
CHAPTER III

RESULTS AND DISCUSSION

3.1 Protocol for preparation of model system with pseudoatoms.

There are many steps to prepare the protein system before running NAMD- 

PaDSAR such as, attaching EP pseudoatoms into the protein, adding the OXY and NIC 

pseudoatoms, generating a protein structure file or psf file and a configuration file 

etc. The preparation of model system with pseudoatoms has been done through 

script commands executed using the program VMD. According to Figure 2.1, there 

are two VMD-script files called r u n . t d  and r e s . t d .  The r u n . t d  consists of two parts; 

user-defined and command part. The user defined part (shown in gray square box 

below) allows users to modify their own parameters and options for the simulation 

such as number of OXY and NIC, number of simulation steps, input file name, the 

residue to be patched EPs atoms etc. เท the command part (shown in gray square 

box) users do not need to change anything.

ร############### general part

set inputPDB "distort.pdb"

set selection "protein and not name POT"

set no_Segment 4

set seg_Name { A B c  D }

1: To set the name of protein.

2: To select only protein from monomer to generate the tetramer. 

3: To specify number of segment. 4 for generating tetramer.

4: To set the name of each segment.

ร############### Pseudo atoms part

set noOXY 300

set noNIC 300

set psueLen 45

set max_z_OXY 16

set min_z_OXY -16

set max_z_NIC 45
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set min_z_NIC 
set hole

-45
30

This part is for generating the OXY and NIC initial position and all value are 

described in Figure 3.1 (Â unit.)

Figure 3.1 The parameters for generating the OXY and NIC initial position.

# # # # # # # # # # # # # # # #  PSF part 
set topo_ศ le "toptest.inp" 
set epl_nam e "EP1" 
set ep2_name "EP2" 
set ep3_name "EP3"
set patchepl { 25, 26, 29, 30, 33, 36, 40, 44, 47, 48, 86, 87, 89, 91, 92, 95, 96, 
97, 98, 99, 100, 101, 102, 103,105, 106, 107, 108, 109, 110, 111, 113, 114, 115, 
118, 119}
set patchep2 { 23, 24, 27, 28, 39, 49, 50, 52, 117, 120}
set patchep3 { 31, 32, 34, 35, 37, 38, 41, 42, 45, 46, 90, 94 }

1: To insert a topology file

2, 3, 4: name of EP type one, two and three respectively.

5, 6, 7: To specify which residue in protein to be patched with EP types such as EP1, 

EP2 and EP3 respectively.

max_z_NIC 45

Side view Top view



26

# # # # # # # # # # # # # # # #  a n o th e r pa rt

set fixa to m  "nam e POT o r p ro te in  and resid 60 to  80"

set ndres "p ro te in  and n o t (resid 55 to  73 o r resid 107 to  109) "

1: To specify the  fix atom.

2: To specify the  residue to  be applied the  secondary structure restrains.

#  co m m a n d  p a rt ะ No need to  change 

source res.tc l

loadPDB SinputPDB Sselection 

set k 1

foreach  M $seg_Name {

gen_SEG "inputP D B .pdb" "$M" "$k" 

incr k

}

cat_File $no_Segm ent 

prep_File p ro te in .p d b  $seg_Name

m ake_Pseudo [expr $noOXY*4] OXY $psueLen $min_z_OXY

$max_z_OXY

m ake_Pseudo2 $noOXY OXY Shole $ho le  $max_z_OXY $min_z_OXY

m ake_Pseudo [exp r SnoNIC*8] NIC SpsueLen $m in_z_NIC $max_z_NIC

m ake_Pseudo2 $noNIC NIC Shole Shole $max_z_OXY $min_z_OXY

gen_Psf $ e p l_ n a m e  S p a tchep l Sep2_nam e Spatchep2

Spatchep3 $ to p o _ file  $seg_Name

m ove2orig in  S fixatom

2ndrestra in  Sndres

rest_ layer b u b le .tc l SnoNIC

gen_con f p ro te in in p u t na m d .co n f

d e lfile  $seg_Name $no_Segm ent

exit

Sep3_name
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The r e s . t d  is a subprogram to be called after executing the r u n . t d .

