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CHAPTER 4

EXPERIMENTAL RESULTS AND ANALYSIS

order to investigate suggested oversampting techniques, i.e. triangular
SMOTE, relocating safe-level SMOTE and adaptive neighbor SMOTE, may improve the
classification performance in the class imbalance problem, empirical experiments are
conducted and the comparison and analysis of their results are presented in this
chapter. the first part of the chapter, the description of benchmark datasets and
the experimental setting and the related statistical test are described. Then, the
results of oversampling techniques against other existing oversampling techniques
are shown. The number of cases each technique achieves the best and top three
highest ranks for F-measure, geometric mean and adjusted g-mean is counted. The
second part of chapter covers the statistical tests to show the significant

improvement of these algorithms.

4.1 Datasets and experimental settings
4.1.1 The description of benchmark datasets

For this dissertation, experiments are performed on 9 datasets from UCI
repository [91]; ecoli, glass, letter recognition, haberman, LandSat(satimage),
segmentation, yeast, optdigits and vehicle, and 5 datasets from PROMISE repository
[92]; cmlI, jm I, kcl, kc2 and pci. These datasets are numerical and contain no
missing values. Moreover, they are either binary class datasets with an unequal class
distribution or multiple class datasets which can be transformed into the binary class
dataset with an unequal class distribution by selecting one class as positive and
treating others as negative. The description about the number of instances, the
number of attributes, the number of positive instances and the percentage of

positive instances are shown in table 6 below.
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Table 6: The description of datasets used in the experiments.

Name Instances  Attributes Positive % of positive
instances instances
cml 498 21 49 10.91
Ecoli 336 8 20 5.95
Glass 214 11 76 35.51
Haberman 306 4 81 26.47
Letter (H)1 20,000 17 734 3.67
jm | 10,880 21 2,103 23.96
kcl 2,109 21 326 18.28
kc2 522 21 107 25.78
Optdigits (0)1 5,620 64 554 10.94
pci 1,109 21 77 7.46
Satimage (4)1 6,435 37 626 9.73
Segment (WIN)1 2,310 20 330 14.29
vehicle 846 18 218 34.71
Yeast (ME3)1 1,484 9 163 10.98

4.1.2 Experimental settings

The experiments are conducted for five classifiers; decision tree (C4.5) [32],
naive Bayes classifier [8], multilayer perceptron [9], support vector machine [10] with
the linear square kernel and /(-nearest neighbor [11] (with k = 3). These classifiers are
standard algorithms in classification and they are included in most data mining
softwares. Different classifiers are used as candidates for various framework. The
oversampling techniques introduced in chapter 3 are expected to perform well in all
classifiers. The setting for a classifier uses its default setting from the data mining
software, KNIME [34], The performance is evaluated through the train-test evaluation.

The training set is stratified sampled from 70% of each benchmark dataset and 30%

For multiclass datasets, the name of class shown in the parenthesis next to the name of
dataset isthe one used as positive in this experiment, all other classes of that dataset are used
as negative.
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is used as the test set. Each dataset is sampled 50 times giving 50 different pairs of
training-test datasets. The training set from each sampling technique is used to
generate synthetic minority instances through oversampling techniques in R
programming environment [33], For RSLS and ANS which have an additional process

of minority outcast handling, the minority outcast detection is performed.

The number of minority outcasts depends on the value of c. order to find
an appropriate value of c, an experiment is conducted on each benchmark dataset
by running c-nearest neighbor on it. The value of ¢ is varied from 1 to 20 and the
number of minority outcasts for each value of ¢ in each dataset is counted. The
percentage of outcasts to a total number of positive instances in all 14 datasets used
for this experiment is plotted. The darker line is the plot of average percentages. The
graph is presented in figure 20.
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Figure 20: The graph showing the percentage of outcast instances in each

dataset when the value of c is varied.

this dissertation, 10% of positive instances are set as the prefer number of
outcasts. The graph leads to the value of c equal to 5. It coincides with the setting of
c in safe-level SMOTE [28] which also equals to 5. Therefore, the value of c as 5 is
applied for each oversampling technique which contains the c-nearest neighbor

process in this dissertation.

After positive instances which are not minority outcast instances in the
training set are sent to each oversampling techniqgue to synthetize instances, the

resulting synthetic instances are added into the original training set along with a set
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of minority outcast instances which is extracted as a part of RSLS and ANS algorithm.
This synthetic balanced training set from each oversampling technique and a set of
outcast instances are sent into KNIME to perform the classification with five

classifiers.

