d ) = A Tr ‘A  

And the following test statistic is

(2.17)

1 =  7 ^  i = 1 2...... " 12.18)

Similar to the nodal test, the measurement test also involves multiple un­
ivariate tests. Thus the criterion statistic test can he used the same as nodal test and if 
we choose to use Sidak (1967) inequality to increase the performance of criterion test, 
we can use equation 2.13 by replacing 111 to ท. the number of univariate measurement 
test (the number of measured variable) and the statistical criterion test

Or the basic measurement test (the conventional gross error detection and 
elimination) can detect gross errors by using the confidence interval (±Z(T. depending 
on level of significant). The confidence interval can be calculated by using standard 
deviation of measurement adjustment, a. (measurement adjustment is equal to meas­
ured vaille discarded by reconciled value), if the measurement adjustment value, a. is 
larger than the confidence interval, then gross error is detected.

And the estimator value, z. can be calculated by using equation 2.19

% c o n f i d e n c e  l e v e l  = e r fi 'j$ j= ) (2.19)

Where z  is the estimator value
E r f  is the error function

There are many methods to identify the multiple gross error detection 
based on lin e a r  s te a d y -s ta te  p ro c e sse s  by categorizing as simultaneous strategy, seri­
al strategy and combinatorial strategy below.
Simultaneous strategies

Identification using single gross error test statistics 
Identification using combinatorial hypotheses 
Identification using simultaneous of gross error magnitudes



S e r ia l  s t r a t e g ie s
S e r ia l  E l im in a t io n

I te r a t iv e  M e a s u r e m e n t  T e s t  

M o d i f i e d  I te r a t iv e  M e a s u r e m e n t  T e s t  

S e r ia l  C o m p e n s a t io n
o  S im p le  S e r ia l  C o m p e n s a t io n  S t r a te g y  

o  M o d i f ie d  S e r ia l  C o m p e n s a t io n  S t r a te g y  

B o u n d e d  G L R

C o m b in a to r ia l  s t r a te g ie s
T h e  lin e a r  c o m b in a t io n  t e c h n iq u e

K im  e t a i .  ( 1 9 9 7 )  s tu d ie d  T h e  M o d i f i e d  I te r a t iv e  M e a s u r e m e n t  T e s t  

( M I M T )  g r o s s  er r o r  d e t e c t io n  a lg o r ith m  u s in g  n o n l in e a r  p r o g r a m m in g  ( N L P )  t e c h ­
n iq u e s  to  im p r o v e  its  r o b u s tn e s s  a n d  p e r fo r m a n c e . T h e  a lg o r i t h m  h a s  b e e n  t e s t e d  o n  

a c o n t in u o u s  s t ir r e d  ta n k  r e a c to r  ( C S T R )  e x a m p le .  T h e y  fo u n d  th a t th e  p e r fo r m a n c e  

o f  d a ta  r e c o n c i l ia t io n  u s in g  n o n lin e a r  p r o g r a m m in g  in  th e  p r e s e n c e  o f  g r o s s  erro rs  

w a s  b e tte r  th a n  th e  c o n v e n t io n a l  d a ta  r e c o n c i l ia t io n  a lg o r i th m  u s in g  a l in e a r iz a t io n  

t e c h n iq u e .  T h e  c o n v e n t io n a l  g r o s s  err o r  d e t e c t io n  a lg o r i t h m  s u c h  a s  M I M T  u s in g  

l in e a r iz a t io n  t e c h n iq u e s  w a s  n o t  a b le  to  c o m p u t e  th e  o p t im a l  g r o s s  err o r  e s t im a t e s  a s  

th e  n u m b e r  o f  g r o s s  e r r o r s  in th e  m e a s u r e m e n t  w a s  in c r e a s e d . T h u s  th e  p e r fo r m a n c e  

o f  th is  a lg o r ith m  r a p id ly  d e te r io r a te d  a s  th e  n u m b e r  o f  g r o s s  e r r o r s  in c r e a s e d . B u t th e  

e n h a n c e d  g r o s s  err o r  d e t e c t io n  a lg o r ith m  u s in g  N L P  n o t  o n l y  s h o w e d  r o b u s t n e s s  to  

th e  n u m b e r  o f  g r o s s  e r r o r s  b u t a ls o  c o m p u t e d  r e l ia b le  r e c o n c i le d  e s t im a t e s  fo r  th e  

g r o s s  e r r o r s . T h e r e f o r e ,  th is  e n h a n c e d  a lg o r ith m  s h o u ld  b e  a b le  to  r e c o n c i le  th e  

m e a s u r e d  d a ta  e f f e c t i v e l y  fo r  h ig h ly  n o n lin e a r  c h e m ic a l  p r o c e s s e s .