Set of command libraries for generating multi-mer protein from monomer

proc loadPDB { pdbinput select} { 

mol load pdb $pdbinput 

set chain [atomselect top "$select"] 

$chain writepdb inputPDB.pdb 

mol delete all

}

proc gen_SEG { pdbinput seglabel 

seg_name } {

mol load pdb Spdbinput 

set chain [atomselect top "segname 

$seglabel"]

$chain set chain $seglabel 

$chain set segname $seglabel 

$chain writepdb seg$seg_name.pdb 

mol delete all

}

proc grep_get {re args out} {

set files [eval glob -types f  $args] 

foreach file $files { 

set fp  [open $file] 

set oo [open $out พ] 

while { [gets $fp line] >= 0} { 
if [regexp -  $re $line] {

if {[llength $files] > 1} {puts 

-nonewline $file:}

puts $line 

puts $oo $line

}
}
close $fp 

close $oo 

}

}

proc cat_File2 { no } {

set new [open "protein.pdb" พ] 

close $new

for { set i 1 } { $i <= $no } { incr i } { 

set oldfile [open "monomer$i.pdb" r] 

set newfile [open "protein.pdb" a+] 

puts -nonewline $newfile [read 

$oldfile]

close $oldfile 

close $newfile 

}

}

proc cat_File { no } {

for { set i 1 } { $i <= $no } { incr i } { 

grep_get "ATOM" "seg$i.pdb" 

"monomer$i.pdb"

}
grep_get "END" "segl.pdb" 

"monomer$i.pdb" 

cat_File2 $i

}

proc prep_File { inputpdb segment} { 

mol load pdb $inputpdb 

foreach ร $segment { 

set seg [atomselect top "segname $s 
and chain $s "]

$seg writepdb seg$S.pdb 

$seg delete

}
mol delete all

}
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Set of command libraries for generating OXY and NIC PsDAs

proc make_Pseudo { no name bound min proc make_Pseudo2 { no name x l y l

max} { min_up max_low } {

set out [open $name.pdb พ] if {$name == "OXY" } {

for { set i 1 } { $i <= $no } { incr i } { mol load pdb $name.pdb

puts $out [format "%s %6d %3s %3s x%4d set a [atomselect top "name $name

%3d.000 %3d.000 %3d.000 0.00 0.00 " and abs(x) > $xl or abs(y) > $yl "]

"ATOM" $i $name $name $i [rand_range $a writepdb 2$name.pdb

[expr -l*$bound] $bound ] [rand_range mol delete all

[expr -l*$bound] $bound ] [rand_range

$min $max ]] mol load pdb 2$name.pdb

} set b [atomselect top "index

close $out < $no "]

} $b set chain 0

proc rand_range { min max } { $b set segname 0

return [expr int(rand() * ($max - $min)) + $b writepdb $name.pdb

$min] mol delete all

} file delete 2$name.pdb

proc catNIC { } {

for { set i 1 } { $i <= 2 } { incr i } {

set oldfile [open "temp$i.pdb" r] } elseif { $name == "NIC" } {

set newfile [open "NICtemp.pdb" a+] mol load pdb $name.pdb

puts -nonewline $newfile [read set a [atomselect top "name $name

$oldfile] and (abs(x) > $xl or abs(y) > $yl) and z >

close $oldfile [expr $min_up - 5 ] "]

close Snewfile $a writepdb 3$name.pdb

}

}

mol delete all

mol load pdb 3$name.pdb 

set b [atomselect top "index < 

[expr $no/2] "]

$b writepdb partl$name.pdb 

mol delete all

mol load pdb $name.pdb 

set a [atomselect top "name 

$name and (abs(x) > $xl or abs(y) > $yl) 

and z < [expr $max_low + 5 ] "]
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$a writepdb 4$name.pdb 

mol delete all

mol load pdb 4$name.pdb 

set b [atomselect top "index < 

[expr $no/2] "]

$b writepdb part2$name.pdb 

mol delete all

grep_get "ATOM"

"partl$name.pdb" "tem pi.pdb"

grep_get "ATOM"

"part2$name.pdb" "temp2.pdb"

}
}

catNIC

mol load pdb NICtemp.pdb 

set all [atomselect top "all"]

