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CHAPTER 1 INTRODUCTION 

1.1 Rationale 

 Atmospheric aerosol particles, also known as atmospheric particulate matter 
(PM), are important factors that influence the weather and climate changes which have 
an impact on life and Earth. According to the United States Environmental Protection 
Agency, particulate matters that affect human health and ecosystems are PM10 and 
PM2.5. PM10 is inhalable particles with diameters less than or equal to 10 micrometers, 
and PM2.5 is fine inhalable particles with diameters less than or equal to 2.5.  

 In 2000, Friedlander et al. presented that the main sources of particulate matter 
are from natural phenomena and anthropogenic [1]. Over the past few decades, 
particulate matter, especially PM10, has become one of the most interesting subjects 
for research due to its effects on human health and ecosystems. It is commonly known 
that particulate matter can penetrate into the respiratory system and cause respiratory 
diseases [2]. Dockery et al [3] and Kingdom et al. [4] showed clear scientific evidence 
that PM10 with low concentration in ambient air can damage human health. 
 Air pollutant quality models are essential and important in the management 
of weather for integrated pollution and environment management program. In 
Thailand, the government has paid great attention to solve the pollution problem and 
defined the problem as particulate matter-related policy in the 20-year national 
strategy (2017 - 2036 A.D.). Air pollutant quality simulation in different management 
scenarios using models makes a great support to various development planning; 
therefore, the development of atmospheric particulate matter quality models in 
Thailand are needed. 

 Air pollutant models have been developed and used for specific topography 
because each topography has unique structure and characteristics. Thus an accurate 
model for each topography must be developed and the performance based on real 
data collected from each area should be evaluated. Since particulate matter pollution 
is one of the major problems in Nan province of Thailand because most of the farmers 
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burn their corn fields after harvesting in order to prepare for the next plantation which 
cause PM10 concentration to be above the standard, these problems motivate us to 
uses Nan province as a case study for developing the atmospheric particulate matter 
quality prediction models, especially the models for predicting PM10 concentration. 
This would be a challenge to develop an appropriate model that can predict PM10 
concentration of Nan province under different scenarios based on historical PM10 
concentration records. 

 

1.2 Objectives 

 1. Design and develop a method for predicting PM10 concentration in the corn 
fields of Nan Province after harvesting. 

 2. Derive the most suitable set of input parameters for predicting PM10 
concentration. 

 3. Predict PM10 concentration in the areas of Nan Province of Thailand as a case 
study using the proposed method. 

 

1.3 Scope 

In this dissertation, the method is constrained as follows: 

 1. The proposed method uses data obtained from the online sensor network 
system at each monitoring station which consist of two air quality data and three air 
pollutant data; i.e., temperature, humidity, PM1, PM2.5, and PM10 from the beginning of 
February 2017 to the end of April 2017.  

 2. Data from only six sensors are used in the experiments because these 
sensors have complete data recorded. 

 3. The particulate matter concentration prediction is considered as a regression 
problem; therefore, three supervised learning models for regression problems are 
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used; i.e., multiple linear regression, multilayer perceptron neural network, and 
support vector regression. 

 

1.4 Research methodology 

The research procedures are organized into seven parts as follows: 

 1. Review related literatures on particulate matter, especially PM10, and study 
the background knowledge about the definitions and the properties of feature 
selection and the existing models for PM10 concentration prediction. 

 2. Gather data from the sensor at each monitoring station in Nan Province of 
Thailand and preprocess the data to be ready for the experiments. 

 3. Implement the supervised learning models for predicting PM10 concentration 
at each monitoring station which include multiple linear regression, multilayer 
perceptron neural network, and support vector regression. 

 4. Improve the accuracy of PM10 concentration prediction by combining feature 
selection methods to select only relevant data from the sensor at each monitoring 
station. 

 5. Conduct the experiments on PM10 concentration prediction at each 
monitoring station using the combination of feature selection methods and the 
supervised learning models. 

 6. Improve the accuracy of PM10 concentration prediction at each monitoring 
station by including data from the nearby stations using the modified depth-first search 
algorithm. 

 7. Prepare a manuscript for submitting to the journal and write the dissertation. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 4 

1.5 Expected outcomes 

 If the concentration of air pollutants, especially PM10, can be predicted in 
advance, the warning or alert can be announced to the residents of the nearby areas 
so that they can prepare and protect themselves from air pollution. Moreover, the aim 
of this research is to find the optimal features that have significant effects on PM10 
concentration such that we can prevent dangerous situations to arise by controlling 
these features.   
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CHAPTER 2 LITERATURE REVIEW  

 In this chapter, related work and literatures associated with this dissertation are 
reviewed. Modelling of particulate matter concentration prediction is considered. The 
existing stage-of-the-art methods for prediction are examined to find out the 
advantages and the disadvantages of the models. Finally, the proposed model and its 
contribution are pointed out. 

 Prediction models of particulate matter concentration are the effective tools 
for predicting and simulating the air pollution in every geographical area. Particulate 
matter is primarily generated through natural processes or from human activity [5, 6]. 
Since it can be harmful to human health as well as to the environment and other 
living things, the issue of particulate matter in the atmosphere, especially PM10, has 
increasingly drawn the attention of the public and the scientific community. One 
particular problem caused by PM10 is the harm caused to the human respiratory system 
[2]. The evidence put forward by scientists suggests that when PM10 concentration 
levels in the air the standard level during each period of time, human health will be 
adversely affected [3]. One way to limit the damage would be to find a means of 
accurately predicting PM10 concentration levels for the upcoming days in order to 
enforce prevention and control measures to protect the public during the worst 
periods. 

 In 2011, Kuo-Ping Lin et al. [7] developed the preprocessing procedures for data 
and used immune algorithm for optimization to accurately predict the air pollutant 
concentration called support vector regression with logarithm preprocessing procedure 
and immune algorithm. As the results, the proposed model can reliably predict air 
pollutant concentrations. 

 In 2014, Chen Xi Zhao et al. [8] presented the temporal and spatial distribution 
of pollution status and association of meteorological factors and particulate matter. 
Meteorological variables such as average daily relative humidity, precipitation, 
temperature, and wind speed were selected and their relationship with PM2.5 and PM10 
concentrations were examined using Spearman rank correlation analysis. 
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Concentrations of PM2.5 and PM10 have been shown to be positively associated with 
relative humidity and temperature and correlated negatively with wind speed. From 
this literature, relative humidity and wind speed are the main determinants that 
influence PM10 and PM2.5 concentration distributions. 

 In 2015, Han Li et al. [9] considered the relationship between factors of 
meteorology and the particulate matter during the summer in Shijiazhuang. The results 
reveal that the meteorological factors, such as precipitation, wind speed, air pressure, 
and air temperature, can influence the concentration of atmospheric pollutants. In this 
literature, it was found that wind speed exhibits a slight impact on air pollution. 

 In order to develop an accurate forecasting model, Auder et al., in 2016 [10] 
suggested sequential aggregation of the output from several PM10 forecasting models 
and used them as input to another forecasting model for PM10 concentration. The 
input data included the average daily concentrations of PM10 at each monitoring 
station, while the average daily data from other measures could also be added to the 
input data for forecasting PM10 concentration of the next day. Different models could 
be developed on this basis. The findings indicate that this approach is capable of 
improving the expert system process and can generate better warnings and predictions. 

 In 2017, German Hernandez et al. [11] presented the climate condition and 
PM10 concentration analysis. It was found that relative humidity and temperature have 
relationships with particulate matter. Moreover, the relationships between particulate 
matter of different sizes are strong. The temperature over a diurnal period was found 
to have a negative correlation with PM10; whereas, relative humidity has a positive 
correlation with PM10. 

 In 2018, Fabiana Franceschi et al. [12] determined the most important 
meteorological variables on air pollution based on data mining algorithms. In this 
research, principal component analysis was employed in order to assess the variables, 
while data were grouped by using the k-means clustering. The prediction models then 
used the results of these processes as the input. The predicted results demonstrate 
that the proposed models can be used as the indicators which can provide advance 
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warnings when high level of air pollution is going to occur because they are able to 
predict the incidence of high pollution with a relatively good degree of accuracy. 

 Working in the Oviedo area, García Nieto et al. in 2018 [13] developed a model 
capable of predicting PM10 concentration levels using a vector support machine along 
with a multilayer perceptron neural network, a vector autoregressive moving average 
model, and an autoregressive integrated moving average model. These models used 
pollution concentration data in the form of monthly averages as the input data. The 
findings suggest that PM10 concentrations can best be predicted through the use of a 
vector support machine that uses the radial basis function as a kernel function and 
uses the idea of cross-validation to serve as a mean of estimating accuracy levels. 

 In 2019, Zhigen Shang et al. [14] proposed a novel model for prediction based 
on the methods of regression and classification tree, and the ensemble extreme 
learning machine. Because hourly concentrations of PM2.5 have several patterns of shift, 
it is useful to divide the entire dataset into several subsets with similar properties and 
to train a local prediction model for each subset. They used a shallow hierarchical 
regression tree, regression and classification tree to divide the dataset. Then, ensemble 
extreme learning machine models were built at each node of the tree using the node 
training samples, and the number of hidden neurons were chosen to minimize 
validation errors on the subtree’s leaves that take the node as root. Finally, the global 
and the local ensemble extreme learning machines were compared for each tree leaf 
on the path from the root to the leaf, and the one with the minimum validation error 
on the leaf was selected. The new model enhanced the ability to handle multiple 
patterns of transition. 

 In this research, we propose a novel PM10 concentration prediction model to 
predict the concentration at any station of interest using the combination of data from 
the station of interest and its neighboring stations. The proposed method can 
accurately predict PM10 concentration without knowing the wind speed and the wind 
direction. 
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 Debate has been focused on the basic issue of whether a better model for 
PM10 concentration prediction such that we can prevent and protect our health from 
the effects of particulate matter. Thus, the contribution of this study is to develop a 
new model to predict PM10 concentration ahead of time from available air quality and 
air pollution data in order to provide the warning to local residents about the level of 
air pollution.  
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CHAPTER 3 THEORETICAL BACKGROUND 

 In this chapter, we present the principle knowledge which contains two parts 
of important background in Environmental Science and relevant mathematical 
theories. Environmental Science part explains the definition of air quality, air pollution, 
and particulate matter standard regulatory in Thailand according to regulations. The 
relevant theoretical mathematical part describes the fundamental concepts of 
techniques used in this dissertation.  

3.1 Environmental Science 

 3.1.1 Air quality 

 Air quality is the degree to which air is sufficient or safe enough to keep humans, 

animals or plants healthy. In this dissertation, two types of air quality are mentioned; 

i.e., temperature and humidity. 

 Air temperature is a fundamental factor in studying weather because the 

temperature changes every period, such as year, season, month, day, and even hour. 

Temperature is a physical property of matter at a given moment that quantitatively 

expresses hot and cold weather. The factors that affect the temperature consist of 

ground and water, elevation, latitude, geography, cloud volume, and albedo of the 

surface. Air temperature is a proportion of temperature at various degrees of the Earth's 

climate. It is represented by numerous components, including approaching sunlight 

based radiation, moistness, and height. 

