CHAPTER Il
THEORY
3'..1 Classification of mixing operations X

In the manufacturing industries that handle powders, the operation of materials
mixing is a necessary process for almost all of their manufacturing systems. This
operation, however, is called by many names : mixing, mulling, kneading, agitation,
milling, etc.

We will try to classify all kinds of mixing operations by principle into main
categories and explain each category of operation, Mixing is generally divided as
shown below :

1) Intermixing
2) Dispersing
3) Mixing-in

Intermixing is an operation which disperses different materials alternately in
uniform array as shown in Fig. 3.1(a). It is not intended to change the initial particle
shape or size in the material. This operation is the most popular and the simplest of the
mixing operations.  Usually it can be done sufficiently by a low-speed mixer.
Intermixing is an operation to mix different materials homogeneously without changing
their shapes. In the case of intermixing liquid materials, this operation is generally
~ called " agitation".

Dispersing seems to be opposite of mixing, but this operation has become
indispensable for fine mixing of modern powders composed of fine particles. Usually

most of the fine powders are themselves agglomerates.
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If mixing is performed simply by ‘the simple intermixing operation, such
powders will be mixed with no dispersion (disintegration) of agglomerates as shown in
Fig. 3.1(b). It is for this reason that the action of dispersing these agglomerates is
required in many cases. This dispersing operation, which seems to be unrelated to of
mixing , is an indispensable condition for ﬁhe mixing.

The so-called " dispersive mixing ," a combination of this dispersing action and
the intermixing o;nfation, enables fine mixing by breaking up the agglomerates into
single particles and intermixing them honogemeously as shown in Fig, 3.1 (¢).

Mixing - in is a process which requires intermixing and mixing-in at the same
time, In this case, the afore-mentioned action of dispersing the agglomerates of powder
particles is also required. Without this dispersing action, the surface coating action at
the particle level as shown in Fig. 3.1 (d) may turn out imperfect, causing troubles to a
subseqixent process. | - |

For this operation, high-s;peed shearing forces or pressing forces are required as

is in the case of the dispersing process.
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Figure 3.1 Classification of mixing operations
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3.2 Dispersion (compounding) of additives in a matrix material

Dispersion is usually achieved through a combination of three mechanisms that
all occur simultaneously (Ahmed, 1979) :

1. Initial wetting

2. Size reduction

3. Intimate wetting

Initial wetting is the formation of a mixture between a carrier and an additive,
It is essential to every dispersion regardless of quality, At a minimum, it requires that
the additive and carrier be sufficiently well mixed and have sufficient affinity for each
other so that they would not separate when further work is applied to the system. The
mutual affinity, compatibility, or wettability of two materials can be enhanced through
a change in the surface characteristics of .eithér or both, by the action of surfactants.
Being of many different chemical types with different surface characteristics, additives
would vary in the rate at which they wet out ina given system. Sometimes this is the
controlling factor in the overall rate and the quality of dispersion that can be obtained
regardless of the processing that follows. This varying nature of the additive also .
explains why no single surfactant is ideal for all dispersions. The importance of initial
wetting is often underestimated because of the simple means by which it is usually
obtained. Yet, initial wetting is not only essential, it often controls the quality of the
final dispersion,

~ Size reduction is the process of breaking up the additive aggregates and

agglomerates to primary particles. Studies of the processes which mix additives and
plastics together have generally excluded the size-reduction mechanism from
consideration, but the size reduction requires that sufficient mechanical energy be
brought to bear on the particles to overcome forces holding them together. This

energy is usually in the form of shear stresses developed in the matrix material,
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which rupture the agglomerates. When these stresses (the magnitudes of which are
determined by the viscosity of the matrix and the mixing conditions) are greater than
some threshold vaiue (which would depend upon the characteristics of the
agglomerates and aggregates), size reduction will take place. If the stresses are smaller
than that required to overcome the cohesive strength of the particles, the agglomerate
would not break up. Because the consistency and tack of the matrix influence the
effectiveness with which the mechanical energy could be transmitted to the particles,
predispersion in a medium other than the base material is often considered. |

The bonding energies between primary particles in aggregates and
~ agglomerates vary considerably in strength. Variations in manufacture and treatment
also produce different combinations of weak and strong fractions. For this reason, one
- additive might yield Better results than another at low shearing stresses but be inferior
at higher shearing stresses. Ratings at several levels oﬁ stresses for each dispersion
attribute of importance are needed for a comprehensive evaluation of ease of
diépersion.

