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CHAPTER 2

BACKGROUND KNOWLEDGE

This chapter covers the background knowledge of this dissertation which 

contains classifiers used in this dissertation, class imbalance problem and groups of 

strategies for dealing with the problem and performance measures used in this 

dissertation. เท this chapter, one strategy which is to use oversampling techniques on 

imbalanced datasets during the data preprocessing stage is highlighted and several 

existing oversampling techniques are described.

2.1 C lassification m ode ls

Normally, classifiers can be categorized as the supervised learning. All 

classifiers require a dataset which contains one attribute (mostly nominal) as a target 

or a class with several distinct values. Then, classifiers learn patterns, rules or 

characteristics in a given dataset that can categorize instances into different classes. 

Methods to learn these patterns, rules or characteristics are different depending on 

each algorithm. Users can use these patterns or rules given by algorithms to classify 

instances with the unknown class in the same problem. Data mining models which 

are widely used for classification problems are decision tree, naïve Bayes model, 

support vector machine, neural network and /c-nearest neighbor.

2.1.1 Decision Tree

Decision tree [7] is a classification model which represents rules to recursively 

partition instances with hierarchical structures (35] [36]. The structure of decision tree 

contains leaves, each of which indicates a class and decision nodes which specify 

some evaluations to be carried out on a single attribute value with one branch and 

subtree for each possible outcome. A decision tree is used to classify an instance by 

starting at the root of the tree and moving through it until a leaf is encountered. At 

each non-leaf decision node, the outcome of each instance for each evaluation at 

the node is determined and it sends that instance to the root of the subtree 

corresponding to the outcome. When this process finally leads to a leaf, a class of 

the instance is predicted as the one at the leaf. The decision tree transforms a 

dataset into more concise form while the necessary characteristics of the dataset are 

still preserved. Moreover, it can disclose the relationship between independent 

attributes and given target classes which can be used to predict the target class for 

unlabeled instances in the future.
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The task of constructing a tree from the training set has been called tree 

induction, tree building and tree growing. Most existing tree induction systems 

proceed in a greedy top-down fashion [37], The tree construction starts with an 

empty tree and the entire training set at the root node. If all instances in a current 

node are in the same class, the leaf node of that class is created, otherwise, a 

method to express attribute test conditions is chosen to find candidates of splits 

depending on the attribute types. Then, a goodness measure is used as a criterion to 

find the best split which separates instances into distinct multiple groups on each 

child node. The example of goodness measure is the entropy for เอร [7] and C4.5 

[32] and GIN! index for CART [38], The tree construction is performed recursively until 

every instance on each leaf node is from the same class. The resulting tree can be 

used for describing the dataset and predicting the target class of unknown instances. 

An example of a decision tree is shown in figure 2.

Figure 2: An exam p le  o f  dec is ion  tree

Decision tree algorithms are categorized based on the results of leaf nodes. 

The first one is a classification tree which provides the class as the discrete outcome 

to unknown instances if their attribute values are satisfied the conditions on each 

layer of the tree. The other one is a regression tree which provides the result as the 

real value number. Examples of decision tree algorithms are เอ3 [7], C4.5 [32], C5.0 

[39], CART [38], etc.

Using a decision tree as a classifier model has many advantages over other 

classification techniques [37], The model is provided in the form of a tree which is 

easy to build, use and interpret. It does not require any complicated pre-processing 

procedures on the dataset to build a decision tree. Some decision tree algorithms
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can handle both numeric and categorical attributes. Finally, a decision tree induction 

algorithm is robust and able to handle large datasets. However, building an optimal 

decision tree is considered as an NP-Complete problem [40] [41], Heuristics methods 

are required to find the optimal solution which is able to give only a local optimal 

solution not global. Some decision tree induction algorithms cause overfitting which 

require an additional process such as pruning [42] to avoid it.

2.1.2 Naïve Bayes M o d e t fo r  c lassification

A naive Bayes model for classification [8] is a simple probabilistic model 

based on applying Bayes' theorem with the independence assumption. It assumes 

that the presence or absence of one attribute does not affect to the presence or 

absence of other attributes on the given target class. The naïve Bayes model 

considers each of these attributes to contribute independently to the probability, 

regardless of the presence or absence of other attributes.

Let x  = (Xj,x2,...,xn) be an instance in a dataset where Xj,x2,...,x n are 

values of X in attributes a  ,a2,...,on , respectively. This dataset has k  distinct class 

labels c h  € 2,  ..., c k and the probability of each class label c. in this dataset can be 

found. The posterior probability of class membership, i.e. the probability of X being in 

class Cj is written as P(c. I X 1 , X2,...,x n). Based on Bayes’ theorem, this probability is:

P(c1)P(x1, x2,...,xn |c .)
P(c. I x v x 2,..., x n )

P { x v x 2 , . . . ,  x n )

Using the chain rule for repeated applications of the definition of conditional 

probability, P (X j,x21...,x n I c. ) = P(Xj I €.1)  p (x2| c .,x 1)...P(xn I c . , x v x 2 , . . . , x n 1). This

ก

t e r m  is e q u a l  t o  P (X j I c . ) p ( x 2 | c .  ) . . . p ( x n I c . ) o r  n  p ( x  I €.1) i f  t h e  in d e p e n d e n c e

M

assumption is applied. For each P(c. I X j , x 2,...,X n ) where / = 1, 2 , ..., k,

ก

p { x x , x 2 , . . . , x n ) is equal, so only p(c. ) - n  P(x |c.) is needed to be considered in
j=i

p la c e  o f  t h e  p r o b a b i l i t y  o f  X b e in g  in  e a c h  c la s s  c  . as  f o l l o w s .

P(c. I x x , x 2 , . . . , x n )  =  P { € 1. ) ■  n  P ( X j  |c.)- constant

Then, the posterior probability for each class label c of X can be calculated. 

As the classification process, X is classified as the class label which provides the
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highest probability value. How to estimate each value of p(x I c . ) depends on 

whether a .  is discrete or continuous. For a discrete attribute, the probability 

P ( x .  \ c .  ) is estimated from the ratio between the number of instances in class c 1. 

which has the value of attribute a .  equal to X .  over the number of instances in 

class c 1.. However, this estimation cannot be applied directly in the continuous 

attribute since there are too many distinct values in the continuous attribute. Several 

techniques suggested estimating the probability in continuous attributes such as 

discretizing the range into bins [43] and then representing each bin with one ordinal 

attribute or using a two-way split to bisect the value into two subsets, ones whose 

values are larger than the split point and ones whose values are smaller than the 

split point. However, these suggestions could violate the independence assumption. 

Another suggestion is to estimate the probability p(x I c. ) by using probability

density estimation. Under the assumption that the values in the attribute a  form

the normal distribution, parameters of distribution e.g., mean (^,) and standard 

deviation ( O j )  can be calculated. Once the probability distribution is known, it can be 

used to estimate each conditional probability P(x I c.1) from the formula of normal

(Gaussian) distribution as follows.

p(x I c ) =
x /z

76 ^ X j - V j / O j )

n o

After the conditional probability of each attribute is calculated, the posterior 

probability of p(c. I x) can be computed from the product of these conditional 

probabilities. However, if one of the probabilities is zero, the posterior probability 

becomes zero. เท order to avoid this zero probability problem, the Laplace estimator 

or m-estimator is applied.
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Exam ple

Customer Refund Marital Status Taxable Income Evade

1. Yes Single 125k No

2. No Married 100k No

3. No Single 70k No

4. Yes Married 120k No

5. No Divorced 95k Yes

6. No Married 60k No

7. Yes Divorced 220k No

8. Yes Single 85k Yes

9. No Single 75k No

10. No Married 90k Yes

Given a unlabeled customer X  = (Refund = No, Married, Income = 120k),

Then, P(x|No) = P(Refund ะ= No|No) - P(Married|No) - POncome = 120k|No).

