
CHAPTER III

FUNDAMENTAL OF DISTILLATION

3.1 Theoretical Model for Multicomponent Multistage Distillation Column.

The theoretical model for this thesis has the assumptions as follows :
•  This column is continuous distillation.
•  It is operated at steady-state conditions.
•  The liquid and vapor flows are countercurrent.
•  No chemical reaction occurs.
•  Phase equilibrium is achieved at each stage.
•  The stages are numbered down from condenser to reboiler.
•  Each stage has feed, vapor-liquid interstage streams, vapor-liquid 

sidestreams and heat transfer that are shown in figure 3.1.

Considering stage j in figure 3.1. The single or two phase feed enter 
stage i with flow rate Fj which contains overall composition in mole fractions Zj 
of component i, temperature TFj, pressure PFj and overall enthalpy HFj.

The interstage liquid stream from stage above enters stage i with flow rate 
Lj_1 contains the liquid composition in mole fractions Xjj.j of component i, 
temperature Tj. 1 , enthalpy HLj. 1 and pressure ?!. 1 which is equal to or less than the 
pressure of stage j.

Similarly, the interstage vapor liquid stream from stage j+1 below flows 
into stage i which has flow rate Vj+1, the vapor composition in mole fraction y jj+1,
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temperature Tj+1, enthalpy HVj+1 and pressure P]+1 that is equal to or higher than 

pr

V: Liquid from stage above
พ,

Vapor side stream

y«j
Ev,j

H.V j+1

V.i+1

Li-1

L j-1

Of x
Heat Transfer

xLj

Liquid side stream

Vapor from stage below

Figure 3.1 Equilibrium Stage

The vapor and liquid leaving stage i have the intensrve properties Pj and 
T The vapor can be drvided into vapor sidestream of flow rate พ 1 and the 
interstage vapor of flow rate Vj, with the composition of component i y, j and 
enthalpy HVj. The liquid stream is similar to vapor stream that has liquid
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sidestream Uj, interstage liquid flow rate Lj, liquid composition Xj 1 and enthalpy
HLr

In this system, the c  components mixture is separated by N stages 
distillation column. The distillation calculation can be described by the set of 
equations that are defined from four relations. (Henry, E. J., 1981)

1. Material balance equation for component i on stage j.

lh Xi,j-1 + Vi+1 Yij+I + F1 zi,j - (Lj + บ1) x:,j - (v 1 + w j) y,,j = 0
(3-1)

2. Phase equilibrium relation component i on stage j.

y,, - Ku x„ = 0 (3-2)

where Kjj is the phase equilibrium constant of component i at stage j.

3. Mole fraction summation on stage j.

z  Yi.j - 1 . 0  = 0  

or
x 1,1 - 1 0  = 0

4. Energy balance on stage j.

Lj -1 Hl 1. 1 + V, +1 Hv 141 + F,Hf 1 - (L, +U,)Hl 1 - (Vj+Wj)Hv t -๐,  = 0
(3-5)

(3-3)

(3-4)
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where kinetic and potential energy changes are assumed to be
insignificant.

HL1 Hv, and Hp are mixture enthalpy of the corresponding
stream.

A total material balance equation can be used in place of equation (3-3) or 
(3-4). It is derived by combining these two equations and ^ Z i  = 1.0 with (3-1)

I
summed over the c  components and over stages 1 through i to yeild

h  = Vi+1+ j j  K  - Wm - Um) - V, j = Î.2, 3......N (3-6)

In general, It is known that Kjj = Kjj {Tj, Pj, Xpj, y,j}, HV) = HVj {Tj, Pj, yt1}, 
and HLj = HLj{Tj, Pj, Xj 1}. If these relations are not counted as equations and 
three properties are not counted as variables, this column has 2C+3 equations for 
each equilibrium stage. If N and all Fj, Zj 1, TFj, PFj, Pj, บ1, Wj and (ว1 are specified, 
the model is represented by N(2C+3) simultaneous algebraic equations in N(2C+3) 
unknown. (Shuzo Ohe, 2536) This model has a large of nonlinear equations that 
must be solved by iterative techniques.