 Humidity is another air quality used in PM prediction, it represents the amount 
of water vapor in the air. The humidity of air changes over time depending on the 
pressure and the temperature. As the amount of water vapor in the air depends on 
the temperature of the air, thus warm climate can maintain more water vapor than 
cold air. 
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 3.1.2 Air pollution 

 Air pollution is the mixture of toxic chemicals or compounds that contaminates 
the Earth's atmosphere and can be very harmful to all mankind. In this dissertation, 
three types particulate matter of air pollutant are mentioned. 

 Atmospheric particulate, also referred to as particulate matter (PM), is any 
compound besides uncombined water that exists in a finely divided structure as fluid 
or mass. PM is an essential element that impacts the climate and the changes of 
climate can have a big impact on life and Earth. Sources of particulate matter in the 
atmosphere are divided into two major types; i.e., natural source, and man-made 
source.  Examples of natural sources are soil, sand, stone, steam, smoke from forest 
fires, salt dust of the sea, and etc.; whereas, examples of man-made sources are 
transportation and traffic, construction, industrial enterprises, incineration in open areas 
for agriculture, and etc. 

 The National Environment Board, Pollution Control Department of Thailand 
classifies particulate matter based on its size, in accordance with the United States 
Environmental protection corporations, into two classes: PM10 and PM2.5. PM10 is 
referred to any particulate matter with a diameter smaller than 10 microns while PM2.5 
is referred to any particulate matter with a diameter smaller than 2.5 microns as shown 
in Figure 1. 

 

Figure 1 Comparative size of particulate matter (from https://www.epa.gov/pm-
pollution/particulate-matter-pm-basics) 
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 The National Environment Board, Pollution Control Department of Thailand has 
issued standard regulations for the concentration of particulate matter as follows: 
particulate matter with a diameter smaller than 100 microns shall not surpass 330 
𝜇𝑔 𝑚3⁄  in 24-hour average,  particulate matter with a diameter smaller than 10 
microns shall not surpass 120 𝜇𝑔 𝑚3⁄  in 24-hour average, and particulate matter with 
a diameter smaller than 2.5 microns shall not surpass 50 𝜇𝑔 𝑚3⁄  in a 24-hour average. 
The concentration of particulate matter has an impact of our health and the level of 
health effect caused by PM10 and PM2.5 concentrations that are continuously measured 
from the average of every 24-hour period are shown as Table 1. 

 

Table 1 The level of health effect based on an average of every 24-hour period 

PM2.5 (𝜇𝑔/𝑚3) PM10 (𝜇𝑔/𝑚3) The level of health effects 

0-25 0-50 Safe 

26-37 51-80 Stay alerted 

38-50 81-120 Affecting health 

51-90 121-180 Significant health effects 

>90 >180 Severe health effects 

 

3.2 Relevant Mathematical Theories 

3.2.1 Feature selection 

 One critical step in the prediction process is how to select a suitable subset of 
features that will be used as input data. In most cases, using all of the features for 
prediction gives lower accuracy rate than using only relevant features that are 
significant for prediction, thus, the first step of the proposed method is to select the 
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most suitable subset of features which are unknown. If any significant features are to 
be inadvertently omitted from the process, the possibility of achieving accurate 
prediction would be greatly reduced. Conversely, if too many irrelevant features are 
included in the input data, the accuracy can be declined, and the time complexity for 
the training will be higher as well. In addition, the problem of overfitting, as reported 
by Maier and Dandy in 2000 [15], can also result from excessive input features. In this 
research, three feature selection techniques are presented: forward selection (FS), 
backward elimination (BE), and genetic algorithm (GA). These feature selections are 
used to select only the features that have direct impact upon the concentration of 
particulate matter. We propose to apply feature selection because if we use a 
combination of all features as input data, the computational complexity will be 30 
factorials for each round of prediction. 

 

1. Forward selection 

 Forward selection is a stepwise process that starts from adding features to the 
model one at a time. At each step, each feature that is not already added to the 
model is tested for inclusion into the model using correlation between dependent and 
independent features. Forward selection starts from a null set of features. Each feature 
is added to the model one at a time as long as the model’s p-value is below some 
preset significance level; for example, 0.05. This process stops when adding a new 
feature to the model gives non-statistical significance level (i.e., p-value>0.05) [16, 17]. 
An example of forward selection for a subset of features is shown in Table 2. However, 
the drawback of forward selection is that the correlation between features in an 
existing set is not taken into consideration because each set of new features is built 
from a new feature that is added to the set in each round; thus, it is possible that 
adding new features into the existing set does not guarantee the improvement of the 
model. 
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2. Backward elimination 

 Since forward selection has some drawbacks, an alternative approach which 
avoids this problem is backward elimination. The backward elimination starts from 
fitting a model with all of the features. Then each irrelevant feature is eliminated from 
the model one at a time by considering the feature with the maximum p-value. If the 
maximum p-value is more than the preset significance level (i.e., p-value > 0. 05) then 
this feature is eliminated else the backward elimination stops [16, 17]. The process is 
repeated until an optimal set of features is found. An example of backward elimination 
for feature selection is shown in Table 2.  
 
Table 2 An example of forward selection and backward elimination for a set of relevant 
features. 

Forward selection Backward elimination 

Input: 
{𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝐴6} 
 
Initial set of features: 
{ } 
⇒ {𝐴1} 
⇒ {𝐴1, 𝐴3} 

⇒ Add a feature: 
      {𝐴1, 𝐴3, 𝐴4} 

Input: 
{𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝐴6} 
 
Initial set of features: 
⇒ {𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝐴6} 
⇒ {𝐴1, 𝐴2, 𝐴4, 𝐴5, 𝐴6} 
⇒ Remove a feature: 
    {𝐴1, 𝐴2, 𝐴5, 𝐴6} 

 
3. Genetic algorithm 

 The genetic algorithm (GA) is the method of finding the best answer for the 
problem by mimicking natural evolution, which is based on the natural evolution 
theory of Charles Darwin [18, 19], who said that the stronger the person has, the higher 
probability of surviving and having a chance in the inheritance of strong characteristics 
into the next generation. This concept was applied in search and optimization 
problems by Holland in 1975 [20] and developed by Goldberg in 1989 [21]. Genetic 
algorithm is one of the artificial intelligence techniques that simulates biological 
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process or natural evolution in the birth of new generations based on the genetic 
evolution in the inheritance of various characteristics into the next offspring. Since the 
genetic algorithm is based the theory of evolution, the terms used in GA are shown in 
Table 3 and the structures of population, chromosomes, and genes are shown in Figure 
2.  
 
Table 3 Terminology for the genetic algorithm 

Term Description 

Chromosome An individual contains a set of genes 

Gene A feature (parameter) on a chromosome 
Population A set of chromosomes 

 

 

Figure 2  Population, chromosomes, and genes 
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Figure 3 The process of the genetic algorithm 
 

From Figure 3, the process details of genetic algorithm consists of chromosome 
encoding, population initialization, fitness evaluation, genetic operations which consists 
of crossover and mutation, and replacement. The process of the genetic algorithm can 
be explained as follows: 

Step 1: Chromosome Encoding 

 Chromosome encoding is an important step in the genetic algorithm. It is the 
process of representing a chromosome in a form of a string of values that contain 
useful information. Each position in a string represent each gene in a chromosome that 
contains a feature of the solution. The values of each string depend on the problem 
to be solved; thus, there are several chromosome encoding methods to be used 
depending on a particular problem. In this section, three chromosome encoding 
methods are explained as follows: 
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1.1) Binary Encoding 

 This is the basic encoding method that assigns the value to each position of a 
string with 0 or 1 as shown in Figure 4. Chromosomes obtained from this method are 
string of 0s and 1s where each gene in a chromosome represents a feature of a solution 
to the problem.  

 
Figure 4 The binary encoding 

 

1.2) Value Encoding 

 For the value encoding method, a chromosome is encoded as a string of values, 
such as real numbers, characters, or words when binary encoding is not capable of 
representing such complicated values as shown in Figure 5. Chromosome 1 in Figure 5 
is a sample of an encoding for a problem of finding the weights in neural networks by 
representing each gene with real number corresponding to the weights for the inputs. 
Chromosome 2 in Figure 5 is a sample of using the alphabet to encode a chromosome 
for the bus route management problem. Chromosome 3 in Figure 5 is a sample of 
encoding a chromosome for a problem of the route finding problem.  

 
Figure 5 The value encoding 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 17 

1.3) Permutation Encoding 

 All genes in a chromosome are encoded as a string of positive integers to 
represent numbers in sequence. Permutation Encoding is suitable for use in the 
problem of arranging a set of data whose values must not be repeated in an individual 
string, such as the traveling salesman problem or the scheduling problem. Figure 6 
shows chromosomes that are encoded by permutation encoding for the traveling 
salesman problem where each number represents a town to be visited. The positions 
of the genes give the sequence of the towns to be visited. Chromosome 1 and 
chromosome 2 are some possible sequences of towns for the salesman to visit.  

 
Figure 6 The permutation encoding 

 

Step 2: Population Initialization 

 In this step, a population or a set of individuals is randomly generated. The size 
of a population depends on the number of genes. In general, the size of population is 
suggested to be approximately 1.5 - 2 times the number of genes, and the maximum 
size should be no more than 100 [22]. 

Step 3: Fitness evaluation 

 For this step, the fitness score that determines each chromosome's suitability 
can be calculated from the fitness function. In this dissertation, prediction models for 
the particulate matter are used as fitness functions, i.e., multiple linear regression, 
multilayer perceptron neural network and support vector regression, to calculate the 
fitness score of each chromosome (𝑓𝑡). 
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Step 4: Selection 

 In this step, the fittest chromosomes with high fitness scores are selected and 
their genes will be passed to the next generation. Two pairs of chromosomes are 
selected as 'parents' for the reproduction. Chromosomes with high fitness scores have 
more chance of being selected. Two selection techniques that are widely used are as 
follows:  

1) Roulette Wheel Selection 
 In this method, the selection principle is an imitation of playing roulette. A 
roulette wheel assigns a proportion to each chromosome based on its fitness score 
that is calculated from Equation (3.1). Figure 7 shows an example of roulette wheel 
selection where the number of chromosomes of the population size is equal to 5. 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑡) =
𝑓𝑡

∑ 𝑓𝑡
𝑃
𝑡=1

                                                       (3.1) 

where 𝑓𝑡  is the fitness score of a chromosome 𝑡,   𝑡 = 1, 2, 3, … , 𝑃,  and 𝑃  is the 
population size. 

 

 
Figure 7 Roulette wheel selection 
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2) Tournament Selection 
 The tournament selection method is used to select the fittest chromosomes 
to be pairs of parents similar to the sport events. The fundamental steps of 
tournament selection are as follows: (i) determine the tournament size (the number 
of chromosomes for each round of the tournament) 𝐾 , (ii) randomly select 
𝐾 chromosomes from the population, (iii) select the best chromosome from 𝐾 
chromosomes with probability 𝑝, which has in the interval [0,1],  (iv) select the second 
best chromosome from 𝐾  chromosomes with probability 𝑝(1 − 𝑝) , which has the 
desired amount of chromosomes equal to parent's size. 

