

การพัฒนาและประเมินสภาวะพหุอสัณฐานของโคลพิโดเกรล

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาเภสัชศาสตรมหาบัณฑิต สาขาวิชาเภสัชอุตสาหกรรม ภาควิชาวิทยาการเภสัชกรรมและเภสัชอุตสาหกรรม คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2556 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Mr. Tharinchai Songrojjanawan

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science in Pharmacy Program in Industrial Pharmacy
Department of Pharmaceutics and Industrial Pharmacy
Faculty of Pharmaceutical Sciences
Chulalongkorn University
Academic Year 2013
Copyright of Chulalongkorn University

Thesis Title DEVELOPMENT AND EVALUATION OF POLYAMORPHOUS STATE OF CLOPIDOGREL

By Mr. Tharinchai Songrojjanawan

Field of Study Industrial Pharmacy

Thesis Advisor Narueporn Sutanthavibul, Ph.D.
Thesis Co-Advisor Jittima Chatchawalsaisin, Ph.D.

Accepted by the Faculty of Pharmaceutical Sciences, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

...Dean of the Faculty of Pharmaceutical Sciences

(Assistant Professor Rungpetch Sakulbumrungsil, Ph.D.)

THESIS COMMITTEE	
Parkroom Cy	Chairman
(Associate Professor Parkpoom Tengamn	iuay, Ph.D.)
Al Sutatheland	Thesis Advisor
(Narueporn Sutanthavibul, Ph.D.)	
2. Chatchawatsausin	Thesis Co-Advisor
(Jittima Chatchawalsaisin, Ph.D.)	
Phanphen ala Has	Examiner
(Phanphen Wattanaarsakit, Ph.D.)	
Supman Tunucluen	External Examiner
(Assistant Professor Sujimon Tunvichien,	Ph.D.)

ตัวอย่างพหุอสัณฐานของโคลพิโดเกรลที่แตกต่างกันสองชนิดถูกเตรียมขึ้นโดย กระบวนการพ่นแห้ง (spray drying) และการทำแห้งเยือกแข็ง (freeze drying) โดยมีค่าการ ละลายเป็น 760 กรัมต่อลิตรและ 877 กรัมต่อลิตร ที่อุณหภูมิ 30 องศาเซลเซียสตามลำดับ ตัวอย่างที่ถูกเตรียมขึ้นนี้ถูกนำไปเก็บภายใต้สภาวะที่แตกต่างกัน 3 สภาวะ (30°C 30 %RH, 40°C 30 %RH และ 40°C 75 %RH) เพื่อประเมินความคงตัวของสถานะของแข็ง วิธีการที่ถูกใช้เพื่อ ศึกษาคุณลักษณะที่แตกต่างกันของพหุอสัณฐานทั้งสองรูปแบบประกอบด้วยการส่องกล้อง (microscopy) การวิเคราะห์โดยการเลี้ยวเบนรังสีเอกซ์ (PXRD) รามานสเปกโทรสโกปี (Raman) พลศาสตร์การดูดซับไอน้ำ (DVS) การวิเคราะห์ปริมาณความร้อนที่แตกต่างกัน (DSC) กล้อง จุลทรรศน์อิเล็กตรอนไมโครสโคปแบบส่องกราด (SEM) และ การวิเคราะห์ส่วนประกอบสำคัญ (PCA) การศึกษานี้แสดงให้เห็นว่ามีเพียงวิธีการใช้ PCA ที่นำข้อมูลมาจากการสเปกตรัมของ Raman ในช่วงระหว่าง 3200 to 2800 cm และ 1800 to 100 cm เท่านั้นที่ถูกนำมาใช้ใน การแยกแยะความแตกต่างระหว่างตัวอย่างพหุอสัณฐานทั้งสองและโคลพิโดเกรลในรูปผลึก โดย คำนวณค่า PC1 เท่ากับ 97.7 % และ PC2 เท่ากับ 1.2 %

