CHAPTER 111

THE COVPLEX SEQUENTIAL WIENER INTEGRAL FCR ANALYTIC
AD HARVIONIC FUNCTIONALS

In this chapter, we establish an existence theorem for the
complex sequential Wiener integral for a restricted class of analytic
and harmonic functionals.

Definition 3.1 Asubset E of c[a,b] will be called a universal null
set if pEis a Wiener null set in c[a,b] for each positive real number p.
By pE we mean the set of all functions px9 where X e E. A statement
involving an element Xe c[ash] will be said to be true almost univer-
sally (a.u.) if it is true everywhere in c[a,b] except on a universal
null set. For example, for fixed x in ¢cfa* , the set of polygonal
functions x such that ««—- . is a universal null set,

Theorem 3«2 Let a = pel® where p >0 and 0 <0 <A, and let Abe
the open sector of complex numbers Asuch that 0 <arg A< 0 Let F(y)
be a Borel functional defined for all y of the form \x(e),where Ae A*
and X e c[a,b], and A* denotes the closure of Awith A=0 omitted.
Suppose that F also satisfies the following four conditions:

1. F(Ax) is analytic in Aon A for each Xin c[a,b].

2. F(Ax) is a continuous function of Aon A* for each X
in c[ah].
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3. F(ox) and F(a*x) are continuous functions of x In the uniform
topology a.u. in c[a, |, where o+ = pe1r and 0 < (¥ < e
L. There is an M> 0 such that

IF(eiYx)] M

for all x in c[a,h] and all Y on (o0,0).
Then the sequential Wiener integral (with parameter o) exists

on c[a, ] and we have
0
(3.2.1)

F(x)dx = F(ox)dW(x).

[ah]

Moreover the following integrals exist and are equal

c[a, |

(3.2.2) (x)dx FOX)dW(x)

[ F
la, | 2, ]
wherever X is in the set < defined hy

={X: X50, 0< arg X< 0 and IXI <p} .

Finally, both members of (3.2.2) are analytic functions of Xon B and
thej' approach the members of (3.2.1) as X* o from insideS.

Proof: W note from condition 2 that condition holds for
0 <Y<0, and hence we have that for all Xin A* and all Xin c[a, ]5

(32.3)  IR(X)1=IF(7p -MX)[ = [F(eiyy)] < M

Let * be the closure of with the origin omitted.
Since the proof of this theorem is very long* it will be convenient
to divide it into several steps.
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STEP |.  For each subdivision vector T,

(3.2.1%) I Ka(t,C)f (*t ¢)dC
En
and
(3.2.5) i KEE)F(A) -)df
) S

exist for Ae 3* and are analytic functions of Aon3.

Proof: It follows from lemma 2.5 and (2.1.2) that the
integrand of (3.2. ) is measurable in £, and in view of (2.1.2),(3.2.3)
satisfies for Ae 3 the inequalities

IA]"/(>)"(V T0)...(V V DIV t,5F*=5)
Mexp - Re(x'2) 11
(3.2.6)

Mexp - Re(a-2) 1'_12{(1; {-]l_-l]]..)f

Since the last member of (3.2.6) is integrable in £ over @, (3.2.)
exists for all Aiin 3* and all subdivision vectors T. To show that
(3.2. ) is analytic in Aon 8 1let Abe any closed triangle in
Then we have
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since K (t,¢)F({. ) is analytic in Xand 3A denotes the boundary of A
Since (3.2.1%) exists,

I / |KA(t, )FUt’tHdO ax < «

-
thus we can exchange the order of integration by Fubini theorem and get

/b Kol e )00)X

1010(

[ (18&KXT,CFAT )dx)de
en
= 0.
Hence, by Morera's theorem we have that (3.2.14) is an analytic function
of Xin<g.

Next we show that for each T, (3.2.5) exists for Xe * and is
an analytic function of X in8. The argument is very similar to the "
corresponding argument for (3.2.1+). The inequality corresponding to
(3.2.6) is

SI(2i1)n (T1-'TO) ... (Tn-Tn< 1) IK(T 1 )F(AptA) |

(3.2.7)
<|\/|exp 7 1VW 1

L1 2<v Vi>
for Xin . Thus both (3.2.1%) and (3.2.5) are analytic on 8 .
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STEP 11 For each Xin 8*, (3.2. ) and (3.2.5) axe equal, i.e.,

(3.2.8) | K(T.Gp(THNIC =« KT.EPX*TIC)C.