Step 5: Crossover 

 Crossover is the most important step for GA. At first, a crossover point, where 
the exchange of genes between each pair of parents to be mated in order to create 
offspring, is chosen at random based on the crossover probability in the range of [0,1] 

[23, 24]. Each pair of parents create two offspring through the exchange of genes 
between parents until reaching the crossover point. There are many crossover 
methods to generate offspring, for example, one-point crossover and two-point 
crossover. Figure 8(i) shows the one-point crossover method where a single crossover 
point is randomly selected. Figure 8(ii) shows the two-point crossover method where 
two crossover points are randomly selected and the genes of two parents within 
between the two crossover points are exchanged. As a result, each pair of parents 
generates two new offspring, and they are delivered to the new population. Therefore, 
the population size of the new generation is the same as the initial population size. 
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(i) The one-point crossover 

 

(ii) The two-point crossover 

Figure 8 Examples of crossover methods 
 

Step 6: Mutation 

 Mutation is the next step to perform after crossover. The purpose of mutation 
is to change the genes of the existing chromosome to maintain diversity and to avoid 
duplicate chromosome problem. The general concept of mutation is to randomly 
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select the genes and change the values of the genes under the probability in the range 
of [0, 1]  [24]. At present, there are many mutation techniques, such as bit-flip 
mutation, inversion mutation, insertion mutation, uniform mutation, and others. An 
example of bit-flip mutation on a binary encoded chromosome is shown in Figure 9 
where two genes are randomly selected and the values of the genes are flipped. 

 
Figure 9 An example of bit-flip mutation 

 

Step 7: Replacement  

 The current population is replaced with the new population of the same size. 
The algorithm then repeats steps 3 – 7 until it reaches a termination condition; i.e., 
reaching the maximum number of iterations or converging to the solution which means 
that the offspring of the current population are not quite different from the offspring 
of the previous population. 

 

3.2.2 Prediction model 
 The prediction of particulate matter concentration may be considered a 

regression problem, since the predictive model aims to approximate the mapping 

function from the input characteristics to the continuous output of particulate matter 

concentration and the relationship between data is unknown; thus, multiple linear 

regression, multilayer perceptron neural network, and support vector regression are 

used in this dissertation. The reason that these three models are used is they return 

quantitative results, their output can be assessed using the most common root mean 

squared error [25].  
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1. Multiple linear regression 

 The outcomes of dependent variables can be predicted through the use of a 
number of independent variables in a multiple linear regression approach. This is a 
statistical technique which models the linear relationship that arises between the 
independent variables and the desired dependent variable [26]. Suppose 𝐗𝐢 is a vector 
of independent variables where 𝑖 = 1, 2, 3, … , 𝑘, which has a relationship with a vector 
of output, 𝐘. The MLR model for this study is expressed in Equation (3.2). 

𝐘 = β0 + β1𝐗𝟏 + β2𝐗𝟐 + ⋯ + βk𝐗𝐤 + 𝐞                                      (3.2) 

where 𝐘 is a vector of dependent variables, 𝐗𝐢  is the 𝑖 th vector of independent 
variables, 𝛃𝐢 is the weight of individual independent variables for 𝑖 = 1, … , 𝑘, 𝛃𝟎 is a 
constant, 𝐞 is an error value, and 𝑘  is the number of independent variables. The 
conditions for the MLR model are as follows: (1) the error value has a normal 
distribution, (2) the average of the error value is equal to  zero, (3) the variance of error 
value is steady, but has unknown value, and (4) the variances at 𝑖  and 𝑞  are 
independent where 𝑖 ≠ 𝑞 for 𝑖, 𝑞 = 1, … , 𝑘. 

 The optimum values of 𝛽0 and 𝛽𝑖 can be found when the least square error 
occurs [27]. Let Equation (3.3)  represent the dependent variable 𝑦𝜌  where 𝜌 =

1,2, … , 𝑚 and 𝑚 is the total number of data. 

𝑦𝜌 = 𝛽0 + 𝛽1𝑥1𝜌 + 𝛽2𝑥2𝜌 + ⋯ + 𝛽𝑘𝑥𝑘𝜌 + 𝑒𝜌                           (3.3) 

Suppose an approximation of Equation (3.3) takes the form in Equation (3.4)  

𝑦̂𝜌 = 𝑎 + 𝑏1𝑥1𝜌 + 𝑏2𝑥2𝜌 + ⋯ + 𝑏𝑘𝑥𝑘𝜌                                       (3.4) 

Then the aggregate of the squares of the errors is described by 

∑(𝑦𝜌 − 𝑦̂𝜌)
2

𝑚

𝜌=1

= ∑(𝑦𝜌 − 𝑎 − 𝑏1𝑥1𝜌 − 𝑏2𝑥2𝜌 − ⋯ − 𝑏𝑘𝑥𝑘𝜌  )
2

𝑚

𝜌=1

            (3.5) 
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and the minimum value with respect to 𝑎 and 𝑏𝑖 for 𝑖 = 1, … , 𝑘 of Equation (3.5) is 
given by: 

𝜕

𝜕𝑎
∑(𝑦𝜌 − 𝑦̂𝜌)

2
𝑚

𝜌=1

= 0 ;  

𝑛𝑎 + 𝑏1 ∑ 𝑥1𝜌

𝑚

𝜌=1

+ 𝑏2 ∑ 𝑥2𝜌

𝑚

𝜌=1

+ ⋯ + 𝑏𝑘 ∑ 𝑥𝑘𝜌

𝑚

𝜌=1

= ∑ 𝑦𝜌

𝑚

𝜌=1

                         (3.6) 

𝜕

𝜕𝑏1
∑(𝑦𝜌 − 𝑦̂𝜌)

2
𝑚

𝜌=1

= 0 ;  

𝑎 ∑ 𝑥1𝜌

𝑚

𝜌=1

+ 𝑏1 ∑ 𝑥1𝜌
2

𝑚

𝜌=1

+ 𝑏2 ∑ 𝑥1𝜌𝑥2𝜌

𝑚

𝜌=1

+ ⋯ + 𝑏𝑘 ∑ 𝑥1𝜌𝑥𝑘𝜌

𝑚

𝜌=1

= ∑ 𝑥1𝜌𝑦𝜌

𝑚

𝜌=1

     (3.7) 

𝜕

𝜕𝑏2
∑(𝑦𝜌 − 𝑦̂𝜌)

2
𝑚

𝜌=1

= 0 ;  

𝑎 ∑ 𝑥2𝜌

𝑚

𝜌=1

+ 𝑏1 ∑ 𝑥1𝜌𝑥2𝜌

𝑚

𝜌=1

+ +𝑏2 ∑ 𝑥2𝜌
2

𝑚

𝜌=1

+ ⋯ + 𝑏𝑘 ∑ 𝑥2𝜌𝑥𝑘𝜌

𝑚

𝜌=1

= ∑ 𝑥2𝜌𝑦𝜌

𝑚

𝜌=1

  (3.8) 

⋮ 

𝜕

𝜕𝑏𝑘
∑(𝑦𝜌 − 𝑦̂𝜌)

2
𝑚

𝜌=1

= 0 ;  

𝑎 ∑ 𝑥𝑘𝜌

𝑚

𝜌=1

+ 𝑏1 ∑ 𝑥1𝜌𝑥𝑘𝜌

𝑚

𝜌=1

+ 𝑏2 ∑ 𝑥1𝜌𝑥𝑘𝜌

𝑚

𝜌=1

+ ⋯ + 𝑏𝑘 ∑ 𝑥𝑘𝜌
2

𝑚

𝜌=1

= ∑ 𝑥𝑘𝜌𝑦𝜌

𝑚

𝜌=1

     (3.9) 

Putting equations together from Equation (3.6)  to Equation (3.9)  are called the 
normal equation system which is used to solve for 𝑎 and 𝑏𝑖 for 𝑖 = 1, … , 𝑘.  
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2. Multilayer perceptron neural network 

 One of several neural networks in feed forward artificial neural network 
category is a multilayer perceptron neural network (MLP) [28]. MLP essentially 
comprises of three parts: network layers, weight adjustment, and activation function. 
The network layer consists of an input layer, hidden layers, and an output layer. MLP 
for prediction uses a supervised learning technique for training, called backpropagation 
[29] which is one of the popular techniques for multilayer neural network because it 
can solve the problems of data sets with linear and nonlinear characteristics. The 
weight adjustment process uses the error values to adjust the weights of all nodes in 
the layer and all nodes in the adjacent layer. Each node is fully connected to all nodes 
in the next layer as shown in Figure 10. Figure 11 shows the weight adjustment process 
of the backpropagation neural network. 

 

Figure 10 Multilayer perceptron neural network 
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Figure 11 Architecture of backpropagation neural network 

 

Table 4 The definitions of variables for the multilayer perceptron neural network 
𝜔𝑖 The 𝑖th node of an input layer where 𝑖 = 1,2, … , 𝑘 
𝑣𝑖𝑗  The weight from the 𝑖th input node to the 𝑗th hidden node 
𝑣0𝑗  The bias value from the input layer to the 𝑗th hidden node 
𝑢𝑗  The aggregate value of the 𝑗th hidden node where 𝑗 = 1,2, … , 𝑟 
𝜆𝑗  The result from using the activation function of the 𝑗th hidden node 

𝑤𝑗𝜌 The weight from the 𝑗th hidden node to the 𝜌th output node 
𝑤0𝜌 The bias value from the hidden layer to the 𝜌th output node 
ℎ𝜌 The aggregate value of the 𝜌th output node where 𝜌 = 1,2, … , 𝑚 
𝑧𝜌 The 𝜌th output node from using activation function of the 𝜌th hidden 

node 
𝑦𝜌 The actual value where 𝜌 = 1,2, … , 𝑚 
𝛿𝜌 The error between the output layer and the hidden layer  
𝛿𝑗  The error between the hidden layer and the input layer 

𝑓′(𝑆) The derivative of the sum of aggregate values in a neural network 
model 

𝑒𝑞 The error of each row of data 
𝑘 The total number of input nodes 
𝑟 The total number of nodes in the hidden layer 
𝑚 The total number of output nodes 
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The process of backpropagation neural network using the defined variables as shown 
in Table 4 is as follows: 

(1) Determine the numbers of nodes in the input layer, the hidden layers, and the 
output layer which are expected to be suitable for the data set of each problem 
depending upon the number of independent variables and the number of dependent 
variables. 

(2) Determine a learning rate parameter (𝜂) within the interval of [0, 1]. 

(3) Randomly select the initial weight for every connection between two consecutive 
layers in the range of [−1, 1]. 

(4) Determine the maximum number of iterations to be used in learning (𝑅) and the 
acceptable error (𝛿) for stopping condition of the process.  

(5) Enter input data into MLP. 

(6) Calculate the value of each node in the first hidden layer according to the method 
of feed forward neural network as shown in Figure 12; i.e., the value of the 𝑗th hidden 
node is calculated from the sum of the multiplications of input data and the weights 
using sigmoid function as the activation function from Equations (3.10) and (3.11), 
respectively. 

 

Figure 12 Architecture of feedforward neural network from the input layer to the 
hidden layer 

 

𝑢𝑗 = ∑ 𝑣𝑖𝑗𝜔𝑖 + 𝑣0𝑗

𝑘

𝑖=1

                                                      (3.10) 
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𝜆𝑗 = 𝑓(𝑢𝑗) =
1

1 + 𝑒−𝑢𝑗
                                                 (3.11) 

for 𝑖 = 1,2, … , 𝑘 and 𝑗 = 1,2, … , 𝑟 

(7) Calculate the value of each node in the output layer according to the method of 
feed forward neural network as shown in Figure 13; i.e., the value of the 𝜌th output 
node is calculated from the sum of the multiplications of hidden node values and the 
weights using the sigmoid function as the activation function from Equations (3.12) 
and (3.13), respectively. 