การวิเคราะห์ส่วนประกอบสำคัญ (PCA) ถูกใช้เพื่อติดตามการเปลี่ยนแปลงสถานะ ของแข็งของตัวอย่างพหุอสัณฐานในระหว่างการประเมินความคงตัว ผลของการศึกษาพบว่าที่ สภาพความขึ้นสูง (40°C 75 %RH) พหุอสัณฐานทั้งสองรูปแบบของโคลพิโดเกรลเกิดการเปลี่ยน กลับไปอยู่ในรูปแบบผลึกภายในระยะเวลา 7 วัน ในทางตรงกันข้ามที่สภาพความขึ้นต่ำ (40°C 30 %RH และ 30°C 30 %RH) พบว่าไม่เกิดการเปลี่ยนกลับระหว่างรูปแบบอสัณฐานและรูปแบบ ผลึกที่อุณหภูมิที่ถูกทดสอบ จากผลลัพธ์ที่ได้สามารถที่จะสรุปได้ว่าความขึ้นมีอิทธิพลมากกว่า อุณหภูมิต่อการศึกษาคงตัวของสภาวะของแข็งของตัวอย่างพหุอสัณฐานโคลพิโดเกรล นอกจากนั้น การวิเคราะห์ส่วนประกอบสำคัญ (PCA) ยังเปิดเผยให้เห็นว่าวงจรการเปลี่ยนกลับของตัวอย่าง พหุอสัณฐานทั้งสองกลับไปเป็นโคลพิโดเกรลในรูปผลึกมีความแตกต่างกันอย่างชัดเจน ผล การศึกษานี้จึงสรุปได้ว่าการควบคุมความชื้นในระหว่างกระบวนการผลิตของผลิตภัณฑ์โคลพิโด เกรลที่อยู่ในรูปอสัณฐานเป็นสิ่งที่สำคัญมากในการที่จะถูกใช้ในการช่วยควบคุมความคงตัวของ สภาวะของแข็งในรูปแบบอสัณฐานของสารสำคัญ

ภาควิชา วิทยาการเภสัชกรรมและเภสัช

อุตสาหกรรม

สาขาวิชา เภสัชอุตสาหกรรม

ปีการศึกษา 2556

ીંજ

ลายมือชื่อนิสิต ปีวินท์รับ กระโรคนรรรณ

ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์ร่วม

KEYWORDS: CLOPIDOGREL / POLYAMORPHOUS / PRINCIPAL COMPONENT ANALYSIS (PCA) / SPRAY DRYING METHOD / FREEZE DRYING METHOD

THARINCHAI SONGROJJANAWAN: DEVELOPMENT AND EVALUATION OF POLYAMORPHOUS STATE OF CLOPIDOGREL. ADVISOR: NARUEPORN SUTANTHAVIBUL, Ph.D., CO-ADVISOR: JITTIMA CHATCHAWALSAISIN, Ph.D., pp.

Two polyamorphous samples of clopidogrel were generated by spray drying and freeze drying methods with water solubilities of 760 g/L and 877 g/L at 30°C, respectively. These samples were placed under 3 different storage conditions (30°C 30 %RH, 40°C 30 %RH and 40°C 75 %RH) to evaluate for their solid state stabilities. Characterization methods utilized to differentiate the two polyamorphous forms include microscopy, powder X-ray diffractometry (PXRD), Raman spectrometry (Raman), dynamic vapour sorption (DVS), thermogravimetry (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and Principal Component Analysis (PCA). It was found that only PCA method, obtained from Raman spectrum between 3200 to 2800 cm⁻¹ and 1800 to 100 cm⁻¹ was able to distinguish between the two polyamorphous samples and crystalline clopidogrel with PC1 = 97.7 % and PC2 = 1.2 %.

PCA was also used to monitor the solid state transformation of polyamorphous samples during stability evaluation. The results indicated that at higher humidity condition (40°C 75 %RH), the two polyamorphous forms of clopidogrel readily convert to the crystalline form within 7 days. However, at lower humidity conditions (40°C 30 %RH and 30°C 30 %RH), the amorphous-crystalline transformation did not occur at neither temperatures used. It can be concluded from the above results that humidity have higher influence on the solid-state stability of polyamorphous clopidogrel than temperature. In addition, PCA also revealed that the transformation pathways of the two polyamorphous forms back to crystalline clopidogrel are distinctively different. These results suggest that the control of humidity during pharmaceutical manufacturing of amorphous clopidogrel products is crucial in maintaining the solid state stability of an appropriate amorphous form of the active substance.