Since P(Refund = No|No) =1, P(Married |No) = 3 and for class = No, the sample mean
7 7

of income is 110k and sample variance is 2,975,

Plincome = 120k I No) = ---------------- e -5«i2<Mi0)/29732 = 0 0072
J 2 T C ( 2 9 1 5 )

Then P(x|No) = -  X  -  X  (0.0072)= 0.0024 
7 7

On the other hand, P(x|Yes) = P(Refund = No|Yes) - P(Married|Yes) - POncome = 

120k|Yes).

Since P(Refund = No|Yes) = £, P(Married|No) = ia n d  for class = Yes, the sample mean
3 3

of income is 90k and the sample variance is 25,

Plincome = 120k I Yes) = ------------- e  2((120"90)/25) = 1 2  X 10 9
■ J  271(25)
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Then P(x|Yes) = -  X -  X (1.2 X 10 9 ) = 2.7 X 10‘10 
3 3

Since P(x|No) - P(No) = 0.0024x — >2.7xlO'10 X — = P(x|Yes) - P(Yes), P(No|x) > P(Yes|x)
10 10

and X is classified as the class “ No” .

The naïve Bayes model has some advantages over other classifiers. Its 

algorithm is robust to outliers and it can handle missing values and irrelevant 

attributes. However, each attribute in the dataset has to hold the independence 

assumption and its continuous attributes are supposed to be the normal distribution 

in order to estimate conditional probabilities. Despite of these limitations, the naive 

Bayes model for classification still is one of classification models widely applied on 

classification problems.

2.1.3 Support Vector Machine

Support Vector Machine (SVM) is a supervised learning model proposed by 

Boser, Guyon and Vapnik in 1992 [10] [44], Its basic algorithm is designed to work on 

the dataset with two target classes by finding the linear hyperplane which is used as 

a decision boundary to linearly separate instances in the dataset into two sides; each 

represents one target class. เท support vector machine, an instance is viewed as an ก- 

dimensional vector. Then, a linear classifier is constructed if instances in the dataset 

can be separated into classes by a (ก -  l)-dimensional hyperplane. There are many 

hyperplanes that could be used to classify the dataset, but this algorithm aims on 

finding the best hyperplane which represents the largest separation, or margin, 

between two classes. The chosen hyperplane is the one that maximizes the distance 

between it and the nearest data point on each side. If such a hyperplane exists, the 

hyperplane is known as the maximum-margin hyperplane and the linear classifier 

which defines this hyperplane is known as a maximum margin classifier.
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Figure 3: A visualization o f simple support vector machine

Given an instance Xj in a dataset which contains m  instances, ก numerical 

attributes and the class label y, which is either 1 or -1, indicating the class that Xj

belongs to. Under the assumption that this dataset is linearly separable, the 

hyperplane which can separate all instances can be written as the set of instances
b

satisfying w-x -  b  =  0 where พ  is a normal vector of the hyperplane and -----
I k l l

determines the perpendicular distance to the hyperplane along the normal vector 

พ. Then, if the dataset is linearly separable, instances can be separated by placing 

instances satisfying w-x -  b > 1 into one class and ones satisfying w-x -  b  < -1 in

another class. These conditions can be written as linear inequality constraints as y ,  

(w-xj -  b) ระ 1 for / = 1, 2, ..., กา. Given the region which separates instances is

controlled by two hyperplanes w-x -  b = 1 and w-x -  b = -1, the margin between

2
these two hyperplanes which equals to -----  is needed to be maximized. Then this

I k l l

problem can be written as the optimization problem as follows.

m i n ^ J l w l l

Subject to y, (w-x, -  b) à 1 for / = 1, 2, ..., กา (1)
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This optimization problem is not easy to solve due to the square root under 

the norm แพแ. However, it can be changed into quadratic programming optimization

problem by transforming the objective function into — แพแ2 .
2

Since the problem becomes the quadratic model, it can be changed into a 

Lagrangian formulation. The positive Lagrange multipliers are defined as ctj where / = 

1, 2, ..., m for each inequality constraint. So (1) can be written as follows;

1 ทา m

arg min max { -แ พ แ 2- 2  OLjy, (พ-X/ -  b )  +  T j O'}
w  ,b Of ÿS 0 2 ,■ =  1 ; = 1

This problem can now be solved by standard quadratic programming 

techniques and programs. The "stationary" Karush-Kuhn-Tucker condition implies 

that the solution can be expressed as a linear combination of the training 

vectors/instances

ทา

พ  = ^ O i f Y i X i

i =  1

where most Lagrange multipliers are set as zero, only a few OCj are greater 

than zero. The corresponding X. with positive OCj are called support vectors, which 

lie on the margin and satisfy y , { w - x j -  b )  =  1. From this, it can be derived that 

support vectors satisfy b  = พ- X 1 -  y i which is used to define the offset b .

For datasets which cannot be separated completely with a single hyperplane, 

there is a method such as the soft margin [45] to select a hyperplane that can be 

classified instances with the least possible misclassified error while the margin 

between support vectors is still maximized. Slack variables Ç 1 are added into 

constants to control the misclassified penalty ofx,. If the penalty function c is linear, 

then the previous optimization problem (1) becomes

min — แพแ2 + C 2  <^.

w & . b  2 ;= 1

Subject to y, (พ-X, -  b )  >  1 -  £ 1. for / = 1, 2, ... , m (2)

Similarly with the previous problem, the Lagrangian formulation can be applied to (2) 

in order to solve for solution as follows;
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ทาเก กาax {  — แพแ2 + C X X -  X  a ,  [y, ( พ - X i -  b )  -  1 + £ .] + X  BX  }
« 5  2 " 1 1. “  ,= 1

with ex. 1 j3 (. > 0.

By finding support vectors which form the hyperplane that can separate 

instances with the highest margin and least penalty (in a soft margin method), this 

technique is considered as a linear classifier. However, most datasets in classification 

problems are not linear separable, so in order to make a support vector machine to 

effectively work on these datasets, the classifier is needed to be transformed into a 

non-linear classifier. The technique [10] widely suggested and used is applying the 

“ kernel trick” . The kernel trick applies a nonlinear function called a kernel to map 

instances on the original feature space which might not be linearly separable into the 

transformed feature space. The transformed feature space is said to be a linear space 

with an inner product defined. It allows the algorithm to find the better fit maximum- 

margin hyperplane on this transformed feature space. Examples of the common 

kernels used for a support vector machine are Gaussian radial basis function [46], 

polynomial and hyperbolic tangent. A support vector machine has many advantages 

over other classification models [37], The algorithm can be applied to various 

distributions of a dataset due to the inclusion of kernel functions. By formulating the 

problem into quadratic programming, the solution is given as globally optimal. 

