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The echanosensitive channel of large conductance (MsclL) is a
homopentanneric membrane protein that serves as effective osmotic safety valves
in prokaryotes. It senses and transduces mechanical stimuli into protein motion.
MscL is specifically designed to change its conformation in response to changes in
membrane tension.  this study, two different EPR dataset were used in modeling
the Escherichia coli MscL channel in its closed (cl-ecoMscL) and intermediate (in-
ecoMscL) conformations through PaDSAR, an experimentally restrained molecular
dynamics simulation method. The in-ecoMscL model is in overall very similar to
the cl-ecoMscL, suggesting the model may be correspond to pre-expanded closed
state. Structure comparison between cl-ecoMscL and in-ecoMscL revealed the
major transmembrane (TM) movement is located near the hydrophobic gate
residues: Leul9 and Val23. To investigate structure and dynamics properties of
the protein, 100ns molecular dynamics (MD) simulations of the closed and
intermediate  state conformations were performed in palmitoyl-oleoyl-
phosphatidyl cholines bilayer and dilauroyl-glycero-phosphocholines bilayer,
respectively. The results show structure stability of MscL during the course of MD
simulations. The relative mobility of TM1 and TM2 segments is consistent with
the experimental mobility data. The bilayer thickness change observed from the
MD simulations indicates the protein-induced bilayer deformation due to the

effect of hydrophobic mismatch.
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