Department: Pharmaceutics and

Industrial Pharmacy

Student's Signature T Songroj) moun

Advisor's Signature M. A. H.

Field of Study: Industrial Pharmacy

Co-Advisor's Signature 2 Chatchawalsonsin

Academic Year: 2013

I am also indebted to Dr. Kanet Wongravee (Department of Chemistry, Faculty of Science, Chulalongkorn University) and my co-advisor, Dr. Jittima Chatchawalsaisin for their kind assistance, helpful consultation and everlasting support.

I also wish to express deep appreciation to all members of the thesis committee for spending their times to be on my thesis committee and for their suggestion and comments.

I would like to express my infinite thanks and deepest gratitude to staffs in the Department of Pharmaceutics and Industrial Pharmacy for their assistance and encouragement. I am really thankful to my seniors and my friends for their friendship, consultation, guidance, suggestion, helpful thoughts and kindness.

The others special thanks to the Government Pharmaceutical Organization (GPO) for supplied clopidogrel as Active Pharmaceutical Ingredients (APIs), Unison Laboratories Co., Ltd for supplied HPLC column, T.O. Chemical Co., Ltd for supplied reference standard of clopidogrel related compound A, B and C and Chulalongkorn University Centenary Academic Development Project for the support on analytical instruments to my study.

Finally, I would like to express my deep gratitude and appreciation to my family for their assistance, care cheerfulness endless love and encouragement.

CONTENTS

	18
THAI ABSTRACT	J
ENGLISH ABSTRACTv	'i
ACKNOWLEDGEMENTSv	ί
CONTENTSvi	ii
LIST OF EQUATIONSxi	ii
LIST OF TABLESxii	ii
LIST OF FIGURESxiv	V
LIST OF ABBREVIATIONSxxiv	V
CHAPTER I INTRODUCTION	1
Objectives	1
CHAPTER II LITERATURE REVIEW	5
1. THE MODEL DRUG	5
2. POLYAMORPHISM 11	1
3. PREPARATION OF AMORPHOUS SAMPLE	2
FROM A LIQUID PHASE: QUENCH COOLING	3
FORM A SOLUTION: RAPID PRECIPITATION	5
FROM A FROZEN SOLUTION: FREEZE DRYING (LYOPHILIZATION)	5
FROM AN ATOMIZED SOLUTION: SPRAY DRYING	7
FROM A CRYSTALLINE PHASE: GRINDING AND MILLING	9
4. SOLID-STATE CHARACTERIZATION	2
4.1. POWDER X-RAY DIFFRACTOMETRY	1
FUNDAMENTAL PRINCIPLES OF X-RAYS DIFFRACTION25	5
4.2. DIFFERENTIAL SCANNING CALORIMETRY	3
INSTRUMENTATION	9
POWER-COMPENSATED DSC INSTRUMENTS	9
HEAT-FLUX DSC INSTRUMENTS30	Э
MODULATED DSC INSTRUMENTS	2

Page

DSC DATA ANALYSIS	. 32
4.3. THERMOGRAVIMETRIC ANALYSIS	. 34
INSTRUMENTATION	. 34
THE THERMOBALANCE	35
THE FURNACE	35
SAMPLE HOLDERS	36
TEMPERATURE CONTROL AND DATA PROCESSING	36
4.4. DYNAMIC VAPOR SORPTION	37
INSTRUMENTATION	37
4.5. POLARIZED LIGHT MICROSCOPE	38
4.6. RAMAN SPECTROSCOPY	40
THEORY OF RAMAN SPECTROSCOPY	47
INSTRUMENTS OF THE RAMAN SPECTROSCOPY	50
CHEMOMETRY	59
MULTIVARIATE ANALYSIS	60
UNSUPERVISED PATTERN RECOGNITION	61
SUPERVISED PATTERN RECOGNITION	63
EXPLORATORY DATA ANALYSIS	64
PRINCIPAL COMPONENTS ANALYSIS (PCA)	64
CHEMICAL FACTORS	69
DATA PREPROCESSING	71
GRAPHICAL REPRESENTATION OF SCORES AND LOADINGS	72
SCORES PLOTS	73
LOADINGS PLOTS	77
CLUSTER SEPARATION INDICES (CSIs)	77
THE DAVIES BOULDIN INDEX (DBI)	78
CHAPTER III MATERIALS AND METHODS	80

