
CHAPTER II
GENERALIZED CONTINUED FRACTION  

EXPANSIONS

111 th is  ch a p ter , a il a lg o r ith m  to  c o n s tr u c t  c o n tin u e d  fr a c t io n  e x p a n s io n s , is g iv en  
in  th e  first se c t io n . W e g iv e  d e ta ile d  p roo fs  o f  it s  c o n v e r g e n c e  a n d  u n iq u e n e ss . In  
th e  se c o n d  se c t io n , sev era l w e ll-k n o w n  e x a m p le s  are sh o w n  to  b e  sp e c ia l ca ses  o f  
our c o n tin u e d  fra c tio n  ex p a n sio n s .

2.1 Algorithm
In th is  s e c t io n , ou r a lg o r ith m  for c o n s tr u c t in g  c o n tin u e d  fr a c t io n  e x p a n s io n s  o f  
e le m e n ts  in  a d isc r e te  n o n -a r c h im e d e a n  v a lu ed  fie ld  is g iv en .

L et K  b e  a  c o m p le te  fie ld  w ith  r e sp e c t  to  a  d isc r e te  n o n -a r c h im e d e a n  v a lu a t io n  
I - I an d  A Ç o b e  a  se t  o f r e p r e se n ta tiv e s  o f o/v. B y  T h e o r e m  1 .14 , each  
a  G K  \  { 0 }  is u n iq u e ly  rep resen ta b le  as

๐๐
a  =  y ( cr A  0)

i= r

w h ere  r G Z , C j  G A a n d  r  G o .  S u ch  r e p r e se n ta tio n  is u su a lly  referred  to  as it s  
c a n o n ic a l r e p r e s e n ta t io n .  T h e  n o n -a r c h im e d e a n  v a lu a t io n  o f  a  is  d e fin e d  b y

|a |  =  2 - r , w ith  |0 | : =  0.

T h e  h e a d  p a r t  ( a )  o f  a  is d e fin ed  as th e  f in ite  ser ie s

0
(a )  =  ^ 2  ci r l  if r  5; 0, a n d  0 o th e r w ise .
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Denote the set of all head parts by

ร  :=  { (a )  : a  G K }  .

We are now ready to introduce our continued fraction expansion algorithm. 

Let 1 be a sequence in K  \  {0 }, each of whose elements bi is either fixed 

or is uniquely determined from a  and previously known parameters b j , d j  (j  <  i ) 

arising from the algorithm.

For convenience, we consider a  E  K  such that |a| <  1. Let A l  : =  a  ^  0. 

Assume that b\  E  K  \  {0 } is subject to the condition that

(2.1)

0  < \ A 2 \ <  1 . ( 2.2)

Thus,

ท1 +

Next, define แ 2 = E  S \  {0}.
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• I f  0 2  =  then the process stops and we write
A 2

a  = b\ _  b\  _  b\  b2 
ถ \ +  b2A2 _ 1 b2 f lr+  0 2Oi +

a  2

•  When a2 /  — , we have 0 < 
A  2 A?

Û2 < 1. Assume that 6 3 6  K  \  { 0 } is

subject to the condition that the element A 3 =  —  [ —-----a,2 ) 7  ̂ 0  satisfies
03  V A 2

0  < I A 3 1 < 1 . (2.3)

Thus,

a  = 61 h

Oi +  b2A 2 a  ^
b\_____ b2

Û1 +  a 2 +  3̂-4-3
02  +  1*3 A 3

Continuing this process, i f  Ai ^  0 for all i  >  2 has already constructed w ith 

0 < |Aj| < 1, then define Oi =  / - ^ - \  G ร  \  {0}.