Proof; By condition 2 and step I, the integrand of (3.2. )
IS continuous in X on 8* and is integrable in Cover EL  Thus (3.2. )
IS continuous in X on« , and so does (3.2.5). Moreover if Xe § and
Xis real, we may replace ¢ [y x™ in (3.2.5) and using (2.3.1) we
find that the expression (3.2. ) is equal to the expression (3.2.5) on
the real edge of . Let L denote the real edge of § and

) =1 I Ka(t C)F (> ¢)d€

gX) =+ KEeQFAK )dg .
Rn

Thus we have h(x)  (f-g)(x) is analytic in « and continuous on «Sul,
hence by the Schwarz reflection principle, h(x) can be extended to a
function which is analytic iuSULUtS, where 8 denotes the reflection
of . Since h(X) =0 for all Xin Land Lhas a limit point in
MSULUS, it follows that h(x) : 0 for all X in SuluS. Thus we have
f(X) = g(X) for all Xin 8 and hence hy the continuity of f(x) and
g(X), (3.2.8) holds for Xe 8*.

STEP |11 Let A denote the slanting edge of 8 o and A the set of
all X in§ in which arg X=0 5i.e.,

A {Xx : Xx~0, arg X =0 and IXI < Py



2k

and

= {X X"05 arg X=04 and IX ¢ p}.
‘e the following integrals exist and are equal

SVX

(3.2.9) /c[a, ]F(x)dx = c/[a,b] F(Xx)dW(x)
for Xe A A%

Proof: ~ For each XeA,

X = )X eie = (peid) = ("-) a.
Then by the continuity of F and of « and condition 3 we have that

FOX) = F@i ™ ox)

is a continuous function of « in the uniform topology a.u. in c[a,b] .
Similarly, this is true for Xin A* Thus for each Xin AUA 5
the sequential Wiener integral and ordinary Wiener integral

(3.2.10) F(xx)dx = F(Xx)dW(x)

B 1™ " o

exist and are equal since the hypotheses of Theorem 2.7 are satisfied.
Thus if {t* } is a sequence of subdivision vectors for which ||| 4 0

as k4 °, we have the right member of (3.2.8) approaching the left
member of (3.2.10) as T ranges over the sequence {x } . hence, we have
by (3.2.8) and (3.2.10) that
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| F(X)dx Eim | K(t,Q)F(@ )de
cla3] IMH> Bn X T'¢

fim « KX)F(E )de
IMh<V T,

= c/[a,] F(AX)dx

g FUAOONX).

Thus we have shown that (3.2.9) holds for Aiin Aua" In particular
(3.2.9) holds for A- a and (s.2.1) is established.

STEP IV For each A in ~ 3the following integrals

(3.2.11) F(A)dX = F(A)OW(X)

o [a3 ] T o[a3]

exist and are equal. Moreover the right member of (s.2.11) is analytic
inand is continuous in Aon *,

Proof:  Let {t*} be a sequence of subdivision vectors such that
llkJl %0 as k 4 to, and define

3.2.12 fk (A [ K (rk 3¢)F(A4-T  )dg.
( ) (A) R(K) (rk 3¢)F( k”‘) ¢

Ly step | and I13 the functions fk(a) are defined and continuous for
Af * and are analytic in . Moreover from (3.2,12),(2.6.1),(3.2.3)
we have for Ae
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SN T

St JAW(X)|

. ]F(XXTk
c[ab] | F(Xx k)IOW(X)

< 00

Thus the functions fA(x) are uniformly hounded for X e 1*. Moreover
from the existence of the right member of (3.2.10), it follows that
for Xin AU A* we have the existence of the limit

(3.2.13) i 0= F

Since {f*} is a sequence of analytic functions in  and uniformly
hounded on *, it follows that {f } is a normal family, i.e., every sub-
sequence of {f*} contains a subsequence which converges uniformly on
compact subsets of <. Let K be any compact subset of <, and let {f, }

(Xx)dx.

be a subsequence of (fk}. Then there is a subsequence {f’[(j} of (fkj}

such that £ converges uniformly, say to g, on K. Hence, g is analytic
ja ¢Sand also bounded on <.

Let

(3.2.11) f(x) = /C[a,b] FOX)AW(x) .

Then it follows from condition 1,2 and that f(x) is analytic in ¢ and
continuous on <% By (3.2.13), f’[(_ converges to f on A, and thus
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f =g on A* Since A* has a limit point in , f =g on § and hence
converges uniformly to f on K Since Kis arbitrary, we have shown

that every subsequence of {f } contains a subsequence which converges
to f uniformly on every compact subsets of <. This implies that {f"}
converges to f on every compact subsets of s3and hence on ( since for
each Ain (, {A} is compact in . Thus it follows from (3.2.1k) that
(3-2.13) holds for A in « as well as on A Eut since the limit of
ffo(x) is independent of the choice of {t }5it follows from (2.1.1)

that the sequential Wiener integral exists and (s.2.11) holds for Ae ( .