		Page
Material	S	80
Instrume	ents	80
Experim	ental methods	81
1.	Preparation polyamorphous samples of clopidogrel	81
	1.1. Spray drying method	81
	1.2. Freeze drying method	81
2.	Solid-state characterization	83
	2.1. Physical appearance	83
	2.2. Polarized light microscopy	83
	2.3. Powder X-ray diffractometry (PXRD)	83
	2.4. Differential scanning calorimetry (DSC)	83
	2.5. Thermogravimetric analysis (TGA)	84
	2.6. Dynamic vapor sorption (DVS)	84
	2.7. Confocal microscopic Raman spectrometry (Raman)	84
3.	Principal Component Analysis (PCA)	85
4.	Physicochemical evaluation of polyamorphous samples	85
	4.1. Appearance and size	85
	4.2. Solubility	86
	4.3. Related substances	86
	4.4. Dynamic Vapour Sorption	87
5.	Effect of temperature and humidity on recrystallization of	
	polyamorphous samples	87
	5.1. Effect of temperature	87
	5.2. Effect of humidity	89
6.	Stability evaluation	89
7.	Solid-state characterization in physical mixture	89
HAPTER I	IV RESULTS AND DISCUSSION	90
1.	Preparation polyamorphous samples of clopidogrel	90

			^
			Page
2.		Solid-state characterization	91
	2.1.	Physical Appearance	91
	2.2.	Polarized light microscopy	92
	2.3.	Powder X-ray diffractometry (PXRD)	92
	2.4.	Differential scanning calorimetry (DSC)	93
	2.5.	Thermogravimetric analysis (TGA)	95
	2.6.	Dynamic Vapor Sorption (DVS)	97
	2.7.	Confocal microscopic Raman spectrometry (Raman)	99
3.		Principal Component Analysis (PCA)	101
4.		Physicochemical evaluation of polyamorphous samples	103
	4.1.	Appearance and size	103
	4.2.	Solubility	104
	4.3.	Related substances	105
	4.4.	Dynamic Vapour Sorption	108
5.		Effect of temperature and humidity on recrystallization of	
pol	yamo	rphous samples	109
	5.1.	Effect of temperature	109
	5.2.	Effect of humidity	111
6.		Stability evaluation	111
	6.1.	Physical appearance	111
	6.2.	Polarized light microscopy	113
	6.3.	Powder X-ray diffractometry (PXRD)	114
	6.4.	Differential scanning calorimetry (DSC)	117
	6.5.	Thermogravimetric analysis (TGA)	119
	6.6.	Confocal microscopic Raman spectroscopy (Raman)	121
	6.7.	Principal Component Analysis (PCA)	125
	6.8.	Related substance	133
	6.9.	Appearance and size	137

		Page
7.	Solid-state characterization in physical mixtures	. 141
CHAPTER V	CONCLUSIONS	. 153
REFERENCE	S	. 155
APPENDICE:	S	. 161
APPENDI)	X A	. 161
APPENDI)	Х В	.162
APPENDI)	X C	. 163
APPENDI)	X D	. 164
APPENDI)	X E	. 168
APPENDI)	X F	. 169
APPENDI	X G	. 171
VITA		. 176

LIST OF EQUATIONS

Equation		Page
1	Bragg's Law Equation	28
2	PCA Equation 1	68
3	PCA Equation 2	69

LIST OF TABLES

Table		Page
1.	Laser type sources are used in Raman instrument	50
2.	Lasers used in Pharmaceutical applications	50
3.	Three essential steps (freezing, primary drying and secondary drying step)
	in freeze dry of clopidogrel bisulfate solution	82
4.	Abbreviations of spray dried and freeze dried samples prepared and	
	stored at 3 different conditions (30°C 30%RH, 40°C 30%RH and	
	40°C 75%RH) for 0, 1, 2, 3, 5, 7, 30, 60 and 90 days	88
5.	Descriptive terms of approximate solubility of substances according	
	to USP35	106
6.	Clopidogrel related compound A and C are found in initially spray	
	dried and freeze dried samples	109
7.	The quantity of clopidogrel related compound A and C of spray dried	
	and freeze dried samples prepared and stored at 3 different conditions	
	$(30^{\circ}\text{C }30\%\text{RH, }40^{\circ}\text{C }30\%\text{RH and }40^{\circ}\text{C }75\%\text{RH})$ for 0, 1, 2, 3, 5, 7, 10, 20,	
	30, 60 and 90 days	137