•  I f  ถ,1 =  then the process stops and we have a finite continued fraction
Ai

expansion

Q = &1 2̂
0 1 +  02+

1

Ai
When U i ะ£  we have 0 <

■ ẑ

is subject to the condition that the element A j+ 1 

satisfies

0 < |A;+1| < 1,

< 1. Assume that bi + i G K  X {0 } 

^i-fl \-4i
Oi ) /  0

(2.4)

and so

a  =
bi - 1' -' l—  1 ẑ

0 1 +  0-2 +  O j_i+ Oi +  6 j+ 1 A j+ 1

Observe tha t |oi| =  T-J-T > |6 i|. Since 0 < |6 2 A 2| =
l-4i|

h
1 = A t ~ a i

< 1  and
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0 < \ b i + \ A i + i \  = < 1  for all i  >  2 , we have

®i+l| 7“ j โ ^  l^t+ 1
I •'ท+! I

( i  >  0 ). (2.5)

Note that if  the bi ร belong to 5  \  {0 }, then the requirements (2.1), (2.2), (2.3) 

and (2.4) hold automatically.

Summing up, we see that the algorithm yields a continued fraction expansion 

of the form

^ 1  b2 bn— 1 bn
น 1 +  0 -2 +  Û71- I  +  a  ท +  bn + \ A n + \

where a i  e  ร  \  {0 } and hi are subject to (2.5). I f  a  I =  

ท >  2 , then
_  J h _  J f 2 _  bn

ท 1 +  Cl 2 +  CLn

bi _

M
or a n = ——  for someA n

i.e., a continued fraction expansion of a  is finite. I f  a  I /  -J- and a n ^  —  for all
■^1 A  71

ท >  2 , we now proceed to show that this continued fraction expansion converges. 

Define two sequences ( C n ),  ( D n ) as follows:

c _ 1 =  1, Co =  0 , C„-)_ 1 =  an+iC n +  bn + i C n - i  for all ท >  0  (2 -6 )

D - I  =  0 , A ) =  1, D n + 1 =  a n + 1D n +  bn + 1 A _  1 for all ท >  0 . (2.7)

P ro p o s it io n  2.1. F o r  a n y  ท >  0, /3 G K  \  {0 } 1 น’e h a v e

PP'n  "b ^n-flCn_i ^ 1  b2 bn 6n_|_1
( 3 D n 4- ^ n + iA - 1  cq +  a 2 +  a n +  P

P r o o f .  For each ท >  0, let p (n ) be the statement

pcn + bn+l C» - 1  _  h  b 71 bn+ \
f i D n +  bn+ i D n - i  ( I i +  <22 +  <2 n+  ft

Sin“  BDa Î  =  r  P(0) 15 true-
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f nce I f r p i T =  I  m  รุ
Let ท  >  0 and suppose p ( ท)  holds. Then

P C n + 1  +  bn-\-2บท    p  (& n + lบท  “I-  bn + i Cn-l) +  bn+ 2 Cn_
P D n+1 +  ^ n + 2 - P n p  ( ^ n+1 บ ท "I-  & n + i A i - l )  4" bn + 2 บ ท

bn-\-2บท
&ท+1บท +  ^n+1 Cn-1 +

p

O' n+1 บ  ท “I-  ^ n + l - ^ n —
bn-\-2 บ ท1 +

^ a „ + i + bn -\-2 ^  ^
/? J C n

+  bn + i C n - i

f a H + l  + k " + 2 ไ  D
p  )  n

+  bn + \ D n - \

6 i b2 bn bn+ l
น1 +  <22 T a , ,+ . bn+2

a n + 1 T  ท

bi b-2 bn ^n+1 ^n+2

which verifies p ( ท +  1 ). [

From Proposition 2.1. we have

P'n    ® n C n - 1 T  bn C 71—2   ^1 ^2 bn 77 >  1
D n a n D  71- 1  +  bn D 71- 2 « 1 +  0-2 T  aท

Cri
and so is called the ทth convergent of continued fraction expansion of a.

บ ท

P ro p o s itio n  2.2. For a ll n  >  1,  we h a v e  C n D n - i  —  C n- i D n =  (— l ) ri~1 6 1 6 2 ■ ■ • 6ฑ 

P r o o f .  For each ท >  1, let p (n ) be the statement

C n D n - i  — C n - \ D n =  (— 1)”  +  • • - bท.

