CHAPTER I
GENERALIZED CONTINUED FRACTION
EXPANSIONS

11 this chapter, ail algorithm to construct continued fraction expansions, is given
in the first section. We give detailed proofs of its convergence and uniqueness. In
the second section, several well-known examples are shown to be special cases of
our continued fraction expansions.

2.1 Algorithm

In this section, our algorithm for constructing continued fraction expansions of
elements in a discrete non-archimedean valued field is given.

Let K be acomplete field with respect to a discrete non-archimedean valuation
I-1and A C O be a set of representatives of O/V. By Theorem 1.14, each
a GK \ {0} is uniquely representable as

jab)
11

(crA0)

i=r

where r GZ, o c Aand r Go. Such representation is usually referred to as its
canonical representation. The non-archimedean valuation of a is defined by

lal = 2-r, with [0] := 0,

The head part (a) of a is defined as the finite series

0
(@) = M2 cirl ifr 5;0, and 0 otherwise.
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Denote the set of all head parts by
={(@a) :aGkK}.

We are now ready to introduce our continued fraction expansion algorithm.

Let 1 be a sequence in K \ {0}, each of whose elements hi is either fixed
or is uniquely determined from a and previously known parameters bj,dj (j < i)
arising from the algorithm.

For convenience, we consider a £ K such that |a] < 1 Let Al := a ~ 0.

Assume that b\ € K \ {0} is subject to the condition that

bl
—| > 1. 2.1
4| 2 (.1

()1

Define a; = <71—> € S\ {8}

41]

. {)1 N
o Ifa; = T then the process stops and we write
1

t
= Al = —)l
ay
] by by :
e When a; # 7z e have 0 < Rt < 1. Assume that by € K \ {0} is
1 1
1 (b
subject to the condition that the element A, = o <Tl - a,1> # 0 satisfies
2 \ /11
0 < \A2\< 1. 2.2
Thus,
1+

1
Next, define 2 = <—> e S\ {0}.
Ao
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then the process stops and we write

e If 02 =
A2
5 - bmz_ b\ b\ b2
\ + ok b2 flr+ 02
a?
* When a2 / , we have 0 < (p < 1 Assume that 63 6 K \ {0} is
subject to the condition that the element A3 = — [ —--—-a2 ) 7" 0 satisfies
03 VA2
0 < IA31< 1. (2.3)
Thus,
_ 61 h b\ h2
O +h2A2 a L+ a2+ 343
02 + 13A3

Continuing this process, if Ai ~ 0 for all i > 2 has already constructed with

0 < |Aj| < 1, then define O = /-~-\ G \ {0}.

then the process stops and we have a finite continued fraction

o If 1=

Ai
expansion
=nia—)
01+ 02+
When ui £ _we have 0 < Al < 1 Assume that bi+i G K X {0}
¥z
is subject to the condition that the element Aj+! 4\ i)/ O
Ni-fl \-4i
satisfies
0< |A+] < 1 (2.4)
and so
bi- 1 "z

Oj_i+ O+ 6j+ LA+

a =
01+ 02+

h
< 1 and
At ~ ai

Observe that |oi| = T-J-T > [6i]. Since 0 < |62A2i
[-4i]
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< 1 foralli> 2,we have

0 < \bi+\Aitil = ‘Ai — G
Ol Ty, " e (i > o). (2.5)

Note that if the bi belong to 5\ {0}, then the requirements (2.1), (2.2), (2.3)
and (2.4) hold automatically.
Summing up, we see that the algorithm yields a continued fraction expansion

of the form

AL b2 hn— hn
14 0-2+ U1+ a + bn+t\An+\

where ai ¢ \ {0} and hi are subject to (2.5). Ifal = °- oran = i for some

M
> 2, then
_Jh_ Jf2. bn
1+ 2+ o)
i.e., a continued fraction expansion of a is finite. If al / ’\31 and an ~ — for all
I ATl

> 2, we now proceed to show that this continued fraction expansion converges.