LIST OF FIGURES

Figure		Page
1	A molecule of clopidogrel bisulfate (Each atoms represents with typical	
	color coding such as hydrogen (white), carbon (grey), nitrogen (blue),	
	oxygen (red), sulfur (yellow) or chlorine (green)	5
2	A chemical structure of clopidogrel (S-enantiomer)	6
3	SEM micrographs of clopidogrel bisulfate Form I (a) Form II (b)	7
4	A chemical structure of clopidogrel bisulfate polymorph Form II	8
5	PXRD patterns of clopidogrel bisulfate polymorph Form I (a) polymorph	
	Form II (b) amorphous Form (c)	9
6	PXRD patterns of pure clopidogrel bisulfate polymorph Form I (a) pure	
	polymorph Form II (b) mixture of two polymorphs Forms (c)	9
7	A chemical structure of clopidogrel related compounds	10
8	PXRD patterns of freshly amorphous samples of indomethacin generated	d
	by cryo-milling (a) melting and quench cooling (b)	14
9	PXRD patterns of atorvastatin calcium before and after SAS process	15
10	PXRD patterns of QURC (a) QURC- eta CD physical mixture (b) QURC-HP eta CD	
	physical mixture (c) freeze dried QURC-βCD (d) freeze dried	
	QURC-HPβCD (e)	17
11	PXRD patterns of spray dried cefditoren pivoxil stored at 60°C and	
	81%RH using inlet air temperatures of 40° C (a) of 100° C (b)	18

Figure		Page
12	PXRD patterns of freshly amorphous form of indomethacin generated	
	by different techniques: cryo-milling (CM), ball milling (BM), spray drying	
	(SD), quench-cooling (QC)	20
13	PXRD patterns of amorphous simvastatin (stored at 25°C) prepared by	
	quench cooling big (QC-big) (a) quench cooling small (QC-small) (b)	
	cryo-milling (CM) (c)	21
14	PXRD patterns of amorphous simvastatin (stored at 55°C) prepared by	
	QC-big (a) QC-small (b) CM (c)	22
15	Schematic representation of the structure of crystalline solid,	
	amorphous solid and gas	23
16	Angle of incidence and angle of scattering from PXRD instrument	26
17	Theory of Bragg's law	27
18	A diagram of a power-compensated DSC instrument	30
19	A diagram of a heat-flux DSC instrument	31
20	Determination of onset temperatures	33
21	A diagram of thermogravimetric analysis (TGA) instrument	34
22	A cross section of the Dynamic Vapor Sorption (DVS) instrument	38
23	Schematic diagram of the polarizing light microscope	39
24	Comparison of the IR and Raman spectra of benzene	43
25	Infrared (IR) spectrum (1) and Raman spectrum (2) of cyclohexane	44
26	On-line Raman spectrum of drying process in granulation step at the	
	start (a) and of drying process in granulation step until 1% moisture	
	at the end (b)	45

Figure		Page
27	Raman spectra of amorphous indomethacin prepared by melt and	
	quench-cooling method at various cooling rates	46
28	Raman spectra of developmental compound Form A (a) and Form B (b)	46
29	Schematic represents energy transitions in infrared and Raman	
	spectroscopy	48
30	Schematic represents Rayleigh band, Stokes band and Anti-Stokes	
	band of Raman scattering	49
31	Compared of dispersive and FT-Raman spectroscopy	51
32	Schematic represents dispersive Raman spectroscopy	52
33	Schematic represents FT-Raman spectroscopy	55
34	Schematic represents confocal Raman microscopy	57
35	Schematic represents dendrogram	62
36	Dendrogram of amino acid sequences within myoglobin of the various	
	species from the Tibetan antelope (TA) and other species	63
37	A row plot of data in a two-measurement system (Variable 1 and 2)	
	with the first two principal component axes (PC1 and PC2)	65
38	The coordinates of one point relative to the original axes (the dotted	
	lines) and the principal component axes (the dashed lines)	66
39	Schematic represents data transformation by PCA technique	70
40	Overview of data simplification by PCA technique	71
41	Scores plot of the first two PCs [PC1 (horizontal axis) versus PC2	
	(vertical axis)]	73
42	Raman spectra of amorphous, $\alpha\text{-}$ and $\gamma\text{-}\text{indomethacin}$	75