Moreover, it is robust to outliers b y  setting the appropriate value of margin 

parameter. However, applying this algorithm into multiclass classification is still a 

challenging and debatable problem on how to make it effectively. And since every 

instance in the training set is used, the data with a large number of instances leads 

to the large-scaled optimization problem which requires a lot of time and memory 

to solve and build the model. Moreover, many parameters such as a margin 

parameter, a kernel function and its parameters are needed to be set appropriately 

in order to achieve the good performance.

2.1.4 Neural network

A neural network is a machine learning model loosely based on the action of 

biological neurons. It is formed by a network of weighted and nonlinear transfer 

functions. One of well-known and mostly used neural network models is multilayer 

perceptron. A multilayer perceptron is a supervised learning neural network model 

first introduced by Rumelhart et al [47] in 1986. It is a network of 

simple neurons called perceptrons. The basic concept of a single perceptron was
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introduced by Rosenblatt [48] in 1958. The perceptron computes a 

single output from multiple real-valued inputs by forming a linear combination 

according to its input weights and then putting the output through some nonlinear 

activation function. The multilayer perceptron [49] consists of multiple layers of 

neuron nodes interconnected in a feed-forward direction. Two layers on each side of 

network are called the input layer and the output layer, while the rest are hidden 

layers. The input signal is sent through the network in the forward direction layer-by- 

layer. Multilayer perceptrons have been applied successfully to solve difficult and 

diverse problems by training them with a popular supervised learning algorithm 

known as a back-propagation algorithm. It has three distinctive characteristics:

1. The model of each neuron in the network includes a nonlinear activation 

function which is differentiable on the entire domain. A commonly used 

nonlinear function that satisfies and is used widely is a sigmoid logistic
1

function: y  = ------- —  where V  is the weighted sum of all synaptic
‘  l  +  e Vj

inputs plus the bias of the neuron j ,  and y .  is the output of the neuron.

The nonlinearity is important for the algorithm; otherwise the network 

becomes only a single-layer perceptron.

2. There are at least one or more layers of hidden neurons that are not 

parts of the input or output layer. These hidden layers enable the 

network to learn complex tasks by extracting progressively more 

meaningful features from the input instances.

3. The network has high degrees of connectivity, determined by the 

synapses of the network. A change in the connectivity of the network 

requires a change in the population of synaptic connections or their 

weights.

The combination of these characteristics provides the multilayer perceptron 

the ability to learn from experience through training. However, it also leads to 

drawbacks of the multilayer perceptron such as the difficulty on theoretical analysis 

of algorithm which is caused by its nonlinearity and high connectivity of the network 

and the use of hidden layer which makes the learning harder to visualize.

The architectural graph of a multilayer perceptron with two hidden layers and 

an output layer is shown as an example in figure 4. The network shown here is fully 

connected. This means a neuron in any layer is connected to all nodes/neurons 

from the previous layer.
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Input 1st hidden 2nd hidden Output

layer layer layer layer

Figure 4: The m u ltila y e r in neu ra l n e tw o rk

เก the input layer, one neuron represents each attribute of a dataset and has 

directed connections to every neuron of the subsequent layer. As previously 

mentioned, the units of these networks apply a sigmoid function as an activation 

function. Each element from a vector of an instance X  =  ( x t , x 2,...,x n )  is sent to 

each neuron of the input layer. Each connection from a neuron / to another neuron j  

contains the weight W ji, while each neuron j  in hidden and output node also has the 

weight พ 10 Then an input value V  and an output value y for each neuron j can be

written as

V J =  W J0 +
<cGpred(y)

yJ = fivj)
where Predlj) is a set of neurons which has a connection to neuron j and f is 

a differentiable nonlinear activation function. With a back-propagation scheme, the 

input data is repeatedly presented to the network and sent through neurons layer- 

by-layer. Eventually, it provides the output result which is compared to the desired 

output to calculate the error. This error is then fed back (back-propagated) to the 

network and used to adjust weights such that the error decreases with each iteration 

and the neural model gets closer and closer to produce the desired output.

2.1.5 K-neares t ne ighbor (/C-NN)

K -nearest neighbor (/C-NN) is a classification model which classifies the target 

class of instances based on a majority vote of k  closest instances in a dataset [11], It
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is considered as the simplest learning model with the instance being assigned to the 

class common amongst its k nearest neighbors.

The algorithm of k-NN is described as a lazy learning which does not use the 

training data points to do any generalization; there is no explicit training phase. This 

means the training phase is fast and simple as it just collected all attribute values of 

instances. A lack of generalization means that k-nearest neighbor keeps all instances 

in the training set. More exactly, all instances in the training dataset are needed 

during the testing phase. This is in contrast to other techniques such as a support 

vector machine where you can discard instances which are not support vectors. 

However, the testing phase could be costly consuming in both time and memory. 

More time might be needed as in the worst case; all data instances might be 

considered during the decision phase.

K-nearest neighbor assumes that the data is in a metric space which means it 

must contain a defined metric function to calculate the distance values. Instances in 

the dataset are supposed to be scalar or possibly even multidimensional vectors. 

Any distance metric can be applied but Euclidean distance is the commonly used 

one. Each instance of the training dataset consists of a set of vectors and a class 

label associated with each vector. เท the simplest case, it is either + or -  (for positive 

or negative classes). But /(-nearest neighbor can work equally well with arbitrary 

number of classes.

As shown in the figure 5, the important parameter for the k-nearest neighbor 

algorithm is a number "k " which decides how many neighbors (where neighbor is 

defined based on the defined distance metric) influence the classification. This is 

usually an odd number for binary classification, if k  -  1, then the algorithm is simply 

called 1-NN or the nearest neighbor algorithm. When it is used for classifying an 

unknown instance, k-nearest neighbor classifier uses the majority vote of its k-nearest 

neighbors to determine the class that instance belong to. Originally, the vote from 

each k neighbors is equal but there are some “weighted” nearest neighbor 

algorithms such as Shephard’s method [50] which put higher weight on votes from 

closer neighbor instances making more influence on deciding which class an 

unknown instance is.
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0

If K =ะ. 
If K -  
If K =

1, A is classified as +  
3, A is classified as — 
5, A is classified as +

Rgure 5: The v isua liza tion  o f  ^-nearest ne ighb or

As previously mentioned how costly computation time and memory k -  

nearest neighbor has, various data structures are suggested to reduce the time and 

memory consumptions such as KD-tree [51] or cover tree [52],

There are other effective classifiers in data mining but only these five are 

used in the experiment. The algorithms of these classifiers treat each instance 

equally during training classifier in order to maximize overall accuracy, so if one class 

has an extremely higher number, that class could have a priority to have a 

maximized accuracy while the accuracy values from other classes might be sacrificed 

instead. However, if the accuracy from the class with a smaller number of instances 

is more important for the considered problem, then some additional procedures are 

needed to deal with this kind of situation. A classification problem with this special 

situation is called as a class imbalance problem.

2.2 Class im ba lance  p ro b le m

Class imbalance problem [19] focuses on performing classification on the 

dataset with a high between-class imbalance, where one class severely out- 

represents another class. Despite that this description can be applied to multiclass 

dataset, most of class imbalance researches still deal with a binary class problem. 

