กรดอะมิโนที่อาจเป็นสารสื่อประสาทของเส้นประสาทเวสติบูลาร์

นางสาว วรรณกา - วารุลีเ

วิทยานิพชนี้ไปแล่วชหนึ่งของการศึกษาตามหลักสูตรปริญญาเภสัชศาสตรมหานักกิต ภาควิชาสรีรวิทยา นับกิตวิทยาลัย จุฬาลงกรณ์มหาวิทฮาลัย พ.ศ. 2530 ISBN 974-567-872-4

AMINO ACIDS AS POSSÍBLE VESTIBULAR PRIMARY AFFERENT TRANSMITTER

MISS WONNAPHA WARUNEE

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Pharmacy

Department of Physiology

Graduate School

Chulalongkorn University

1987

ISBN 974-567-872-4

Copyright of the Graduate School, Chulalongkorn Unviersity.

Thesis Title Amino Acids as Possible Vestibular

Primary Afferent Transmitter

Name

Miss Wonnapha Warunee

Department

Physiology

Thesis

Advisor Associate Professor Pavich Tongroach, Ph.D.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree.

......Dean of Graduate School (Professor Thavorn Vajrabhaya, Ph.D.)

Thesis Committee

Royales Kaluas, Chairman

(Assistant Professor Pongsak Kanluan)

Parale Forgood Member

(Associate Professor Pavich Tongroach, Ph.D.)

Parc Sichlin Y Member

(Associate Professor Ratree Sudsuang, Ph.D.)

(Assistant Professor Surachai Unchern)

ทัวข้อวิทยานิพนธ์ กรดอะมิโนที่อาจ เป็นสารสื่อประสาทของ เส้นประสาท เวสติบูลาร์

ชื่อนิลิต นางสาว วรรณภา วารุณี

อาจารย์ที่ปรึกษา รองศาสตราจารย์ ดร. ภาวิช ทองโรจน์

ภาควิชา สรีรวิทยา

ปีการศึกษา 2529

บทศัดย์อ

Vestibular system เป็นระบบสำคัญยิ่งระบบหนึ่งที่ควบคุมเกี่ยวกับการทรงตัว
ประสานงานการเคลื่อนไหวของศีรษะ และตา โดยมีการติดต่อกับสมองส่วนอื่น ๆ ได้มีการ
ศึกษา ความสัมพันธ์ของระบบนี้กับสมองส่วนอื่น ๆ โดยวิธีการทางกายวิภาคศาสตร์ และการ
ศึกษาถึงกลไกการทำงานของระบบนี้ทางด้านสรีรวิทยาทางไฟฟ้า แต่การศึกษาทางด้านสาร
เคมีที่เป็นสารสื่อประสาทของระบบนี้ ยังไม่มีผู้ใดศึกษา การทราบถึงรายละเอียดของสาร
สื่อประสาท จะทำให้เราสามารถเข้าใจถึงการทำงานของระบบนี้ได้ดียิ่งขึ้น และจะยัง
ประโยชน์ในการคิดค้นทางด้านเภสัชวิทยาอีกด้วย

โดยการใช้วิธี superfusion บริเวณ vestibular nucleus ของหนูขาว ด้วยน้ำไขสันหลังเทียม และใช้ High performance liquid chromatography (HPLC) วิเคราะห์หาปริมาณของกรคอะมิโนที่หลั่งออกมา เมื่อกระตุ้นด้วยกระแสไฟฟ้าและ potassium ปริมาณสูง

จากการศึกษาพบว่า ในหนูขาวที่กระตุ้น vestibular nucleus ด้วยกระแส ไฟฟ้าและ potassium ปริมาณสูง (100 mM) ปริมาณการหลั่งของ aspartate และ glutamate เพิ่มขึ้นอย่างมีนัยสำคัญ เมื่อเปรียบเทียบกับกลุ่มควบคุม

ผลการศึกษานี้สนับสนุนความคิดที่ว่ำ aspartate และ/หรือ glutamate อาจจะเป็นสารสื่อประสาทของเส้นใยประสาทขาเข้าเวสติบูลาร์ Thesis Title Amino Acids as Possible Vestibular

Primary Afferent Transmitter

Name Miss Wonnapha Warunee

Thesis Advisor Associate Professor Pavich Tongroach, Ph.D.

Department Physiology

Academic Year 1986

ABSTRACT

The vestibular system plays an important role in the control of posture and equilibrium. The system has been extensively investigated an anatomically and electrophysiologically but until now there has been little evidence concerning the chemical neurotransmitters used in this pathway. A knowledge of neurotransmitters is essential for complete understanding of the function and dysfunction of the vestibular system, and is a prerequistic for the design of novel pharmacological agents with which to combat many neurological disorders.

Here we have used neurochemical approache to identify possible neurotransmitters used by vestibular primary afferents: measurement of endogenous amino acids released in perfusate after high potassium depolarization and electrical stimuli. The vestibular nuclear complex was perfused with artificial cerebrospinal fluid using a push-pull cannula. The endogenous amino acids release in the perfusate was determined by high-performance liquid chromatography (HPLC) combined

with fluorimetric derivatives.