RSLS and ANS, a set of minority outcasts is combined with a set of negative
instances from each training set to train a 1-nearest neighbor model as the process of
minority outcast handling. This model is applied on unknown instances in the test
set after the classification stage as mentioned in chapter 3. The evaluation of
classification on various performance measures are also performed in KNIME [34],
Performance measures used for evaluating the performance are F-measure which
takes account of both recall and precision, geometric mean and adjusted g-mean
[31] which consider the prediction rate in both classes simultaneously. The results in

term of geometric mean and adjusted g-mean are reported in the appendix.

The diagram of the experimental process in each experimental round in one

case of a classifier and a benchmark dataset is shown in figure 21.
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Figure 21: The diagram of the experimental process in each round of

train-test sampling

From this setting, the total number of cases of original dataset and classifier is
70 (14 datasets X 5 classifiers). There are 50 rounds of train-test sampling in each

case.
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4.1.3 Wilcoxon signed-rank test

The Wilcoxon signed-rank test [30] is a non-parametric statistical hypothesis
test used when comparing two related samples, matched samples, or repeated
measurements on a single sample to evaluate whether their population mean ranks
differ. It can be used as an alternative to the paired Student's t-test, t-test for
matched pairs, or the t-test for dependent samples when the population cannot be

assumed to be normally distributed. The Wilcoxon signed-rank test assumptions are
1. Data are paired and come from the same population.

2. Each pair is chosen randomly and independent and the order of pair has no

significance

3. The data does not require being normally distributed but they are measured on an

ordinal, interval, or ratio scale.
4. The distribution of the differences is symmetric around the median.

The null hypothesis for the two-tailed Wilcoxon signed-rank test is usually
that the median difference between pairs of observations is zero. Note that this is
different from the null hypothesis of the paired t-test, which is that the mean
difference between pairs is zero, or the null hypothesis of the sign test, which is that
the numbers of differences in each direction are equal. The null hypotheses for the
two-tailed test and each tail of one-tailed test and their counterpart alternative

hypotheses are shown in the following table.

Table 7: The and alternative hypotheses in each type of Wilcoxon

signed-rank test

Two-tailed Test One-tailed test in the lower tail One-tailed test in the upper tail

"0V = °

H1:/% * O

The basic procedure of the Wilcoxon signed-rank test is (1) setting the significant
level oc, (2) extracting the sample, (3) computing the value of the Wilcoxon test
statistic and comparing it with the critical upper bound and lower bound values
which depend on whether the test is two-tailed or one-tailed. If the computed

test statistic equals to or is greater than the upper critical value (for two-tailed test

and one-tailed test in the upper tail) or equals to or less than the lower critical value
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(for two-tailed test and one-tailed test in the lower tail), the null hypothesis is
rejected. The process to compute the value of the Wilcoxon test statistic is given

below.
Computing the Wilcoxon signed-ranks

1. For each item in a sample of items, compute a difference score, D,

between the two paired values.

2. Neglect the + and - signs and list the set of absolute differences, ID. 1.

3. Omit any absolute difference score of zero from further analysis, thereby
yielding a set of ' nonzero absolute difference scores, where '* . After
values with absolute difference scores of zero are removed, reset ' to be
the actual sample size.

4. Assign ranks from 1to ‘' to each ofthe |d.] such that the smallest absolute

difference score gets rank 1 and the largest score gets rank '. Iftwo or more

ld.l are equal, assign each of them the mean of the ranks they would have

been assigned individually.

5. Reassign the symbol + or - to each of the ' ranks, Rh depending on whether

Dj was originally positive or negative.

6. Compute the Wilcoxon test statistic, , as the sum of the positive ranks

=z R(]

or '< 20, the critical upper bound and lower bound values can be looked

up from a given table in figure 22.
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ONE-TAIL a=.0B a - (05 a=.01 a = .006
TWO-TAIL a=.0 a=.bB a=.02 a = .01
(Lower, Upper)
015 « .
6 219 o2
7 35 226 0(2$ -
8 531 333 135 0,36
9 837 540 342 144
10 1045 847 5(50 32
n 1353 1056 759 561
2 17,61 1365 1063 7,71
13 21,70 17,74 12709 1081
1 2580 2134 1689 1392
5 300 25(95 19101 16,104
16 3101 29,107 23113 19117
17 41112 34,119 27 126 23,130
18 47124 40131 32,139 27,144
19 53137 46,144 37,153 32,158
20 60 150 52,158 L 43 (1 37, 173
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Figure 22: The table of the critical upper and lower bound values of

when is no more than 20.