$all set chain N 

Sail set segname N 

Sail writepdb NIC.pdb 

mol delete all

file delete NICtemp.pdb 

file delete 2$name.pdb 

file delete 3$name.pdb 

file delete 4$name.pdb 

file delete partl$name.pdb 

file delete part2$name.pdb 

file delete tem pl.pdb 

file delete temp2.pdb
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Set of command libraries for generating protein coordinate, topology files, fix atom 

file and secondary restrain file.

proc gen_Psf {ep l patchepl ep2 patchep2

ep3 patchep3 topo segment} {

package require psfgen

topology $topo

pdbalias residue HIS HSD

pdbalias atom ILE CD1 CD

pdbalias atom HOH O OH2

pdbalias residue HOH TIP3

foreach ร Ssegment { 

segment $s { 

pdb seg$S.pdb 

}
coordpdb seg$S.pdb $s 

# patch GLUP $S:71

foreach i Spatchepl {

patch $epl $S:$i

}

foreach i $patchep2 { 

patch $ep2 $S:$i

}

foreach i $patchep3 {

patch $ep3 $S:$i

}

}

segment K { 

pdb pota.pdb 

}
coordpdb pota.pdb K

segment o  { 

pdb OXY.pdb 

}

proc move2origin { fixatom } {

mol load pdb proteininp.pdb

set all [atomselect top all]

set mov [atomselect top "not name OXY

and not name NIC and not name POT"]

set m [measure center $mov weight mass]

set g [vecinvert $m]

set fix [atomselect top "Sfixatom"]

$mov moveby $g 

Sail set occupancy 0 

Sail set beta 0

Sail writepdb proteininput.pdb 

$fix set beta 1

$all writepdb proteininputfix.pdb 

mol delete all

2___________________________________
proc 2ndrestrain { selected } {

mol new proteininput.psf

mol addfile proteininp.pdb

package require ssrestraints

ssrestraints -psf proteininput.psf -pdb

proteininp.pdb -o extrabonds.txt -sel

Sselected

mol delete all

#exit

}

proc delfile [seg noseg } { 

foreach a $seg { 

puts "seg$a.pdb" 

file delete seg$a.pdb 

}

for { set i 1 } { $i <= $noseg } { incr i

} {
file delete monomer$i.pdb 

file delete seg$i.pdb 

}
file delete tmer$i.pdb
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coordpdb OXY.pdb 0 file delete proteininp.pdb 

file delete protein.pdb 

file delete NIC.pdb

segment N { file delete OXY.pdb

pdb NIC.pdb 

}
coordpdb NIC.pdb N

}

guesscoord

writepdb proteininp.pdb 

writepsf proteininput.psf 

#exit 

}

Set of command libraries for applying the tclBC and generating the bubble.tcl

proc get_psue_id { re args } {

set files [eval glob -types f  $args] 

foreach file $files { 

set fp  [open $file] 

while { [gets $fp line] >= 0} { 

if [regexp -  $re $line] {

if {[llength $files] > 1} [puts -nonewline $file:} 

return [lindex $line 1] 

break

}
}
close $fp

}
1____________________________________________________
proc rest_layer { file  noNIC } { 

set NICid [get_psue_id "NIC" proteininput.pdb]

set OXYid [ get_psue_id "OXY" proteininput.pdb]

set text_file " 

wrapmode cell

# Two first agruments o f calcforces are automatically forwarded

# to it by NAMD. The other 4 arguments match the list o f 4 values

# from command tclBCArgs.
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foreach { xO yO zO } \$lว ubbleCenter { break }

proc calcforces {step unique Rstart Rtarget Rrate K} { 

global xO yO zO ;# defined in tclBCScript{ ... }

# increase R, starting from \$Rstart, by \$Rrate at each step,

# until it reaches \$Rtarget; then keep it constant

set R \[expr \$Rstart + \$Rrate * \$step] 

if { \$R > \$Rtarget} { set R \$Rtarget}

# get the components o f the bubble center vector

if { \$step % 200 == 0} { cleardrops}

# pick atoms o f the given patch one by one 

while { \[nextatom ] } {

set atomid \[getid]

#OXY atom

if { \$atomid > [expr $OXYid -1 ] && \$atomid < $NICid } { 

set rvec \[getcoord] ;# get the atom's coordinates 

foreach { X  y z } \$rvec { break } ;# get components o f the vector 

# find the distance between the atom and the bubble center

# (long lines can be broken by a backslash and continued

# on the next line)

#set rho \texpr sqrt((\$x-$\x0)*(\$x-\$x0) + (\$y-\$y0)*(\$y-\$y0) + \  

#(\$z-\$z0)*(\$z-\$z0))]

set rho \[expr sqrt((\$z-\$z0)*(\$z-\$z0))]