Define two sequences (Cn), (Dn) as follows:

c_1=1 Co=0, G)I=an+tiCn+ bn+iCn-i forall >0 (26)

D-l1 =0, A)=1 Dn+1=an+lDn+ bn+ttA 1 forall >o0. (2.7)

Proposition 2.1. Forany > 0, /3GK \ {0}t ‘ehave

PP'n"b~n-fICn_i ~ b2 bn en]l
(3Dn 4-~n+iA-1  cg+ alt ant P

Proof. For each > 0, let p(n) be the statement

pcn+bn+icr-1 _ h b7l bn+\
fiDn+ bntiDn-i  (li+ <2+ an+ ft

Sin* BDal = r P(0) 5true-
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fneelfrp iT =1 m
Let > 0 and suppose p ( ) holds. Then

PCA+1 + bn2 p (&n+l * bn+i CN-1) + bne2n

PpN+l+ rne2-pn P (Mntl R &n+iAi-l) 4" bn+2
hn-\-2
& +1 + M+1Cn-1 +
1+ bn\-2
On+l  “F*n+l-"n— !
A9A A
M +i+ bn-k2 + bn+iCn-i
/2 3 Cn
fabel + K'*2° D 4 pp+\Dn-\
_ p)
6i  h? hn hn+l
a, + , bn+2
Y70\ anetT

hi b2 bn M+l 42

which verifies p ( + 1). [

From Proposition 2.1. we have

P'n ®nCn-1T bnC7=2 S — bn 7> 1
Dn anD71 +bnD72  «1+ 02T a

and so is called the th convergent of continued fraction expansion of a.
Proposition 2.2. Foralin > 1, we have CnDn-i —Cn-iDn = (—1)ri~16162 116

Proof. For each > 1, let p(n) be the statement

CnDn-i —Cn-\Dn= (-1 + ee-bh .

Since CiA) — Co-Dj = Cl — 0= aiCo + 6iC_i = b\ = (—1)1_161, P (l) is true.

Let > 1 and suppose F(n) holds. Then

Dn+IDn CnD 7+l (*n-t-I*"n T ~n+1*n—=I) Dn  f2; (&-\-\Dn T bnjr\D n—)
++1 (DnDn—= ¢ ADT)
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which proves p ( + 1). O
Proposition 2.3. |Ci| = |6j|, \Cn\= |&&2 3tnrant for all > 2.
Proof. We have ICI1= \a\Co + b\C- il = l6i 1.

For each > 2, let P(n) be the statement \Cn\ = \bia2a3 ---an|.
Since \¢2\ = \a2Cl + b2C01= |a2Ci| = IM 21, P{2) is true.
We have, by (2.5),

IBC21 = Ib\a2a31> 16102631> l61631 = \b3Ci\,

by Theorem 1.4, we get

Ic 31 = \aiic 2+ &3Cll = 108c*2 = |6iA0315

so P (3) is true.

Suppose that P(t) hold for all 3 <t < . We have

~ - Cnl o B10.2 **' 0J<o0or311

N 16102 ¥ 0 7167, 11

N 16102 '1B@N—16r i 11 |6ji+iCh—111

by Theorem 1.4, we get

\Cn+\ = ®n+iCn T & +1Cn—11 \an+iCn\ 161Q -+-a,_lanan+i|,

and so p ( + 1) holds. 0
Proposition 2.4. \Dn\ —\aid2---an\/ o forall > 1

Proof. For each > 1, let p(n) be the statement \Dn\— | 1 2111an\
Since \Di\ = Vo\D g+ biD-i\ = |oil, p(l) is true.
We have

[azlli] = | 1 2 > jOie2j > [62| = |62,



We have

\a2Di\ = |aia2| > |a-i62 > |& = |RA)],

by Theorem 1.4, we get

\D2\ — 172-Dl + b2D() 1= D2~ 11— ~ed

so P(2) is ture.

Suppose that P(£) hold for all 2< t < . We have

NDN - | 21Y & - REQ
’>|(21 2%**gn_jrnan+1 |

AL 2%R& —1N+L A A 1

by Theorem 1.4, we get

Al ~ A D T hne\Dn—| AN L 1 D02 A A A B

and so p { + 1) holds.