Both stimulation of vestibular nerve and perfusion with high potassium CSF (100 mM) produced significant increase in glutamate and aspartate contents recovered in the perfusate. This result suggests that glutamate and/or aspartate may be neurotransmitters of the vestibular primary afferents.

ACKNOWLEDGEMENT

I would like to express my gratitude to my advisor, Associate Professor Dr. Pavich Tongroach, for his kind advice, guidance, keen interest and constant encouragement throughout this study.

I am much thankful to all staff member of the Scientific and Technological Research Equipment Centre (STREC), Chulalongkorn University, and those of the Department of Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for providing advice and facilities used in experimental works.

Apart from the financial support from my parents, this study programme has been made possible part by Chulalongkorn University Graduate School for granting my partial financial support, to conduct this research to them, my gratitude goes.

Finally, I would like to extend my appriciation to my parents for their love and encouragement.

TABLE OF CONTENTS

	- 1 -	•	Page
THAI ABSTRACT.			IV
ENGLISH ABSTRA	ACT		v
ACKNOWLEDGEMEN	NTS		VII
TABLE OF CONTE	ENTS		VIII
LIST OF TABLES	3		X
LIST OF FIGURE	ES		XI
ABBREVIATION			XIII
CHAPTER			
1. IN	NTRODUCI	TION	1
2. MA	ATERIAL	AND METHODS	
	. Mater	rials	9
2.	. Super	fusion method	11
3.	. Elect	crical stimulation	
	metho	od	12
4.	. Amino	acid assays	
	4.1	Chromatograph	13
	4.2	Reagent and Chemicals	15
	4.3	Chromatography	16
	4.4	Precolumn Derivatization	16
5	Nicto	plogical study	16

			Page
3.	RES	ULTS	
	1.	Amino acid analysis :	
		Preparation of standard curve	20
	2.	Perfusion experiments	20
	3.	Spontaneous release of	
		endogenous amino acids	21
	4.	Effect of high K concentration	
		on amino acids release	26
	5.	Effect of Ca on amino acid	
		release	32
	6.	Effect of electrical stimulation	
		on amino acids release	32
	7.	The study of stimulating electrode	:
		position	40
4.	DIS	CUSSION	49
REFERENCES.		• • • • • • • • • • • • • • • • • • • •	53
VITA	• • • •	• • • • • • • • • • • • • • • • • • • •	68

1

LIST OF TABLES

Table		Page	
1.	Coefficient of variation (C.V.) of		
	the peak area	23	
2.	Levels of the spontaneous release of		
	vestibular nucleus	31	
3.	Evoked release of amino acids with		
	high K 50 mM	35	
4.	Evoked release of amino acids with high		
	K 100 mM	38	
5.	The Ca dependency of K -evoked		
· u	release of amino acids	39	
6.	Evoked release of amino acids with		
	electrical stimulation	43	

LIST OF FIGURES

Figure		Page
1.	Diagrammatic representation of the	
	relationship between the vestibular	
	ganglia and central fibers projecting	
	to parts of the vestibular nuclei	
	complex	3
2.	The oscillographic record of field potentia	1
	in vestibular nuclei complex	5
3.	Schematic description of the superfusion	
	push-pull cannula	10
4.	Schematic illustration of the stimulation	
	recording	14
5.	Diagrammatic representation of high	
	performance liquid chromatography	17
6.	o-Phthalaldehyde (OPA) forms fluorescent	
	derivatives	19
7.	Chromatogram of standard amino acids	21
8.	Standard curve of amino acids	
	measurement	22
9.	Chromatogram of the perfusate sample	
	from the rat vestibular nucleus	24
10.	Histological section from a successful	
	experiment	25

Figure		Page	
11.	Chromatogram of the perfusate sample		
	from incorrect placement of the push-pull		
	cannula	27	
12.	Histological section of the cannula tip		
	located outside of the vestibular		
	nuclei	28	
13.	The spontaneous release of endogenous		
	amino acids	29	
14.	Effect of high concentration of K		
	on the release of endogenous amino		
	acids	33	
15.	Effect of high concentration of K with 2+ + 2+		
11	Ca -dependent and K with Ca -free		
	on the release of endogenous amino		
	acids	36	
16.	Effect of electrical stimulation of		
	vestibular nerve on amino acids		
	release	4 1	
17.	Histological section of electrical		
	stimulation site	4 4	
18.	Effect of electrical stimulation at		
	difference point of the vestibular		
	nerve on the release of glutamate		
	and aspartate	4.5	

ABBREVIATION

Ala = alanine

Asp = aspartic acid

cm = centrimetre

CSF = cerebrospinal fluid

C = degree celcius

EDTA = ethyldiaminotetraacetic acid

Fig. = figure

GABA = gamma-aminobutyric acid

g = gram

Glu = glutamic acid

Glu-NH = glutamine

2

Gly = glycine

HPLC = high-performance liquid

chromatography

I.D. = internal diameter

kg = kilogram

M = Molar

mA = milliampere

mg = milligram

min = minute

mM = millimolar

mm = millimetre

nm = nanometre

nmol = nanomole

P = probability

pmol = picomole

Psi = Pound per square inch

S.E. = standard error

Ser = serine

Tau = taurine

uA = microampere

ul = microlitre

um = micrometre

v/v = volume by volume

% = percent