For samples with + > 20, the test statistic value is normally distributed

with the mean y.w and standard deviation ¢ w. The mean of the test statistic is
s(==frl)
4

And the standard deviation of the test statistic is

'("+1X2 +1)
24

Then, the large-sample approximation formula with calculated when + > 20 is

achieved as

BT e e

24
If the computed ZSATfalls in the critical region (For oc = 0.05, the confidence interval

is between +1.96 which means the value outside this range is the critical value), the

hypothesis is rejected.
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For R programming, the function wilcox.test() is used for performing the test.
The function provides the median difference and the p-value. If this p-value is less
than oc, the hypothesis is rejected. It can perform either one-tailed test or two-

tailed test by assigned the desired alternate hypothesis in one of its arguments.

4.2 The result analysis
4.2.1 Triangular minority oversampling technique

this section, the experiment on triangular minority oversampling technique
(TMQOT) which is introduced in chapter 3 is performed to compare its performance on
generating balanced dataset that can train classifiers to classify minority class
effectively against the original imbalanced dataset and the balanced dataset from
SMOTE [25], The average of F-measure results from each oversampling technique in
50 rounds of experiment is compared between datasets and classifiers. Figure 23-
Figure 27 are plotted among the result from the original imbalanced dataset (ORIG),
the balanced dataset from SMOTE and TMOT.

F-measure comparison in decision tree

Figure 23: The comparison of the average F-measure from ORIG, SMOTE

and TMOT using a decision tree as a classifier



F-measure comparison in naive Bayes Classifier
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Figure 24: The comparison of the average F-measure from ORIG, SMOTE

and TMOT using a naive Bayes classifier as a classifier

F-measure comparison in multilayer perceptron
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Figure 25: The comparison of the average F-measure from ORIG, SMOTE

and TMOT using a multilayer perceptron as a classifier
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F-measure comparison in support vector machine
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Figure 26: The comparison of the average F-measure from ORIG, SMOTE

and TMOT using a support vector machine as a classifier

F-measure comparison in k-nearest neighbor
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Figure 27: The comparison of the average F-measure from ORIG, SMOTE

and TMOT using a /c-nearest neighbor as a classifier

Figure 23 to figure 27 show the bar charts of the mean comparison of F
measure each oversampling technique achieves in each classifier where ORIG refers
to the result of a classifier performing on an original imbalanced dataset, SMOTE

refers to the result of a classifier performing on the balanced dataset applying
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synthetic minority oversampling technique and TMOT refers to the result of a
classifier performing on the balanced dataset applying triangular minority
oversampling technique. There are 21 cases which TMOT achieves the average F
measure higher than both SMOTE and ORIG. Most cases occur when support vector
machine is chosen as a classifier. There are another 26 cases which TMOT can defeat
ORIG but still has the lower average F-measure than SMOTE. It achieves a higher
average F-measure than SMOTE but its average is lower than one from ORIG in 14

cases. TMOT has a lower average F-measure than both algorithms in only 9 cases.

order to clarify whether TMOT is an effective oversampling technique
comparing with SMOTE, the Wilcoxon signed-rank test is performed to test whether
the difference between the F-measure from two algorithms are significant. The null
hypothesis of the test is set as the median of difference is less than or equal to zero,
so if a p-value of test is less than 0.05, then the alternative hypothesis which is the
median of difference between the controlled algorithm (TMOT in this case) and the
other compared algorithm are positive. Using the results from every round of
experiments regardless of various classifiers and datasets through R programming

environment [33], the test results are shown in table 8.

Table 8 The Wilcoxon signed-rank test on F-measures from TMOT against

ones from ORIG and SMOTE

The number of

Median of sum of
TMOT p-value nonzero difference
Difference positive rank
pairs
against ORIG 0.0228 0.0000 3371 3919117
against SMOTE -0.0005 0.9997 2977 2055314

It could be seen that the median of difference of F-measure from TMOT and
F-measure from ORIG is significantly positive. It implies that using TMOT provides the
better F-measure than using the original imbalanced dataset to build the classifier.
Flowever, the result comparing with SMOTE is not significantly different. The median
of their difference is less than zero and the p-value is higher than 0.05. This means
SMOTE and TMOT are not different in term of the performance. Note that TMOT uses
more arithmetic calculation for creating a new synthetic instance but it yields the
same result as SMOTE, It can be concluded that SMOTE is a more preferable

oversampling technique in this regard.
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4.2.2 Relocating safe-level SMOTE

this section, the performance of relocating safe-level SMOTE (RSLS) is
compared with other predecessor sampling techniques. As the extension from safe-
level SMOTE [28], it is expected that RSLS should provide the better accuracy
performance than one from safe-level SMOTE.  order to measure the performance,
F-measure value of each classification via datasets from each oversampling
techniques is focused. each round of experiments, there are 6 different training
sets; the original imbalanced training set without performing any sampling techniques
(ORIG), the balanced training set containing synthetic instances from synthetic
minority oversampling technique (SMOTE) [25], the balanced training set containing
synthetic instances from adaptive synthetic sampling (ADASYN) [26], the balanced
training set containing synthetic instances from safe-level SMOTE (SLS) [28], the
balanced training set containing synthetic instances from density-based synthetic
minority oversampling technique (DBSMOTE) [29] and the balanced training set
containing synthetic instances from relocating safe-level SMOTE (RSLS) to build the
classification model with each designated classifier. The resulting models from these
training sets with respect to each classifier and dataset are evaluated using the same

test set. For RSLS, minority outcast handling process is also performed.