T h e  M o d i f i e d  I te r a t iv e  M e a s u r e m e n t  T e s t  ( M I M T ) ( K im  e t a i .  1 9 9 7 )
T h e  r o o t  o f  I te r a t iv e  M e a s u r e m e n t  T e s t  ( I M T )  is  p u r p o s e d  b y  S e r th  a n d  

H e e n a n . ( 1 9 8 6 ) .  a n d  K im  e t a i .  ( 1 9 9 7 )  m o d i f i e d  it b y  u s in g  N L P .  n a m e ly  th e  M o d ­
if ie d  I te r a t iv e  M e a s u r e m e n t  T e s t  a n d  its  a lg o r i th m  is  f o l l o w e d  b e lo w  a n d  its  f l o w ­
s h e e t  is  s h o w n  in  L ig u r e  2 .1 0 .
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L e t s e t  ร b e  th e  s e t  o f  o r ig in a l  m e a s u r e d  v a r ia b le s .  L e t s e t  c  b e  th e  s e t  o f  

m e a s u r e m e n t s  w h i c h  a re  id e n t i f ie d  a s  c o n t a in in g  g r o s s  e r r o r s . L e t  s e t  T  b e  th e  se t  o f  

m e a s u r e d  v a r ia b le s  in  r e d u c e d  r e c o n c i l ia t io n  p r o b le m
S t e p  1: S o l v e  th e  in it ia l  r e c o n c i l ia t io n  p r o b le m . C o m p u t e  th e  v e c t o r s  X  

( r e c o n c i le d  e s t im a t e  v a lu e ) ,  a  ( e q u a t io n  1 5 ). a n d  d  ( e q u a t io n  1 6 )
S t e p  2 : C o m p u t e  th e  m e a s u r e m e n t  s t a t i s t i c s .  z d j , ( e q u a t io n  1 8 )  fo r  e a c h  

m e a s u r e d  v a r ia b le
S t e p  3: F in d  z ,,111X th e  m a x im u m  a b s o lu t e  v a lu e  a m o n g  a ll  z d j  fr o m  s te p  2 

a n d  c o m p a r e  it w i t h  th e  te s t  c r i te r io n  Z c =  Z i./j2  I f  Z max <  z c, p r o c e e d  to  s t e p  6 . O t h ­
e r w is e .  s e l e c t  th e  m e a s u r e m e n t  c o r r e s p o n d in g  to  z max a n d  d e le t e  it fr o m  th e  se t  o f  

m e a s u r e d  v a r ia b le s  ( s e t  ร )  a n d  a d d  it to  th e  s e t  o f  u n m e a s u r e d  v a r ia b le  ( s e t  C )  I f  t w o  

o r  m o r e  m e a s u r e m e n t  t e s t  s t a t i s t i c s  a re  e q u a l to  z max. s e l e c t  th e  m e a s u r e m e n t  w ith  th e  

l o w e s t  in d e x  /  to  a d d  to  s e t  c
S t e p  4 : R e m o v e  th e  m e a s u r e m e n t s  c o n t a in e d  in  c  fr o m  s e t  ร. S o l v e  th e  

d a ta  r e c o n c i l ia t io n  p r o b le m  tr e a t in g  th e  v a r ia b le s  c o r r e s p o n d in g  to  s e t  c  a ls o  a s  u n ­
m e a s u r e d . O b ta in  T . th e  s e t  o f  m e a s u r e m e n t s  in  th e  r e d u c e d  d a ta  r e c o n c i l ia t io n  p r o b ­
le m . a n d  th e  v e c t o r s  a  a n d  d  c o r r e s p o n d in g  to  t h e s e  m e a s u r e m e n t s

S t e p  5: D e t e r m in e  i f  th e  r e c o n c i le d  v a lu e  fo r  a ll  v a r ia b le s  in  s e t  T  a n d  s e t  

c  a re  w i t h in  th e ir  p r e s c r ib e d  lo w e r  a n d  u p p e r  b o u n d s .  I f  a ll  r e c o n c i le d  v a lu e s  a re  

w it h in  th e  b o u n d s ,  s to r e  th e  c u r r e n t  s o lu t io n  a n d  re tu rn  to  s t e p  2 . O t h e r w is e ,  d e le t e  

th e  la s t  e n tr y  in  c . r e p la c e  it b y  m e a s u r e d  v a r ia b le  c o r r e s p o n d in g  t o  th e  n e x t  la r g e s t  

v a lu e  o f  I z d j  I >  z  1 a n d  re tu rn  to  s t e p  4 . I f  I Zd j  I <  z c fo r  a ll  r e m a in in g  v a r ia b le s ,  d e ­

le te  th e  la s t  e n tr y  in  s e t  c  a n d  g o  to  s t e p  6.
S t e p  6: T h e  m e a s u r e m e n t s  c o n t a in in g  in  s e t  c  a re  s u s p e c t e d  o f  c o n t a in in g  

g r o s s  e r r o r s . T h e  r e c o n c i le d  e s t im a t e s  a f te r  r e m o v a l  o f  t h e s e  m e a s u r e m e n t s  a re  t h o s e  

o b ta in e d  in  s t e p  4  o f  la s t  ite r a t io n .
A n d  a ll  o f  d a ta  r e c o n c i l ia t io n  s t e p s  u s e  th e  n o n l in e a r  p r o g r a m m in g  t e c h ­