Figure		Page
43	NIR spectra of amorphous, α - and γ -indomethacin	75
44	Scores plot of PC1 (accounted for 77% variance) versus PC3 (accounted	
	for 6% variance) of data from all NIR spectra corresponded to	
	percentage amorphous content obtained from DSC technique	76
45	Scores plot of the PXRD diffractogram of all freshly amorphous	
	telmisartan prepared and stored by various proportion polymers	77
46	Example calculations of the DBI by assume perfectly spherical clusters	78
47	Spray dryer (Buchi Mini Spray Dryer B-290, Buchi, Switzerland)	90
48	Freeze dryer (Lyophilizer) (LYO LAB, Lyophilization Systems, Inc., USA)	91
49	Polyamorphous samples obtained by spray drying method (a) and by	
	freeze drying method	91
50	Polarized photomicrogragphs of samples prepared by spray drying	
	method (a) freeze drying method (b) and clopidogrel RM (c)	92
51	PXRD diffractograms of amorphous clopidogrel 1 st batch prepared by	
	spray drying method (a) and freeze drying method (b) compare to	
	clopidogrel RM (c)	93
52	DSC thermogram of clopidogrel raw material (RM)	94
53	DSC thermograms of initially prepared spray dried (a) and freeze dried	
	clopidogrel (b) (1 st batch)	95
54	TGA thermogram of clopidogrel raw material (RM)	96
55	TGA thermograms indicating %weight loss of initial clopidogrel samples	
	prepared by spray drying (a) and freeze drying methods (b)	96
56	Sorption/desorption isotherms of clopidogrel RM	98

Figure	e	Page
57	Sorption/desorption isotherms of initial spray dried sample	98
58	Sorption/desorption isotherms of initial freeze dried sample	98
59	Sorption/desorption isotherms of initial spray dried and freeze dried	
	sample	99
60	Raman spectrum of sample prepared by spray drying (a) Raman	
	spectrum of sample prepared by freeze drying (b) and Raman	
	spectrum of clopidogrel RM (c)	100
61	PCA of initial samples prepare by spray drying and freeze drying	
	compare to clopidogrel RM obtained by Unscrambler® (a) and	
	Multibase (b) program (1 st batch)	102
62	SEM photomicrographs of clopidogrel raw material (RM) at 100x (a)	
	and 500x (b) magnifications	103
63	SEM photomicrographs of initially prepared spray dried sample at	
	100x (a) and 500x (b) magnifications	104
64	SEM photomicrographs of initially prepared freeze dried sample at	
	100x (a) and 500x (b) magnifications	104
65	HPLC chromatograms of reference standards related substances	
	solution	106
66	HPLC chromatograms of system suitability testing	106
67	HPLC chromatogram of clopidogrel raw material (RM)	107
68	HPLC chromatogram of initially prepared spray dried sample	107