The imbalanced dataset can be found in many real-life problems i.e. mammography 

dataset which is a collection of images gathered from a series of mammography 

exams performed on a set of patients. This dataset is widely used for testing with
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various learning algorithms [29] [53] [54] in order to find the pattern or characteristic 

of images from the patients with cancer. However, the number of non-cancerous 

patients is far greater than the number of cancer patients. Ideally, a classifier which 

has a degree of predictive accuracy for both groups is required. เท practice, the 

classifier tends to provide an imbalance degree of accuracy; the majority class has a 

high prediction rate and the minority class has a low prediction rate. For the problem 

that the prediction rate of a minority class is far more important, the classifier model 

as mentioned becomes undesirable and it requires some mechanisms to force 

classifiers to provide a higher accuracy on the minority class.

When an imbalanced data is used to train a classifier, the patterns or rules 

which describe the minority class appear less than those of the majority class since 

minority class instances are outnumbered and underrepresented. เท the popular 

decision tree algorithms [22] [55] [56], the imbalance in datasets affects the splitting 

criterion at each node of the tree. A decision tree uses a recursive, top-down greedy 

search algorithm in order to find the best attribute as the split criterion at each node 

of the tree. By partitioning recursively, the number of minority instances at each 

node is too small and these instances could be predicted as the majority class. Ibis 

is an example of the effect of imbalanced dataset which leads to poor predictive 

accuracy on the minority class in some classifiers. The solutions which are suggested 

to overcome the imbalance can be categorized into three different strategies [19];

1. Data preprocessing techniques for class imbalance problem.

2. Cost-sensitive learning techniques.

3. Algorithmic techniques for imbalance

Each strategy has different approaches to tackle with a class imbalance problem. The 

overview of these strategies and examples of techniques in each one are followed in 

upcoming sections.

2.2.1 Data preprocessing te chn iqu es  fo r  class im ba lance  p ro b le m .

This group of techniques works on modifying an imbalanced dataset by some 

mechanisms in order to provide a balanced distribution. Some [57] [58] [59] claim 

that a balanced distribution gathered by modifying an imbalanced dataset provides 

the improved overall classification performance compared to one from an 

imbalanced dataset. One of the simplest ideas is random oversampling which 

increases the number of minority instances by duplicating randomly selected 

instances from the existing minority instances and adding them into the training
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dataset. This provides a mechanism to vary the degree o f class distribution to a 

desired or balanced level. On the other hand, the class distribution can be adjusted 

in the opposite direction by random undersampling which randomly removes some 

majority class instances from the original dataset. Despite its simplicity, each method 

leads to different problems [60] [61] [62] affecting the learning of classifiers. The 

overfitting issue could occur in a random oversampling technique since values in 

each attribute of existing minority instances are over-emphasized causing classifiers 

to overly attach with these values and are inflexible to predict unknown instances 

whose values in each attribute are not exactly equal to ones of instances in the 

training set. On the other hand, random undersampling might accidentally remove 

some important concepts of the majority class. So, additional procedures may be 

needed to systematically oversampling or undersampling while avoiding these issues. 

Examples of procedure that are suggested to overcome the loss of information 

caused by random undersampling methods are EasyEnsemble and BalanceCascade 

algorithms [63], For EasyEnsemble, subsets of majority instances are independently 

and randomly sampled and are used to build classifiers along with a set of minority 

instances. While in BalanceCascade, a supervised learning approach is used to 

develop a set of classifiers to select which majority class should be undersampled. 

The idea of BalanceCascade starts with training the classifier from a set of minority 

instances and a randomly chosen subset of majority instances. After a given classifier 

has classified the entire majority instances, the correctly classified instances are 

removed from a set of majority instances. A set of majority instances to train the new 

classifier is randomly chosen and combined with a set of minority instances to train 

the new classifier recursively until the procedure meets the terminated condition.

To avoid the overfitting problem caused by random oversampling with 

original instances, Chawla [25] suggested synthetic minority oversampling technique 

(SMOTE) to create new synthetic instances. This technique assumes the similarities in 

the feature space and generates synthetic instances according to these similarities. By 

these synthetic instances, a decision region created by training a classifier with this 

synthetic dataset during the classification process becomes denser and more 

expanded. Then, the expanded region causes the classifier to recognize more 

instances as positive. The experiments show that SMOTE gives a high true positive 

rate which eventually leads to a superior recall than the random oversampling 

technique or the classification with the original imbalanced dataset. However, this 

also causes many negative instances to be misclassified. It increases the number of 

false positive error and decreases the accuracy of the overall classification.
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Since SMOTE uses every positive instance to generate synthetic instances 

w ithout considering its location or neighbors, a synthetic dataset from SMOTE might 

not represent the actual characteristic o f positive instances or might contain too 

many unnecessary synthetic instances for training classifiers while provides little  

performance gain. Various oversampling methods have been proposed to  overcome 

this situation such as ADASYN [26], which uses the density distribution as the criterion 

to decide how many synthetic instances are created from each positive instance, or 

borderline-SMOTE [27], which uses the number o f negative neighbors to  classify and 

select positive instances to  be used for generating synthetic instances. Safe-level 

SMOTE [28] applies the idea of borderline-SMOTE about using the ratio o f positive 

and negative neighbors o f each positive instance to  determine whether each w ill be 

used to  generate synthetic instances and define the possible location o f these 

synthetic instances. Another interesting adaption of SMOTE is DBSMOTE [29] which 

uses the density o f positive instances to group them via DBSCAN [14] and creates 

synthetic instances in each group by assuming the multivariable normal distribution. 

These techniques provide different characteristics o f synthetic datasets and different 

performance results which could fit with an objective o f the class imbalance 

problem. As follows, these oversampling techniques are used for this dissertation for 

experiments.

S y n th e tic  o v e rs a m p lin g  te c h n iq u e s

เท this subsection, dealing with the class imbalance problem by creating 

synthetic minority instances approach is focused. Generating synthetic instances 

increases the number o f positive instances in the imbalanced dataset and the ratio 

o f the number o f positive instances and the number of negative instances becomes 

more balanced. Random oversampling which is also another option to  increase the 

number o f m inority instances is not considered due to the overfitting problem. There 

are many oversampling techniques to create synthetic instances which can overcome 

the overfitting problem but still represent the training dataset well.

2.2.1.1 Synthetic Minority Oversampling TEchnique (SMOTE)

Synthetic Minority Oversampling TEchnique or SMOTE [26] is a synthetic 

oversampling technique that shows great performances in many applications and 

implemented in various data-mining tools such as KNIME and Rapidminer. SMOTE 

assumes the similarities in the feature space and generates the synthetic instances 

according to these similarities. เท SMOTE, each positive instance p  finds k -positive 

nearest neighbors and choose one of them as p  to  form a line segment. A synthetic
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instance p ' is randomly generated ๐ท the line segment. Therefore, p ’ is 

algebraically written as p '=  p  +  A { p -  p )  where À is a random number in [0, 1],

The process continues for every positive instance until the number of 

negative instances and positive instances becomes nearly equal. With these new 

synthetic instances, a decision region created during the classification process 

becomes denser and more expanded as shown in figure 6. The expanded region 

influences a classifier to  recognize more instances as positive. The experiments in 

[26] show that SMOTE gives higher true positive rate which eventually leads to  the 

superior recall value than any other oversampling techniques. However, this also 

causes many negative instances to  be misclassified. It increases false positive error 

and decreases the accuracy o f overall classification.

a) b)

Figure 6: T h e  s c a tte r p lo ts  o f  g e n e ra te d  d a ta se ts ; a) an  o r ig in a l im b a la n c e d  

d a ta s e t a n d  b ) a b a la n c e d  d a ta s e t w ith  SMOTE

เท [26], the decision tree C4.5 [32], Ripper [64] and naive Bayes classifier [8] 

are used as classifiers to  compare the performance with several undersampling 

techniques. SMOTE shows the superior AUC value comparing w ith undersampling 

schemes set by the author o f the paper.