n iq u e  ( K im  e t III.. 1 9 9 7 ) .
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B a g a j e w i c z  e t al.. 1 1 9 9 8 )  p r o p o s e d  a  m e t h o d  to  i d e n t i f y  a n d  e s t im a t e  

g r o s s  e r r o r s  in  p la n t  l in e a r  d y n a m ic  d a ta  r e c o n c i l ia t io n .  T h r e e  k in d s  o f  g r o s s  erro rs  in  

p r o c e s s  p la n t s  i .e .  f l o w  ra te  b ia s e s ,  h o ld u p  b ia s e s  a n d  ta n k  le a k s  a r e  c o n s id e r e d  a n d  

in c lu d e d  in  th e  in te g r a l  m o d e l .  T h e  s t r a te g y  to  id e n t i f y  a n d  e s t im a t e  th e  g r o s s  erro r  

p e r fo r m s  w i t h  e f f i c i e n c y  e v e n  in  th e  p r e s e n c e  o f  a  h ig h  n u m b e r  o f  e r r o r s . G r o s s  e r ­
ro rs a re  id e n t i f ie d  w it h o u t  th e  n e e d  fo r  m e a s u r e m e n t  e l im in a t io n .  T h e  s t r a te g y  is  c a ­
p a b le  o f  e f f e c t i v e l y  id e n t i f y in g  a  la r g e  n u m b e r  o f  g r o s s  e r r o r s  b y  u s i n g  th e  se r ia l  m e ­
th o d .

S a n c h e z  e t a/.. 1 1 9 % )  s tu d ie d  th e  m e th o d  o r  s t r a te g y  th a t  a l l o w s  th e  id e n ­
t i f i c a t io n  o f  g r o s s  e r r o r s  fo r  p y r o ly s is  r e a c to r  m e a s u r e m e n t .  A  r e a c to r  m o d e l  is  p e r ­
fo r m e d  in te r m s  o f  m a s s  a n d  h e a t  b a la n c e  a n d  in p u t -o u tp u t  m a p p in g  b a s e d  o n  a v a i la ­
b le  m e a s u r e m e n t s .  G r o s s  erro r  d e t e c t io n  p e r fo r m a n c e  is  e v a lu a t e d  b y  u s in g  G e n e r a ­
l iz e d  L ik e l ih o o d  R a t io .  G L R  (N a r a s im h a n  et a l . , 1 9 8 7 )  a n d  S im u lt a n e o u s  E s t im a t io n  

o f  G r o s s  E r r o r s . S E G E  ( S a n c h e z  e t a l..  1 9 9 5 )  m e th o d  to  d e t e c t ,  id e n t i f y  a n d  e s t im a t e  

th e  m a g n it u d e  o f  s im u la t e d  g r o s s  e r r o r s  in  th e  p r o c e s s  v a r ia b le s  a n d  u s e  th e  e x p e c t e d  

f r a c t io n  o f  c o r r e c t  id e n t i f ic a t io n  ( O P F )  a s  a  p e r f o r m a n c e  m e a s u r e  ( R o l l i n s  a n d  D a v is .  
1 9 9 2 ) .  B o t h  G L R  a n d  S E G E  b e h a v e  s a t is f a c t o r i ly  b u t S E G E  g i v e s  g r e a te r  O P F  th a n  

G L R  a r o u n d  9 0 %  o f  r e s u lt s .
W a n g  et a l.. ( 2 0 0 4 )  fo u n d  th a t th e r e  a re  s o m e  d e f e c t s  a n d  th e  d e c r e a s e  o f  

th e  c o e f f i c i e n t  m a tr ix  ran k  is  th e  m o s t  s e r io u s  o n e .  S o .  th e y  p r e s e n te d  a n  im p r o v e d  

M T - N T  c o m b in e d  m e th o d  fo r  s o l v i n g  th is  p r o b le m . T h e  p r o p o s e d  m e th o d  o v e r ­
c o m e s  th e m  b y  u s in g  a s t r a te g y  o f  d e t e c t in g  a n d  r e c o n c i l i n g  v ia  s u c c e s s i v e  ite r a t io n .  
T h e  c a s e  s tu d y  s h o w s  th e  im p r o v e d  p e r fo r m a n c e  c o m p a r e d  to  th e  e x i s t in g  M T - N T  

m e th o d . T h e  im p r o v e d  M T - N T  m e th o d  c a n  a v o id  th is  d e f e c t  w i t h o u t  in c r e a s in g  th e  

o p e r a t io n  s in c e  it u s e s  th e  e s t im a t e s  to  r e p la c e  th e  m e a s u r e m e n t s  w it h  g r o s s  er r o r s  s o  

th a t th e  e q u a t io n s  a re  n o t  c h a n g e d .  A n  e x a m p le  s h o w s  th a t  th is  m e t h o d  is  e f f i c i e n t  

a n d  r e l ia b le  in  p r a c t ic a l  u s e .
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