Figure	•	Page
69	HPLC chromatogram of initially prepared freeze dried sample	107
70	Isothermal DSC thermograms of spray dried samples exposed to 40° C (a	1),
	60°C (b) and 80°C (c) for 24 hours	110
71	Isothermal DSC thermograms of freeze dried samples exposed to	
	40°C (a), 60°C (b) and 80°C (c) for 24 hours	110
72	Polyamorphous samples obtained by spray drying method and stored	
	for 7 days at 30° C 30% RH (a) 40° C 30% RH (b) and 40° C 75% RH (c)	112
73	Polyamorphous samples obtained by freeze drying method and stored	
	for 7 days at 30° C 30% RH (a) 40° C 30% RH (b) and 40° C 75% RH (c)	112
74	Polarized photomicrograph of spray dried samples stored for 90 days	
	at 30° C 30% RH (a) at 40° C 30% RH (b) at 40° C 75% RH (c)	114
75	Polarized photomicrograph of freeze dried samples stored for 90 days	
	at 30° C 30% RH (a) at 40° C 30% RH (b) at 40° C 75% RH (c)	114
76	PXRD diffractograms of spray dried (SP) and freeze dried (FZ) samples	
	stored at 30°C 30%RH and 40°C 30%RH for 7 days compare to	
	crystalline clopidogrel RM	116
77	PXRD diffractograms of spray dried samples stored at 40° C 75%RH	
	for 0, 1, 2, 3, 5 and 7 days compare to crystalline clopidogrel RM	116
78	PXRD diffractograms of freeze dried samples stored at 40°C 75%RH	
	for 0, 1, 2, 3, 5 and 7 days compare to crystalline clopidogrel RM	117
79	DSC thermograms of spray dried samples initially prepared (Day 0)	
	and stored at 3 different conditions (30°C 30%RH, 40°C 30%RH,	
	40°C 75%RH) on day 7 compare to clopidogrel RM	118

637		
193480		

Figure		Page
80	DSC thermograms of freeze dried samples initially prepared (Day 0)	
	and stored at 3 different conditions (30 $^{\circ}$ C 30%RH, 40 $^{\circ}$ C 30%RH,	
	40°C 75%RH) on day 7 compare to clopidogrel RM	119
81	TGA thermograms of spray dried samples initially prepared and stored	
	at 3 different conditions (30°C 30%RH, 40°C 30%RH, 40°C 75%RH) for	
	7 days compare to clopidogrel RM	120
82	TGA thermograms of freeze dried samples initially prepared and stored	
	at 3 different conditions (30 $^{\circ}$ C 30%RH, 40 $^{\circ}$ C 30%RH, 40 $^{\circ}$ C 75%RH) for	
	7 days compare to clopidogrel RM	121
83	Raman spectra of spray dried samples stored on day 7 at 30° C 30% RH	
	(a) at 40°C 30%RH (b) at 40°C 75%RH (c) compare to clopidogrel RM (d)	123
84	Raman spectra of freeze dried samples stored on day 7 at 30° C 30% RH	
	(a) at 40°C 30%RH (b) at 40°C 75%RH (c) compare to clopidogrel RM (d)	124
85	PCA of spray dried samples stored at 3 different conditions (30°C 30%RH	,
	40° C 30%RH, 40° C 75%RH) for 7 days compare to clopidogrel RM	
	obtained by Unscrambler® (a) and Multibase (b) program	127
86	PCA of freeze dried samples stored at 3 different conditions (30°C 30%R	Н,
	40° C 30%RH, 40° C 75%RH) for 7 days compare to clopidogrel RM	
	obtained by Unscrambler® (a) and Multibase (b) program	128
87	PCA of spray dried and freeze dried samples stored at 30°C 30%RH	
	for 7 days compare to clopidogrel RM obtained by Unscrambler® (a)	
	and Multibase (b) program (1 st batch)	129

Figure		Page
88	PCA of spray dried samples stored at 40° C 75%RH for 0, 2, 5 and 7 days	
	compare to clopidogrel RM obtained by Multibase program	131
89	PCA of freeze dried samples stored at 40° C 75%RH for 0, 2, 5 and 7 days	
	compare to clopidogrel RM obtained by Multibase program	132
90	PCA of spray dried and freeze dried samples stored at 40° C 75%RH	
	for 0, 2, 5 and 7 days compare to clopidogrel RM obtained by Multibase	
	program	132
91	HPLC chromatograms of spray dried samples at day 0 (a) 7 days at	
	30° C 30% RH (b) at 40° C 30% RH (c) and at 40° C 75% RH (d)	134
92	HPLC chromatograms of freeze dried samples at day 0 (a) 7 days at	
	30° C 30% RH (b) at 40° C 30% RH (c) and at 40° C 75% RH (d)	135
93	SEM photomicrographs of spray dried samples at 100x (left) and 500x	
	(right) magnifications stored under 3 conditions for 60 days at	
	30°C 30%RH (a) 40°C 30%RH (b) 40°C 75%RH (c)	139
94	SEM photomicrographs of freeze dried samples at 100x (left) and	
	500x (right) magnifications stored under 3 conditions for 60 days at	
	30°C 30%RH (a) 40°C 30%RH (b) 40°C 75%RH (c)	140
95	PXRD diffractograms of spray dried samples physically mixed with	
	lactose at ratios of 1:2, 1:1 and 2:1 compare to individual spray dried	
	sample, clopidogrel RM and lactose	141
96	PXRD diffractograms of freeze dried samples physically mixed with	
	lactose at ratios of 1:2, 1:1 and 2:1 compare to individual freeze	
	dried sample, clopidogrel RM and lactose	142