Since C iA ) — Co-Dj =  Cl —  0 =  aiCo +  6 iC _ i =  b\  =  (— 1 ) 1 _ 1 6 1, P ( l)  is true. 

Let ท >  1 and suppose F (n) holds. Then

D n + l  D n  C n D 71+1 (^n-t-l^n T  ^n+l^n — l) D n  f'?; (&n-\-\Dn T  bnjr \ D n—รุ)

+ + 1  ( D n D n — 1 c ท—\ D  71)
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which proves p  (ท +  1 ). □

P ro p o s it io n  2.3. |Ci| =  |6 j|, \ C n \ =  |&1 <2 2 ท3 ■ ■ ■ a n I f o r  a l l  ท  >  2.

P r o o f .  We have I Cl I =  \ a \ C o  +  b \ C -  il =  |6 i I.

For each ท  >  2 , let P ( n )  be the statement \ C n \ =  \ b i a 2a-3 - - - a,n|.

Since \ c 2 \ =  \ a 2C l  +  b2C 01 ะ= |a2 Ci| =  I M 2 I, P { 2) is true.

We have, by (2.5),

ICI3 C2 I =  I b\a2a31 > 1 6 1 0 .2 6 3 1 >  I6 1 6 3 I =  \b3Ci\,

by Theorem 1.4, we get

I c 31 =  \a:ic 2 +  &3C1I =  103 c*21 =  |6i O20-3 15

so P ( 3) is true.

Suppose that P ( t )  hold for all 3 <  t  <  ท. We have

เ '̂น-ท C n I 16 1 0 . 2 * * ’ 0,JI—1 0 7.tor13_ 1 1

^  16 1 0 2  * * * rx7l—1 0  7167, 1 1

^  16102 ' ■ ■ ®n—16r i 1 1 |6 ji+iCn—111

by Theorem 1.4, we get

\Cn+l\ =  \ ®n+iCn T  &ท+ 1  Cn—1 1 \an+iC n\ I6 1O2 - • -a„_ 1 anan+i|,

and so p ( ท  +  1 ) holds. □

P ro p o s it io n  2.4. \ D n \ — \ a i d 2 - - - a n \ /  0 f o r  a l l  ท  >  1.

P r o o f .  For each ท > 1, let p ( n )  be the statement \ D n \ — |ท1 ท2 ■ ■ ■ a n \.
Since \ D i \  =  \o \ D q +  b i D - i \  =  |o iI, p ( l )  is true.

We have

|a2 I l i |  =  |ท1ท2 เ > jOi6 2 j >  |62| =  |62£>o|,
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We have

\ a 2D i \  =  |aia2| >  |a-i6 2| >  |&2 เ =  |b2 A )|,

by Theorem 1.4, we get

\ D 2 \ —  1^2-Dl +  b2 D() I =  10 ,2 ^ 1 1 —  เ^,!^'2 1Î

SO P ( 2) is ture.

Suppose that P(£) hold for all 2 <  t  <  ท. We have

เ '̂ท-!-!D nJ —  |ท1 ท2 ■ * ’ &ท—1 ทททท-!-1 I

>̂ |(21น2 * * * & n — l ^ n ^ n + l  I

^  |น1น2 * ’ * &ท—1^ท+1เ เ^ท-!-!-^ท—115

by Theorem 1.4, we get

เ^ท+!! ~  เ̂ 'ท-!-! D  ท T  bn+ \ D n —1 | เ^ 'ท + !ท  I 10-1 0 - 2 * ’ ’ ^ท—1  ̂ ท^ท-!-! 15

and so p {ท  +  1 ) holds. □

From the algorithm and Proposition 2.1, we see that

b\  b2 bท—I bn _ (^ท T  b71,-}-1 A ท.-f-i) บท—! 4" bnCr1—2

a i+  ท2+ 0'ท-1+ &ท +  6ท+1^ท+1 (&ท +  bท-}-!An_|_ 1 ) Z)n_i +  bn D ท._2

Using Proposition 2.2, we get

^  บท   (^ท T  ^ท+!"4ท+1) บท—! +  ^ทบท—2 บ*ท
D ji (^'ท 4" ^ท+1-4.ท+1) .บท—1 +  bn D 71- 2 D n