 

Figure 13 Architecture of feedforward neural network from the hidden layer to the 
output layer 

 

ℎ𝜌 = ∑ 𝑤𝑗𝜌𝜆𝑗

𝑟

𝑗=1

+ 𝑤0𝜌                                                   (3.12) 

𝑧𝜌 = 𝑓(ℎ𝜌) =
1

1 + 𝑒−ℎ𝜌
                                              (3.13) 

for 𝑗 = 1,2, … , 𝑟 and 𝜌 = 1,2, … , 𝑚 

(8) Calculate the error of each node in the output layer as shown in Figure 14; i.e., the 
error of the 𝜌th output node is calculated from the multiplications of the difference 
between the actual value and the 𝜌th output value and the derivative of the 𝜌th 
output node as expressed in Equation (3.14). This error is used to adjust the weight 
𝑤𝑗𝜌 in Equation (3.12). 
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Figure 14 Architecture of error estimation for backpropagation neural network 
 

𝛿𝜌 = (𝑦𝜌 − 𝑧𝜌) ∙ 𝑓′(ℎ𝜌)                                              (3.14) 

(9) Calculate the value of 𝛿𝑗 for each node in the hidden layer and use this value to 
adjust the weight of each node in the input layer as shown in Figure 15; i.e., the value 
of 𝛿𝑗  is calculated from Equation (3.15). 

 

Figure 15 Architecture of weight adjustment in backpropagation neural network 
 

𝛿𝑗 = ∑(𝛿𝜌 ∙ 𝑤𝑗𝜌)

𝑟

𝑗=1

𝑓′(𝑢𝑗)                                              (3.15) 

(10) Adjust the weight for each input node in the (𝑞 + 1)𝑡ℎ iteration using Equation 
(3.16) and adjust the weight for each node in the hidden layer using Equation (3.17). 

𝑣𝑖𝑗
(𝑞+1)

= 𝑣𝑖𝑗
(𝑞)

+ 𝜂 ∙ 𝛿𝑗 ∙ 𝜔𝑖                                                     (3.16) 

𝑤𝑗𝜌
(𝑞+1)

= 𝑤𝑗𝜌
(𝑞)

+ 𝜂 ∙ 𝛿𝜌 ∙ 𝑧𝜌                                                    (3.17) 

(11) Calculate the average error as shown in Equation (3.18). 

𝑒𝑞 =
1

2
∑(𝑦𝜌 − 𝑧𝜌)

2
𝑚

𝜌=1

                                                      (3.18) 
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(12) Calculate the mean squared error (MSE) as shown in Equation (3.19). The value 
of MSE is used to verify that the error in each iteration is less than the acceptable error. 

MSE =
1

𝑄
∑ 𝑒𝑞

𝑄

𝑞=1

                                                                 (3.19) 

where 𝑄 is the maximum number of iteration. If MSE is less than the acceptable error 

then the process stops. If MSE is greater than the acceptable error then the process 

repeats steps (5)–(12) until it reaches a maximum number of iterations or MSE is less 

than the acceptable error. 

 

3. Support vector regression 

 The learning algorithm of support vector machine (SVM) can be divided into 
support vector classification (SVC) and support vector regression (SVR). SVC is a 
potential method for classifying data into two or more classes; whereas, SVR is an 
approximation method that estimates or predicts a real value from the given data 
known as support vectors. 

 In regression problems, the expected output is the prediction of a real value. 
The idea of SVR can be applied to these problems. Suppose our training data are 
represented as {(𝑥1, 𝑦1), … , (𝑥𝑙, 𝑦𝑙)} ⊆  ℝ𝑛 ×  ℝ, where 𝑥𝑖 ∈ ℝ𝑛 is a vector of values 
of the input space, 𝑛 is the dimension of input space, and 𝑦𝑖 ∈ ℝ  is the value of the 
output space. A linear function, 𝑓(𝑥), is defined by  

𝑓(𝑥) = ⟨𝑤, 𝑥⟩ + 𝑏    for  𝑤 ∈ ℝ𝑛, 𝑏 ∈ ℝ                        (3.20) 

where ⟨∙,∙⟩ denotes the dot product in ℝ𝑛  and ‖𝑤‖2 = ⟨𝑤, 𝑤⟩ and 𝑏 is a constant 
value.  

According to Vapnik in 1995 [30], our aim is to discover a function 𝑓(𝑥) for SVR 
that has a maximum deviation, 𝜀, from the actual data (𝑦𝑖) for all training data and is 
as flat as possible at the same time. In other words, as long as the deviations are less 
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than 𝜀, we do not care about errors, and we do not consider any deviation that is 
greater than 𝜀. The loss function for SVR in this research is 𝜀-insensitive loss function, 
|𝜉|𝜀 , which can be expressed by 

|𝜉|𝜀 = |𝑓(𝑥) − 𝑦|𝜀 ∶= {
0                           
|𝑓(𝑥) − 𝑦| − 𝜀  

    if  |𝑓(𝑥) − 𝑦| ≤ 𝜀
 otherwise           

        (3.21) 

 To solve the problem, the convex optimization, as shown in Equation (3.22), 

can be used. The convex optimization problem is feasible by adapting the use of soft 
margin loss function to SVR, adding slack variables (𝜉𝑖, 𝜉𝑖

∗) to cope with other infeasible 
constraints for the optimization problem. 

minimize
 

      {
1

2
‖𝑤‖2 + 𝐶 ∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑙

𝑖=1

} 

subject to    𝑦𝑖 − ⟨𝑤, 𝑥𝑖⟩ − 𝑏 ≤ 𝜀 + 𝜉𝑖  

⟨𝑤, 𝑥𝑖⟩ + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗                                         (3.22) 

   𝜉𝑖, 𝜉𝑖
∗ ≥ 0 

The constant 𝐶 defines the trade-off between the flatness of 𝑓(𝑥) and the deviation 

value up to where the deviations greater than 𝜀 are tolerated. Figure 16 shows an 
example of the soft margin liner SVR.  

 
Figure 16 The soft margin liner SVR 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 31 

 According to Mangasarian in 1969 [31], McCormick in 1983 [32], and Vanderbei 
in 1997 [33], the construction of Lagrange function from an objective function, which 
is called the primary objective function and the corresponding constraints, is done by 
adding a set of dual variables. This function is shown to have a saddle point with 
respect to the solution's primal and dual variables which is proceeded as follows: 

𝐿(𝑤, 𝑏, 𝜉𝑖 , 𝜉𝑖
∗) ≔ {

1

2
‖𝑤‖2 + 𝐶 ∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑙

𝑖=1

− ∑(𝜂𝑖𝜉𝑖 + 𝜂𝑖
∗𝜉𝑖

∗)

𝑙

𝑖=1

 

− ∑ 𝛼𝑖(𝜀 + 𝜉𝑖 − 𝑦𝑖 + ⟨𝑤, 𝑥𝑖⟩ + 𝑏)

𝑙

𝑖=1

 

− ∑ 𝛼𝑖
∗(𝜀 + 𝜉𝑖

∗ + 𝑦𝑖 − ⟨𝑤, 𝑥𝑖⟩ − 𝑏)

𝑙

𝑖=1

}                               (3.23) 

  subject to      𝜂𝑖, 𝜂𝑖
∗, 𝛼𝑖 , 𝛼𝑖

∗ ≥ 0 

where 𝐿 is the Lagrange and 𝜂𝑖 , 𝜂𝑖
∗, 𝛼𝑖 , 𝛼𝑖

∗ are the Lagrange multipliers. Thus the partial 
derivatives of 𝐿 with respect to the primal variables 𝑏, 𝑤, 𝜉𝑖, 𝜉𝑖

∗ can be calculated 
from Equations (3.24) – (3.27) and set them equal to 0 for optimality. 

𝜕𝐿

𝜕𝑏
= ∑(𝛼𝑖

∗ − 𝛼𝑖)

𝑙

𝑖=1

= 0                                                 (3.24) 

𝜕𝐿

𝜕𝑤
= 𝑤 − ∑(𝛼𝑖 − 𝛼𝑖

∗)

𝑙

𝑖=1

𝑥𝑖 = 0                                   (3.25) 

𝜕𝐿

𝜕𝜉𝑖
= 𝐶 − ∑ 𝜂𝑖

𝑙

𝑖=1

− ∑ 𝛼𝑖

𝑙

𝑖=1

= 0                                     (3.26) 

𝜕𝐿

𝜕𝜉𝑖
∗ = 𝐶 − ∑ 𝜂𝑖

∗

𝑙

𝑖=1

− ∑ 𝛼𝑖
∗

𝑙

𝑖=1

= 0                                    (3.27) 

Substituting Equation (3.24) to Equation (3.27) into Equation (3.23) yields the dual 
optimization problem as follows: 
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maximize      {−
1

2
∑ ∑(𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)⟨𝑥𝑖 , 𝑥𝑗⟩

𝑙

𝑗=1

𝑙

𝑖=1

− 𝜀 ∑(𝛼𝑖 + 𝛼𝑖
∗)

𝑙

𝑖=1

 

+ ∑ 𝑦𝑖(𝛼𝑖 − 𝛼𝑖
∗)

𝑙

𝑖=1

   }                                                                  (3.28) 

                subject to  ∑(𝛼𝑖 − 𝛼𝑖
∗)

𝑙

𝑖=1

= 0  and  0 ≤ 𝛼𝑖 , 𝛼𝑖
∗ ≤ 𝐶 

Substituting Equation (3.24) into Equation (3.20), we can rewrite as follows: 

𝑓(𝑥) = ∑(𝛼𝑖 − 𝛼𝑖
∗)

𝑙

𝑖=1

⟨𝑥𝑖, 𝑥⟩ + 𝑏                                     (3.29) 

where   𝑏 = −
1

2
∑ (𝛼𝑖 − 𝛼𝑖

∗)[⟨𝑥𝑖, 𝑥𝑟⟩ + ⟨𝑥𝑖 , 𝑥𝑠⟩]𝑙
𝑖=1 , and 𝑥𝑟 and 𝑥𝑠 are support vectors 

at the top and the bottom planes, respectively. 