From the algorithm and Proposition 2.1, we see that

b\ b2 b —I bn (™ TbaHA H£i) —14"bnCrk2
ai+ 2+ 0 -1+ & +6 +17+1 (& + b HAn[1)Dn_i + bnD .2

Using Proposition 2.2, we get

n N TA+"+1) -1+~ 0
Dji (™ 4'~+14. +1). —-1+bnD7-2 Dn
(- —I) (dfi 4'b .\Aj®\) + bn(Cn—2D  CnD7k2)
Dn((& T~ -y 14~ )
(! 1) (fin+ A 1N D)+ ( -2 -1— -
Dn((' 4~ --1-4714i) -1 T bnDn=2)
_( DHnM27es& (& 4T+ lAT+H]D) + (=D)n seeh _IN Q
Dn(( T ~-44. - —l4-bnDn=)
(= D) nfrjfr2 - - - +IN +]

Dn( s T~ -fi-4n_[)Dn- 4"bnD n—=)
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From
\an\ > |>£ A= \on+HAn+

+il
we get [an+ entiArati| = [an|, and o I(an + bn+iAn+i) Dn-i+bnDn-2| = lanD _u
Thus,

Cn \blb2 - - -fon+ll

Al \Dn\\D. 4_11 0 as — 0.

This shows that converges to a, which enables us to write

b 2  In

i+ 2+ anT

To prove the uniqueness, suppose that a ¢ K \ {0} 1 |oj < 1, has two such
continued fraction expansions

Jh_ PAE-N o &N 11 J4
1+ 2+ an+ «1+ an-b

where a;,a ¢ S\ {0} and the bi,bl are subject to the same requirements as
elaborated above. Observe that

bi  bii-l

o < <1 forall 1>1 2.8
« |+ aj_];’l_+

with the same relations for ¢, @' for alH > 1. From the construction requirement,
we have b\ —b[ which implies that

&0
@ + P+ 3t 1= «1+ «-5+ "

Since ai,a\ ¢ ', using (2.8), we get

i B e e &
a1= «1 and ot 3t wt «9+ « + «b+

Since ai = a), from the definition, we have &2 = 2. Continuing in the same
manner, we get ai = a), bi = I for all i. The following theorem summarizes our
results so far obtained.
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Theorem 2.5. Let K he a complete field with respect to a discrete non-archimedean
validation 1-|. Then each a € K \ {0} with |a] < 1, can be represented uniquely

by a continued fraction expansion of the form

hi hn
1+ 2+ an-h

where Gj € ,' {0} and the sequence {~}* 1t Q K \ {0} is eitherfixed or is uniquely
determined from a and previously known parameters bj,al (j < i). Moreover,
the partial numerators and denomintors are subject to the condition, which will

henceforth be referred to as the ab-condition,

lajl > KI /orall i>1. (2-9)

Definition 2.6. A continued fraction expansion as in Theroem 2.5 is called a

JR-continued fraction expansion.

Remark 2.7. In the case that Ja] > 1, the JR-continued fraction expansion of a

is of the form
't bn

aO .\_____ e ——— (XN ]

ait+ azt 0 +

where o= (a),ai G \ {0} and bj are subject to the b-condition,

2.2 Examples

We turn now to specific examples. For the first three examples, let K be a

complete field with respect to a discrete non-archimedean valuation | «|.

Example 2.8. Taking bi — 1 for alli > 1in Theorem 2.5, we deduce that every
a e K \ {0} with lal < 1, has a unique regular continued fraction expansion of

the form
11 1

ai+ fl2+ an“-
here at e \ {0} are subject to the ab-condition, i.e., |a;] > 1for alli > 1 This

is the well-known classical regular continued fraction expansion.
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Example 2.9. Taking bi = 1 and bi+i = (li for all T > 1in Theorem 2.5, we

deduce that every a € K \ {0} with |a] < 1, has a unique continued fraction

expansion of the form
A ! —
QL+ o2+ fln+

where ai G\ {0} for all i > 1 are subject to the ab-condition, ie., |1 > 1
and | 2+1 > Bi+11= 10il for all i > 1. This continued fraction expansion may
be regarded as a non-archimedean analogue of the real Engel continued fraction

expansion due to Hartono-Kraaikamp-Schweiger [12].