2.2.1.2 Adaptive Synthetic Sampling (ADASYN)

Adaptive Synthetic Sampling or ADASYN is another approach to  improve 

SMOTE introduced by He [26], เท SMOTE, the number o f synthetic instances
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generated by each positive instance is distributed equally to  each positive instance. 

ADASYN proposes using a distribution function to  vary the number o f synthetic 

instances generated by each positive instance. The algorithm first finds /c-nearest 

neighbors o f each positive instance in the entire dataset. The number o f negative 

neighbors o f each positive instance is collected and forms a distribution function. 

The number o f synthetic instances created from each positive instance P i is 

calculated by the formula

where A j  is the number o f majority instances that are in /c-nearest neighbors 

o f / h positive instance and ก  is the number of positive instances in the dataset. The 

ratio ri becomes the ratio o f the number o f synthetic instances created on this /th

positive instance to  the tota l number o f required synthetic instances. Since 2 A  =
j=1

1, this ratio is claimed to be a density distribution. Their paper also claimed that this 

can improve the recall o f classification even better than SMOTE. Figure 7 supports 

that claim by showing the expanded region o f positive instances affected by ADASYN. 

With this expanded area, the number o f prediction as positive is increased by 

classifiers leading to  the increasing number o f correctly predicted positive instances 

and the increasing value of recall. However, this also causes high false positive rate 

even greater than one from SMOTE. The increasing false positive rate may cause 

lower F-measure and accuracy values which could be critical for some class 

imbalance problems.
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Figure 7: T h e  s c a tte r p lo t  o f  a g e n e ra te d  d a ta s e t a fte r  b a la n c in g  w ith

ADASYN

The performance o f ADASYN is compared against SMOTE and the original 

imbalanced dataset with decision tree as a classifier. Under three performance 

measures; recall, F-measure and geometric mean, the number o f datasets which 

ADASYN can achieve the best value in each performance measure is counted and 

reported. From the to ta l five datasets, ADASYN get the highest number o f datasets 

with the best value in  all three measures. It should be noted that they use only a 

limited number o f  datasets and only one classifier.

2.2.1.3 Safe-level SMOTE : Safe-level Synthetic Minority Oversampling TEchnique

Safe-level Synthetic Minority Oversampling TEchnique or safe-level SMOTE is 

an oversampling technique modified from SMOTE by Bunkhumpornpat et al [28], 

Similar to ADASYN, this technique also uses the surrounding or neighbors o f each 

positive instance to indicate how synthetic instances are created. Unlike ADASYN, 

they do not use the number o f neighbors of each positive instance to  distribute the 

number o f synthetic instances created, but it is used to define which positive 

instances should be used to create synthetic instances and to  determine the 

possible location o f these synthetic instances. เท safe-level SMOTE, the number of 

positive neighbors for each positive instance is collected and defined as a safe-level 

value. เท order to  avoid creating synthetic instances close to  negative instances, it 

generates an instance closer to  the positive instance with a higher safe-level value. เท 

their algorithm, the positive instances which have safe-level values equal to  zero are
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considered noise and are dropped from consideration, similar to  a concept in 

borderline-SMOTE [27], For the rest o f the positive instances, their safe-level values 

take part in a synthetic process to determine the possible location of a synthetic 

instance. Safe-level SMOTE requires a setting o f two parameters, k  and c. The 

parameter c is used exclusively for the safe-level value computing stage as c-nearest 

neighbors o f each positive instance are determined and the number o f positives in 

these neighbors is counted for its safe-level value. Then, a positive instance with the 

non-zero safe-level value, p, is used for generating synthetic instances. The instance 

p  is paired with one o f its k-positive nearest neighbors, p  and the tine segment 

between these two instances is formed. Conveniently, k  is set to  the same value as 

c. เท this stage, the safe-level o f p and p  computed from the previous stage are 

used to  calculate the safe-level ratio (sl_ratio) which is the proportion o f the safe- 

level value o f p  over the safe-level value o f p . The safe-level values o f p  and p  

along with their safe-level ratio determine the possible range o f a synthetic instance 

per conditions shown in table 1.

T a b le  1: T h e  c o n d it io n  o f  s a fe - le v e l a n d  s a fe - le v e l ra tio  a n d  th e ir  

c o rre s p o n d in g  ranges

Safe-level o f p Safe-level o f p Safe-level Ratio The possible range

(sip) (s/p) (si ratio)

s lp>  0 s lp =  0 CO
ip, p]

รเp > 0 s lp > 0 sl_ratio = 1 ip. M

s lp>  0 si p > 0 sl_ratio > 1 [p, p  + ( p  - p)/sl_ratio]

slp > 0 "O' V o si ratio < 1 [ p  - sl_ratio i p -  p), p ]

A synthetic instance is created in a random position on the given line 

segment formed from a pair o f positive instances on the given range in table 1. By 

this modified range, it automatically avoids placing a synthetic instance around the 

positive instance with a lower safe-level value while a positive instance is 

synthesized closer to  the positive instance with a higher safe-level value as shown in 

figure 8. The algorithm repeats for all positive instances until it achieves a dataset 

with the desired balanced number of all classes.

With this concept, safe-level SMOTE indirectly acknowledges the existence o f 

negative instances located around the positive instance in the oversampling process
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which is different from SMOTE. Since safe-level SMOTE neglects the minority 

outcasts, one should aware that these instances may be critical in the class 

imbalance problem and the positive prediction rate may decrease if these instances 

are excluded. This concern is reflected by the relatively low recall values compared 

to  other oversampling techniques such as SMOTE or ADASYN.

Figure 8: T h e  v is u a liz a tio n  o f  SLS o n  th e  a d ju s te d  range  d u e  to  th e  sa fe - 

le v e l ra tio

The resulting balanced dataset generated by safe-level SMOTE differs from 

the balanced dataset generated by SMOTE. The significant difference is that there is 

no synthetic instance created from positive instances that are surrounded heavily by 

negative instances. Most synthetic instances are placed close to  a group o f original 

positive instances as shown in figure 9 which compare the resulting dataset among 

three different techniques.

X I  X I  X I

a) b) c)

Figure 9: T h e  s c a tte r p lo ts  o f  g e n e ra te d  d a ta s e t a) an  o r ig in a l 

im b a la n c e d  d a ta s e t, b ) a b a la n c e d  d a ta s e t b y  SMOTE a n d  c) a b a la n c e d  

d a ta s e t b y  s a fe - le v e l SMOTE
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เท [28], the experiment is conducted using three classifiers; decision tree 

(C4.5) [32], naïve Bayes classifier [8] and support vector machine [9], Safe-level 

SMOTE is compared against SMOTE [25] and borderline-SMOTE [27]. However, there 

are only tw o UCI repository datasets in this experiment. So it can be debatable 

whether this algorithm is effective on other real-life datasets.