For nonlinear problems, the dimension of a feature space is always high, thus 
it is impossible to compute the inner product directly in a feature space. Kernel 
function is a key step for SVR. Kernel function could be achieved by mapping from an 
input space into a feature space that is 

𝐾(𝑥𝑖 , 𝑥𝑗) = ⟨𝛷(𝑥𝑖), 𝛷(𝑥𝑗)⟩                                           (3.30) 

Table 5 shows some of the kernel functions. It suffices to know 𝐾(𝑥𝑖 , 𝑥𝑗) rather 
than 𝛷 explicitly which allows us to restate the SVR optimization problem as: 

maximize   {−
1

2
∑ ∑(𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)⟨𝛷(𝑥𝑖), 𝛷(𝑥𝑗)⟩

𝑙

𝑗=1

𝑙

𝑖=1

− 𝜀 ∑(𝛼𝑖 + 𝛼𝑖
∗)

𝑙

𝑖=1

 

+ ∑ 𝑦𝑖(𝛼𝑖 − 𝛼𝑖
∗)

𝑙

𝑖=1

}                                                                              (3.31) 

         subject to  ∑(𝛼𝑖 − 𝛼𝑖
∗)

𝑙

𝑖=1

= 0  and 0 ≤ 𝛼𝑖, 𝛼𝑖
∗ ≤ 𝐶 

Likewise, the expansion of Equation (3.29) can be written as 
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𝑓(𝑥) = ∑(𝛼𝑖 − 𝛼𝑖
∗)

𝑙

𝑖=1

⟨𝛷(𝑥𝑖), 𝛷(𝑥)⟩ + 𝑏                                (3.32) 

where   𝑏 = −
1

2
∑ (𝛼𝑖 − 𝛼𝑖

∗)[⟨𝛷(𝑥𝑖), 𝛷(𝑥𝑟)⟩ + ⟨𝛷(𝑥𝑖), 𝛷(𝑥𝑠)⟩]𝑙
𝑖=1 , and 𝑥𝑟 and 𝑥𝑠  are 

support vectors at the top and the bottom planes, respectively.  

Table 5 shows examples of kernel functions that are widely used for SVR but 
the kernel function that is suitable for this study is a linear function according to the 
data. 

 

Table 5 Examples of kernel functions 

Kernel Functions Formula 

Linear 𝐾(𝑥𝑖 , 𝑥𝑗) = ⟨𝑥𝑖 ∙ 𝑥𝑗⟩ 

Polynomial 𝐾(𝑥𝑖 , 𝑥𝑗) = (1 + ⟨𝑥𝑖 ∙ 𝑥𝑗⟩)
𝑑

  

where 𝑑 is the degree of the polynomial  
Gaussian kernel 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒
(−

‖𝑥𝑖−𝑥𝑗‖
2

2𝜎2 )

   

where 𝜎 is the constant 

Gaussian radial basis function 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒−𝛾‖𝑥𝑖−𝑥𝑗‖
2

  

where 𝛾 > 0 

Multi-quadratic 
𝐾(𝑥𝑖 , 𝑥𝑗) = −√‖𝑥𝑖 − 𝑥𝑗‖

2
+ 𝑐2  

where 𝑐 is the constant 

Thin plate spline 𝐾(𝑥𝑖 , 𝑥𝑗) = ‖𝑥𝑖 − 𝑥𝑗‖
2

ln‖𝑥𝑖 − 𝑥𝑗‖ 

Moderate decreasing 
𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑘𝑒

(
𝛾

‖𝑥𝑖−𝑥𝑗‖
2

+𝜎2
)−1

 

where 𝑘 and 𝜎 are the constant 

 

4. Modified depth first search 

Depth first search (DFS) offers a way of graph traversal to make it possible to 
conduct the searches for the next vertex of a graph by moving deeper along a path 
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which begins at any chosen vertex, known as the parent vertex, and passes through 
all other vertices on the path until no further vertices exist. If there is any vertex which 
has not yet been visited, DFS algorithm will return to the vertex from which other 
possible paths can be taken. This process is repeated until all of the vertices have 
been visited. Whenever there is a choice of paths, the algorithm will initially select the 
path that offers the shortest distance between the current and subsequent vertices 
[34, 35]. 

On the basis of DFS, this study presents a novel algorithm called the modified 
depth-first search (MDFS) which can be used to select the next vertex to visit based 
on the root mean square error. In this research, each vertex of a graph represents a 
station where PM10 and other data are measured and collected. These data are used 
to predict PM10 concentration. The concept of the prediction model is to include data 
from the nearby stations that influence PM10 concentration at the station of interest. 
MDFS selects the next station to be visited by calculating the RMSE from Equation 
(3.33) which is the mean difference between the observed value and the predicted 
value. The algorithm selects the station with the minimum RMSE. MDFS is not the 
same as DFS because MDFS never backtracks. It only stops when there is no more 
station to visit. The advantage of MDFS is that it can select the neighboring stations 
whose data can affect the prediction, even when the wind speed or the direction are 
not known. The process of MDFS algorithm could be described as follows: 

(1) Select the station of interest which is the start vertex of a graph from any stations 
and specify the initial radius that defines the region of neighboring stations to be 
considered. 

(2) For each of the neighboring stations within the region specified by the radius: 

2.1 Combine data from a neighboring station with the data from the station of 
interest. 

2.2 Use the combined data from 2.1 as the input to the model. 

2.3 Calculate the RMSE from the prediction result. 
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2.4 Use the minimum RMSE as the mean to select the next station to visit. 

(3) Set the station which has the lowest RMSE as the new station of interest and 
increase the radius by a constant value. 

(4) Repeat step (2) – (3) until no more station to visit. 

 

3.2.3 Performance evaluation 

 Several statistical models had been implemented for prediction models in this 
research. To evaluate the performance of the models, the predictive values obtained 
from those statistical models are compared with the observed data. Four standard 
statistical models are used as assessment criteria, namely the root mean square error 
(RMSE) [36, 37], the Pearson correlation coefficient (R2) [38], the mean absolute error 
(MAE) [39, 40], and the mean absolute percentage error (MAPE) [41]. RMSE represents 
the model’s error, which can be determined by 

RMSE = √
1

𝑇
∑(𝑦𝑗 − 𝑦̂𝑗)

2
𝑇

𝑗=1

                                                     (3.33) 

where 𝑦̂𝑗 and 𝑦𝑗 are the predicted value and the observed value for 𝑗 = 1, … , 𝑇, and 
𝑇 is the number of data to be predicted. RMSE can measure goodness-of-fit and 
describes the predicted average error. The next statistical model that we use to find 
the relationship between the predicted values and the observed values is the Pearson 
correlation coefficient (R2) which can be calculated by 

R2 =
∑ (𝑦̂𝑗 − 𝜇𝑦̂)𝑇

𝑗=1 (𝑦𝑗 − 𝜇𝑦)

√∑ (𝑦̂𝑗 − 𝜇𝑦̂)
2𝑇

𝑗=1
√∑ (𝑦𝑗 − 𝜇𝑦)

2𝑇
𝑗=1

                          (3.34) 

where 𝜇𝑦̂ and 𝜇𝑦 are the average predicted value and the average observed value. 

 MAPE and MAE have been used to show the dispersion average between the 
observed values and the predicted values which can be described as 
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MAPE =
100

𝑇
∑ |

𝑦𝑗 − 𝑦̂𝑗

𝑦𝑗
|

𝑇

𝑗=1

                                                  (3.35) 

MAE =
1

𝑇
∑|𝑦𝑗 − 𝑦̂𝑗|

𝑇

𝑗=1

                                                       (3.36) 

To determine the prediction results from MAPE and MAE, smaller values of MAPE and 
MAE yield better results.  
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CHAPTER 4 METHODOLOGY 

 In this chapter, the methodology is divided into two main parts: data 
preprocessing and PM10 concentration prediction. Data preprocessing is the first part to 
prepare data for prediction which can be divided into two parts: data collection and 
normalization. The next part is to predict PM10 concentration using the proposed 
method. The methodology of each part is shown in Figure 17 and the details are 
explained below. 

 

Figure 17 Overview and the flowchart of the proposed method 
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4.1 Data Preprocessing 

 The evaluation of the proposed method is carried out using data derived from 
the sensor network system in northern region of Thailand which monitors the region’s 
air quality. This study uses data obtained from Nan province since air pollution 
problem is a serious issue in this area as a consequence of burning the corn fields at 
the end of every harvesting season. This causes PM10 concentration to be high. 
 The location of Nan province in Thailand can be seen in Figure 18, while Figure 
19 presents the effects of the burning process which leads to clearly visible smog 
across the province. The current online sensor network system provides air pollution 
monitoring by assessing haze levels [42]. Each of the monitoring stations has a sensor 
which measures the air quality data and the air pollutant data before sending the data 
to the Cloud for storage. There are two types of air quality recorded: humidity and 
temperature, and three types of air pollutants: PM1, PM2.5, and PM10. 

 
Figure 18 The location of Nan Province 
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Figure 19 Air pollution in Nan Province as a case study 

 

 This case study uses the data from six sensors installed at the stations around 

Nan province. This area is suitable for collecting data because it normally has high 

levels of PM10 pollution, and the data are generally complete. The use of only six 

sensors is because these sensors are located in a cluster with relatively good network 

connection, allowing for reliable recording of air quality data. These sensors are shown 

in Figure 20 as red triangles and the sensors which are not selected are represented 

by blue pentagons. The unselected sensors have problems with missing data and are 

located further away from the chosen sensors. Table 6 shows the geographical 

coordinates for each sensor, while Table 7 shows how far apart each of the six sensors 

are at various monitoring stations. The available raw data were collected every second 

during the period from the start of February 2017 to the end of April 2017. This short 

time interval between measurements leads to redundancy of data; therefore, hourly 

records using the averages for each hour were taken instead. Since the data were 

recorded every second, the average of each hour is calculated by finding the average 

of each minute and then finding the average of each hour from the average of 60 

minutes; however, some data are missing; therefore, the denominator is equal to the 

actual number of data. Figure 21-26 shows the hourly data of the sensors 

𝑆1,  𝑆2, 𝑆3, 𝑆4, 𝑆5, and 𝑆6,  respectively. This approach permits predictions to be made 
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for the upcoming 24-hour period, or the upcoming one-month period for any chosen 

monitoring station in terms of PM10 concentration by manipulating the available data. 

 

 

Figure 20 Positions of six sensors at monitoring stations 
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Table 6 The spans between latitude and longitude of the 14-sensor network system 

Sensor 
Northern latitude Eastern longitude 

Deg° Min Deg° Min' Sec" Deg° Min Deg° Min' Sec" 
𝑆1 N18°47.9796 N18°47'58.776" E100°43.998 E100°43'59.88" 
𝑆2 N18°46.05402 N18°46'3.241" E100°47.00214 E100°47'0.128" 
𝑆3 N18°45.1692 N18°45'10.152" E100°46.65 E100°46'39" 
𝑆4 N18°44.3466 N18°44'20.796" E100°45.81 E100°45'48.6" 
𝑆5 N18°40.8708 N18°40'52.248" E100°45.348 E100°45'20.88" 
𝑆6 N18°34.626 N18°34'37.56" E100°44.262 E100°44'15.72" 
𝑆7 N18°9.654 N18°9'39.24" E100°43.332 E100°43'19.92" 
𝑆8 N19°10.1988 N19°10'11.928" E100°49.77 E100°49'46.2" 
𝑆9 N19°16.368 N19°16'22.08" E100°50.382 E100°50'22.92" 
𝑆10 N19°31.1028 N19°31'6.168" E100°55.536 E100°55'32.16" 
𝑆11 N18°47.5458 N18°47'32.748" E101°1.152 E101°1'9.12" 
𝑆12 N18°51.0858 N18°51'5.148" E100°26.136 E100°26'8.16" 
𝑆13 N18°48.3186 N18°48'19.116" E100°42.264 E100°42'15.84" 
𝑆14 N19°10.785 N19°10'47.1" E100°54.552 E100°54'33.12" 

 

Table 7 The distance between six sensors at monitoring stations 

Sensor Distance between sensor (kilometer) 
𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 