Example 2.10. Taking hi — 1 and bi+i = a\ —a, + 1for alli > 1in Theorem 2.5,
we deduce that every a ? A \ {0} with |a| < !, has a unique continued fraction

expansion of the form

toal = o+t an-l —a -1+ 1
Q1+ <2+ 2+

where at E\ {0} for all i > 1 are subject to the ab-condition, ie., | 1 > 1
and |a,+1| > |61+i| = 1a] —a, + 1] for all i > 1 This continued fraction expansion
may be regarded as a non-archimedean analogue of the real Sylvester continued

fraction expansion due to A. H. Fan, B. . Wang and J. [10].

Example 2.11. (The field of p-adic humbers, Qp)
Let K = Qp be the field of p-adic numbers, i.e., the completion of Q with respect
to the p-adic valuation, I-Ip normalized so that |p|p = P~L Here, the ring of p-adic

integers is 0 = zp. Each a GpZp\ {0} is uniquely representable in the form

a=5 (renN, Cie{0,1,...,p- 1}t cCr~ 0).

1
—

There are two well-known p-adic continued fraction expansions, due respectively

to Ruban ([23]) and Schneider ([25]).

(1) Fora Gpzp\ {0}, since |a_1Jp > 1, let its p-adic representation be

“Cl=cmp‘m+ c mtlp-7HL + e1e+ C-ip-1+ M+ Cip+ cp2+ eee7
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wherem GN, C G{0,1,... ,p- 1} (i > —m) and c_m " 0. Let

01 := (a"l) = c_mp*m+ C-m+iP~m+| 4--—-—-hc_ip-1 + co and
A\ a_l — ai,

so that, a-1 = al+ Al. If Ay = 0, the process stops and we write 8 = — .
al

If A\ ~ 0 and since \Ai\ < 1, then by repeating the step just described, we

uniquely write
Ajl= a2+ A2, where a2:= (Ajj)1 A2-=All-a 2

Again if A2 — 0, then the process stops and we write 8 — — -——-. Otherwise,
QA+ &2
we proceed in the same manner with A2 replacing Al, etc. Thus, each

a G pZp \ {0} has ap-adic Ruban continued fraction expansion of the form

{1 {
aid- a2+ (714

where the dj's are nonconstant elements in . This is a JR-continued fraction

expansion with all i = 1. The ab-condition holds trivially.

For a GpzZp\ {0}, let its p-adic representation be
a=Cnpn+ cn+tpn+l H-—1
where GN, aG{0,1,....p—=1} 1> ) cns"0. Now write
ai := a = fcppl, where bx:=p”, 71 := bxa~| with  1P= 1.

Write 1 = Clfi + GiuP + Clizp2 + 1«1 with Citi G {0,1,... ,P — 1} for ail

i >0 Clo~ 0. Thus,
a h bi

Ut d\ b 02

where ai := cifi, c2 1- 1 = clmpn + cizdipri+l + «..1with ri be the
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least positive integer such that c; ,, # 0.

by
If &y = 0, then the process stops and we have a = —
ay

If ay # 0, then we write
a2="02 21 where b2:=pri, 2:=h221 with {2p=1.

Write 2= cZfi + c2yp+ G20 «¢ovnwith ¢2i G{0,11..,p 1} for all
I >0, 20 0 Thus,

y by b2
ayt R 1t a2+ (b

Where a2 := 020, as:= u2— 2= @2.pn2 I t2,n+ipr2+1 + =« With r2 be the
least positive integer such that rar2” o.