3.2 Tridiagonal Matrix Algorithm.

There are many iterative solution procedures for solving nonlinear 
algebraic equations. For separators where the feeds contains only components of 
similar volatility (narrow-boiling case), the bubble-point (BP) method I S  

recommended. The key to the success of BP method I S  the tridiagonal matrix 
that is resulted from a modified material balance equations (3-1) when Tj and Vj 
are selected as the tear variables. The material balance equations are modified in 
the unknown liquid mole fractions. This set of equations for each component is



solved by highly efficient and reliable algorithm due to Thomas as applied by 
Wang and Henke.

The yij in equation (3-1) are substituted by equation (3-2). The material 
balance equations are obtained by substituting eqution (3-6) into equation (3-1) to 
eliminate Lj. The result for each component and each stage is shown as equation 
(3-7).

where
A :x : j . 1 .  +  V i . j  +  C .,JX  1 , j +1  =  D i.j

Aj = V j + ( F m- พ 111- U J  - V ,  j = 2, 3, 4 ......N

(3-7)

(3-8)

By = - [Vj+1 + £ 1 (Fm-Wm-Um) -V, + บ, + (Vj+Wj) Kj j ]
1 = 1 ,2 ...... N
i = 1. 2...... c (3-9)

C,J = v w  K,141 j = 1, 2, 3, .... N-l (3-10)
i = 1, 2, 3, ...1 c

Di.i = - F1 z.., i = 1, 2, 3, ..., N (3-11)
i = 1, 2, 3, ..., c

with X, 0 = 0, VN+1 = 0, พ 1 = 0, and บN = 0.

If the modified equations are grouped by component, they can be
represented by tridiagonal matrix equations (3-12).
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(3-12)

The Thomas algorithm for solving the equation (3-12) is a Gaussian 
eliminating X j j .  Firstly, the forward elimination starts from stage 1 and works 
toward stage N to find xiN. Then, the other Xjj are obtained starting with X,N_1 by 
backward substitution.

The equations used in the Thomas ฟgorithm are as follows:

II ท j33 (3-13)

Tl = Dj/Bj (3-14)

pi = (Bj-Ajpj-i) i = 2, 3, 4, ..., N-l (3-15)

_ (Dj-Ajqj-|)
q] (Bj-Aj PM) i = 2, 3, 4, .... N (3-16)

The equation (3-7) is rearranged as

x1,, = V  P] X>,,+1 (3-17)

The forward elimination starts from stage 1 to stage N. For stage N, (3-17) 
isolate X, N as
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Xj_N = T[\J (3-18)

Then, the backward substitution eliminates the other Xjj by equation (3- 
19).

Xjj = qj - Pj Xjij+1 j = N -l, N-2, .... 1 (3-19)

In general, computed values of Xjj are ฟพays positive.

3.3 The Bubble-Point (BP) Method for Distillation.

The effective solution procedure for this work is referred to the bubble- 
point (BP) method because a new set of stage temperatures is computed during 
each iteration from bubble-point equation.

Computational procedure:
Step 1. Specify feed and column configuration as follows:

— All of feeds and feed conditions (Fj, Zj1, TFj, PFj or HF) ).
_  Column configurations N, L (reflux rate), Vj (vapor distillate 

rate), Pj, บ1, พ 1, and Qj except Qt (condenser duty) and QN 
(reboiler duty).

Step 2. Initialize tear variables Tj and Vj.
— To initiate a set of Vj values based on the assumption of 

constant interstage flows.
— To initiate a set of Tj values by assuming a linear variation of 

temperatures with stage location.
Step 3. Solve equation (3-12) for each set of X, 1 values by the Thomas

algorithm.
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Step 4. Normalize the set of X, 1 values for each stage by the relation

normalized X i j
c

i = i

(3-20)

Step 5. Compute the new set of Tj from bubble point equation (3-21) and 
set of Yjj values from (3-2).

j^KijXij - 1.0 = 0 (3-21)

method.
Step 6.

