POLYAMIDE/BACTERIAL CELLULOSE NANOCOMPOSITE FILMS FOR TOUCHSCREEN APPLICATION

.

Weerasak Deachophon

o

2,1

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2015

I28369002

580070

Thesis Title:	Polyamide/Bacterial Cellulose Nanocomposite Films
	For Touchscreen Applications
By:	Weerasak Deachophon
Program:	Polymer Science
Thesis Advisors:	Asst. Prof. Hathaikarn Manuspiya

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science

....... College Dean

(Asst. Prof. Dr. Pomthong Malakul)

Thesis Committee:

Hathailiam Monupisa

(Asst. Prof. Dr. Hathaikarn Manuspiya)

Soule Ummo, tyohn

(Dr. Sarute Ummartyotin)

Thayalde Chaism

(Asst. Prof. Dr. Thanyalak Chaisuwan)

ABSTRACT

5672032063: Polymer Science Program
Weerasak Deachophon: Polyamide/Bacterial Cellulose
Nanocomposite Films for Touchscreen Applications
Thesis Advisor: Asst. Prof. Dr. Hathaikarn Manuspiya 66 pp.
Keywords: Polyamide(PA)/ Bacterial cellulose/ Nanocomposite/
Dielectric properties/ Piezoelectric properties

The flexible piezoelectric film of polyamide 11 (PA11)/bacterial cellulose (BC) was successfully prepared via a solution casting method and compressed to a thin film. The various weight percentage of extracted BC (0.2, 0.4, 0.6, 0.8, 1 wt% for PA11 and 1 wt% for PA6) were incorporated into PA11 matrix using formic acid as a solvent. The results indicated that the higher amount of BC can slightly increase the thermal stability, crystallinity and mechanical properties of the nanocomposite films. Besides, the dielectric constant was enhanced to 24% compared to that of neat PA11 due to the interfacial polarization between the interfaces of fiber and polymer matrix. Consequently, the noncentrosymmetry structure of odd-numbered polyamide and the dipole orientation under an applied field induce the polarization yielding the good dielectric and piezoelectric properties. The tensional behavior of nanocomposite films was also improved with the increase in Young's modulus from 678 to 749 MPa compared to neat PA11. However, the obtained films were less transparent. This nanocomposite film can further develop to be an alternative motional for the touchscreen sensor.

บทคัดย่อ

วีระศักดิ์ เดโซพล : วัสดุเชิงประกอบพอลิเอไมด์และแบคทีเรียเซลลูโลสสำหรับการ นำไปใช้งานทางด้านจอสัมผัส (Polyamide/Bacterial Cellulose Nanocomposite Films for Touchscreen Applications) อ.ที่ปรึกษา : ผศ.ดร. หทัยกานต์ มนัสปิยะ 66 หน้า

