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CHAPTER I
INTRODUCTION

Normed spaces are vector spaces endowed with a map called the norm, which
acts as the role of the modulus. In fact, there are a lot of significant natural ge-
ometric properties which fail in general normed spaces as non Euclidean spaces.
Some of these interesting properties hold just when the space is an inner product
space. This is the most important motivation for study of characterizations of inner
product spaces.

The classic characterization of inner product spaces is the following property

called the parallelogram law
lz +yll* + lle = ylI” = 2[|2])* + 2l|y|)* for all z,y € X.

In 1935, Jordan and von Neumann [1] proved that the parallelogram law is a nec-
essary and sufficient condition for the norm to be induced by an inner product.
This result was generalized by Carlsson [3] by assuming some algebraic conditions.
Later in 1973, Johnson [4] introduced an interesting characterization of inner prod-
uct spaces involving the binomial coefficients.

As we pointed out, these motivated us to find other conditions, which are more
general than Johnson’ s condition and more explicit than Carlsson’s condition.
Moreover, since some algebraic conditions are released by the binomial identity,
we also give a new characterization of inner product space.

In Chapter I, we recall some basic definitions and theorems involving the von
Neumann’s characterization.

In Chapter lll, we study some characterizations of inner product spaces involving

the binomial coefficients. We present the result of Johnson which motivates our



work and we also show that the proof is specific .
In the last chapter, we prove some binomial identities which are used for the
proof of our main theorem and give a new characterization generalizing the result

of Johnson.



CHAPTER II
PRELIMINARIES

In this chapter, we recall some definitions, notations and theorems used through-

out this research. We also review some literature related to our research.

Definition 2.1. Let X be a complex vector space over a field C. A norm on X is

amap || - || : X — [0,00) that satisfies the following three properties.
i ||z|| =0 if and only if z = 0.

ii |laz| = |a|-||z| for all z € X and a € C.

i ||z +y| < |lz|| + ||ly|| for all z,y € X.

A normed linear space is a pair (X, || - ||), where X is a vector space and || - || is a

norm on X.

Definition 2.2. An inner product on a vector space X over a field C is a function
that takes each ordered pair (z,y) of elements of X to a number (z,y) € C and

has the following properties.

i (z,z) is not any negative real number for all z € X and

(z,z) = 0 if and only if z = 0.
i (x+y,2) = (x,2)+ (y,2) for all z,y,z € X.
iii (ax,y) = afx,y) for all z,y € X and « € C.
iv (z,y) = (y,z) for all z,y € X.
The vector space X with an inner product is called an inner product space.

It is clear that every inner product space X is a normed linear space because

one can define a norm on X as follows :



Proposition 2.3. If (, ) : X x X — C is an inner product on a vector space X,

then the function || - || : X — R, defined by

lz|| = /(z,z) for x € X,

is a norm on X. This norm is called the norm induced by the inner product (-, -).

In Chapter I, we mentioned the property that does not hold in a general normed

linear space.

Proposition 2.4. If X is an inner product space, then for every x,y € X,
lz + ylI? + flz = yl* = 2fj[|* + 2[|y]|*.

This property is called the parallelogram law. The next proposition shows
that for an inner product space, we can write the inner product in terms of the

corresponding induced norm.

Proposition 2.5. Let (X,(, )) be a complex inner product space and || - || the

corresponding norm, then for every x,y € X,

3
3 ‘ .
(,5) = 7 3 Fllo+ iyl
k=0



Proof. For any x,y € X, we have

|z +yl* + @ ||x + i%y||” = |lo +y* = ||z -y

=ty r+y) —(r—y,z—y)
=(z,o+y) +yz+y) —(r,o—y +{yz—y)
={z+y.2) +@+yy) —(r—y2)+ -1y
=@ +yz)—(—yz)+{z+yy +(@—-yy)
(2y,x) + (22, y)

= 2(z,y) + 2(z,y)

= 4Re(x,y),

and

z||9:+zy||2+23Hx+23yH :2||ac—|—zy||2—z||ac—zy||2

=i (|lx +ay|* — |z —

iy||”)

=i((z+iy,z+ 1) — (v — iy, —iy))

i (e +1y) + iy, x +1y) — (v, x —iy) +ily, z —iy))
i\ {x+iy, z) +ilx + iy, y) — (x—iy,x>+i<$—iy,y>>
i | {z+iy,x —iy,x)+i(x+iy,y>+i<x—iy7y>>