The equation (3-21) is nonlinear. It must be solved by iterative

Compute condenser duty from (3-5) and reboiler duty from (3-22).

Qn = X  (FiHF,- U.HU - w iHv j ) - I  O f V1HV1 - l nh ln

(3-22)

Step 7. Compute the new set of Vj from modified energy balance 
equation, which is obtained by combining equations (3-5) and (3-6) twice to 
eliminate Lj_1 and Lj.

a ,v ,  + PjV)+1 = Y, (3-23)
where

a ,  = Hlh - H„ (3-24)

Pj = HVi+1 • H|j (3-25)
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Yi = i f ;  < v  w » - u ท.) - V,I(HL1 - h lh ) + F,(HL1 - Hpj) 

+ Wi<HVj - H J  +ช ุ (3-26)

The modified energy ๖ฟance is written in didiagonal matrix from. 
It IS  applied over stages 2 to N-l as follow:

> 0 0 0 -  - 0  0 ~ _ v  3 — / 2 -  « 2V 2

ร *ss
> o o o o V  4 P

0  OA fo 0  - - 0  0 V  5 r*
oooo

-
=

-

0  0 - - -  ON 2 foi 2 0 V  N-l /N -2
0  0 - - -  0  ÛN-I foi 1 V  N /N -l

Using Gaussian elimination procedure to solve equation (3-27) from 
the top where V2is computed by equation (3-6).

_ /j-i-ffj-i Vj-I
] =  พ

Then, compute the set of L from equation (3-6). 
Step 8. Check the convergence of this procedure.

Z7=1
00 (k-l)Tj ~ Tj(k) + IH

(k) (k-l)
Vj V) I2(k) 1Vj

< ธ

where k is the iteration index.
ธ  IS  prescribed tolerance.

(3-28)

(3-29)
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However, Wong and Henke suggested that the following simpler 
criterion which is based on successive sets of Tj values only is adequate.

T = X  [ Tr - Tr ,)]2 ^ 001N  (3-30)
and
x  = z  [ v ^ - v f - ^ ] 2 < 0.01N (3-31)

j=i

The new set of Vj and Tj values change 10% from last iterations.
Step 9. Use the new set of Vj and Tj as the initial guesses for calculating 

step 3 to 9 when the result of step 8 is false. Stop the calculation when which 
result become true.

The algorithm for the Wang-Henke BP method is shown in figure
3.2.



17

Yes
Exit

Adjust tear 
variables Tj 

and Vj

Figure 3.2 Algorithm for Wang-Henke BP method (Henry, E. J., 1981)
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3.4 Vapor Liquid Equilibria (VLE)

The liquid mixture at temperature T and pressure p IS in equilibria with 
vapor mixture at the same temperature and pressure. (Van Ness, H. c ., 1982) 
The condition of thermodynamic equilibria for every component i in the mixture 
is given by

f ! = f -  (3-31)

The Raoult’s Law shown in equation (3-32) is applied for VLE of the ideal 
mixture that the liquid phase is an ideal solution, vapor phase is an ideal gas, 
and the liquid phase fugacities are independent of pressure.

y, p = X1 p,* (3-32)

Vapor liquid equilibria are often expressed in term of phase equilibria
ratio.