ฟิล์มเพียโซอิเล็กทริกแบบยืดหยุ่นถูกเตรียมจากพอลิเมอร์ผสมระหว่างพอลิเอไมด์และ แบคทีเรียเซลลูโลสโดยผ่านกระบวนการขึ้นรูปด้วยสารละลายและกระบวนการอัดด้วยความร้อน วัสดุผสมถูกเตรียมโดยการใช้สารละลายกรดฟอร์มิค โดยมีการศึกษาผลของสัดส่วนของแบคทีเรีย เซลลูโลสตั้งแต่ 0.2, 0.4, 0.6, 0.8 จนถึง 1 เปอร์เซ็นต์โดยมวล สำหรับพอลิเอไมด์ 11 และ 1 เปอร์เซ็นด์โดยมวล สำหรับพอลิเอไมด์6 ซึ่งพบว่าเมื่อปริมาณของแบคทีเรียเซลลูโลสเพิ่มขึ้นทำ ให้ผลของการด้านทานทางความร้อน ความเป็นผลึก และสมบัติเชิงกลของวัสดุเชิงประกอบระดับ นาโนเพิ่มขึ้น นอกจากนี้ค่าไดอิเล็คทริคถูกเพิ่มขึ้น 24เปอร์เซ็นต์ เมื่อเทียบกับพอลิเอไมด์ที่ไม่มี การเติมแบคทีเรียเซลลูโลสเนื่องจากการเหนี่ยวนำการเกิดขั้วที่ผิวสัมผัสระหว่างพอลิเอไมด์ที่ไม่มี การเติมแบคทีเรียเซลลูโลสเนื่องจากการเหนี่ยวนำการเกิดขั้วที่ผิวสัมผัสระหว่างพอลิเอไมด์ที่ไม่มี การเติมแบคทีเรียเซลลูโลสเนื่องจากการเหนี่ยวนำการเกิดขั้วที่ผิวสัมผัสระหว่างพอลิเอไมด์และ เส้นใย เพราะฉะนั้นโครงสร้างผลึกไม่มีสมมาตรของสูนย์กลางของพอลิเอไมด์11และการจัดเรียง ขั้วภายใต้กระแสไฟฟ้าเป็นผลให้ก่าไดอิเล็กทริคและเพียโซอิเล็กเพิ่มขึ้น นอกจากนี้สมบัติเชิงกล ของวัสดุเชิงประกอบระดับนาโนยังเพิ่มขึ้นอีกด้วย สำหรับก่ายังโมดูลัสเพิ่มขึ้นจาก 678 เป็น 749 เมกาพาสคาลเมื่อเทียบกับพอลิเอไมด์11ที่ไม่มีการเดิมแบคทีเรียเซลลูโลส อย่างไรก็ตามก่าการ ส่องผ่านของแสงของวัสดุเชิงประกอบระดับนาโนนี้มีก่าลดลง และวัสดุเชิงประกอบระดับนาโนนี้ สามารถพัฒนาเพื่อใช้สำหรับหน้าจอทัชสกรีนด่อไป

ACKNOWLEDGEMENTS

First of all, I would like to express my appreciation to my advisor, Assistant Professor Dr.Hathaikarn Manuspiya for their valuable time, guidance, useful suggestion, kindness and vital help throughout this research. In addition, a deeply thanks to all thesis committee who's taking time to serve on committee and special advices for this research: Assistant Professor Dr.Thanyalak Chaisuwan and Dr. Sarute Ummartyotin. This research work was partially supported by the Ratchadapisek Sompoch Endowment Fund (2013), Chulalongkorn University (CU-56-900-FC) and Thailand Research Fund (IRG5780012) and The Petroleum and Petrochemical College, Chulalongkorn University, the Center of Excellence on Petrochemical and Materials Technology, Thailand.

Besides, I would face more difficulties while doing this thesis without the college's staffs, PPC's friends and especially HM group. Thanks for your kind help, cheerful and suggestions. This is one of most valuable memories in my life.

Finally, I would like to especially thanks to my beloved parent, for their support, understand, inspiration, motivation and always trust me Thank you very much to everyone that I mentioned above, thank you for being one part of my long journey.

ø

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	11i
Abstract (in Thai)	iv
Acknowledgements	ν
Table of Contents	vi
List of Tables	х
List of Figures	xi

CHAPTER

I. INTRODUCTION

ø

PAGE

PAGE

П.	LITERATURE REVIEW	3
	2.1 Piezoelectric Materials	3
	2.1.1 Principle of Piezoelectric Material	3
	2.1.2 Structure Requirements for Piezoelectric Materials	5
	2.1.3 Characteristics of Piezoelectic Polymers	6
	2.1.4 Application	8
	2.2 Polyamide	8
	2.2.1 Structure and Properties	9
	2.2.2 Piezoelectric and Ferroelectric Properties of Polyamide	12
	2.3 Nanocomposite	14
	2.4 Bacterial Celulose	16
III.	EXPERIMENTAL	18
	3.1 Materials	18
	3.2 Experimental Procedures	18
	3.2.1 Bacterial Cellulose (BC) Preparation	18
	3.2.2 PA/BC Preparation	19
	2.2 Characterization and Testing	20