STEF V. The sequential Wiener integral in (3.2.2) exists and is an
analytic function of Ain~ and (3.2.2) holds. Moreover both of members
of (s.2.2) approach the members of (s3.2.1) as Ar+a from inside

Proof: It readily follows from (2.1.1), step Il and step IV
that for each Ae |

7 X F(x)dx = £im ¢ Ka
c[a,b] IMh® Rn

Jde

T)E

— £im K(x,¢)F(Xip ~ )dC
ITIh® Ry

c[a,b] F(AxX)dx

[ apy FAXOWE)

Thus (s.2.2) is established and by the continuity of the right member
of (3.2.2), both of members of (s.2.2) approach the members of
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(3=2.1) as A» from inside

Therefore, by steps13 I, 11, IV and Vthe theorem is proved.

#

Corollary s.s. The conclusion of the existence and equality of the
members of (z.2.2) for all Ain and their analyticity in )and their
approach to the right member of (3.2.1) as \ a from inside all
remainsvalid if F(ax) in condition 3 of the hypothesis of Theorem 3.2
Is replaced by F(x).

A reexamination of the proof of Theorem 3.2 on the basis of the
hypothesis of the above corollary vill show that the corresponding
conclusions hold.

If we replace the analyticity of F(Ax) in condition 1 of the
hypothesis of Theorem 3.2 by the harmonicity, then we get the generali-
zation of Theorem 3.2 since every analytic function is harmonic, but
the converse is false. For example, let f(z) z where z = x+iy and
z is the conjugate of z., Then f(z) is harmonic, but not analytic.

Theorem 3.A Let a  pel® Ywhere p>0and 0 <0 < T+ and let
A be the open sector of complex numbers A such that 0 < arg A<0.
Let H(y) be a Borel functional defined for all y of the form Ax(.),
where Ae A* and x e c[a,bj , and A* denotes the closure of A with
A=0 omitted. Suppose that Halso satisfies the following four condi-
tions
1. H(AX) is harmonic in Aon Afor each Xin c[a,b].
2. K(Ax) is a continuous function of A on A* for each x in c[a,b].



3. H(cjx) and H{cx*x) are continuous functions of X in the uniform
topology a.u. in C[ad] 3where a* = peie , 0 <0< 0 .
. There is an M> 0 such that

IH(eiyx)] < M

tor all x in c[a%] and all Y on (0,0).
Then the sequential Wiener integral (with parameter o) exists on

c[a®] and we have
0

(3. ) H (ax)dW (x).

fH(x)dx /
c[a,b] cla,b]

Moreover the following integrals exist and are equal

SNA

/C[a,b]H H(AX)dV ()

(x)dx =

3.2 /c[a,b]

whenever A is in the set  defined by

= {A:ATO, 0<arg A<O5IAl <p} .

Finally3 both members of (3.. .2) are harmonic functions of A on
and they approach the members of (3. .1) as A4 a from inside § .

Since every complex function is harmonic if and only if its
real part and its imaginary part are harmonic, we need only prove
Theorem 3. for a real harmonic function H(Ax).

Proof: W divide the proof into five steps:
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STEP I For all Xin A* and all Xin c[a, ] 5ve let H(x%) = H(Xx).
Then for each X in c[a%] there exists an analytic function F(X,x) of
Xon A such that Re [F(X%)] = K(x,x).

Proof:  Since Ais simply connecteds the unit disc  (i.e.9
=D(09)) and A are conformally equivalent, and hence there is a
one-one conformal mapping 4 from A onto . For each x in c[a, 19 let

H(zx) = Hip 1(z)x) (ze )
Then H (z,x) is a real harmonic function of z on and continuous in

zonu ( denotes the closure of ). Thus (in )s H*(z,x) is the
real part of the analytic function

(3.1+.3) F¥(zx) = ~ f H*(eM x)dt (ze )

For each Xin c[a, ] 9 let

F(Xx) = F*"(X) %) (X e A).

Then F(X%) is analytic in X on A and we have

Re[F(XX)] = Re[F*((X)x)] = H*(>(X)%)

= H(r1(*(X))x) = HXX).

Henced for each X in c{]Ja%] we have H(Xx) is the real part of F(X,x),
the analytic function of Xon A

STEP 11,  F(Xsx) is a continuous function of X on A* for each X in
c[ag].
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proof Foreach zin 5z =rel090 <r <1, eis real, we have

from (3.7.3) that
F*(zx) = H*(@zx) +iG*(z,x)

where

' S H«(elfc,x)dt
H'z>x>-s - | |-2r cos(t-e)+r ( )

and

Gr(zx) = - J f r sin(t-6) 44

5 H¥(e
t« 1-2 1 cus(t-g)rr

,x)dt.

We shall show that the limit

£im,_ F*(zx)
7+e16

exists and is continuous on T, the boundary of . Since H*(z,x) is
continuous on 0,

Eimg H*(z,x) H*(ei0 x)
exists and is continuous on T. Then we need only show that,

finn6  G*(z,x)
el

exists and is continuous on T. We define
f(tsx) = H*ait x) T o<t < 0T,
Then f(t,x) is continuous on [-TT,ii]. Let

Atx) = f(0+tx) - f(0~tx).

