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ABSTRACT

5281004063: Petrochemical Technology Program
Thani Jermwongratanachai: Utilization of Methane: Méthylation of
Benzene with Methane and Gas-to-Liquids (GTL) via Fischer-
Tropsch Synthesis.
Thesis Advisors: Asst. Prof. Boonyarach Kitiyanan. Prof. Burtron H.
Davis, and Dr. Gary Jacohs 235 pp.

Keywords: Méthylation/ Benzene/ Methane/ HZSM-5/ GasAo-liquids (GTL)/
Fischer-Tropsch synthesis/ Cobalt (Co)/ Alumina (A1203)

During the past decades, studies on the conversion of methane, a main
component of natural gas, into more valuable fuels or chemicals have received much
attention. This is because liquid-petroleum reserves are becoming scarcer, while
natural gas (e.g., methane) reserves are abundant; moreover, methane can be
generated by fermentation of organic materials. Previously, methane was
predominantly used for heating, in both industry and in households. Once the gas-to-
liguids (GTL) technology for the conversion of methane into higher valued liquid
products (e.g., gasoline, diesel, and methanol) was accomplished, it has largely
inspired many researchers to widen research in this area by either developing a new
approach of utilizing methane or improving the 'performance of existing
technologies. In this thesis, the work is divided into two parts. First, méthylation of
benzene with methane, a novel and challenging approach is aimed at directly using
methane as an alkylating agent to react with the benzene ring into methylated
product, especially xylenes, in a one-step process. Ag/FIZSM-5 and Mo/HZSM -5
were studied as catalysts. The second study was on the heart of GTL technology,
Fischer-Tropsch synthesis, a reaction to produce long chain hydrocarbons, which can
be hydrocracked to produce gasoline, diesel, jet fuels, and waxes, from synthesis gas
derived from methane/natural gas. The capability of some transition metals as metal
promoters for Co/A1203 Fischer-Tropsch catalyst was demonstrated. Moreover,
reoxidation of tiny cobalt crystallite at the onset of the reaction was explored and
proposed as one of the modes of catalyst deactivation for very small nanocrystallites.
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Catalytic Partial Oxidation
Extended X-ray Absorption Fine Structure
Faced Center Cubic

Flame lonization Detector
Fischer-Tropsch
Fischer-Tropsch Synthesis
Gas-to-Liquids

Proton

Iridium

Linear Combination (fitting)
Molybdenum

Molybdenum Carbide
Oxidation-reduction

Oxidized

Platinum

Rhenium



Red-
Rh

Ru

Si02
SMR
TCD
TPO
TPR

XXII

Reduced

Rhodium

Ruthenium

Silicon oxide or Silica

Steam Methane Reforming

Thermal Conductivity Detector
Temperature-Programmed Oxidation
Temperature-Programmed Reduction

TPR-EXAFS Temperature Programmed Reduction- Extended X-ray

Absorption Fine Structure

TPR-XANES Temperature Programmed Reduction- X-ray Absorption Near

Edge Structure

UV-Vis DRS Ultraviolet-Visible Diffuse Reflectance Spectroscopy

WHSV
XANES
XPS
XRD
XRF

Weight Hourly Space Velocity

X-ray Absorption Near Edge Structure
X-ray Photoelectron Spectroscopy
X-ray Diffraction Spectroscopy
X-ray Fluorescence Spectroscopy



AH®,

AS°n
*G°0

Ka

fi

Cp

a2

LIST OF SYMBOLS

Angstrom
Angle width of peak

Mean crystalling diameter

Standard enthalpy at reference conditions
Standard entropy at reference conditions
Standard Gibh free energy at reference conditions
Scherrer constant

X-ray wavelength

Bragg angle of the reflection (degree or radian)
The equilibrium constant

Fugacity of the Species i

System pressure

System temperature

Meat capacity

Extent of the reaction

The amplitude reduction factor

Fractional coordination

Isotropic expansion coefficient

The Dehye-Waller factor

XX111
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