1

(
(
(
S

2iy, x) +i(2x y))

i\ —2i(x,y) + 2i(x, >>
= 2(z,y) — 2(z,y)
= 4Im(z, y).
3
Since Y _iF|la +i*y||® = o + y|* +illx + iyl* + i |2 + i2yH2 + -+ ||z + Z'3yH2, it
k=0

follows that (z

) = § (1Refr,y)

3

1< .
+4lm(z,y)) = = Y iFllz + iyl
4 k=0



This identity is called the complex polarization identity. For an inner product

space over real numbers, the polarization identity becomes

(lz +ylI* = llz = y[I*)

| =

<I,y> =

since the imaginary part is zero.
In fact, there is a normed linear space which is not an inner product space. For

example, the p-norm on a vector space X of dimension n of x = (x1,z2,...,x,)
1
n b
defined by |[|z], = (Z |x¢|p> where p # 2.
=1

Example 2.6. Let p # 2. Consider the |||, on {”. Choose z = (1,1,0,...) € I
and y = (1,—1,0,...) € I”. It is easy to see that ||z +y||, = 2 = [l — yl|, and

|z]l, = 27 = ||yl Consider
2
|z +yl2 + lz =yl =4+ 4 and 2 J||> + 2 |ly|2 = 4 - 27

Hence the parallelogram law holds if 8 = 4- 9. Since p # 2, the parallelogram law

fails, i.e., the norm [|-[|, is not induced by inner product.

The first literature begins with that by Jordan and von Neumann who prove that
the parallelogram law is a necessary and sufficient conditions for the norm to be

induced by an inner product in 1935.

Theorem 2.7. (von Neumann) Let X be a linear space. A norm on X is induced
by an inner product on X if and only if it satisfies the parallelogram law. Moreover,
if a norm on X satisfies the parallelogram law, then the unique inner product that

induces this norm is given by the polarization identity.

Proof. Assume that a norm ||-|| is induced by an inner product on X. By propo-



sition 2.3, we have

lz +ylI” + llz — y]*
Ty rt+y)+ -y z—y)

zr+y) ety +(@r—y —(y,r—y)

z+y,m) +(z+y,y) +(z—yz)—(r-yy)

@) + (Y, ) + (z, ) + (Y, 9) + (&, 2) — (y,2) — (z,9) + (y,9)
= 2(z,2) +2(y,y)

=2 la|l* +2 lyll*.

= (z
=
=
=

To prove that a norm on X is induced by an inner product on X if it satisfies
the parallelogram law, we verify each propery in definition 2.2. Let z,y,2z € X.

Assume that a norm ||-|| on X satisfies ||z + y||* + ||z — y||* = 2||z||* + 2||y||* and a
. . A 1 ’ .k ko112
function ( , ) mapping from X x X to C is defined by (z,y) = 1 Zz |z + i"y||

k=0
for all z,y € X. (i) For x € X,

3
1. .
=1 > ik a it
k=0

I i L s Lt I

4
AP+ i+ izl — iz — iz
4
i |2 ||~z + 2| — i ||z — iz|?
= ||z 1

Since ||z||> > 0 for all z € X, (z,z) is a non-negative real number. For (=),
assume that (z,z) = 0. Since Re(z, z) = ||z||* and Im(z, z) = 0, z has to be zero

vector. (<) Assume x = 0. Then (z,z) = (0,0) = 0. Thus (, ) has a positive



definiteness. (ii) By the parallelogram law, we have

Iz + 2) + ylI” + |l(z + 2) — ylI* = 2[|= + 2]1* + 2[|y||” (2.1)
I(z = 2) + ylI” + I(z — 2) = ylI* = 2|z — 2|” + 2[|y||” (2.2)
1(z +22) +y|* + (2 +iz) — ylI* = 2|z + iz]* + 2||y||? (2.3)
I(z = i2) + yl* + l(x — iz) —y||* = 2|z —iz]|* + 2[jy|? (2.4)

Substracting equation 2.2 from equation 2.1, we obtain

2 (Ilz + 21* + llyl* = ll= = 20* = llylI*)
=@ +2) +ylI* + (@ +2) —yl* =z = 2) + ylI* = Iz — 2) — y|I”
= (I +2) +yl* = @ =2)+ ul*) + (Iz+2) —yllI* = (= = 2) — o)

(I +y) + 21" = e+ ) = 2°) + (1= = y) + 21" = I@ —y) = =I7) -

Similarly, substracting equation 2.4 from equation 2.3, we obtain

2 (|l +izl* + lyll* = lle — iz)1* = llyll*)