The average F-measure values from 50 rounds of experiments in each
classifier and dataset are shown and ranked in table 24 in appendix 1.  table 24,
the dark gray shade highlights the F-measure value which is the highest value among
F-measure from all oversampling techniques from the same classifier and dataset,
while the light gray shade highlights the F-measure value which is one of the top
three of oversampling techniques from the same classifier and dataset. The number
of cases each technique can achieve the best F-measure is summarized as the bar

chart in figure 28.
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# of datasets each technique achieves the best
F-measure
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Figure 28: The bar chart of the number of datasets each oversampling

technique achieves the best F-measure

The comparison of F-measure presented in table 24 and summarized in table
10 shows that RSLS provides relatively good performance on F-measure generally as
it achieves top three F-measure from 60 out of 70 cases and the highest value from
35 cases after compared with other 5 oversampling techniques. From these 35 cases,
6 of them are achieved when C4.5 is used as the classifier. 7 of them come from
naive Bayes classifier. RSLS achieves the best F-measure value when multilayer
perceptron is a classifier in 8 datasets. For both support vector machine and k-
nearest neighbor, RSLS get the best F-measure in 7 datasets. The number of datasets
RSLS can achieve the best F-measure is distributed nearly equally in each classifier
showing that RSLS does not bias to one classifier. The list of datasets RSLS provide
the best, second best and third best F-measure is shown in table 9 and the number
of cases each oversampling technique achieves the best, second best and third best

F-measure is shown in table 10.
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Table 9: The list of dataset names which RSLS achieves the best, second

best and third best F-measure in each classifier.

Classifier

Decision tree

(9

Naive Bayes
classifier

Multilayer
perceptron

Support vector
machine

K-nearest
neighbor

Datasets in 1¢

ecoli, haberman,
jml, optdigits, pci,
vehicle

ecoli, jml, kcl, ke2,
optdigits, satimage,
yeast

cml, ecaoli,
haberman, jml, kcl,
letter, optdigits,
yeast

glass, haberman,
iml, kcl, letter,
optdigits, yeast

ecoli, haberman,
jml, kcl, optdigits,
vehicle, yeast

Datasets in 2rd

cml, kcl

glass, haberman,
letter, segment

ecoli, pci,

Datasets in 3rd

dass, k2, yeast

cml, pci, vehicle

glass, pci,
segment, vehicle

cml, ke2,

satimage,
segment, vehicle

cml

The total
number

14

14

Table 10: The number of cases each technique achieves the average F-measure

in the ranking 1 -3rd

# of cases as

14

2rd

3

Total in 14 -3d

ORIG SMOTE  ADASYN
15 4 7

5 15 9

3 18 7

23 37 23

SLS DBSMOTE

2 7
22 10
19 7

43 24

RSLS

35

16

60
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The Wilcoxon signed-rank test is performed to verify the difference of F
measure from RSLS against other oversampling techniques. First, every experimental
result from RSLS is used to compare pairwise with F-measure from each
oversampling technique. The null hypothesis of the test is set as the median of
difference is less or equal than zero, so if a p-value of test is less than 0.05, then the
alternative hypothesis which is the median of difference between the controlled
oversampling technique (RSLS in this case) and other compared oversampling
techniques are positive. The results of these statistical tests against each

oversampling technique are shown in table 11.

Table 11: The Wilcoxon signed-rank of the difference of F-measure from

RSLS against other sampling techniques

RSLS against The median p-value

of difference

ORIG 0.0441 5.5100 x 10'167
SMOTE 0.0170 8.9000 x 10 110
ADASYN 0.0255 1.9400 x 10'Kl
SLS 0.0117 3.8300 x 1072
DBSMOTE 0.0272 4.4100 x 10'I™

table 11, it shows that the p-value from the Wilcoxon signed-rank test is
lower than 0.05 with all five techniques. By these p-values, the null hypothesis for
each comparison is rejected. Consequently, the alternate hypothesis which is the
median of difference is positive will be accepted. This result suggests that every
difference of F-measure between RSLS and other oversampling techniques are

significantly positive.