Intimate wetting is the process of replacing air at the additive-air interface
with a vehicle. This is of great importance in color-pigment applications requiring high
transparency or maximum chroma in dark shades. Haze and reduced chroma are
produced by light scattering at plastic/pigment interfaces if the wetting is incomplete.
Effectiveness of shear transmission in the dispersion process also depends to a great
degree c;n the amount of intimate wetting obtained. Shear provided by dispersion
equipment ihrough a fluid medium would have no effect on an aggregate unless a bond
exists between the additive surface and the medium, and this is accomplished only
through intimate wetting.

The same considerations discussed under initial wetting also apply to intimate
wetting, i.e., a need for compatibility and the role of surfactants. However, intimate

wetting is made more difficult by the much smaller particle sizes involved, particularly




17

for organic pigments with their high surface areas and microscopic interstitial pores.
Such organic pigments often require extended dispersion cycles to achieve the desired

results,
3.3 Ideal-case simulation of dispersion states in binary additive system

Simulation is a powerful technique for solving a wide variety bf problems. To
simulate is to imitate the behavior of a system or phenomenon under study. The basic
idea behind simulation is simple, namely, to model the given system by means of
mathematical equations, and then determine its static and/or dynamic behavior. The
simplicity of the approach, when combined with the computational power of a high
speed digital computer, makes simulation a pbwerﬁjl tool. Normally, simulation is
used when either an’ exact analytic expression fof the behavior of the system under
investigation is not available, or the analytic solution is too time-consunﬁng or costly.

In modeling natural phenomena, two different approaches are available :
deterministic and stochastic. Deterministic models are those in which each variable
and parameter can be assigned a definite number, or a series of definite numbers, for
any given set of conditions. In contrast, in stochastic or random models, uncertainty
is introduced. The variables or parameters used to describe the structure of the
elements (and the constraints) may not be precisely known. The former approach are
less demanding computationally than the latter and could frequently be solved
analytically.

P. In-eure (1994), W. Tanthapanichakoon (1995a), and N. Phingchin(1996)
applied similar Monte-Carlo technique to simulate and evaluate the idealized dispersion
states of a single-additive system using two kinds of fractal dimension. Experiments on
the dispersion of iron oxide pigment in polyethylene resin and polystyrene resin [P.In-

eure 1994; N. Phingchin 1996 ] were also carried out and evaluated with the count-
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based fractal dimension, In the present study, various dispersion states of a two-
additive system were simulated using a combination of two ideal types of random
patterns (uniform random and normal random dnspersxon) ,»adhesion probab:hty and

location (angle) of adhesion,

3.3.1 Uniform random dispersion

In this ideal case of homogeneous mixture or uniform random
dispersion, the uniformly random position (X, y) of a particle on a matrix material

(a unit square) was simulated using the following mathematical formulas:

X = XRND*(XMAx-XMm) (3.1)
. and. o Y = YRND * (Yaux - Yamy) - (3:2)
where
X = the position of the additive particle on the X axis
Y = the position of the additive particle on the Y axis
XRND, YRND = uniform random number between zero and
unity

3.3.2 Normal random dispersion

In the ideal case of Guassian or normal random dispersion, the additive
particles were randomly, though not uniformly, dispersed around the center (0.5,0.5)
of a matrix material. The mathematical formulas used to simulate the position (X, Y)

of an additive particle in the matrix (a unit square) are as follows:

X

I

0.5+ XRNG /3.0 * (Xpax - Xnan) (3.3)

and Y = 05+YRNG/3.0+* (Ymax - Ywvmy) (3.4)
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where
XRNG, YRNG = standard normal random number
(zero mean, unit variance)
X
Y

the position of the additive particle on the X axis

the position of the'additive particle on the Y axis

The probability of XRNG or YRNG falling outside of (-3.0, 3.0) is
quite small (< 0.26%) |

Obviously, the statistical quality of the (pseudo-) random number
generators used in the above simulations could significantly affect the results of
computer experiments. Pijarn (1994) employed the typical uniform random number
generator available on a personal computer (BASIC compiler). Since the detailed
properties of th‘e generator were unknown and no statistical tests have been carried out
and reported on the properties, the present study decided to use the generators

extensively tested by W. Tanthapanichakoon (1978).
3.3.3 Adhesion probability

In an ideal case of an ordered binary mixture, the value of the
probability of adhesion is specified, which determines the probability that a new smaller
additive particle is to adhere onto one of the larger core particles. A standard uniform
random number is generated and compared with the adhesion probability val.ue. If the
former is less than the latter, the new smaller additive particle is designated to adhere
onto one of the core particles, which is randomly chosén. The coordinates of the

adhering particle is simulated as foliows :
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6= XRND *27n (3.5)

'= RT*COSO+ X, (3.6)

and Y’ = RT*SINO+ Y, 3.7
where

0 = the angle from the x-axis of the smaller adhering particle

RT = radius of the adhering particle |

Xas = the position pf the core particle on the X axis

Y. = theposition of the core particle on the Y axis

X'  =the position on the X axis of the adhering particle on the core
particle

. Y’ = the position on the Y axis of the adhering particle on the core

particle ‘ |

On the other hand, if the new smaller additive particle is not designated
to adhere onto any core particle, then the location of smaller additive particle in the
unoccupied portion of the matrix is determined using either set of equations (3.1 and

3.2 0r 3.3 and 3.4)
3.4 Indices of dispersion state
The following types of indices were applied in this work to the analysis of the

simulated idealized dispersion states in order to illustrate the strength and weakness of

each index type as applied to a binary ordered mixture.
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3.4.1 Degree of mixedness

In compounding operations, a perfect homogeneous mixture is defined
as one in which the additive component under investigation will statistically be
uniformly dispersed throughout. Such a mixture is also called a perfectly random
mixture. Statistical methods may be used to define the degree of‘ mixedness (degree of
homogeneity) of the compounded material. There are several definitions for this type
of conventional statistical indices. In the present work, the following defintion of the
degree of mixedness is used as index to evaluate the dispersion state of an additive of

- interest :

E | (3.8)

Letx;{(I= 1,2,....,N) be the domposition of the key component in the i-th sample of N |

spot samples taken fandomly from a compounded material. The sample mean, Xy, is

given by
N
e X
Xg = ) —- (3.9)
i=1 N

If the charged composition, X , is known, the sampling procedure may be examined
by comparing X to X .. The sample variance, o? , is defined by

2 % (x; "is)2

= B (3.10)

g =
i=1

Obviously, the smaller the value of 03 is, the closer to homogeneity the mixture is.
Therefore, the degree of homogeneity in the mixture can be estimated by evaluating
the value of sample variance crg. In other words, cg can be a useful measure of the
degree of mixedness in practical applications. At the beginning of the compounding
operation, where the additive and the matrix material are completely segregated, the

value of o§ is given by
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o2 =c2 = X, (1-%,) G.11)

The perfect homogeneous mixture in the compounding operation is defined as one

with " the probability of finding the particle of the additive of interest being uniform

everywhere in the compounded mixture”. Such a mixture is called " a perfectly random

mixture” and the value of o% as given by equation 3.10 is a minimum, ideally zero.