= (@ +y) +i2l* = @+ y) = iz]*) + (I(@ —y) +iz]* = Iz — y) —iz]]*)
Multiplying both sides by ¢, yields
21 (||x +iz||? — ||z — iz||2)

=i (ll@+y) +iell* = Iz +y) = iz]”) +i (I = ) +iz]* = (@ —y) = i2]])

3
1
Since ( , ) is defined by (z,y) = 1 Zika + i*y||? for all z,y € X, we have that
k=0
8Re(z, z) = 4Re(z +y, 2) + 4Re(z — y, 2) and

8Im(z, z) = 4Im(z + y, 2) + 4Im(z — v, 2).



Adding two above equations and dividing both sides by 4, we obtain
2<1’,Z> = <Jr+y,z)+(x—y,z) (25)

Then letting 2’,3 € X such that x = Y , and substituting

there in to equation 2.5 yields

(' +o,2) = (@, 2) + (¢, 2).

Hence (, ) satisfies additivity in first slot. (iii) For a € C, we can write o = a +ib
where a,b € R. Then (ax,y) = (ax + ibx,y). By the closure property of vector
space X and ii), we have (ax,y) = (az,y)+(ibz,y). To prove that (az,y) = a(zx,y)
for all € C, we start with showing that (rz,y) = r(x,y) for all r € R. Let
S ={XeR| (Az,y) = XMz,y)}. Clearly (1-z,y) = (z,y) = 1- (z,y) and thus
1 € S. Suppose that a,b € S, then

(a £ b)(z,y) = a(z,y) £ b{zr, y)
= (az,y) = (b, y)
&) (ax + bz, y)

= ((a £ b)z,y).

This means that a £b € S, and therefore Z C S. Let a,b € S and b # 0. Then

a 1 1 1/b b /1 a
g<‘r7y> = g ' a(m,y) = E<a'xay> = g <b : (l.’lf,y> = B <bax7y> = <gx)y>

This means that % € S, and therefore Q C S. To show that R C .S, let f and g be
real-valued functions such that f(\) = A(z,y) and g(\) = (Az,y). By the property
%(m,w = <%:c, y>, it is clear that f(\) = g(\) for A € Q. Furthermore, both f and

g are continuous because f is linear and g is a composition of continuous functions



10

as we define the function ( , ). Since if values of two real continuous functions
coincide for every rational number, the values must coincide for each irrational
number as well. This implies that f = ¢ for all A € R. Therefore R C S, and
hence S = R. It suffices to show that

3

1
(i) = 3 3 ¥l + iy P

k=0
_ lliz 4yl + i + iy = iz — gl = il — iy

4
A 1 It e 1 e
4
e =yl il + gl — a4 iyl — ille — gl
4
_ i (=il =iyl e+ yl® Fifle iyl e~ yl?)
4

= i(x,y).

Hence (ax,y) = a(z,y) for all a« € C. (iv) We have

3

1 . .
(a9) = 3 2 ikl +
k=0

Ny’ +ille+ iyl o —yl® i flo — iyl
4

Ny ol i lly —i® =y = 2l — i iy + i

4

_ Nyl =illy = ial® = lly = 2|l +i lly + x|
4

= (y,z).

Hence ( , ) is an inner product. ]

In 1961, Sten Olof Carlsson worked on tuples (a;, b;, ;) of real numbers that
k k k
satisfy » _a;b? =0, a;bjc; =0and Y _ajc} = 0. Then he gave a generalization
J=0 J=0

— - =0
of the Jordan-von Neumann result.

Theorem 2.8. For a positive interger k, let j = 0,1,...,k and a; # 0,bj,c; be



11

real numbers such that (b;, ;) and (b, c;) are linearly independent for i # j. If X

is a mormed linear space satisfying the condition

k
Zaijj:Jc +cyl|* =0 for all z,y € X,
=0

then the norm on X is induced by an inner product.

However, the characterization of inner product spaces given by Sten Olof Carls-
son needs some redundant algebraic conditions and it is difficult to compute the
explicit values of a;, b; and c;. A special case of Theorem 2.8 will be studied in the

next chapter where some algebraic conditions are replaced by a binomial identity.