table 12, the resutts are separated based on classifiers and performed the
Wilcoxon signed-rank test in order to see whether there are significant difference of
F-measure in each classifier. The result in the table shows that there is significantly
positive difference of F-measure when comparing RSLS with other oversampling

techniques in every classifier since every p-value in each test is less than 0.05.
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Table 12: The Wilcoxon signed-rank of the difference of F-measure from

RSLS against other sampling techniques in each classifier

Classifier RIS against Median of Difference  p-value

DT ORG 0.0339 24800 x 1038
SMOTE 0.0111 1.0500 x 10®
ADASYN 0.0108 3.9200 x 10"9
S 0.0120 17300 x 10'B
DBSMOTE 0.0298 11100 x 103
NB ORG 0.0448 4.6600 x 10M
SMOTE 0.0152 52000 x 102
ADASYN 0.0254 13500 x 102
gS 0.0186 1.3800 x 1048
DBSMOTE 0.0847 2.0900 x 108
MLP ORG 0.0290 11200 x 108
SMOTE 0.0175 16700 x 106
ADASYN 0.0288 11900 x 10%
gS 0.0090 19000 x lo"7
DBSMOTE 0.0177 2.0000 x 10D
SW ORG 0.1124 1.9000 x 107
SMOTE 0.0265 1.0500 x 10
ADASYN 0.0363 4.0000 x 107
S 0.0083 84700 x 103
DBSMOTE 0.0059 1.8200 x 10w
KNN ORG 0.0151 6.1300 x 1056
SMOTE 0.0245 13200 x 105
ADASYN 0.0229 2.5300 x 104
S 0.0036 1.9300 x IO®
DBSMOTE 0.0081 50300 x 102

4.2.3 Adaptive neighbors SMOTE

Similar with the comparison setting with RSLS, the average F-measure values
from 50 rounds of experiments respect to each oversampling technique under the

same classifier and benchmark dataset are compared. Each technique generates
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synthetic instances which are added into the same original imbalanced dataset,
making it the balanced dataset. These resulting datasets are used to train classifier.
Resulting classifiers are evaluated with the same test set in each round. Additionally,
the minority outcast handling process is applied to improve the classification result
of ANS model. The results from ANS models; the one with minority outcast handling
(labeled as ANS2) and the one without minority outcast handling (labeled as ANSI)
are both collected for comparison. The average F-measure value of ANSI and other
5 oversampling techniques are ranked. Then, the number of datasets each technique
provides the best F-measure and provides the top three F-measure of each case is
counted and reported as bar charts in figure 29 to figure 30. The similar comparison
is presented with the result of ANS2 in figure 31 to figure 32.

# of datasets each technique achieves the best
F-measure

= KNN
% SVM
@ MLP
mNB
wDT

Figure 29: The bar chart of the number of datasets which ANSI and each

oversampling technique achieves the best F-measure

Figure 29 shows the bar chart which counts the number of datasets which ANS
without outcast handling (ANSI) and other existing oversampling techniques can
provide the best F-measure. It shows that ANSI achieves the best F-measure in 18
cases out of total 70 cases which is the most among these 6 techniques. (Original
wins 17, SMOTE wins 7, ADASYN wins 12, safe-level SMOTE wins 7 and DBSMOTE wins
9). ANSI is the technique with the highest number of datasets with best F-measure in
3 classifiers and has the highest total number of datasets. The datasets which ANSI

has the best, second best and third best F-measures in each classifier are shown in
table 13.



72

If achieving the top three F-measure is used to indicate the consistency of
performance, it is presented as the bar chart in figure 30. The bar chart shows that
the number of cases which ANS without minority outcast handling achieves the top
F-measure is 46 which is 65% of the total number of cases. Flowever, ANSI is not the
oversampling technique which has the highest number of cases on achieving the top
three. As shown in table 14, it is defeated by safe-level SMOTE which has 52 cases.
This result may occur because safe-level SMOTE uses the safe-level value to
effectively control the suitable location of synthetic instance and ANSI does not use

the entire minority instances to build the model.

# of datasets each technique achieves top 3
F-measure
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Figure 30: The bar chart of the number of datasets which ANSI and each

oversampling technique achieves the top three F-measure
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Table 13: The list of dataset names which ANSI achieves the best, second

best and third best F-measure in each classifier.