𝑆1 6.365 6.984 7.446 13.39 24.75 
𝑆2  1.752 3.793 10.03 21.72 
𝑆3   2.121 8.287 19.98 
𝑆4    6.492 18.22 
𝑆5     11.73 
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(a) The hourly data of temperature  

 

(b) The hourly data of humidity  

 

(c) The hourly data of PM1  
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(d) The hourly data of PM2.5  

 

(e) The hourly data of PM10  

Figure 21 The hourly data of temperature, humidity, PM1, PM2.5, and PM10 from sensor 
S1 

 

 

(a) The hourly data of temperature  
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(b) The hourly data of humidity  

 

(c) The hourly data of PM1  

 

(d) The hourly data of PM2.5  
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(e) The hourly data of PM10  

Figure 22 The hourly data of temperature, humidity, PM1, PM2.5, and PM10 from sensor 
S2 

 

 

(a) The hourly data of temperature  

 

(b) The hourly data of humidity  
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(c) The hourly data of PM1  

 

(d) The hourly data of PM2.5  

 

(e) The hourly data of PM10 

Figure 23 The hourly data of temperature, humidity, PM1, PM2.5, and PM10 from sensor 
S3 
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(a) The hourly data of temperature 

 

(b) The hourly data of humidity 

 

(c) The hourly data of PM1 
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(d) The hourly data of PM2.5 

 

(e) The hourly data of PM10 

Figure 24 The hourly data of temperature, humidity, PM1, PM2.5, and PM10 from sensor 
S4 
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(b) The hourly data of humidity 

 

(c) The hourly data of PM1  

 

(d) The hourly data of PM2.5 
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(e) The hourly data of PM10 

Figure 25 The hourly data of temperature, humidity, PM1, PM2.5, and PM10 from sensor 
S5 
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(c) The hourly data of PM1 

 

(d) The hourly data of PM2.5 

 

(e) The hourly data of PM10 

Figure 26 The hourly data of temperature, humidity, PM1, PM2.5, and PM10 from sensor 
S6 
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 In accordance with the PM regulatory standards from the United States EPA, 
Thailand’s National Environment Board has determined that the 24-hour standard for 
PM10 should be less than 120 𝜇𝑔 𝑚3⁄ . Table 8 provides basic statistical data concerning 
the concentrations of PM10 at each of the selected monitoring stations. From these 
data, it can be seen that some of PM10 concentration values recorded at these six 
monitoring stations are higher than the permissible levels. The mean concentrations 
for six monitoring stations show little variation with a narrow band between 45-60 
𝜇𝑔 𝑚3⁄ although the standard deviation at each site vary considerably, falling in the 
range of 18-26 𝜇𝑔 𝑚3⁄ . It is apparent that since the variances are high, the distribution 
of the data is relatively broad. 

 

Table 8 The basic statistical values of PM10 concentrations for every 24 hours of each 
monitoring station 

Sensor Minimum Maximum Mean Standard deviation 

𝑆1 6.4043 94.4673 45.4205 (1.9201*) 18.1138 

𝑆2 10.0237 134.8779 59.0781 (2.4878*) 23.4699 

𝑆3 7.4013 118.0505 49.1990 (2.1751*) 20.5199 

𝑆4 8.6913 123.5772 54.7246 (2.2844*) 21.5509 

𝑆5 7.7190 156.5084 54.1556 (2.3812*) 22.4638 

𝑆6 7.9530 162.4158 57.1958 (2.6623*) 25.1162 

*Standard error 
 
Part 1: Data preprocessing 

The raw data that were collected from the sensor network system consist of data of 
five features: humidity, temperature, PM1, PM2.5, and PM10. These raw data have to be 
preprocessed as follows: 
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Step 1: Each feature has different unit of measurement; therefore, these raw data have 
to be normalized by using the standard normalization or Z normalization technique 
[43, 44]. The normalized data are kept in 𝐷𝑎𝑡𝑎𝑗 for 1, . . , 𝑁 and 𝑁 is the number of 
sensors. After normalization, all data are transformed into the new values with the 
mean close to zero and the standard deviation close to one. Z normalization is 
expressed as Equation (4.1). 

 𝑥′ =
𝑥 − 𝑥̅

𝑠
                                                             (4.1) 

where 𝑥′is the normalized data, 𝑥 is the original data, 𝑥̅ is the mean of the original 
data and 𝑠 is the standard deviation of 𝑥.  
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4.2 PM10 Concentration Prediction 

 To predict the concentration of PM10 at each monitoring station, a new model 
based on an integration of the feature selection method, the supervised learning 
model, and the modified depth-first search algorithm (MDSF) is proposed. Feature 
selection methods are used to select features for the PM10 concentration prediction; 
whereas, supervised learning models are used for prediction and MDFS seeks to resolve 
the global-local duality and to improve the prediction accuracy. As there is no explicit 
premise on which input features affect the prediction of the PM10 concentration, thus 
the feature selection method is used to select only associated features whose data 
are used as input to the supervised learning models. The prediction process starts from 
using data from the sensor at the station of interest as the initial input, the process is 
then repeated by adding data from the sensor at the neighboring station that is 
selected by MDFS one sensor per iteration. The process repeats until no more station 
is in the defined radius. 

Part 2: PM10 concentration prediction  

The prediction process combines the feature selection, the supervised learning 
models, and the modified depth-first-search algorithm together to improve the 
prediction results. According to section 3.2.1, three feature selection methods are used: 
forward selection, backward elimination, and GA. Forward selection and backward 
elimination are straight forward and no parameter setting is needed but GA needs 
some settings.  

The setting of GA in this research starting from using binary encoding for 
chromosome encoding where each gene in a chromosome represents an individual 
feature that contains the value of 0 or 1. These binary values are used to indicate 
whether a feature is “selected” or “not selected” to be included in the prediction. 
The number of chromosomes in the population is set to 10 and the maximum number 
of generations is set to 100. Then the multiple linear regression, the multilayer 
perceptron neural network, and the support vector regression are used as the fitness 
evaluation function to calculate the fitness scores. The fitness scores are used in the 
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tournament selection method to select the fittest chromosomes. The tournament size 
(the number of chromosomes for each round of the tournament) is equal to two [45] 
which represents the number of chromosomes to be chosen as a pair of parents. In 
terms of crossover, a one-point crossover is used with the probability of 0.5 and the 
probability of mutation is equal to 1

𝜎
 where 𝜎 is the total number of features on a 

chromosome as shown in Table 9. Moreover, there are also some parameter settings 
for the supervised learning models that are used in this research as shown in Table 10 
and all variables used in the prediction process are defined in Table 11. The prediction 
process is as follows: 
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Table 9 Parameter settings for the feature selection methods 

Feature selection Parameter setting 
Forward selection - 

Backward elimination - 

Genetic algorithm Population size = 10 
Maximum number of iterations = 100 
Probability of crossover = 0.5 
Probability of mutation = 1

𝜎
 where 𝜎 is the total 

number of features in a chromosome 
 

Table 10 Parameter settings for supervised learning models 

Model Parameter setting 

Multiple linear 
regression 

- 

Multilayer perceptron 
neural network 

𝛿 = 0.0001  
Learning rate = 0.01 
Maximum number of iterations = 200 
Number of hidden layers = 1 

Number of hidden nodes =  ⌈
(𝑘+1)

2
⌉ + 1  where 𝑘  is 

the total number of input nodes 
Support vector 
regression 

𝐶 = 0 
𝜀 =  0.0001  

Kernel type = dot product (linear) 
Maximum number of iterations = 100000 
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Table 11 The definitions of variables for the PM10 concentration prediction 
𝐷𝑎𝑡𝑎𝑂𝑆 The matrix containing data of the observed station (OS) where PM10 

is predicted 
𝐶𝑘 The station of interest during each iteration for 𝑘 = 1, 2 , … , 𝑁 
𝑢𝑖  The neighboring station for 𝑖 = 1, … , 𝑁 − 1 
𝑑(𝑢𝑖) The distance between 𝐶𝑘 and 𝑢𝑖  

𝐷𝑎𝑡𝑎𝐶𝑘
 The matrix containing data of five features from a sensor at station 

𝐶𝑘  
𝐷𝑎𝑡𝑎𝑢𝑖

 The matrix containing data of five features from a sensor at station 
𝑢𝑖 

𝑁 The total number of sensors 

 

Step 2.1 PM10 prediction starts from using only data from the sensor at the observed 
station; i.e., 𝐷𝑎𝑡𝑎 = 𝐷𝑎𝑡𝑎𝑐1

= 𝐷𝑎𝑡𝑎𝑂𝑆 . Features that are related to the PM10 
prediction are selected from 𝐷𝑎𝑡𝑎𝑐1

 using feature selection algorithms. At each 
iteration, data of the selected features stored in 𝐷𝑎𝑡𝑎𝑐1

 are transmitted to supervised 
learning models to predict the concentration of PM10. Afterwards, the prediction results 
and the root mean square errors are saved in the 𝑟𝑒𝑠𝑢𝑙𝑡 and 𝑒𝑟𝑟, respectively. Besides, 
the result with the minimum root mean square error is stored as the initial optimal 
result, 𝑟𝑒𝑠𝑢𝑙𝑡𝑜𝑝, and the root mean square error is stored as the initial optimal error, 
𝑒𝑟𝑟𝑜𝑟𝑜𝑝. 

Step 2.2 Next, the data from the sensor at a neighboring station located within the 
determined radius is added to 𝐷𝑎𝑡𝑎. The neighboring sensor can be found by sorting 
all stations according to the distance 𝑑(𝑢𝑖) between each station 𝑢𝑖 and station 𝐶𝑘 
for 𝑖 = 1, . . , 𝑁 − 1. At station 𝑢𝑖 , if 𝑑(𝑢𝑖) is shorter than the radius 𝑟 from 𝐶𝑘 then 𝑢𝑖 
is selected as the neighboring station. The radius 𝑟 is measured in kilometers and starts 
from 𝑟 = 5 based on the actual distances which can be divided into four rings based 
on the location of monitoring stations. From Table 7, most of the monitoring stations 
have their closest neighbors within 5 kilometers but some have their closest neighbors 
within 10 kilometers. Thus, the initial radius is set at 5 and increased by 5 if no neighbor 
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is found within the determined radius. An example of the rings around monitoring 
station 𝑆2 starting from  𝑟 = 5 to 𝑟 = 25 is shown in Figure 20. 

Step 2.3 The data of the neighboring sensor (𝐷𝑎𝑡𝑎𝑢𝑖
)  is integrated with the 

data (𝐷𝑎𝑡𝑎) to form a new data set, 𝐷𝑎𝑡𝑎𝑖 . 

Step 2.4 With the new data 𝐷𝑎𝑡𝑎𝑖 , the same feature selection algorithms as in step 
2.1 are used to select the features that are associated with the PM10 prediction. As in 
step 2.1, the data of the selected features are forwarded to supervised learning models 
and the prediction results are stored, 𝑟𝑒𝑠𝑢𝑙𝑡,  and RMSE from the predicts are 
calculated and stored in 𝑒𝑟𝑟. 