CHAPTER III
GORDON G. JOHNSON’S CHARACTERIZATION OF
INNER PRODUCT SPACES

As we mentioned in Chapter Il, the charactrization of inner product spaces given
by Sten Olof Carlsson generalizes the characterization by pararellogram law. How-
ever, it is difficult to find the explicit example for the condition. In this chapter, we
restate the result which is a special case of Theorem 2.8 which motivates our work.

An interesting characterization of inner product spaces was introduced by Gor-
don G. Johnson in 1973. The characterization is an equation relating to a binomial
coefficients and its proof shows that the equation can be reformed to the parallel-

ogram law.

Theorem 3.1. If X is a linear space with norm || - || and, for some integer k > 3,

> () s =0

t=0

k
k
for all z,y € X then Z (t> (=D lz + ty||* = 0 for every integer k > 3 and the
t=0

norm || - || is induced by an inner product on X.

We observe that this identity is a special case of Theorem 2.8 obtained by setting
k )
aj = <j>(—1)ﬁ,bj =land¢ =jforj=0,1,... k.

Proof. For k,;n € N, we define

k
D (z,y) Z( > Y llz + (t+n)y||* for all 2,y € X.



13

Suppose k > 3 and D)(x,y) =0 for all 2,5 € X. Since z +ny € X for all n € N,

Do) =3 () (=10l + (el

M- 10+

> () 0+ )+

D

Il
<)

(z +ny,y)

O

0.

This means that Dy (z,y) = 0 for all n € N.



14

Consider Dt (x,y) — D1 (%, y)

k—1 k—1
=3 (i (G FRR TR O] G [V F A e

t=0

= (2 )0 e sl +Z(‘“t1)(—1>fux+<t+n+1>yuz
—Z R [ e O L G [ VB
= (21 )0 el +Z (321 ) =0+ el
S ()t (55 )
et G [TV B

N [C e G

(
(
(e e = ()
(
-

~—

o+ e+ ml?
(L
|G e (e e o

- (§ 1) 0 G Z() Yl + ¢+ mygl?

(5 )t e

=~ ()l v e - Z (5) e = e+l

- (o) 17

- _g <’Z> (=D)'llz + (t + n)yl?

= —D}(z,y).

That is Dy (z,y)— Dy (z,y) = —D}(x,y) = 0 and hence, Dj*1(z,y) = D}, (z,v)



15

for all n € N. Let m be a positive integer not exceeding k. We will prove that

m—1
Dy (e,y) = (
t=0

n

t) (=1)'D}_,.++(x,y) by using mathematical induction.

Base case, set m = 1.

Z( 0D sl = () (-1°DE gl = Do) = D (o)

That is the equation holds for m = 1. For m = 2, we have

Dgir; $>y) - DZ?Z(JS, y)

X 2<k_2>( |z + (t+n+ Dyl = k

02 ("7 7)o+ e mu

- (: _ §> (1) 2|z + (k=2+n+1)y|*+ ; (k ; 2) (=1l + (t +n+ 1)yl
_ z_: g . 2) (=)l + (¢ + n)yl* — <k N 2) (1)l + ny|1?

k—2
(—1)*2lfe + (k< 2+ + Lyy[2+ ( ) 1 + (t 4+ n)yl?
=1

t

T 0 e (%) 0+l

(=12 Gk =2 gl = () 0l + P

R ) [ e

=~ (§ 1) e G v = (M )0+l

-1

B (’f;1><_1)fux+<t+n)y!!2
_ k_j <k’ | 1) (—D)|z + (t +n)y]?

- _DZ 1(1’,y)

That is DY) (z,y) — Di_o(x,y) = —D}_(z,y) for n = 0,1,2,.... Substituting



16

n by n— 1, we get D} ,(z,y) — D}~ (z,y) = —D}~{(x,y) for all n > 2. Then
Dp y(z,y) = Dy 5 (z,y) — Di~{(z,y). By recurrence relation and D} ,(z,y) =
D) (z,y) forn=0,1,2,...,

Dji_y(x,y) = Dy (x,y) — Di_y(2,y)
= DjZ3(x,y) — Dp=i(x,y) — Di_a(2,y)
= D73 (x,y) — 2D}y (z,y)
) — Dp =i (w,y) = 2D)_ (x,y)
)

— Dn 3(5[;;2]
(z,y) — 3Dy (2,y)

_n3
Dk2

= D" V(a,y) — (n = 1)DY_y (2, y)
= Dy (@, y) — Dy, y) — (n—1)DY_ (z,y)

=Dy _s(z,y) —nDp_y(2,y).