Thus by conditions2 and % of the hypothesis, we have for all z in G and

all x in c[a,b] that there is an M> 0 such that
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IH*(zx)l < M
and hence
F(tX)| < K

for some K> 0» Then we have

T 4
f rsin(t-8) _ o(¢ y)at

-1 1-2rcos(t-g)+r°

G*(z,x)

3 |

Lo rsin t f(t3)dt .
0 [-2r cos t+r2

Since f(t,x) is continuous on (. « 3 for every e > 0 there exists
a6==6() >0 such that if [tA"t0] <5, then |[f(t"%X) - f(t2!x)] <.
Then for e = (I-r)33 there exists a 6 =6(e) >0 such that if
|t1-t2] <6 3 then If(tl1Jx) - f(t2,x)] <e = (I-r)3, so that if

It| < 6/2 3then |(0+t)-(0%t) = 2]t|] <6, and hence |y(t,x)| =

jE(0+tsX) - f(0-t5)| < (I-r)3. Thus

1 4. rsin t
G*(z X = t x)dt
(2.%) 0 [-2r cos t+r2 y(tx)

8/2 b

I

0 8/2
| + 11
. ;] 82

and obtain 1] < =7 - (t,x)|dt <r(l-r) ~
"o (I-r)2

hence ﬂml I 0. In Il, since I-2r cos t+r2 > i sin2(t/2)
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and sint = 2sin (t/2)cos(t/2)s

rsin t
Wt < Kcot(t/2
[-2r cos t+r Nt (t12)

| o , rsin t
Since cot(t/2) is integrable on [6/2,d] and 1997 cos t4r

continuous on [6/237 it follows that 1l exists and is continuous on
[6/2% and thus

ﬁrgb G*zsx) = ?Jlrni (1+ 11)

= Aim ||
r+1
S | SIMNET
20 5/2 1-cost Y(tX)dt.

By the same proof as before5we have that the last member of the equa-
lities above exists and is continuous on [6/2s] 3 hence the limit
of 6*(z,x) as z -+el™ exists and is continuous for all el®on Ts

and thus

AinUg F*(z3x) = £ QH (ZX)+iaim g G*(z,x
Anlg (zX) 0 (ZX) Airn. g (2,X)
exists and is continuous on T. Then it can be extended to a continuous

function on , and hence F(Ajx) = F*("(A),x)is a continuous function
of A on A

STEP I11.  F(Ojx) and F(a*3) are continuous functions of Xin the
uniform topology a.u. in c[a,b].
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Proof: ~ Let A and A+ Le defined as in step 111 of Theorem 3.2
Then by the same proof as in step Il of Theorem 3.25 H(X3) is a
continuous of X in the uniform topology a.u. in c[a, ] for all Xin
AuA*. Thus for each z in i>(A)uil(A#) we have H*(z,x) = H> *(z),x)
IS a continuous function of X in the uniform topology a.u. in c[a,b]
and hence F*(z,x) is also a continuous function of X in the uniform
topology a.u. in cf[a, |3 so that for each X in AUA*s F(x,x) = F¥(tj»(x),x)
is a continuous function of X in the uniform topology a.u. in c{ja, ].
In particular3this is true for X=a and X = a*.

STEP IV There is an M > 0 such that
IF(x ) < M
for all Xin A* and all X in c[a, ].
Proof: It readily follows from (s. .3) and step IIl that
there is an M> 0 such that
[F*(z%)] < M
for all zin and all x in c[a3]. Hence3
FXX)| = 1esccuxron M
for all Xin A* and all x in c[a%].
STEP V The sequential Wiener integral in (s. .1) exists and (3. .1)
holds. Moreover the integrals in (3. .2) exist and (3. .2) holds for X

in <8. Finallys both members of (s. .2) are harmonic functions of X on
< 3 and they approach the members of (3. .1) as Xwa from inside <B.
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Proof: We first note that since H(xX) = H(AX), we have by
virtue of a formal formula given by Ahlfors for determining a harmonic
conjugate we can simply drop the comma sign from F(xtx).

By step 13113111 and IV, F(Ax) satisfies the hypothesis of
Theorem 3.2, and thus the conclusions of Theorem 3.2 hold for F.
Since His the real part of F, step V follows. £

A reexamination of the proof of step Il in Theorem 3.» and by
Corollary 3.3, we obtain the following corollary:

Corollary 3.5 The conclusion of the existence and equality of the
members of (s.%.2) for all Ain <sand their analyticity in  and their
approach to the right member of (s.H.1) as A»a from inside  all
remainsvalid if H(ax) in condition 3 of the hypothesis of Theorem 31t
is replaced by H(x).
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