Step 2.5 The current 𝑒𝑟𝑟𝑜𝑟𝑜𝑝 is compared to RMSEs stored in 𝑒𝑟𝑟. If any 𝑒𝑟𝑟 is less 
than 𝑒𝑟𝑟𝑜𝑟𝑜𝑝 then the 𝑒𝑟𝑟𝑜𝑟𝑜𝑝 value is set to equal to (𝑒𝑟𝑟) and the 𝑟𝑒𝑠𝑢𝑙𝑡𝑜𝑝 value 
is set to 𝑟𝑒𝑠𝑢𝑙𝑡. The index of the neighboring station with the optimal result is kept in 
𝑚𝑑. 

Step 2.6 Considering the next neighboring station, 𝑢𝑖 , for 𝑖 = 𝑖 + 1. If the distance 
between 𝐶𝑘 and 𝑢𝑖 , 𝑑(𝑢𝑖), is shorter than the determined radius then the proposed 
method goes back to step 2.3. If the distance between 𝐶𝑘 and 𝑢𝑖 , 𝑑(𝑢𝑖), is longer than 
the radius then the radius will be increased by 5 and goes to step 2.7. 

Step 2.7 If the radius is less than 25 then MDFS is applied to this step by shifting the 
station of interest 𝐶𝑘 to the neighboring station that is kept in 𝑚𝑑 and setting 𝐷𝑎𝑡𝑎 =

𝐷𝑎𝑡𝑎𝑚𝑑 . The process then goes back to step 2.3. If the radius is larger than 25, the 
final result of the prediction is obtained from the value that is stored in 𝑟𝑒𝑠𝑢𝑙𝑡𝑜𝑝. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 59 

CHAPTER 5 RESULTS 

 In this chapter, the first section presents the data from six monitoring stations 
that were normalized in the preprocessing step and the experimental results are 
presented in the following section. 

5.1 The normalized data  

 For our case study on the dataset obtained from six monitoring stations in Nan 
province for the period from the start of February 2017 to the end of April 2017, were 
normalized using Z normalization. Figure 27-32 shows the normalized data of 
temperature, humidity, PM1, PM2.5, and PM10 for the sensors at stations 
𝑆1,  𝑆2, 𝑆3, 𝑆4, 𝑆5, and 𝑆6, respectively. After normalization, it can be noticed that all of 
the data have the means equal to zero and the standard deviations equal to one. 

 

 

(a) The normalized data of temperature 
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(b) The normalized data of humidity  

 

(c) The normalized data of PM1  

 

(d) The normalized data of PM2.5  
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(e) The normalized data of PM10  

Figure 27 The normalized data of temperature, humidity, PM1, PM2.5, and PM10 from 
sensor S1 

 

 

(a) The normalized data of temperature  

 

(b) The normalized data of humidity  
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(c) The normalized data of PM1  

 

(d) The normalized data of PM2.5  

 

(e) The normalized data of PM10 

Figure 28 The normalized data of temperature, humidity, PM1, PM2.5, and PM10 from 
sensor S2 
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(a) The normalized data of temperature 

 

(b) The normalized data of humidity  

 

(c) The normalized data of PM1  
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(d) The normalized data of PM2.5  

 

(e) The normalized data of PM10  

Figure 29 The normalized data of temperature, humidity, PM1, PM2.5, and PM10 from 
sensor S3 
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(b) The normalized data of humidity  

 

(c) The normalized data of PM1  

 

(d) The normalized data of PM2.5  
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(e) The normalized data of PM10 

Figure 30 The normalized data of temperature, humidity, PM1, PM2.5, and PM10 from 
sensor S4 

 

 

(a) The normalized data of temperature 

 

(b) The normalized data of humidity  

-4

-2

0

2

4

6

8

1 151 301 451 601 751 901 1051 1201 1351 1501 1651 1801 1951 2101

PM
10

of
 S

4

Time (hour)

-3

-2

-1

0

1

2

3

1 151 301 451 601 751 901 1051 1201 1351 1501 1651 1801 1951 2101

Te
m

pe
ra

tu
re

 o
f S

5

Time (hour)

-3

-2

-1

0

1

2

1 151 301 451 601 751 901 1051 1201 1351 1501 1651 1801 1951 2101

Hu
m

idi
ty

 o
f S

5

Time (hour)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 67 

 

(c) The normalized data of PM1  

 

(d) The normalized data of PM2.5  

 

(e) The normalized data of PM10 

Figure 31 The normalized data of temperature, humidity, PM1, PM2.5, and PM10 from 
sensor S5 
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(a) The normalized data of temperature  

 

(b) The normalized data of humidity  

 

(c) The normalized data of PM1  

-3

-2

-1

0

1

2

3

1 151 301 451 601 751 901 1051 1201 1351 1501 1651 1801 1951 2101

Te
m

pe
ra

tu
re

 o
f S

6

Time (hour)

-4

-3

-2

-1

0

1

2

3

1 151 301 451 601 751 901 1051 1201 1351 1501 1651 1801 1951 2101

Hu
m

idi
ty

 o
f S

6

Time (hour)

-2

0

2

4

6

8

1 151 301 451 601 751 901 1051 1201 1351 1501 1651 1801 1951 2101

PM
1

of
 S

6

Time (hour)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 69 

 

(d) The normalized data of PM2.5  

 

(e) The normalized data of PM10 

Figure 32 The normalized data of temperature, humidity, PM1, PM2.5, and PM10 from 
sensor S6 
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5.2 The experimental results for PM10 concentration prediction 

 For our case study on the dataset obtained from six monitoring stations, 70 

percent of data in the chronological order were used for training and another 30 

percent of data were used for testing; i.e., the split test. In order to evaluate the 

precision of the prediction results, four standard evaluation criteria; i.e. RMSE, Pearson 

correlation coefficient (R2), MAE, and MAPE, were used. The experiments were 

performed in three different phases on the same dataset. The first two phases used 

only data from a sensor at the observed station to predict PM10 of that particular 

station. The first phase predicts PM10 concentration using three different supervised 

learning models; i.e. the multiple linear regression (MLR), the multilayer perceptron 

neural network (MLP), and the support vector regression (SVR). The second phase 

applied three different feature selection techniques; i.e., forward selection (FS), 

backward elimination (BE), and genetic algorithm (GA) to select only correlated features 

from data and then used three different supervised learning models as in the first 

phase to predict PM10 from these selected features. The third phase implemented the 

proposed method by adding more data from the neighboring sensors that were 

selected by MDFS to the dataset, used three different feature selection techniques to 

select only correlated features from the new dataset, and then used three different 

supervised learning models.  

 In the first phase, the experiments used data from the sensor at the observed 
station to predict PM10 concentrations for the next hour of that particular sensor by 
three different supervised learning models without applying any feature selection 
technique. Table 12 shows RMSE, MAE, MAPE, and R2 of prediction results obtaining 
from MLR, MLP, and SVR, and it can be seen that SVR yields the best results. 
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Table 12 The PM10 concentration prediction results of each monitoring station using 
three models. 

  Observed stations 

  𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 

MLR RMSE 7.129 11.116 8.737 8.370 10.221 9.781 

MAE 5.422 7.796 6.851 6.537 7.347 7.541 

MAPE (%) 29.14 27.27 30.66 27.14 29.20 26.37 
R2 0.886 0.816 0.844 0.863 0.760 0.819 

MLP RMSE 5.955 10.007 8.213 7.027 9.648 9.092 

MAE 3.736 5.775 5.837 4.821 6.566 6.585 
MAPE (%) 15.15 14.92 17.82 14.65 21.68 19.46 

R2 0.897 0.849 0.871 0.901 0.795 0.855 
SVR RMSE 5.703 10.211 7.494 6.882 9.217 8.716 

MAE 3.192 5.996 4.774 4.497 5.774 5.910 

MAPE (%) 11.85 17.21 16.47 15.57 20.58 19.33 
R2 0.900 0.841 0.872 0.898 0.804 0.853 

 

In the second phase, we integrated three feature selection techniques with 
three supervised learning models for the total of nine different combinations of 
methods to predict the PM10 concentration. Table 13 shows the optimal combination 
of methods for each observed station. The prediction results for the next hour of each 
observed station when feature selection techniques were applied to data before they 
were forwarded to three supervised learning models have lower RMSE values than 
those of the prediction results obtained from the first phase. At the observed stations 
𝑆1 and 𝑆2, the optimal prediction results were obtained from using GA with MLP; while 
at the observed station 𝑆3, the optimal prediction result was obtained from using FS 
or BE or GA with MLR. At the observed stations 𝑆4,  𝑆5, and 𝑆6, the optimal prediction 
results were obtained from using FS or BE or GA with SVR.  
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Table 13 The PM10 concentration prediction results for the next hour of each observed 
station using feature selection and supervised learning models. 

Observed 
stations 

The PM10 concentration prediction results from  
the second phase 

Feature 
selection 

Supervised 
learning model 

RMSE MAE MAPE 
(%) 

R2 

𝑆1 GA MLP 5.610 3.139 13.22 0.902 
𝑆2 GA MLP 9.898 5.908 17.32 0.850 
𝑆3 FS/BE/GA MLR 7.369 4.631 17.55 0.877 
𝑆4 FS/BE/GA SVR 6.620 4.048 12.94 0.905 
𝑆5 FS/BE/GA SVR 8.950 5.176 16.45 0.817 
𝑆6 FS/BE/GA SVR 8.439 5.306 15.87 0.862 

 

For the third phase, we propose to use data from the neighboring sensors to 
predict the PM10 concentration of the observed station by using MDFS to select the 
neighboring sensors. Every time the neighboring sensor was selected, its data were 
added to the existing data, and then feature selection techniques were used to select 
the correlated features and finally the supervised learning models were used to predict 
the PM10 concentration. Table 14 shows the prediction results which can be noticed 
that RMSE of all results are less than those of the first two phases. At the observed 
stations 𝑆1, 𝑆2, 𝑆3, and 𝑆4, the optimal prediction results were obtained from using GA 
with MLP; while the optimal prediction result at the observed station 𝑆5 was obtained 
from using FS with MLR. At the observed station 𝑆6, the optimal prediction result was 
obtained from FS with SVR. The experiments in the third phase used the proposed 
MDFS algorithm to select neighboring sensors whose data may influence the PM10 
prediction of the observed station with no need of wind direction and wind speed 
data.  
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Table 14 The PM10 concentration prediction results for the next hour of each observed 
station using MDFS algorithm. 