2.2.1.4 Density-based Synthetic Minority Oversampling TEchnique (DBSMOTE)

Density-based Synthetic Minority Oversampling TEchnique or DBSMOTE [29] is 

another oversampling technique which aims to  create synthetic instances to  mimic 

the multivariate normal distribution. So, the ideal distribution o f each set o f instances 

should be dense around the core and sparse around the border. เท order to  achieve 

a multivariate normal distribution, DBSCAN [14] which is one o f density-based 

clustering algorithm is used to  group minority instances based on their density.

D e n s i t y - B a s e d  S p a t ia l  C lu s te r in g  o f  A p p l i c a t io n s  w i t h  N o is e  (D B S C A N )

Density-Based Spatial Clustering o f Applications with Noise or DBSCAN [14] is a 

clustering algorithm which groups instances under the defined density. Its concept is 

originated from human perception about clustering that instances which locate 

densely and closely together are supposed to  be in the same cluster. By given the 

specific range, E p s , and the density threshold, M in P ts ,  an instance p  is directly 

density-reachable with an instance q  if p  is one of Eps-neighbor o f q  and q  has the 

number o f fps-neighbor more than M in P ts .  If there is a chain o f instances, Po, Pi,..., 

p n_ 1, p n ; Po = p, p n -  q  which P i are directly density-reachable with P i +1, then it can 

be said that p  is density-reachable with q . For any two instances which are both 

density-reachable with the same instance, these two instances are called density- 

connected. By these definitions, a cluster is formed as instances which are density- 

connected with respect to  the defined E p s  and M in P ts ,  while an instance which does 

not belong to  any cluster is identified as noise.

Unlike some other well-known clustering algorithms, the number o f resulting 

clusters is identified by the algorithm itself and does not need to  be assigned from a 

user. DBSCAN also can detect a group o f instances which are non-convex. Moreover, 

the possible existence o f outliers does not affect the outcome o f DBSCAN since it is 

detected as noise. However, DBSCAN also has several major drawbacks such as its 

two parameters, E p s  and M in P ts  are needed to  be chosen wisely since they can 

strongly influence the clustering result and DBSCAN is unable to  deal with the 

dataset with varying density.
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a) b)

Figure 10: T h e  s c a tte r p lo ts  o f  g e n e ra te d  d a ta s e t; a) an o r ig in a l im b a la n c e d  

d a ta s e t a n d  b ) p o s itiv e  in s tan ce s  c lu s te r in g  w ith  DBSCAN

After performing DBSCAN on positive instances in a dataset, each cluster of 

positive instances is considered, in each cluster, the graph which contains instances 

in the cluster as its vertices is formed. The edges o f the graph link between two 

vertices which are directly density reachable to  each other and the weight o f the 

edge is the distance value between those two vertices. The pseudo-centroid of the 

cluster which is an instance closest to the centroid o f a cluster is also assigned. Then, 

a synthetic instance is created on the shortest path from each minority instance (P) 

to the pseudo-centroid (PCX) o f its cluster. This leads the resulting synthetic dataset 

to  be dense around the core of each group o f original minority instances.

o

o

Figure 11: T h e  s y n th e tic  g e n e ra tio n  p rocess o f  DBSMOTE
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X 1

Figure 12: T h e  s c a tte r  p lo t  o f  a g e n e ra te d  d a ta s e t a fte r  b a la n c e d  b y  

DBSMOTE

Since this oversampling technique is relying heavily on DBSCAN, the 

advantages and disadvantages o f DBSCAN [14] also inherit into DBSMOTE such as 

DBSMOTE can generate synthetic instances on the non-convex shape which is 

flexible for any shape o f the original minority set, it is insensitive to  the existence o f 

outliers but the settings o f Eps and M inPts influence the result o f the algorithm.

เท [29], seven imbalanced datasets from UCI are used to  compare the 

performance with the original imbalanced dataset, SMOTE [25], borderline-SMOTE 

[27] and safe-level SMOTE [28], These oversampling techniques are applied with five 

classifiers; C4.5 [32], naive Bayes classifier, support vector machine, Ripper [64] and k- 

nearest neighbor [11], The accuracy performance o f these oversampling techniques is 

represented and compared on four performance measures; precision, recall, F- 

measure and AUC. DBSMOTE provides the best results on many cases of datasets 

and classifiers. The improvement o f performance is verified its significance using 

Student’s paired t-test.

These oversampling techniques provide different balanced datasets based on 

synthetic instances which are differently created. Each o f resulting datasets also 

leads to  different classification model despite o f being trained from the same 

classification algorithm. เท order to  compare the performance from these different 

models, performance measures which are consistent with the class imbalance 

problem are needed. Then, some related measures are reviewed.
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2.2.2 C o s t-se n s itive  le a rn in g  te c h n iq u e s .

Cost-sensitive learning [65] is another machine learning which can be applied 

to  deal with class imbalance problem. It considers the misclassification costs in order 

to minimize the to ta l cost. Generally, most original classification algorithms aim to 

minimize the error rate: the percentage o f the incorrect prediction o f class labels. 

They ignore the difference between types o f misclassification errors. เท particular, 

they im plicitly assume that all misclassification errors cost equally. However, this 

assumption is not true in class imbalance problem. For example, in medical diagnosis 

o f a certain cancer, if the cancer is regarded as the positive class, and non-cancer 

(healthy) as negative, then missing a cancer (the patient is actually positive but is 

classified as negative; thus it is also called "false negative” ) is much more serious 

(thus expensive) than the false-positive error. Various empirical studies [66] [67] have 

shown that cost-sensitive learning is very effective in a certain domain o f imbalanced 

datasets. So, this group o f techniques becomes a suitable option for dealing with 

class imbalance problems.

The theory o f cost-sensitive learning is described by Elkan [68], The theory 

describes how the misclassification cost plays its essential role in various cost- 

sensitive learning algorithms. เท cost-sensitive learning for binary classification, the 

costs o f false positive (actual negative but predicted as positive; denoted as FP), false 

negative (FN), true positive (TP) and true negative (TN) can be given in a cost matrix, 

as shown in table 2. เท the table, the notation c (/, j) is used to  represent the 

misclassification cost o f classifying an instance from its actual class j  into the 

predicted class /. (+ for positive, and - for negative). These misclassification cost 

values can be given by domain experts, or learned via other approaches. เท cost- 

sensitive learning, it is usually assume that such a cost matrix is given and known. For 

multiclass problem, the cost matrix can be easily extended by adding more rows and 

more columns.

T a b le  2: A  c o s t m a tr ix  o f  b in a ry  c la s s ific a tio n

Predicted Class

Positive Negative

Actual Class
Positive c(+, +) C(-, +)

Negative C(+, -) C (-1 -)
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Note that the cost values in the diagonal (TP and TN) is usually regarded as 

the “ benefit” when an instance is predicted correctly. Since this is class imbalance 

problem where the accuracy o f positive class is preferred, it is often more expensive 

to misclassify an actual positive example into negative than an actual negative 

example into positive. That is, the value o f FN or c(-, +) is usually larger than that of 

FP or C(+, -).