That is D} ,(z,y) = D} ,(x,y) —nDy_,(z,y). Since <711) =n, D} 5(z,y) =

3

1 -1
S () 0D anon) s DRyl = 3 ()1 DE o) holds

t=0

T'“M

|
—

m

for m = 2. We now suppose that Dy, (z,y) = <7Z> (=1)'D}_ie(,y) is true
t=0
for m = k — 1. That is,

B
Do

Do) =3 ()11 Dselas )

t
t

Il
o



For m = k, we have

17

Dg(.’L’,y) - Dgil(xay) - D?il(xvy)

= [D§ (2, y) = DY (2, 9)] — DY (2, y)

= [Dy 7 (x,y) — DY (2, y)] — DY ~*(x,y) — DY (z,y)

= Dy " V(a,y) = DY V() — . = DI (@,y) — DY (w,y)

:D(l)(xay)_Di(xay)_ _D?iz(x?y)_D?il(xvy)

= [Dg(xvy) - D(l)(xvy)] - D%(I,y) T T D?ig(xay) - DiLil(a‘yy)

= Dy(x,y) — DY(z,y) — Dy(x,y) = ... — DY *(x,y) — DY (z,y)
o(z,y) () 1+t$y Z() 1+t( Y) —

- t;[) (n;2>( D(1)+t (z,y) ; (n " ) D(I)-i-t( ,Y)

We have that D} (x,y) =

m—1

"%

mathematical induction, D}_, (x,y) ( >

k—
Hence D

t

(n) (=1)'Dy_,i(x,y) is true for m

1
<> ) DY (x,y) forn =0,1,2,....
—0

(7))

k. By
) Dy iz y) for m < k.

By definition, D (x,y) =



|z + ny||>. Thus

We have that hm H*l’ +y[]? =

. 1
lylI* = lim ||~z + y]*
n—oo N

k—1
' n\ (—1)"
NGRS
t=0

lim
n—oo

Y ey

() /) e

w

1 1
= lim [QD z,y) — —DY(z,y) + ————=
n—oo | N n
nn—1)---(n—k+1)
(k=1)!-n?

1
Since lim ||~ + y||* exists, this forces D} (z,y) = 0 if 3 <
n—soo N

2
lylI” =

x4y and b = y, the equation becomes

k
On the other hand, does the equation Z

||yH2 Hence

("

n(n—1)

21.

D2—1(35

t=0

18

b= (1) /) e+ ((3) /) D

Vo) ot
Dy - "D
,y)} :

I < k—1. Therefore

1
3 [[lz + 2y[|* = 2|z + y||* + ||=[|*] for all # and y in X. Considering a =
2 |bl|* =

la+0* = 2flal® + fla —0]*. O

(l;:)(—l)tﬂx + ty||* = 0 hold for

every inner product space? We now let X be an inner product space and a norm



19

|||l on X is induced by the inner product (-, -). Then for x,y € X and k € N,

S () iesar =3 (B v e )

t=0 t=0

- y <k> (=) [(z, 2 + ty) + (ty, = + ty)]
(0

t
- wg (}) 0+l + <y,x>1§; (}) -
> Hszg (}) e

k
Considering the binomial expansion (a + b)* = Z <]z) a*~*b" where a = 1 and

b= —1, we have
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k

k

Then the first term ||z Z <t> (—1)" = 0. For the second term, we have that
=0

$0)- 2o

t=0

_ k:zk:(—l)t (’;’: 11>

k

Similarly, we have Z(—l)t <k /) 1) = 0. Since [{z,y) + (y, )] Z <Iz> (1)t =

t—1
t=1 =0

k

k+1

k[{z,y) + (y, x)] Z(—l)t<t / 1), the second term becomes zero. Hence, it suf-
t=1

fices to verify that the last term is also zero to show the converse of Theorem 3.1

k
k
is true. However, the proof of Z <t) (—1)%* = 0 is not obvious. We now study
t=0
some binomial identities for the sake of the above observation and geralization of

the characterization given by Gordon G. Johnson



CHAPTER IV
BINOMIAL CHARACTERIZATIONS OF INNER
PRODUCT SPACES

In this chapter, we present a condition generalizing the result of Gordon G.
Johnson. First, we need to prove some binomial identities which are used for
verifying that the algebraic conditions supposed by Sten Olof Carsson are satisfied.

Then we show that the condition is a characterization of inner product spaces.