Figure	· · · · · · · · · · · · · · · · · · ·	Page
97	DSC thermograms of spray dried samples mixed with lactose at ratios	
	Of 1:2, 1:1 and 2:1 compare to initial spray dried samples, clopidogrel	
	RM and lactose	143
98	DSC thermograms of freeze dried samples mixed with lactose at ratios	
	Of 1:2, 1:1 and 2:1 compare to initial spray dried samples, clopidogrel	
	RM and lactose	144
99	Raman spectra of spray dried samples mixed with lactose at various	
	ratios of 1:2 (a) 1:1 (b) 2:1 (c) compare to initial spray dried samples (d)	
	clopidogrel RM (e) and lactose (f)	146
100	Raman spectra of freeze dried samples mixed with lactose at various	
	ratios of 1:2 (a) 1:1 (b) 2:1 (c) compare to initial freeze dried samples (d)	
	clopidogrel RM (e) and lactose (f)	147
101	PCA of spray dried samples physically mixed with lactose at ratios of	
	1:2, 1:1 and 2:1 compare to individual spray dried sample, clopidogrel	
	RM and lactose using Multibase program	149
102	PCA of freeze dried samples physically mixed with lactose at ratios of	
	1:2, 1:1 and 2:1 compare to individual freeze dried sample, clopidogrel	
	RM and lactose using Multibase program	149
103	PCA of spray dried and freeze dried samples physically mixed with	
	lactose at ratio of 2:1 compare to individual spray dried and freeze dried	
	samples, clopidogrel RM and lactose using Multibase program	151

Figure		Page
104	PCA of spray dried and freeze dried samples physically mixed with	
	lactose at ratio of 1:1 compare to individual spray dried and freeze dried	ł
	samples, clopidogrel RM and lactose using Multibase program	151
105	PCA of spray dried and freeze dried samples physically mixed with	
	lactose at ratio of 1:2 compare to individual spray dried and freeze dried	4
	samples, clopidogrel RM and lactose using Multibase program	152
106	PCA of spray dried and freeze dried samples physically mixed with	
	lactose at ratios of 1:2, 1:1 and 2:1 compare to individual spray dried	
	and freeze dried samples, clopidogrel RM and lactose using Multibase	
	program	152

632103/80

LIST OF ABBREVIATIONS

SP Spray Drying Method

FZ Freeze Drying Method

RM Raw Material

APIs Active Pharmaceutical Ingredients

USP United States Pharmacopoeia

ICH International Conference on Harmonization

DSC Differential Scanning Calorimetry

TGA Thermogravimetric Analysis

HPLC High Performance Liquid Chromatography

DVS Dynamic Vapor Sorption

SEM Scanning Electron Microscope

PXRD Powder X-ray Diffractometry

IR Infrared

NIR Near-Infrared

FT-IR Fourier Transform Infrared

FT-Raman Fourier Transform Raman

NMR Nuclear Magnetic Resonance

EDA Exploratory Data Analysis

PCA Principal Component Analysis

PCs Principal Components

PC1 The first Principal Component

PC2 The second Principal Component

% Percentage

 θ Angle

min Minute (s)

sec Second (s)

°C Degree Celsius (centrigrade)

kV Kilovoltage (s)

Å Angstrom (s)

μm Micrometer (s), Micron (s)

nm Nanometer (s)

mm Millimeter (s)

cm Centimeter (s)

cm -1 Centimeter-gram-second

SAS Super Critical Antisolvent

CCD Charge-coupled Device

Nd-YAG Neodymium Yttrium Aluminum Garnet

He-Ne Helium-neon

InGaAs Indium doped with Gallium Arsenide

CSIs Cluster Separation Indices

et al. et alli, and others