Classifier Datasets in 1st Datasets in 2nd Datasets in 3rd The total
number

Decision tree ecoli, jml, kcl, cml, kcl, pci, 9
(0753)] vehicle satimage, yeast
Naive Bayes kel cml, ecoli, glass, ke2, optdigits, 9
classifier haberman segment, yeast
Multilayer jml, kel haberman, cml, glass, 10
perceptron optdigits, pci segment, vehicle,

yeast
Support vector glass, haberman, jml, ke2, pci letter, optdigits, 10
machine kcl, yeast satimage
K-nearest neighbor  glass, haberman, cml 8

iml, kcl, optdigits,
vehicle, yeast

Table 14: The number of cases each oversampling technique achieves the F-

measure in the ranking 1st-3rd

# of cases as ORIG SMOTE ADASYN SLS DBSMOTE ANSI
1g 17 7 12 7 9 18
2d 4 20 6 17 8 15
3d 2 10 9 28 8 13
Total in 1¢ -3d 23 37 27 52 25 46

To improve the performance of ANS with the minority outcast handling
process, it is expected that ANS with minority outcast handling process or ANS2
provides the better accuracy performance over ANSI. The results are collected in

order to compare the average F-measure values from each dataset and classifier to
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ones from other oversampling techniques. Similar with the previous comparison, the
number of cases that each technique achieves the best F-measure and the top three
F-measure is ranked and counted. The outcome of ranking is represented as the bar

chart counting the number of datasets in figure 31 and figure 32.

it 0f datasets each technique achieves the best
F-measure
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Figure 31: The bar chart of the number of datasets which ANS2 and each

oversampling technique achieves the best F-measure

# of datasets each technique achieves top 3
F-measure

a KNN
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aDT

Figure 32: The bar chart of the number of datasets which ANS2 and each

oversampling technique achieves the top three F-measure
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The bar chart from figure 31 shows the number of datasets which ANS and other
oversampling techniques achieve the best F-measure. It shows that ANS2 is much
more effective and has the highest number of datasets achieving the best F-measure
in every classifier. ANS2 has the best F-measure from 39 cases, the highest and more
than the combined number of cases from other oversampling techniques. Moreover,
if the scope of consideration is expended to the top three F-measure, figure 32
shows that ANS2 achieves the top three F-measures from over 80 % of cases (57 out
of 70) which is the highest percentage among oversampling techniques. The list of
dataset names that ANS2 gets the best, second best and third best F-measures in
each classifier is shown in table 15 while the number of cases each technique

achieves the F-measure in the 1st, 2nd and 3rd rank is shown in table 16.



Table 15: The list of dataset names which ANS2 achieves the best,

second best and third best F-measure in each classifier.

Classifier

Decision tree

(CA5)

Naive Bayes

classifier

Multilayer

perceptron

Support vector

machine

K-nearest neighbor

Datasets in 1st

ecoli, glass,
haberman, jml,
kcl, optdigits, pci,
satimage, vehicle,
yeast

ecoli, glass,
haberman, jml,
kcl, kec2, optdigits,
satimage, yeast
glass, haberman,
jml, kcl, letter,

optdigits, yeast.

glass, haberman,
jm1, kcl, optdigits,
yeast

glass, haberman,
jm|, kcl, optdigits,

vehicle, yeast

Datasets in 2nd

cml, letter

cml

ecoli

kc2, pci, satimage

ecoli

Datasets in 3rd

segment, vehicle

cml, pci,
satimage,

segment, vehicle

letter, vehicle

cml

76

The total

number

Table 16: The number of cases each oversampling technique achieves the F-

measure in the ranking 1st-3rd

# of cases as

14
2d

3d

Total in 1¢ -3rd

ORIG

15
4
4

23

SMOTE ADASYN

3 4
15 13
19 6
37 23

SLS DBSMOTE
2 7
21 10
23 7
46 24

ANS2

39

7
n
57

12

12

13

11
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Similar with RSLS, the Witcoxon signed-rank test with ANSI and ANS2 is also
conducted in order to verify whether the positive differences of F-measure caused
by ANSI and ANS2 against other oversampling techniques are significant.  the first
part of this section, F-measure values from each round of experiments from ANSI
and ANS2 are compared with F-measure value from other oversampling techniques
in the same sampling training and test set and the same classifier. Then, the positive
median of difference in each comparison is tested for its significance. The null
hypothesis of each test is set as the median of difference is less than or equal to
zero. The confidence level is set at 95%, so if a p-value of test is less than 0.05, then
the alternative hypothesis which is the median of difference between the controlled
algorithm (ANSI and ANS2, respectively) and the other compared algorithm are
positive. Using the results from every round of experiments regardless of various

classifiers and datasets, the test result is shown in the table below.