Ki j = (3-33)
x i j

K values for ideal mixture are defined as

Kjj = ^  (3-34)

For vapor liquid equilibria at high pressure are conveniently calculated by 
using an equation of state applicable to both phases. Equation (3-33) can be 
rewritten in terms of coefficients which defined by
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and

(3-35)

(3-36)

Phase equilibrium ratio is derived by combining equation (3-35) and (3-36) 
into equation (3-31) to give

K, = A  (3-37)

Assuming that the equation of state.can be expressed as

P = f(T 1V,z11z2,...) (3-38)

And assuming further that this equation of state holds for ฟ! fluid 
densities (i. e., gases and liquids) and for all compositions zl, z2, ..., we can 
cdculate </)■' and $  from

RT I n = J“L [ Æ TV111 ~ ]  dV - RT In z" (3-39)<dhj ' ’ j V

RT ln^,v = \ ; v [ A TV ~ ]  dV - RT In z  (3-40)[̂{■1 ' ' '  V

where compressibility factor z  is given by 

ZL = ART (3-41)
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(3-42)

In the liquid phase, the total volume is related to the molar volume V

In principle. Equations (3-37) to (3-38) are sufficient for finding all K 
factors in a multicomponent system containing two fluid phases. However, if a 
realistic equation of state is used, the required computations are strongly 
nonlinear and often require extensive iterations.

3.5 Bubble Point Calculation

The bubble point calcฟation used for computing a new set of 
temperatures is very important step of BP method. It is particularly effective for 
mrxtures having a narrow range of K values because temperature is not then

by

(3-43)

where ท  ̂ is the total number of moles in the liquid phase. 
Similarly,

(3-44)

sensrtive to composition.
The bubble point criterion IS
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l  = X z . Ki ' (3-45)

with X1 = Zj and y, = KjXj
Equation (3-45) is used for calculating bubble point temperature at a given 

pressure. It is highly nonlinear in temperature. Therefore, iterative procedures 
are required to solve bubble point temperatures. Calculation procedure for ideal 
case is shown in figure 3.3. (Henry, E. J., 1981)

Figure 3.3 An algorithm for solving the bubble point temperature.

The bubble point calculation using equations of state is shown in figure 3.4
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Figure 3.4 An algorithm for solving the bubble point temperature using
equation of state. (Sandler, ร. I., 1989)
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3.6 The thermodynamices Properties

The thermodynamic properties presented in this chapter are wrdely used 
for distillation calculation

3.6.1 Vapor Pressure

The widely used vapor pressure correlation is the Antoine equation

where p* = Vapor Pressure

T = Temperature
Aj, B1 and Cj = constant parameters

The applicable temperature range is not large and corresponds to a 
pressure interval of about 0.01 to 2 bar. The Antoine equation should not be used 
outside the temperature limits stated. (Reid, R. c ., 1988)

The other correlation predicting vapor pressure over wide range of 
temperature is the Wagner’s equation.

(3-46)

a T+ b r 15 -t-cr3 + d r 6 
Tr (3-47)



24

3.6.2 Enthalpy

The enthalpy used in energy balance equation is very important for 
solving distillation problems.

The mold specific heat of gases is conventionally given as a 
polynomial in temperatures. The superscript refers to the ideal condition.

Cpv =  ล.1 + a2T + a3T2 + a4T3 4- a5T4 (3*48)

The integral of equation (3-48) between a referent temperature, T0, to a 
desired temperture, T, provides ideal gas molar enthalpy at that temperature, as 
below:

H i = k  c"p.,dT= à a > ^T "k~ ~  (3-49)

For real gas the estimated expression of enthalpy must be modified to
yeild

(H-H°v) = Pv - RT - £  [ p - T A v ] dv (3-50)cT

where V is the total volume equal to vX^i-
For a mixture at given temperature T and pressure p, the vapor enthalpy

Hv = [ ^ (yiH°v)] + (Hv -H°v ) (3-51)
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Equations (3-48) and (3-50) particularly suitable by using equations 
of state are explicit in pressure.

HL= [ Z ( y , H “v) ] + ( H L-H"v ) (3-52)

The equation of state mentianed above also does not apply with 
polar compound, large molecules (polymer) and electrolytes. (Thanit Sawasdisevi, 
1996)
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