Here

Xj

S x4
v L)

= number of spot samples [-]

= composition of the additive of interest in spot sample i [-]

]

charged composition of the additive [-]

sample mean of x; [-]

variance in the composition of the additive in a completely

segregated system [-]

sample variance (equation 3.10)

In some cases of manufacturing functional composite materials, more

requirement than the state of ordinary homogeneous mixedness as shown in Fig. 3.2 is

needed. The mixture is called an " ordered mixture " because “ the composition of the

‘bigger additive is uniform everywhere in the matrix and furthermore all of the smaller.

additive particles adhere onto each larger additive particle with the same probability .

Before mixing
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o000

Random mixture Ordered mixture

Fig. 3.2 Concept of the ordered mixture via random mixture
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3.4.2 The fractal dimension

The fractal analysis method represents another type of quantitative
methods to evaluate the extent of additive dispersion. ."Fractal" comes from the Latin
adjective "fractus”, which has the same root as "fraction" and "fragment" and means "
irregular or fragmented" (Mandelbrot, 1977). Mathematically a fractal is defined as a

‘geometric shape thﬁt is made of parts similar to the whole in the same way, no matter
how small it has been subdivided. This means that the shape of a fractai has self-
similarity and a chara_,cteristic fractal dimension. The fractal dimension is a non-integer
real number that represents the dimensionality of that fractal.

| Even an object normally considered as one-dimensional, for example, a

line straight segment, also possesses a self-similar scaling property. The line segment

can be divided into N identical parts, each of which is scaled down by the ratio r =

I/N from the whole. Similarly, a two-dimensional object, such as a square area on a

plane, can be divided in N self-similar parts, each of which is scaled down by a factor

r = 1/N" A three-dimensional object, such as a solid cube, can be divided in N
little cubes, each of which is scaled down by ratio » = 1/ N,

With self-similarity the generalization of fractal dimension is straight-
forward, A D-dimensional self-similar object can always be divided into N smaller
similar copies of itself, each of which was scaled down by a factor r, where r =
1/ NUD, Conversely, given a self-similar object of ‘N parts scaled by a ratio » from
the whole, as given in Table 3.1, its fractal or similarity dimension is given by :

log(N) _ _log (W)

log(1/1) log (r) (.12)
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Table 3.1 Scaling law for fractionai dimension (Mandelbrot, 1977)

Obiject Number of pieces (N) | Scaling (r) Law
L4 3 1/3 3=3
9 19 =173 9=3?
27 112719 =13 |27=3

In other words, the fractal is defined as an extremely irregular line (or surface)
formed of an infinite number of similarly irregular sections (or parts). The fractat then
has fractional dimension between one and two (or between two and three). It could
be shown that an extremely complex shape might also be treated as a fractal, _for

example, the coastline (shoreline) of a country.
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3.4.2.1 Count-based fractal dimension

The square or rectangular cross section of a compounded material is
divided into n x n subsections (n : a positive integer). The number of subsections

containing at least one particle of the additive of interest, N(n), is counted as a function

ofn. Here n"' is the similarity ratio.
If the system is a fractal, the following equation holds:

N(n) = (Similarity ratio)fc = (1/n)Fc

(3.13)
Thus the count-based fractal dimension, Fe, is defined by :
 logN(n)  logN(n)
. = A P T\ )

log(n) " log(1/n) (3.14)
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Figure 3.3 Determination of fractal dimension
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In short, the count-based fractal dimension, Fe, is determined as the negative of

the slope of the plot between logN(n) and log(1/n).

Count-based fractal dimension

Log N(n)

Log (1/n)

Figure 3.4 Example of count-based fractal dimension determination

3.4.2.2 Area-based fractal dimension

Terashita, et al.(1993) are among the first researchers to apply the
fractal analysis concept to evaluate the dispersion state of a compounded material.
Their detailed observations of the large number of minute subsections to determine the
fractal dimension were greatly aided with the use of an image analyzer system. A

schematic diagram of the image analyzer system is shown in Figure 3.5.