_ (บท—!-บท บทบท—!) (dfi 4" bท . \Aj1+\ ) +  bn (Cn—2Dท CnD71—2 )

D'n ((&ท T  ^ท-!-!-̂4 ท-!-!) บ ท —! 4" ^ทบท—2 )

_ (บ ท -!บ ท  บ ท บ ท -!)  (fln +  ^ท+!^ท+!) +  ท (บ ท -2บ ท - !  —  บ ท - !บ ท - 2 )
Dn ((ท'ท 4- ^ท-!-1-471-j-i) บ ท —! T  bnDn—2 )

_ ( l ) n^1^2 ’ • • &ท (&ท 4- fon+ lA i+ l)  +  ( — l ) n • • • ^ท-!^ทQท
D n  ((นท T  ^ท-เ-1 4.ท-)-!) บ ท —! 4 - bn D n —2 )

_______ (— l ) nfrjfr2 - - - ท+!^ท+!______
D n ((ท•ท T  ^ท-fi-4n_|_i) D n —I 4" bn D n —2 )
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From
\an \ > l > p ^  = \bn+1A n+1l

K + i l

we get |an+ 6n+iAra+i| =  |an|, and so I (an +  bn+i A n+i ) Dn- i+ b nDn- 2| 
Thus,

=  I anDท * - ' ท —  1 I

A l
Cn \ b 1b 2 - - - fcn + ll 

\Dn\\D. 0 as ท —> ๐0 .ท 4-11
CnThis shows that —  converges to a, which enables U S to write 
-L'n

b\ b2 bn
น1+  น2 +  a n T

To prove the uniqueness, suppose that a  G K  \  {0} 1 |oj < 1, has two such 
continued fraction expansions

J h _  _ _bn___ =  a  =  _ b [ _  1 1 1  J 4 ___
ท1 +  น2 +  ûn+ «1 +  a n ~b

where a,;, a' e  S  \  {0} and the bi,b'1 are subject to the same requirements as 
elaborated above. Observe that

b i  bi-i-1 
«Î+ aj_1-1 +

< < 1 for all i > 1 (2.8)

with the same relations for 6', a' for alH > 1. From the construction requirement, 
we have b\ — b[ which implies that

Gq + a 2+  <23+

Since ai, a\ G ร', using (2.8), we get

b2 b3 64

' b 2 60
■ =  «1 +  - +

«9 +  ผ') +

a 1 =  « 1 and b2 &3
น2 +  «3+ «4 + «9+ «ว+ «4 +

Since ai =  a), from the definition, we have 62 =  b'2. Continuing in the same 
manner, we get ai = a), bi =  b[ for all i. The following theorem summarizes our
results so far obtained.
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T h e o re m  2.5. L e t  K  be a  c o m p l e t e  f i e l d  w i t h  r e s p e c t  t o  a  d i s c r e t e  n o n - a r c h i m e d e a n  

v a l i d a t i o n  I - |. T h e n  e a c h  a  € K  \  {0 } w i t h  |a| < 1, c a n  be r e p r e s e n t e d  u n i q u e l y  

b y  a  c o n t i n u e d  f r a c t i o n  e x p a n s i o n  o f  t h e  f o r m

_  hi f>2 bn
น1 +  น2 +  an~h

w h e r e  üj € ร,'ร { 0 } a n d  t h e  s e q u e n c e  { ^ } “  1 Q  K \ { 0 } is e i t h e r  f i x e d  o r  i s  u n i q u e l y  

d e t e r m i n e d  f r o m  a  a n d  p r e v i o u s l y  k n o w n  p a r a m e t e r s  b j , a 1 ( j  < i ) .  M o r e o v e r , 

t h e  p a r t i a l  n u m e r a t o r s  a n d  d e n o m i n t o r s  a r e  s u b j e c t  t o  t h e  c o n d i t i o n ,  w h i c h  w i l l  

h e n c e f o r t h  be r e f e r r e d  t o  a s  t h e  ab -co n d itio n ,

|aj| >  K l /o r a l l  i >  1 . (2-9)

D e fin it io n  2 .6 . A continued fraction expansion as in Theroem 2.5 is called a 

J R - c o n t i n u e d  f r a c t i o n  e x p a n s i o n .