2

1

•

3.3.1 Compression Molding Machine (Labtech, model Ll	20) 20
3.3.2 Universal Testing Machine	20
3.3.3 Corona Discharger	20
3.3.4 Differential Scanning Calorimeter, DSC822	20
3.3.5 Thermal Gravimetric Analyzer, TGA	21
3.3.6 Thermal Gravimetric Analysis (TGA)	21
3.3.7 UV/Visible Spectrophotometer (UV-2500)	21
3.3.8 Scanning Electron Microscope, FE-SEM	21
3.3.9 X-ray Diffraction Microscope, XRD	22
3.3.10 Dielectric Measurement	22
PREPARATION AND CHARACTERIZATION OF	23
POLYAMIDE11/BACTERIAL CELLULOSE	
NANOCOMPOSITE FILMS	
4.1 Abstract	23
4.2 Introduction	23
4.3 Experimental Procedures	24
4.3.1 Materials	24
4.3.2 BC preparation	24
• 4.3.3 Fabrication of PA11/BC Nanocomposite Films	25
4.3.4 Characterizations	25
4.4 Results and Discussion	25
4.4.1 BC Characterization	25
4.4.1.1 Crystallinity of BC	25
4.4.1.2 Chemical Functionality of BC	26
4.4.1.3 Morphological Observation of BC	27
4.4.1.4 Thermal Properties	28
4.4.2 PA11/BC nanocomposite Films Characterization	28
4.4.2.1 Morphological Properties	28
4.4.2.2 Crystalline Phase Behavior	39
4.4.2.3 Thermal Properties	31
4.4.2.4 Mechanical Properties	33

IV

-

	4.4.2.5 Dynamic Mechanical Properties	35
	4.4.2.6 Optical Properties of PA11/BC	36
	nanocomposite Films	
	4.4.2.7 Dielectric Properties of	38
	PA11/BC nanocomposite Films	
	4.5 Conclusion	41
	4.6 Acknowledgement	42
	References	43
V	PREPARATION AND CHARACTERIZATION OF	46
	POLYAMIDE6/BACTERIAL NANOCOMPOSITE FILM	IS
	5.1 Abstract	46
	5.2 Introduction	46
	5.3 Experimental Procedures	47
	5.3.1 Materials	47
	5.3.2 BC preparation	47
	5.3.3 Fabrication of PA6/BC Nanocomposite Films	47
	5.3.4 Characterizations	47
	5.4 Results and Discussion	48
	5.4.1 PA6/BC nanocomposite Films Characterization	48
	5.4.1.1 Morphological Properties	48
	5.4.1.2 Crystalline Phase Behavior	48
	5.4.1.3 Thermal Properties	49
	5.4.1.4 Mechanical Properties	52
	5.4.1.5 Optical Properties of PA6/BC Blend Films	53
	5.4.1.6 Dielectric Properties of	
	PA6/BC nanocomposite Films	54
	5.5 Conclusion	55
	5.6 Acknowledgement	56
	References	67

VI	CONCLUSIONS AND RECOMMENDATIONS	60
	6.1 Conclusions	60
	6.2 Recommendations	61
	REFERENCES	62
	APPENDIX	65
	Appendix A Thermal Shriinkage (ASTM D2732)	65
	Appendix B FT-IR Spectra of PA11 and PA11/BC	
	nanocomposite	65
	CURRICULUM VITAE	66

.

.