27

Video interface

CCO camera

CCD camera
control unh
Personal
computcr\
00 | =
s
Printer 4 Monitor Microscope

Figure 3.5 Schematic diagram of the image analyzer (Terashita, 1993)

Each sample of the compounded material was observed using light
microscopy, and the obtained image was photographed using a CCD camera. The
analog signal from the CCD camera was digitized and sent to a computer viz a video
interface. .The' olbtained digital information was subjected to a smoothing treatment to
remove noise before being converted to binary data to locate the particle-containing
region on the dealt image. After these processings, the image was displayed on a CRT
screen and used to ;;alculate the fractal dimension. In this analysis, the magnifying
power should be optimized to enable observation of the particle distribution over as
wide a range as possible.

Following their approach, the area-based fractal dimension was adopted here as
another quantitative representation of the dispersion state, as follows:

First, the simulated material was divided into n x n equal rectangular
segments (4 < n < 50). Next, for segment no. i, the area ratio Si(n) of additive

particles was calculated as follows:
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Ai(n)

Sin) = AT (3.15)

- 1Y

S(n) = 2.8i(n) - (3.16)
i=1

crg(m)zi(si(m)—sm» 61)

i=1 N-1

where Ai(n) is the area occupied by the particles in segment no. i, and A(n) is the
total area of the same segment. N is the number of sampled segments. A coefficient of
vanation Dg(n) was calculated from the mean value of Si(n) for the af;plicable n

(namely S(n)) and the corresponding standard deviation s(n) as follows.

9(n)

Dy(n) = §(n)

(3.18)

Next Dy(n) versus i/n was plotted on a log-log scale, and if D,(n) and

1/n bears the relationship :
Dy(n) o (1/n)Fa (3.19)

then the particle dispersion state could be characterized by the area-based fractal
dimension (F,).

When linearity was observed over the range of (4 <n < 50)3 as shown
in Figure 3.6, the area-based fractal dimension (F4) could be caiculated from the slope. -

Naturally, the fractal dimension F, increased as the particle dispersion state improved.
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Area-based fractal dimension
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Figure 3.6 Example of calculation of the area-based fractal dimension

Figure 3.7 depicts two dealt images obtained by Terashita et. al. (1993)
showing the filler dispersion state and its fractal dimension (D). In this figure, black
spots and smudged lines indicate fillers, while the white portions indicate the matrix
resin. A high value of the fractal dimension demonstrated a visually good dispersion

state with little filler aggregation. In other words, the fractal dimension proved useful

in quantitative determination of additive dispersion state.
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Figure 3.7 Dealt image showing filler dispersion state
and its fractal dimension (D) (Tarashita, 1993)

In the present work, the normalized fractal dimension is calculated by dividing
the count-based fractal dimension and area-based fractal dimension with the
corresponding value for uniform dispersion obtained by Phingchin (1 996). In this way,
the influence of the sample size (the number of observed additive particles in a sampled
segment which corresponds to the charged concentration of the additive) can be

eliminated.
3.4.3 Coordination Number

The coordination number is defined as the average number of small
particles that adhere onto each core particle in the compounded material. For an
ordered binary-additive mixture the coordination number should be a useful

characteristic index.
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In the present work, the mean value of the coordination number was

calculated as the ratio of the total number of small particles adhering onto core

pasticles divided by the total number

of core particles. On the other hand, the mode

value of the coordination number was obtained from the location of the peak of the

frequency distribution of the number of small particles adhering onto each core

particle,

Co,. No, = 4.78

Figure 3.8 A simulated example of an ordered mixture

(probability of adhesion = 50 %)

Figure 3.8 shows a simulated example of a partially ordered mixture. The ratio

of small particles (black dots) to core particles (open circles) in the matrix was 10 : 1

while the probability of adhesion was 50 %. The observed coordination number (mean

value) was 4,78,
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