R e m a rk  2.7. I n  t h e  c a s e  t h a t  |a| >  1, t h e  J R - c o n t i n u e d  f r a c t i o n  e x p a n s i o n  o f  a  

i s  o f  t h e  f o r m
b\ t>2 bna  =  a 0 -\----------- - - - - — - -  • • • ,

a i +  a 2 +  0 ท +

w h e r e  ท0 =  ( a ) , a i  G ร  \  { 0 } a n d  bj a r e  s u b j e c t  t o  t h e  ก,b - c o n d i t i o n .

2.2 E xam ples
We turn now to specific examples. For the first three examples, let K  be a 

complete field w ith respect to a discrete non-archimedean valuation I • I.

E xa m p le  2.8. Taking bi — 1 for all i  >  1 in Theorem 2.5, we deduce that every 

a  e K  \  { 0 } w ith  IcrI < 1 , has a unique regular continued fraction expansion of 

the form
1 1  1

ai+  fl2 +  a,n “เ

พ here a t e ร  \  {0 } are subject to the ab-condition, i.e., |a;| >  1 for all i  >  1. This 

is the well-known classical regular continued fraction expansion.
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E xa m p le  2.9. Taking bi  =  1 and bi + i  =  (li for all Ï >  1 in Theorem 2.5, we 

deduce that every a  € K  \  {0 } w ith |a| < 1, has a unique continued fraction 

expansion of the form
^    1  ^ 1  ท — 1

Û1 +  0 , 2 +  fln +

where ai  G ร  \  { 0 } for all i  >  1  are subject to the ab-condition, i.e., |ท1 เ > 1  

and |ท2+1 เ >  16 i+ 1 1 =  I Oil for all i  >  1. This continued fraction expansion may 

be regarded as a non-archimedean analogue of the real Engel continued fraction 

expansion due to Hartono-Kraaikamp-Schweiger [12].

E xa m p le  2.10. Taking bi  — 1 and bi + i =  a \  —  a, +  1 for all i  >  1 in Theorem 2.5, 

we deduce that every a ? A \  { 0 } w ith  |a| <  1 , has a unique continued fraction 

expansion of the form

1  a \  —  +  1  a n - l  —  a ท - 1 +  1

Q-1+ <22+ <2ท +

where a t E ร  \  {0 } for all i  >  1 are subject to the ab-condition, i.e., |ท1 เ >  1 

and |a,+1| >  |6 î+ i| =  Ia j  — a, +  1| for all i  >  1. This continued fraction expansion 

may be regarded as a non-archimedean analogue of the real Sylvester continued 

fraction expansion due to A. H. Fan, B. พ .  Wang and J. พ น  [10].

E xa m p le  2 . 1 1 . (The field of p-adic numbers, Qp)

Let K  =  Q p be the field of p-adic numbers, i.e., the completion of Q w ith  respect 

to the p-adic valuation, I - Ip normalized so that |p|p =  P~L Here, the ring of p-adic 

integers is O  =  z p. Each a  G pZp \  {0 } is uniquely representable in the form

a =  5 ( r  e N, Ci e {0 ,1 , . . .  ,p -  1} 1 c r ^  0).
i= r

There are two well-known p-adic continued fraction expansions, due respectively 

to Ruban ([23]) and Schneider ([25]).