Observed 
stations 

The PM10 concentration prediction results from the third phase 

Feature 
selection 

Supervised 
learning model 

RMSE MAE MAPE 
(%) 

R2 

𝑆1 GA MLP 5.089 2.963 12.22 0.919 
𝑆2 GA MLP 9.193 6.163 20.77 0.871 
𝑆3 GA MLP 6.846 4.791 19.15 0.893 
𝑆4 GA MLP 6.152 4.129 15.62 0.918 
𝑆5 FS MLR 8.385 4.936 15.56 0.841 
𝑆6 FS SVR 7.883 5.021 14.90 0.880 

 

Figure 33 shows the process of selecting the neighboring stations using the 
MDFS algorithm as presented in Figure 17 for sensors 𝑆1,  𝑆2, 𝑆3, 𝑆4, 𝑆5,  and 
𝑆6, respectively. Suppose we would like to predict the PM10 concentration at 
monitoring station 𝑆1  as shown in Figure 33(a), the proposed method starts the 
prediction from setting 𝑆1 as the observed station and using only data obtained from 
the sensor at station 𝑆1. Next, the sensors at the neighboring stations whose locations 
are within the specified radius are selected one at a time and its data are added to 
the existing data. The neighboring station whose additional data yields the lowest RMSE 
will be selected as the new station of interest according to MDFS which is 𝑆4 from our 
example and the optimal prediction result with the lowest RMSE is kept at this step. 
Once 𝑆4 becomes the station of interest, the radius is increased by 10 because there 
is no neighboring station within the next 5 kilometers and the proposed method is 
repeated by selecting the neighboring sensors whose locations are within the specified 
radius one at a time and adding its data to the existing data. The neighboring station 
whose additional data yields the lowest RMSE will be selected as the new station of 
interest and the optimal prediction result with the lowest RMSE is kept. The process is 
repeated until there is no more neighboring station within the specified radius or the 
radius is greater than 25 kilometers. According to Figure 33(a), it can be seen that the 
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optimal result from the proposed method for PM10 concentration prediction of the 
observed station, 𝑆1, used data from only four stations 𝑆1, 𝑆3, 𝑆4, 𝑆5, 𝑆6 with the lowest 
RMSE equals to 5.089. 

 Likewise, suppose we would like to predict PM10 concentration at monitoring 
station 𝑆2 as shown in Figure 33(b), the proposed method starts the prediction from 
setting 𝑆2 as the observed station and using only data obtained from the sensor at 
station 𝑆2. Then the sensors at the neighboring stations whose locations are within the 
specified radius are selected one at a time and its data are added to the existing data. 
The neighboring station whose additional data yields the lowest RMSE will be selected 
as the new station of interest according to MDFS which is 𝑆4 from our example and 
the optimal prediction result with the lowest RMSE is kept at this step. Once 𝑆4 
becomes the station of interest, the radius is increased by 5 and the proposed method 
is repeated by selecting the neighboring sensors whose locations are within the 
specified radius one at a time and adding its data to the existing data. The neighboring 
station whose additional data yields the lowest RMSE will be selected as the new 
station of interest and the optimal prediction result with the lowest RMSE is kept. The 
process is repeated until there is no more neighboring station within the specified 
radius or the radius is greater than 25 kilometers. According to Figure 33(b), it can be 
seen that the optimal result from the proposed method for PM10 concentration 
prediction of the monitoring station, 𝑆2, used data from only four stations 𝑆2, 𝑆4, 𝑆5, 𝑆6 
with the lowest RMSE equals to 9.193.  
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(a) Sensor of 𝑆1 

 

(b) Sensor of 𝑆2 
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(c) Sensor of 𝑆3 

 

(d) Sensor of 𝑆4 
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(e) Sensor of 𝑆5 

 

(f) Sensor of 𝑆6 

Figure 33 The process of selecting data from the neighboring stations using the MDFS 
algorithm for PM10 concentration prediction of each monitoring station 
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 For the last phase, from Figure 21-26 of each sensor, the hourly data of PM1, 

PM2.5, and PM10 occasionally have extreme values at some certain times and we would 

like to test whether the normalization has any effect on the prediction; therefore, we 

test the proposed PM10 concentration prediction model on the actual data using three 

different feature selection techniques; i.e., forward selection (FS), backward elimination 

(BE), and genetic algorithm (GA), and two supervised learning models; i.e. the multiple 

linear regression (MLR), and the support vector regression (SVR). Table 15 shows the 

prediction results which can be noticed that RMSE of all the results are higher than 

those of the normalized data in the third phases. The prediction results from the actual 

data for the next hour of each observed station were obtained from using FS or BE or 

GA with MLR or SVR. Figure 34 shows the process of selecting the neighboring stations 

using the MDFS algorithm as presented in part 2 of Figure 17 for sensors 

𝑆1,  𝑆2, 𝑆3, 𝑆4, 𝑆5, and 𝑆6, respectively. 

 Suppose we would like to predict PM10 concentration at monitoring station 𝑆2 

as shown in Figure 34(b), the prediction starts from setting 𝑆2 as the observed station 

and using only data obtained from the sensor at station 𝑆2. Then the sensors at the 

neighboring stations whose locations are within the specified radius are selected one 

at a time and its data are added to the existing data. The neighboring station whose 

additional data yields the lowest RMSE will be selected as the new station of interest 

according to the MDFS which is 𝑆4 from our example, and the optimal prediction result 

with the lowest RMSE is kept at this step. Once 𝑆4 becomes the station of interest, the 

radius is increased by 5 and the proposed method is repeated by selecting the 

neighboring sensors whose locations are within the specified radius one at a time and 

adding its data to the existing data. The neighboring station whose additional data 

yields the lowest RMSE will be selected as the new station of interest and the optimal 

prediction result with the lowest RMSE is kept. The process is repeated until there is 

no more neighboring station within the specified radius or the radius is greater than 25 

kilometers. According to Figure 34(b), it can be seen that the optimal result for PM10 
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concentration prediction of the monitoring station, 𝑆2 , used data from only four 

stations 𝑆1,  𝑆3, 𝑆4, 𝑆5, 𝑆6 with the lowest RMSE equals to 9.343. 

 

Table 15 The PM10 concentration prediction results for the next hour of each observed 
station using MDFS algorithm with the actual data. 

Observed 
stations 

The PM10 concentration prediction results from the last phase 

Feature 
selection 

Supervised 
learning model 

RMSE MAE MAPE 
(%) 

R2 

𝑆1 BW SVR 5.160 3.031 11.79 0.917 
𝑆2 BW MLR 9.343 5.741 17.64 0.867 
𝑆3 FS MLR 6.988 4.473 16.28 0.888 
𝑆4 GA SVR 6.154 3.956 14.16 0.918 
𝑆5 GA MLR 8.375 4.935 15.59 0.840 
𝑆6 GA SVR 7.864 4.966 14.79 0.881 

 

 

(a) Sensor of 𝑆1 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 80 

 

(b) Sensor of 𝑆2 

 

(c) Sensor of 𝑆3 
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(d) Sensor of 𝑆4 

 

(e) Sensor of 𝑆5 
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(f) Sensor of 𝑆6 

Figure 34 The process of selecting data from the neighboring stations using the MDFS 

algorithm with the actual data for PM10 concentration prediction of each monitoring 

station  
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CHAPTER 6 DISCUSSION AND CONCLUSION 

 In this research, the data of temperature, humidity, PM1, PM2.5, and PM10 in Nan 
Province of Thailand, which were collected every second from the sensor network 
system over a three-month period, were used to evaluate the proposed PM10 
concentration prediction model. Most of the farmers burn their cornfields after 
harvesting during the period of three months in February, March, and April, which 
causes the PM10 concentration to be over the standard level. An initial set of 2136 
data for each sensor where 70 percent of the data were used to train the model and 
30 percent of the data were used to test the model. The optimal prediction was 
selected from the prediction results with the lowest RMSE. From the first phase when 
data of all features at the observed station were used, the PM10 concentration 
prediction results show that SVR yields the optimal predictions for all stations. In the 
second phase when feature selections were used to select only relevant features 
before passing data of the selected features to the supervised learning models, it can 
be noticed that the prediction results from all three models were improved. From 
RMSE in Table 13, the results from using GA with all three models are better for all six 
stations; however, FS and BE can also be used depending on the data and the location 
of each station. From the first two phases, the prediction used only data from the 
observed station. In fact, there are other factors that affect the PM10 concentration at 
each location; such as the environment of the nearby areas; thus in the third phase, 
we propose to include the air pollutant and air quality measurements of the 
neighboring stations, which were selected by the MDFS algorithm, into the prediction. 
From the experimental results, it can be noticed that GA is the most suitable feature 
selection method and MLP is the most suitable model to be used for the PM10 
concentration prediction. Nonetheless, Table 14 reveals that FS is more suitable for 
station 𝑆5 and 𝑆6 than GA which is similar to the results in Table 13 where all three 
feature selections can be used for stations 𝑆5 and 𝑆6. The reason that different feature 
selection methods and supervised learning models were used for stations  𝑆5 and 𝑆6 

is because these two stations are further away from other stations which decrease the 
correlation between the observed stations and their neighboring stations and weaken 
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the effect of features from their neighboring stations. In the last phase, the actual data 
were used as input for the MDFS algorithm to predict PM10 concentration. From the 
experimental results, it can be noticed that GA with MLR or SVR are the most suitable 
models to be used for the PM10 concentration prediction. Nonetheless, Table 15 
reveals that BW is more suitable for station 𝑆1 and 𝑆2, and FW is more suitable for 
station 𝑆3 with MLR or SVR for PM10 concentration prediction which are different from 
the results in Table 13 and Table 14. The experimental results of the last phase are 
not as good as the PM10 concentration prediction results from the third phase; 
however, the actual data can also be used with the MDFS algorithm for PM10 
concentration prediction at each monitoring station. 

From the experimental results for PM10 concentration prediction, we can 
conclude that the proposed method with normalized data yields the optimal 
prediction when comparing to the others. In addition, the proposed method can 
predict the concentration of PM10 one hour ahead of any observed station without 
wind direction, wind speed, and other air quality data. Table 14 shows that the 
prediction results are better when using MLP with data of the GA-selected features 
from the sensor at the observed station and the sensors at its neighboring stations that 
were selected by the MDFS algorithm. 

 However, the proposed method still has some limitations. Firstly, the proposed 
method was developed based on the fact that the data are limited to only six sensors. 
We can use only six sensors out of 14 sensors from the sensor network system because 
other eight sensors have a lot of missing data. Secondly, the proposed method was 
developed using only two types of air quality and three types of air pollutant from the 
online sensor network system which monitors air pollution by assessing haze levels of 
Dr. Garavig Tanaksaranond at Department of Survey Engineering, Faculty of Engineering, 
Chulalongkorn University. In fact, there are more features that may improve the 
prediction precision, such as meteorological data and structural data of air quality 
which are not available. Finally, in order to make the predictions more accurate and 
usable in air pollution management, more features and more data may be required 
for a large-scale environmental system. 
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 The proposed PM10 concentration prediction method can be used as the 
prediction framework for other air pollutants. Moreover, the proposed method can 
determine the relationship between features which can be used for particulate matter 
concentration management. Therefore, the framework that can be derived from the 
proposed method can be used for managing the environment and maintaining 
compliance with particulate matter concentration management regulations and policy. 

As a conclusion, the novel method for predicting particulate matter 
concentration in Nan Province of Thailand that integrates the feature selection 
method, the supervised learning model, and the modified depth-first search algorithm 
is proposed. The root mean square error and the Pearson correlation coefficient clearly 
indicate that the proposed method yields the optimal prediction results as overall 
RMSE is less than 9.193 and overall R is above 0.841.  

 For future work, three main research topics will be covered. Firstly, the problem 
on missing data will be solved because particulate matter concentration prediction 
models always require complete data which are quite impossible in the real situation. 
Thus, these missing data can be filled by synthesizing the data to make data of eight 
sensors complete for the prediction for one-month period. Secondly, from the spread 
of the particulate matter which affects the whole world, we are interested in studying 
the associations between different sizes of particulate matters. Finally, if there is a 
large amount of data related to the environment then deep learning will be considered 
as a new method for particulate matter prediction. 
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