Table 17: The Wilcoxon signed-rank of the difference of F-measure from

ANSI| and ANS2 against other oversampling techniques

ANSI against Median of p-value ANS2 against ~ Median of p-value
Difference Difference

Original 0.0321 7.1435 x 1016 Original 0.0459 4.9496 x 10 1%

SMOTE 0.0051 1.0386 x 10°9 ~ SMOTE 0.0176 6.4233 x 10/

ADASYN 0.0138 1.2541 X 1067  ADASYN 0.0271 14807 x 10 =

SLS 0.0003 73270 x 1000 SLS 0.0109 23378 x lo"1

DBSMOTE 0.0155 9.1304 x 1071 DBSMOTE 0.0292 24914 x 10'1%
ANSI 0.0170 6.9542 x 10 14

It can be seen from the results in table 17 that ANSI and ANS2 both achieve
significantly positive differences against other oversampling techniques except when
ANSI is compared against SLS which is the only case that its p-value is more than
0.05. As already seen in table 14, safe-level SMOTE has slightly more cases achieving
the top three than ANSI, so this result is expected. But after adding the minority
outcast handling process as in ANS2, it could be seen that ANS2 has significantly
positive difference of F-measure against all other oversampling techniques as p-

values are all less than 0.05.
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Table 18: The Wilcoxon signed-rank of the difference of F-measure from

ANSI and ANS2 against other sampling techniques in each classifier

Classifier

ANS|

against

Median of  p-value
Difference

0.0241 2.1900 x
0.0011 0.1718
0.0011 0.1209
0.0011 4.1461 x
0.0161 2.1800 x

0.0208 2.5800 x
-0.0098 1
0.0108 3.3100 x
-0.0041 1
0.0603 5.0300 x

0.0258 1.3200 x
0.0076 1.0700 x
0.0188 1.7100 x
0.0001 0.26821
0.0095 1.0540 x

0.1042 5.2200 x
0.0158 1.1100 x
0.0244 7.0300 x
0.0042 2.0819 x

-0.0020 0.67452

105

0@
102

107

100

108

10®

10"6

102

10¢4

106

107

103
10

ANS2

against

ANS|

Median of
Difference
0.0359
0.0137
0.0137
0.0132
0.0299
0.0251
0.0437
0.0089
0.0286
0.0122
0.0876
0.0263
0.0308
0.0230
0.0306
0.0110
0.0174
0.0122
0.1066
0.0274
0.0372
0.0117
0.0063
0.0179

p-value

3.4400 x
3.2000 x
1.4600 x
5.4700 x
1.3900 x
3.2400 x
4.8000 x
9.8767 x
8.8800 x
3.5300 x
5.6600 x
6.0900 x
1.7600 x
1.4400 x
2.2600 x
5.5500 x
1.1900 x
7.1400 x
3.8800 x
4.6100 x
3.6600 x
3.1700 x
9.6200 x
3.7900 x

10"2
107
107
108
1056
o6
1048
lo"2
108
100
109
105
106
102
10"6
108
106
108
10&
102
108
10D
106
10%
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Classifier ANSI Median of  p-value ANS2 Median of p-value

against Difference against Difference
KNN ORG 0.0143 39300 x 10D ORG 0.0192 24600 x 10"9
SMOTE 0.0094 75700 x 10B SMOTE 0.0162 12500 x 10P

ADASYN 0.0164 28700 x 105 ADASYN 0.0220 4.1800 x 102
gS 0.0014 0.10058 gS -0.0004 2.8819 x IO@
DBSMOTE  0.0032 27500 x 106 DBSMOTE 0.0148 9.1800 x 100/

ANS]| -0.0020 0.42596

Based on these Wilcoxon signed-rank test results separated by classifiers
shown in table 18, ANSI cannot achieve positive difference against some
oversampling techniques in some classifier. For decision tree, ANSI has p-values
larger than 0.05 when it is compared against SMOTE and ADASYN and barely smaller
than 0.05 against safe-level SMOTE. This could imply that ANSI cannot overcome
SMOTE, ADASYN and safe-level SMOTE clearly in this classifier. However, the test
with ANS2, the p-values against every oversampling technique is less than 0.05. So,
this can be concluded that ANS2 has better performances than other oversampling
techniques in this classifier. naive Bayes classifier, ANSI has p-values larger than
0.05 and negative difference against SMOTE and safe-level SMOTE. This shows that it
cannot provide better performance over these two oversampling techniques.
However, ANS2 still provides a better performance against all oversampling
techniques in this classifier. This could mean minority outcast handling help

improving the classification performance of ANSI in naive Bayes classifier.

For multilayer perceptron, the similar situation occurs as ANSI can provide
the positive difference in almost every comparison with other oversampling
technique significantly except safe-level SMOTE. ANS2 which minority outcast
handling process is included can overcome and has positive difference in every test
against other oversampling techniques with p-values less than 0.05. ANSI also
provides the positive difference in every test against other oversampling techniques
except DBSMOTE when it is trained with support vector machine. It requires the
minority outcast handling to achieve the positive difference against every
oversampling technique significantly. However, ANS2 does not work better than safe-

level SMOTE significantly whether minority outcast handling is included in k-nearest
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neighbor, as it got p-value more than 0.05 against safe-level SMOTE while it can

achieve p-value less than 0.05 against any other oversampling techniques.