(1) For a  G pZp \  {0 }, since |a _1|p > 1, let its p-adic representation be

‘พ 1 =  c_mp “ m +  c_m+1p - 7,t+1 +  • ■ • +  C - ip -1 +  Co +  Cip +  c2p2 +  • • • 7
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where m  G N, Ci G {0 ,1 ,. . .  , p —  1} ( i  >  — m )  and c_m 7^ 0. Let

0 1  :=  ( a " 1) =  c_mp“ m +  C - m + i P ~ m + l  4-------h c_1 p - 1  +  Co and

A \  a _ 1  —  ai,

so that, a - 1  =  a 1 +  A l .  I f  A y  =  0, the process stops and we write a  =  — .
a  1

I f  A \  ^  0 and since \ A i \  < 1 , then by repeating the step just described, we 

uniquely write

A j 1 =  a 2 +  A 2 , where a 2 : =  (A jj1) 1 A 2 -.= A l l - a 2 .

Again i f  A 2 — 0, then the process stops and we write a  — — ----- . Otherwise,
Q-1 +  O 2

we proceed in the same manner w ith A 2 replacing A l ,  etc. Thus, each 

a  G pZp \  {0 } has a p-adic Ruban continued fraction expansion of the form

1 1  1

CLi~\- a2+  0-71+

where the d j’s are nonconstant elements in ร .  This is a JR-continued fraction 

expansion w ith  all !)i =  1. The ab-condition holds trivia lly.

(2) For a  G pZp \  {0 }, let its p-adic representation be

a =  c np n +  cn + 1 pn + 1  H----- 1

w h ere  ท  G N, Ci G { 0 , 1 , . . .  ,p  — 1} [ i  >  ท), cn 7  ̂ 0. Now  w rite

a i  : =  a  =  fcpp1, where b x := p ” , 7/-1 :=  b xa ~ l w ith  เฆ1!P =  1 .

W rite น 1 =  Cl fi +  Ci 1 1P +  Cl 12 p2 +  ■ • • 1 w ith  Ci ti G {0 ,1 ,. . .  , P —  1} for ail 

i  >  0, Cl 0 ^  0. Thus,
a _  h  _  bi

U \  d \  -b  O' 2

where a i  : =  C i f i , c* 2  น 1 —  ท !  =  C l 11. 1 pn +  C i.7.14.ip r i + 1  +  • • • 1 w ith  r i  be the
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a 2 = b2น2 1 โ where b2 := pri, น2 := b2a 2 1 with {น2\p = 1 .

Write น2 =  c2fi +  c2 yp +  C2,2p̂  “( '■ ■ ■ 1 with c2 i G {0 ,1 1. . . , p 1} for all 
i  >  0, C'2,0 0- Thus,

where a 2 :=  0 2 ,0 , a '3 :=  u 2 — น2 =  c2 ,r2p72 T t 2 ,r2+ip r 2 + 1  +  • • • , with r 2 be the 
least positive integer such that r2,r2 ^  0.
The process continues in this manner. Thus, each a  G pZp \  {0} has a 
p-adic Schneider continued fraction expansion of the form

where (li G { 0 , 1 , . . . ,  p—1}, by =  |o;jp 1, and each bi+i is of the form pTi (r,,'iG  
N) and is uniquely determined form Q and previously known dj,bj (j < i ). 
This is a JR-continued fraction expansion W'ith all d; G {0, 1, . . .  ,p — 1}, bz 
being positive powers of p. The ab-condition holds trivially.

E xa m p le  2.12. (The function field with respect to the degree valuation, F  ((x -1))) 

Let F  be a field and let

be the completion of the rational function field F(x)  with respect to the non- 
archimedean degree valuation, I - [00, normalized so that |x _ 1  [00 =  2 -1 . There 
are at least three kinds of continued fraction expansions in F ( ( x -1)) as we now

by by b2
ay +  0l2 ท1+  a2 +  CÏ3

by b2 bn
น1+ ท2+ an +

F ( ( , - ■ ) ) : = {
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elaborate.