Given the cost matrix, an example should be classified into the class that has 

the minimum expected cost. This is the minimum expected cost principle. The 

conditional risk R(/ I x) o f classifying an instance x into class / by a classifier can be 

expressed as:

R ( i \ x ) =  2 p ( j \ x ) C ( i , j )
(+1-}

where p {  j  I X ) is the probability estimation of classifying an instance into class 

j .  That is, the classifier classifies an instance X into the positive class if and only if:

P(- I X )-C(+, -) + P( + I X )-C(+, +) ร P (-1 X ) C(-, -) + P(+ I X ) C(-, +)

This is equivalent to:

P(- I X MC(+, -) -  C(-, -)) ^ p(+ I X )'(C(-, +) -  C(+, +))

Thus, the decision (of classifying an example into positive) is not changed if a 

constant is added into a column of the original cost matrix. Thus, the original cost 

matrix can always be converted to a simpler one by subtracting c(-, -) to the first 

column, and c(+, +) to the second column. After such conversion, the simpler cost 

matrix is shown in table 2. Thus, any given cost-matrix can be converted to one with 

C(- 1 -) = C(+, +) = 0. The classifier classifies an instance X into positive class if and 

only if:

Pi- I X )-C(+, - )  ^  P(+| X )-C(-, + )

T a b le  3: A  s im p le r  c o s t m a tr ix  w ith  an e q u iv a le n t o p t im a l c la s s ific a tio n .

Predicted Class

Positive Negative

Actual Class
Positive 0 C(-, +) - c(+, +)

Negative C(+, -) - C (-, -) 0
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As PC- I X ) = 1 -  p(+ I X ), A threshold p *  can be obtained for the classifier to 

classify an instance X into positive if p(+| X ) ร p*, where

Thus, if a cost-insensitive classifier can produce a posterior probability 

estimation p(+ I X ) for an instance X in the test set, it can be transformed into cost- 

sensitive by simply choosing the classification, and classifying any instances to be 

positive whenever p(+ |x) ร p * .  This approach is used on several cost-sensitive meta­

learning algorithms, such as Relabeling. However, some cost-insensitive classifiers, 

such as C4.5, may not be able to produce accurate probability estimation; they are 

designed to predict the class correctly. Empirical thresholding [69] does not require 

accurate estimation of probabilities -  an accurate ranking is sufficient. It simply uses 

cross-validation to search the best probability from the training instances as the 

threshold. Traditional cost-insensitive classifiers are designed to predict the class in 

terms of a default, fixed threshold of 0.5. Then, the original training set instances are 

rebalanced by sampling such that the classifiers with the 0.5 threshold is equivalent 

to the classifiers with the p *  threshold, in order to achieve cost-sensitivity. The 

rebalance is done as follows. If all positive examples are kept and assumed as the 

rare class, then the number of negative examples should be multiplied by the cost 

ratio c(+, - )/C( - , +) = FP/FN. Note that as usually FP < FN, this ratio is less than 1. 

This is thus often called “ under-sampling the majority class” . This is also equivalent 

to “ proportional sampling” , where positive and negative examples are sampled by 

the ratio of p(+) : p(-) where p(+) and p(-) are the prior probabilities of positive and 

negative instances in the original training set. That is, the prior probabilities and the 

costs are interchangeable: doubling p(+) has the same effect as doubling false 

negative, or halving false positive [70],

Cost-sensitive learning can be categorized into two categories. The first one is 

the direct method which designs a classifier which contains the cost-sensitive 

approach. An example of direct methods is ICET [71] which incorporates 

misclassification cost in the fitness function of the genetic algorithm. Another method 

in this group is a cost-sensitive decision tree (CSTree) [72] which uses the 

misclassification costs directly in its tree building process. เท place of minimizing 

entropy in attribute selection, CSTree chooses the best attribute by the expected 

total cost reduction. So the resulting tree is built under the objective that it 

minimizes the total misclassification cost. The idea of replacing the objective
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function of each classifier with the cost minimization function is also applied with 

other classifiers such as neural network or support vector machine.

The other one is the meta-learning method which provides the components 

which converts a cost-insensitive classifier into the cost-sensitive classifier. One 

approach in this group is applying cost items or cost adjustment functions on the 

weight updating process in the boosting scheme such as AdaBoost [73] and AdaCost 

[74]. Some methods such as MetaCost [75] or CSC [76] apply the threshold p* to 

classify instances if that cost-insensitive classifier can produce probability estimations. 

Another method which uses this threshold is a cost-sensitive naïve Bayes [77] which 

uses it to classify instances based on the computed posterior probability. Similarly, 

some sampling meta-learning methods, such as Costing [78], are also used for class 

imbalance problem using the cost ratio to help classifying, instead.

The advantage of the cost-sensitive learning is that it can be adapted into 

various classifiers. However, the way to apply a cost-sensitive approach depends on 

the type of classifiers. Except for cost-sensitive algorithms which include some 

sampling ideas, most methods do not alter the size of the original dataset. It is 

shown that it works well with the large size of imbalanced dataset (more than 10,000 

instances); however, repetitive classification runs may be required in order to find the 

optimal cost which need time and memory resources.

2.2.3 Algorithmic techniques for class imbalance problem

Another approach to deal with class imbalance problem is modifying the 

existing classification algorithms to deal with an imbalanced dataset. Techniques in 

this group are kernel modification methods for imbalanced learning, the integration 

of kernel methods with sampling methods and active learning techniques for 

imbalanced learning. Kernel is an additional function added in support vector 

machine to transform the space of a dataset into the one which support vector 

machine can be effectively classified instances. The imbalanced dataset affects the 

performance of a support vector machine strongly. Since one of the objectives of 

support vector machine is to minimize the total error, it is biased toward the majority 

class. เท most cases, a binary class space is separated by the neighborhood of the 

majority class. It is possible that support vectors representing the minority class are 

located away from the ideal line and contribute less to the classification result. เท 

order to shift this situation to another space where the separation between these 

two classes becomes achievable, the kernel concept is needed.
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An example of techniques which modifies the kernel to respond with 

imbalanced datasets is the kernel classifier construction algorithm based on the 

orthogonal forward selection and the regularized orthogonal weighted least squares 

estimator (ROWLS) [79], It integrates the concept of leave-one-out cross validation 

and the area under curve evaluation metric to develop an LOO-AUC objective 

function to find the most optimal kernel model. The high weight is assigned to the 

misclassified instances in minority class via the cost sensitivity of the parameter 

estimation cost function in the ROWLS algorithm. Another example is a group of 

techniques which adjusts the SVM class boundary. พน and Chang [80] suggest three 

approaches for adjusting boundary skews; the boundary movement (BM) approach, 

the biased penalties (BPs) approach and the class-boundary alignment (CBA). Another 

method in this group is the kernel-boundary alignment (KBA) algorithm [81] which is 

to modify the kernel matrix generated by a kernel function according to the 

imbalanced data distribution. This algorithm applies the adaptive conformal 

transformation (ACT) methodology [82] where the conformal transformation on a 

kernet function is based on the feature-space distance and the class imbalance ratio. 

To improve SVM robustness, the total margin-based adaptive fuzzy SVM kernel 

method (TAF-SVM) [83] is introduced. Another interesting kernel modification method 

for imbalance learning is the k -category proximal support vector machine with 

Newton refinement [84] which tries to transform the soft-margin maximization 

paradigm into a simple system of k  linear equations, where k  is the number of 

classes. By doing this, this technique has a very fast learning procedure since it 

requires only solving a system of linear equations. Another technique suggested by 

Raskutti and Kowalcyzk [78] is to compensate the weight of sampling and data space 

when one of the classes is ignored in SVM. It can be noted that many kernel-based 

learning methods use the hybrid approach of sampling and ensemble techniques 

along with kernel modification methods to improve the performance.