LIST OF TABLES

TABLE		PAGE
2.1	Properties comparison of common piezoelectric polymer and ceramic	6
2.2	Piezoelectric properties of polymers	7
2.3	Shear piezoelectricity of biopolymer	8
	in a digital resistive multi-touch screen construction	
2.4	Comparison of mechanical properties	10
2.5	Comparison typical materials properties for odd-numbered	
	and PVDF	11
4.1	DSC parameters of PA11/BC mamocomposite films	
	compared with neat PA11	33
5.1	DSC parameters of PA6/BC mamocomposite films	
	compared with neat PA11 13	51
Al	Percent shrinkage of PA11/BC nanocomposite films with	
	neat PA11	69

o

LIST OF FIGURE

FIGURE

		art.
2.1	Classification of dielectric materials	4
2.2	Direct piezoelectric effect	5
2.3	Indirect piezoelectric effect	5
2.4	Monomer repeating unit of polyamide	11
2.5	Schematic view of the hydrogen-bonded sheet structure	12
2.6	Piezoelectric strain constant, d_{31} , for polyamide11 and	
	polyamide7 and PVDF samples measured at 104 Hz from	50°C
	to temperature close to their melting point	13
2.7	Anealing effect (after poling) on the d_{31} versus T character	eristics 14
	of polyamide7. The measurement frequency was 104Hz.	
2.8	Surface area/volume ratios for various reinforcement filler	
	geometries	15
3.1	Bacterial cellulose preparation	19
3.2	Polyamide preparation	20
4.1	X-ray diffraction pattern of BC from nata de coco	26 o
4.2	FT-IR Spectra of neat BC sheet	27
4.3	TEM images of BC	27
4.4	TG-DTA thermogram of BC sheet	28
4.5	SEM images of PA11/BC blend films at	29
	different weight compositions at magnification of 1 k	
4.6	X-ray diffraction patterns of PA11/BC nanocomposite films	s 30
	compared with neat PA11	
4.7	TG-DTA thermograms of PA11 nanocomposite films	31
4.8	DSC second-heating curves of BC/PVDF blend films	32
4.9	DSC first-cooling curves of BC-PVDF blend films.	32
4.10	Young's modulus of PA11/BC nanocomposite films	34
4.11	Tensile strength of PA11/VC nanocomposite films	34

σ

PAGE

4.12	Elongation at break of BC/PVDF blend films	35
4.13	Storage tensile modulus, E' vs temperature of various amounts	
	of BC in PA11/BC nanocomposite films compared to neat PA11	36
4.14	Damping factor (E"/E') vs temperature of various amounts	
	of BC in PA11 nanocomposite films compared to neat PA11	36
4.15	Sample appearances of PA11/BC nanocomposite films	
	compared with neat PA11.	37
4.16	UV/Vis spectra of PA11/BC blend films compared	
	with neat PA11	37
4.17	Dielectric constant nanocomposite films as a function of	
	frequency at 20°C.	39
4.18	Dielectric constant of PA11/BC nanocomposite films	
	compared with neat PA11 at temperature -20 $^{\circ}C$ – 150 $^{\circ}C$	
	and (a)10 MHz, (b) 100 MHz and(c) 1 GHz.	40
4.19	Dielectric constant 29 before and after poling of PA11	
	and PA11/BC nanocomposite films as a function of	
	frequency at 20°C.	41
4.20	Dissipation factor before and after poling of PA11 and PA11/B	С
	nanocomposite films as a function of frequency at 20°C	41
5.1	SEM images of PA6/BC blend films as different weight	
	compositions at magnification of 1 k	48
5.2	X-ray diffraction patterns of PA6/BC nanocomposite films	49
	compared with neat PA6	
5.3	TG-DTA thermograms of PA11 nanocomposite films	50
5.4	DSC second-heating curves of PA6/BC nanocomposite films	51
5.5	DSC first-cooling curves of PA6/BC nanocomposite films.	51
5.6	Young's modulus of PA11/BC nanocomposite films	52
5.7	Tensile strength of PA11/VC nanocomposite films	52
5.8	Elongation at break of BC/PVDF blend films	53
5.9	UV/Vis spectra of PA6/BC nanocomposite films	
	compared with neat PA6.	53

~

0

. .

•

5.10 Dielectric constant and dissipation factor of PA6 and PA6/BC mamocomposite films as a function of frequency at 20°C.

0

÷

•