(1) Let 1 be a fixed sequence in F [x] \  {0 } . By Theorem 2.5, each a  G 

^ ((•T_1)) x  {0 } ! Moo < 1) has a unique JR-continued fraction expansion 

of the form

_  JxL  b n

ท1+ ฝิ2+ an+

where cq G F[æ] \  { 0 } are subject to the ab-condition, i.e., IMoo > |6 i|oo 

for all i  >  1 . The JR-continued fraction expansion in this case is indeed the 

non-regular continued fraction expansion constructed in [16].

(2) The X-1-Ruban continued fraction expansion (see e.g. [24]) of a  G x ~ l F  ( (x ^ 1) ) \  

{ 0 } is of the form
_L_____1_ 1

Ql +  น2 +  นท +

where the a.j's belong to the set of head parts F [x] \ F .  This is a JR-continued 

fraction expansion w ith  all bi — 1. The ab-condition holds triv ia lly.

(3) The X-1-Schneider continued fraction expansion of a  G F ( ( x -1)) \  {0 } is 

of the form
_  J b 2_ K

«1+ ท2+ 0ท +

where the partia l denominators and numerators are as the following:

a t G F  \  {0 }, bi =  x ~ s' , Si  G N for all ใ' >  1

and each bi is uniquely determined form a  and previously known ü j  1 bj  ( j  <  

ใ). The ab-condition holds trivia lly.

E xa m p le  2.13. (The function field w ith  respect to a 7T-adic valuation, F  ((7r(z)))) 

Let F  be a field and let 7r(x) be a monic irreducible polynomial in F [x]. The field

F  ((7r(x ))) =  j - ^ 7  +  ~ ^ r - i  +  ■ ■ ■ +  +  r 0 +  c i K  +  c2 ^ 2 +  • ■ • :

ใ' G Z a n d  Ci G F [ x ]  w ith  d eg  Ci < d e g 7T for a il ใ >  r  I
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of all formal Laurent series in tt( x ) is the completion of F ( x )  w ith  respect to the 

7T-adic valuation, I - 171., normalized so that |7r(x )|w =  2 ~ deg7r. Its ring of integers is 

the set of formal power series

F  [[7r(x)]] : =  { c 0 +  C\TÏ  +  C2 7T2 H-------- : Cj G F[æ], deg Ci <  deg7r} 1

and the set of head parts is

ร  :=  1 ^ 7  +  C~r- 1  ----- +  ~ ^  +  c 0 : r  >  0, Ci e F [ x ] ,  degCi < deg7r |  .

By Theorem 2.5, each a  G ท ( x ) F  [[7r(z)j] \  {0 } is uniquely represented as a JR- 

continued fraction expansion of the form

_  _ b ] _  K

น1+ 0 , 2 +  On  +
( 2 . 10)

where a ,  G ร  \  {0 } and bt are subject to the ab-condition. There are various 

particular examples of JR-continued fraction expansions in this setting. Let US 

mention two specific ones.

(1) The 7T-adic Ruban continued fraction expansion is constructed in exactly the 

same manner as the p-adic Ruban continued fraction expansion mentioned in 

Example 2.11 (1), i.e., each a  G tt{x ) F  [[7t(z ) ] ] \ { 0 } is uniquely representable 

as
1 1  1

G l+  o  2 +  On +

where the d j’s are nonconstant elements in ร .  This is a JR-continued fraction 

expansion w ith  all 6 j =  1. The ab-condition holds trivially.

(2 ) The 7T-adic Schneider continued fraction expansion is constructed in exactly 

the same manner as the p-adic Schneider continued fraction expansion men

tioned in Example 2.11 (2), i.e., each a  G n ( x ) F  [[7r(x)]] \  {0 } is uniquely 

representable as
_  _ b 2_ bn

ท 1 +  น2+ On +
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where the partial denominators and numerators are as the following: 

a, €  F[x] \  {0}, deg ûj < deg7T, bi =  7TS’, S i  G N for all I > 1 

and each bl is uniquely determined form a  and previously known cI j , bj (j <
i ) .
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