The process continues in this manner. Thus, each a G pZp\ {0} has a
p-adic Schneider continued fraction expansion of the form

y 2 bn

e an+
where (i G{0,1,..., p—L}, by = |ojp L and each hi+i is of the form pTi (r,,'iG
N) and is uniquely determined form Q and previously known dj,bj (j <1).
This is a JR-continued fraction expansion With all d; G{0,1,... ,p —1}, bz
being positive powers of p. The ah-condition holds trivially.

Example 2.12. (The function field with respect to the degree valuation, £ ((x-1)))
Let F be a field and let

r r—1 C-1 , C-2
F((,-n)):={ca" +c12" " +---+cax+c+ T+7 + -
r€Z and ¢; € F for all i < r}
be the completion of the rational function field F(x) with respect to the non-

archimedean degree valuation, I- oo, normalized so that |x_1po = 2-1. There
are at least three kinds of continued fraction expansions in F ((x-1)) a we now
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elaborate.

(1) Let ! be a fixed sequence in F[x] \ {0} . By Theorem 25, eacha G

A((+T_1)) x {0} ! Moo < 1) has a unique JR-continued fraction expansion

of the form

JxL bn
1+ 2+ an+

where oqg G F[ee] \ {0} are subject to the ab-condition, i.e., IMoo > |6i|oo
for all i > 1. The JR-continued fraction expansion in this case is indeed the

non-regular continued fraction expansion constructed in [16].

(2) The X-1-Ruban continued fraction expansion (see e.g. [24]) ofa GX~IF ((x*1))\

{0} is of the form
L 1 1

Ql+ A+ +

where the a.j's belong to the set of head parts F[x]\F . This is a JR-continued

fraction expansion with all bi — 1. The ab-condition holds trivially.

(3) The X-1-Schneider continued fraction expansion of 2 G F ((x-1)) \ {0} is

of the form

Jb2_ K
«1l+ 2+ 0 +

where the partial denominators and numerators are as the following:
at GF\ {0}, bhi=x~s",SiGN forall '>1

and each i is uniquely determined form a and previously known {ij1bj (j <

). The ab-condition holds trivially.
Example 2.13. (The function field with respect to a 7T-adic valuation, F ((7r(z))))

Let F be afield and let 7r(x) be a monic irreducible polynomial in F[x]. The field

F(r(x))) = j-~7 + ~M-1 + i+ + 10+ CIK + €272 + one:

"Gz and Ci GF[x] withdegci < deg-Tforail >rl
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of all formal Laurent series in tt(x ) is the completion of F(X) with respect to the
TT-adic valuation, |-, normalized so that |r(x)|w= 2~degr. Its ring of integers is

the set of formal power series
FIAX)]] = tco+ QTF + come s < G Flee], degei < dega} 1
and the set of head parts is
=107 + Gl +~N +¢0:r1 >0, cieF[x], degci < degrr]| .

By Theorem 2.5, each a G (x)F [[rr(z)jl \ {0} is uniquely represented as a JR-

continued fraction expansion of the form

- Pk K (2.10)
1+ 0,2+ on +

where 3, G\ {0} and bt are subject to the ab-condition. There are various
particular examples of JR-continued fraction expansions in this setting. Let US

mention two specific ones.

(1) The 7T-adic Ruban continued fraction expansion is constructed in exactly the
same manner as the p-adic Ruban continued fraction expansion mentioned in
Example 2.11 (1), i.e., each a G w{x)F [[e(z)11\{0} is uniquely representable

as
11 1

Gl+ o2t  On+
where the dj's are nonconstant elements in . This is a JR-continued fraction

expansion with all 6j = 1. The ab-condition holds trivially.

(2) The 7T-adic Schneider continued fraction expansion is constructed in exactly
the same manner as the p-adic Schneider continued fraction expansion men-
tioned in Example 2.11 (2), i.e., each a G n(X)F [[r()]] \ {0} is uniquely

representable as
b2 bn

1+ 2+ Oon +



where the partial denominators and numerators are as the following:

a, € F[x] \ {0}, degj < degsl bi= 7S, si GNforall | >1

23

and each bl is uniquely determined form a and previously known dj,bj (j <
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