The concern in this dissertation is whether adaptive neighbor process or
minority outcast handling process is a factor for the improving performance. To
answer this concern, experiments on 70 cases of 14 UCl datasets and 5 classifiers
from SMOTE whose outcasts are removed (SMOTEO) and adaptive neighbor SMOTE
(ANS) are performed. There are two versions of SMOTEO and ANS in this
experimental setting, i.e.,, ones without minority outcast handling (SMOTEO-1 and
ANSI) and one with minority outcast handling (SMOTEO-2 and ANS2). The results
represented as the average F-measure values are reported in table 27 and
summarized in table 19. The parameter «k is set as 5 which is the setting used for
SMOTE in the original paper of SMOTE and related research papers. The results from
techniques that do not apply minority outcast handling, i.e., SMOTEO-1 and ANSI,
are paired. The number of cases which ANSI achieves higher F-measure than one
from SMOTEO-1 is 37 which is more than half of total cases. Similarly, the results
from two techniques that apply minority outcast handling, i.e., SMOTEO-2 and ANS2,
are also paired. The number of cases which ANS2 achieves higher F-measure than
one from SMOTEO-1 is 40. The number of cases which SMOTEO-1 has better F
measure than ANSI but ANS2 has better F-measure than SMOTEO-2 is only 6. This
implies that there are only few cases which minority outcast can overturn the result
between these two oversampling techniques. Most cases (34) that ANS can
overcome SMOTE happen when ANSI has already higher F-measure than SMOTEO-1.
So, it can conclude that adaptive neighbor SMOTE can provide the better
classification performance over original SMOTE with its dynamic k process. Moreover,
when ANS is more effective than SMOTE, minority outcast process helps improving

the result further.

Table 19: The number of cases which averaged F-measure of ANSI or

ANS2 is higherAower than one of SMOTEO-1 or SMOTEO-2.
ANS| > SMOTEO-1 SMOTEO-1 > ANSI  Total by rows

ANS2 > SMOTEO-2 34 6 40
SMOTEO-2 > ANS2 3 27 30

Total by columns 37 33 70
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To further investigate the effect of adaptive neighbor approach and minority
outcast handling, the analysis of variance is also performed on this experimental
result. The significant level for this test is set as 0.95 which means that if the p-value
is less than 0.05, there is significant difference between the F-measure mean of two
groups. The ANOVA result between the F-measure values from SMOTE with the fixed
k = 5 and the ones from ANS is shown in table 20.

Table 20: The ANOVA table between F-measure values from SMOTE with

the fixed k =5 and the ones from ANS

Df Sum Square Mean Square  Fvalue Pr(> P
SMOTEO vs ANS 1 0 0.00053 0.011 0.916
Residuals 13998 663 0.04736

The ANOVA table shown in table 20 displays that the p-value is 0.916 which
is more than the critical value 0.05. It implies that the mean of F-measure from
SMOTE with the fixed k = 5 and adaptive neighbor SMOTE is not significantly
different. Fiowever, the fixed k = 5 is required the tuning of a parameter k in order to
find the optimal value which costs more time and resources than adaptive neighbor

while yielding the similar overall classification result based on ANOVA.

The effect of minority outcast handling applied in SMOTE and adaptive
neighbor SMOTE is also investigated by ANOVA. With the significant level at 0.05, the
ANOVA test is conducted to compare the mean of F-measure from two groups, ie, a
group of sampling techniques without applying the minority outcast handling and a
group of sampling techniques applying the minority outcast handling. The result of
ANOVA is shown in table 21.

Table 21: The ANOVA table between F-measure values from
oversampling technigues without applying minority outcast handling and

the ones with minority outcast handling

Df Sum Square Mean Square Fvalue Pr(>P
w/o vs with outcast 1 0.6 0.5776 12.21 4.78 x 103
Residuals 13998 662.4 0.0473

The ANOVA table shown in table 21 displays that the p-value is 4.78 x 104

which is less than 0.05. This implies that the mean of F-measure from oversampling
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techniques without minority outcast handling and oversampling techniques with
minority outcast handling is significantly different. This can be affirmed that minority
outcast handling can effectively enhance the classification performance in the class
imbalance problem with the significant improvement.



	CHAPTER 4 EXPERIMENTAL RESULTS AND ANALYSIS
	4.1 Datasets and experimental settings
	4.2 The result analysis