Another direction of this group of techniques dealing with imbalance is active 

learning. SVM-based active learning aims to select the most informative instances 

from unseen training data in order to retrain the kernel based model. The method 

proposed by Ertekin et al [85] queries a small subset of data at each iterative step 

instead of the entire data. Once a SVM is trained from a small subset of the training 

set, the most informative instances are extracted and form a new training set 

according to the developed hyperplane. Finally, a new training set and all unseen 

training instances are used to actively rebuild the SVM using the LASVM online SVM 

learning algorithm [86]. Flowever, the distance recalculation between each instance
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and the current hyperplane cause the search process for the most informative 

instances becomes computationally expensive. To fix it, the method to effectively 

select informative instances from a random subset of training set is suggested to 

reduce the computational cost.

Even this group contains methods which are effective, applicable with various 

imbalanced dataset and widely accepted from many researchers, most methods in 

this group are specific to the support vector machine. Therefore, if support vector 

machine is not suitable for the domain of these datasets, most techniques from this 

group may not be practical for the problem.

Despite the techniques for dealing with a class imbalance problem are 

categorized into three groups, the ensemble between techniques from different 

groups are frequently suggested by many researchers. Those include SMOTE with 

Different Costs methods and several over/undersampled SVMs which combines 

sampling approaches with another algorithmic approach to achieve a new algorithm 

effectively deal with class imbalance problem.

This dissertation concentrates on oversampling techniques to balance a class 

distribution of datasets. These techniques have several advantages such as they can 

be adapted to a general classifier since they only modify the original dataset. The 

resulting dataset becomes a balanced dataset which has no problem when using a 

general classifier. So this group of techniques can be effectively applied to various 

classifiers.

เท order to measure the performance, it can be assessed through 

performance measures. เท the next section, a collection of performance measures 

used in this dissertation is introduced. Then, only some measures which are suitable 

to an imbalance problem in this dissertation are focused.

2.3 Performance measures

Performance measures are used to determine the effectiveness of each 

classifier in classification. Since this dissertation focuses on a binary classification, the 

basic terms and descriptions can be seen in 2x2 confusion matrix as below.
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Table 4: A confusion matrix o f binary classification

Predicted Class

Positive Negative

Actual Class

Positive True Positive False Negative

Negative False Positive True Negative

As shown in the confusion matrix [87], there are 4 types of result for classified 

instances. True positive is the number of positive instances correctly classified as 

positive. True negative is the number of negative instances correctly classified as 

negative. False negative is the number of positive instances incorrectly classified as 

negative and finally false positive is the number of negative instances incorrectly 

classified as positive. Then, several values are defined such as a true positive rate 

which is the ratio of true positive over the total number of instances identified as 

positive, a false positive rate which is the ratio of false positive over the total number 

of instances identified as positive, a true negative rate which is the ratio of true 

negative over the total number of instances identified as negative and a false 

negative rate which is the ratio of false negative over the total number of instances 

identified as negative.

Accuracy is the simplest performance measure which is often used in general 

classification problem. It is the total number of correctly recognized instances 

divided by the total number of instances. This measure is not suitable for the class 

imbalance problem which focuses on the prediction of the minority class. The model 

with the high true negative rate but low true positive rate could get a high accuracy 

despite being the unsuitable model for a class imbalance problem.

Due to the nature of class imbalance problem, a classification model training 

from the original dataset has a high accuracy since it predicts instances which are 

mostly majority class correctly. A model which is trained through a synthetic dataset 

from the sampling technique sacrifices the correctness of predicting majority class for 

the higher minority prediction rate. Therefore, the model from the original dataset 

usually achieves higher accuracy than one from a synthetic dataset. This is a reason 

the accuracy is unsuitable performance measure for class imbalance problem.

Precision is calculated by the true positive divided by the sum of true positive 

and false positive. It reflects the reliability of classifier in classifying any instances as
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positive. By its definition, there are two factors which contribute the high precision 

value; the high true positive value which is desirable for any classification models, 

especially in a class imbalance problem and the low number of instances classified 

as positive. The model from the original dataset usually provides the low number of 

instances classified as positive, so its precision value is normally higher than the 

precision of the model from the synthetic dataset. This effect suggests that this 

measure might not be suitable to be used alone for the class imbalance problem. 

However, the model with the high precision also has the low false positive rate 

which may be important in some class imbalance problems.

Recall is determined by the ratio of true positive to the total number of 

positive instances, i.e. the sum of true positive and false negative. This is suitable 

with the objective of the class imbalance problem which needs the model that can 

correctly classify positive instances as much as possible. However, a high recall can 

be achieved by the model which predicts every instance as positive which gives zero 

value for the true negative. Therefore, only the recall value is not enough to 

determine a suitable model for the class imbalance problem. SMOTE [25] is one of 

the sampling techniques that provide very high recall value. It generates synthetic 

positive instances from every original positive instance. These synthetic instances 

expand the decision region for positive regardless of surrounding negative instances. 

The expanded region could lead the model to have a high false positive rate.

So in order to determine the best classification model in the class imbalance 
problem, the performance measure that balances between precision and recall is 

required. This leads to F-measure, geometric mean and adjusted G-mean. F-measure 

is calculated with the following formula.

1_______ (1 4 p 2 ) X p re c is io n  X r e c a l l
F  m e a s u r e  p  = ----------------------- — -

P  X p r e c is io n  +  r e c a l l

where non-negative real p  is the weight users put to emphasize the 

importance of recall over the importance of precision. F-measure is the harmonic 

mean of precision and recall when a parameter p  is set to 1. The model with a high 

F-measure implies that it has both high precision and recall.

Geometric mean [88] in machine learning is the square root of the product of 

sensitivity (recall) and specificity (true negative rate). เท order to achieve high 

geometric mean, the model should have the high number of correctly classified 

instances in both positive and negative class. The other measure to be considered is
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adjusted g-mean (AG) [31] whose formula includes the percentage of majority class. It 

is claimed to detect the model that has the high true positive rate while sacrifices 

the lower negative prediction rate. The formula of adjusted g-mean is

A G  =
- J s p  X  S E  +  5 P x N n

1 +  N n

0;

S E  > 0

S E  =  0

when S E  is sensitivity, S P  is specificity and N n is the percentage of majority 

(negative) class. This formula of an adjusted g-mean causes its value to be more 

sensitive to the change of specificity. The model with a high adjusted g-mean value 

provides a high classification prediction rate on both classes which could serve a 

purpose o f some class imbalance problems such as bioinformatics or medical 

datasets.

Chapter 2 has provided the detail of each classifier using in this dissertation, 

class imbalance problem and existing strategies to deal with the problem. But only 

the strategy of performing data preprocessing technique such as oversampling 

techniques is specified here as the main approach to deal with class imbalance 

problem. Then, some oversampling techniques are introduced since they are used to 

compare with suggested techniques. Moreover, performance measures are brought 

up to explain why a certain measure such as F-measure is used in the result. เท the 

next chapter, each issue of oversampling techniques and dissertation concepts are 

discussed.
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