Lemma 4.1. For an integer n = 0 and a real number x,

It is easy to see that fy(z) = (—1)" (8) (x —0)? =1 = 0! To show that f,(z) = n!

for all n > 0, let k be a non-negative integer such that fi(z) = k! for every = € R.
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k+1

Considering fr+1(z) = Z(—1)2<

=0

E+1
—i__ > (z —4)F*!. Then
i

jxfkﬂ(x) = jx i(—l)'(k JZF 1) (x —i)F+t
= (k+1) ]:Z:;(—Ui(k j 1) (z— i)

=(k+1) Z(—l)i (k * 1) (z — )"+ (k+ 1)(=1)k! <k * 1) (x — (k+1)*

— i k+1

:(k+1)§:(—1)i<§) <1+k+i1—¢> (z — )"

P )@=y

= 4 DA+ o 13 (-
5

kel
k

= (k+ 1) fe(z) +(k+1) Z(—1)i<, & 1) (x —i)F

Y 1 —
T
ek

k+1
k

— (4 DA ) S0 (2w

71—
i=1

+ (k+ 1)(—1)k+1<

+ (k + 1)(—1)’”1( )(ac — (k+1)*

+ (k+1)(—1)k+1< )(x— (k+1))F

+ (k + 1)(=1)k*! (i) (x — (k4 1))F

= (k+1)fe(z) + (k+1) Z(—l)Z( g >(x — )"

, 1 —1
=1

k+1

=(k+1)fe(z)+ (k+1) Z(—l)j+1 <I;> (x —j—1)" where j =i — 1

= (k+ 1) fr(z) + (b + 1) fu(z — 1)
— (k4 DR = (k+ DR

=0.
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This implies that fy,1(x) is constant. So

frer1(@) = frpa(k = 1)
=> - <kj1> (k41— i)t

(1) <k+1> (k+1— i)+

(4

(k+1)!

m<k+l )k+1

>
Z(—l)i
:Ej(nz%;igw+1 i)k

i=

k
=(k+1)> (-1 )w+1—w
=1
=(k+1)fu(k+1)
= (k4 1)k!
= (k+1)!
Therefore f,,(z) = n! for all x € R for all n > 0. O

Corollary 4.2. For an integer n > 0 and a real number x,

where 0 <m < n.

Proof. Let n be a non-negative integer, 0 < m <nand z € R. Then m =n —j
for some 1 < j < n. From lemma 4.1, we define f,(z) = Z(—l)z<n) (x — )"

i
i=0
Differentiating j times, we get

f9@) =nn—1)--[n—(j —1)] ‘ (—1)l<n> (z —i)" .
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Since f,(z) is constant, f)(z) = 0 and hence Z(—l)i <n> (x — )" =0 for all

- 1
=0

x € R. Therefore g (—1)" (n) (x —4)™ =0 where 0 < m < n. ]
i
=0

Theorem 4.3. Let X be a normed linear space. Let k > 3 and m a positive integer

such that 2m < k. If
k
> (5) e sl =0
J=

for all x,y € X, then X is an inner product space and hence, for I,n € N,
!

l .
> <J> (=1 ||z + 5"yl = 0 for all z,y € X.

=0
Proof For an integer £ > 3 and m a positive integer such that 2m < k, assume

that Z ( ) ) ||z 4+ j™y||* = 0 for all 2,y € X. Comparing with Theorem 2.8,

k
k )
we have a; = (,)(—1)3, bj=1and ¢; = 7™ for j =0,1,..., k. Then Zajbf =
J -

L (k : k . k

) (=1, ajbic; = () —1)745™, and a;c? = () —1)74%™ . Tt is easy

> () e = (G v ama 3oasd = () -

to see that (b;,¢;) and (b;, ¢;) are linearly independent for ¢ # j since b; = 1 for
k k k

all j =0,1,... k. By corollary 4.2, Zajlﬁ = () Z a;bjc; = 0, and Zajci = 0.
— N ;
Hence X is an inner product space.

Moreover, for vectors z,y in an inner product space X,

i() Yl + 5yl = Zl:() o+ "y, x + ")

j= 0

()it 235 () v

+Z() 172 )

J=

<.

l

since the norm on X is defined by ||z|| = \/(z,z) for all x € X. By corollary 4.2,



25

l .
Z <> (=1) ||z + j"y||> = 0 for all #,y € X for [ > 3 and 2n < L. O
J

l
j=0
Finally, we observe that Theorem 4.3 generalizes the result of Jonhson and also

presents the explicit condition of the characterization of Carlsson.
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