# if the atom is inside the sphere, push it away radially 

set roxy \[expr \$R + 2 ]

if { \$rho > \$roxy } {

#set forceX \[expr -1*\$K * (\$x-\$x0) /  \$rho]

#set forceY \[expr -1*\$K * (\$y-\$y0) /  \$rho] 

set forcez \[expr -1*\$K * (\$z-\$z0) /  \$rho] 

addforce Y'0.0 0.0 \$forceZ\"

} elseif { \$rho < \$R } { 

dropatom

}
} elseif { \$atomid > [expr $NICid -1 ] && \$atomid < [expr $NICid + $noNIC ] } {
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#nic Atom

set rvec \[getcoord] ;# get the atom's coordinates 

foreach { X y z } \$rvec { break } ; 

set rho \[expr sqrt((\$z-\$zO)*(\$z-\$zO))] 

set rnic \[expr \$R - 2 ] 

if { \$rho < \$rnic } {

#set forceX \[expr -1*\$K * (\$x-\$xO) /  \$rho]

#set forceY \[expr -1*\$K * (\$y-\$yO) /  \$rho] 

set forcez \[expr \$K * (\$z-\$zO) /  \$rho] 

addforce Y'0.0 0.0 \$forceZ\"

} elseif { \$rho > \$R } { 

dropatom 

}

} else {

dropatom ;# no longer consider this atom until Y'cleardropsV

}
}
}
II

set fb [open $file พ] 

puts $fb $text_file 

close $fb 

}

Set of command libraries for generating NAMD configuration file.

proc gen_conf { MySystem conf } { 

set text f i le l "

พ # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #  
พ # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #  
พ ## ########ทamd configuration file พ ############### 

structure ./${MySystem}.psf

coordinates 

set ctonnb 

set ctofnb 

set pairdis

./${MySystem}.pdb

9

10 
12

set temperature 310

set outputname ${MySystem}

firsttimestep 0

# # # # # # # # # ##### ########## ######### ######### #### # # # # # # # # # # # # # # #  

## SIMULATION PARAMETERS พ#
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พ ## ################### ######### ######### ###### # # # # # # # # # # # # # # #

# Input

paraTypeCharmm on

parameters paraml9-epr.inp

COMmotion no

temperature \$temperature

# tclBC

td.BC on

tclBCScript \{

set bubbleCenter Y'0.0 0.0 0.0 \"

set tclBCScript buble.tcl

source \$tclBCScript

M

tclBCArgs \{0. 15. .01 5.\}

# Force-Field Parameters

exclude scaled 1-4

l-4scaling 1.0

cutoff \$ctofnb

nonbondedScaling 1.0

switching on

switchdist \$ctonnb

pairlistdist \$pairdis

pairlistsPerCycle 2

margin 0.0

#fixed atom

fixedAtoms on

fixedAtomsForces o ff

fixed Atom ร Fi le ,/${MySystem }f ix. pd b

fixedAtomsCol B

#2nd stcr restraint

extraBonds on

extraBondsFile extrabonds.txt

# Integrator Parameters

timestep 2.0 ;# 2fs/step

rigidBonds all ;# needed for 2fs steps

nonbondedFreq 1

useSettle on

fullElectFrequency 2

stepspercycle 20
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พ ## ############################ ######### ###### # # # # # # # # # # # # # # #

พ# Boundary Conditions พ#

พ ## ############################ ######### ###### # # # # # # # # # # # # # # #

# Periodic Boundary Conditions

cellBasisVectorl 100 0 0

cellBasisVector2 0 100 0

cellBasisVector3 0 0 100

cellOrigin 0.00 0.00 3.87

XSTfile \$outputname

XSTfreq 2000

wrapAll on

พ ## ############################ ######### ###### # # # # # # # # # # # # # # #

พ# EXECUTION SCRIPT พ#

พ ## ################### ######### ######### ###### # # # # # # # # # # # # # # #

# Output 

outputName \$outputname

binaryrestart yes

restartfreq 1000 ;# 500steps = every lps

DCDfreq 500

outputEnergies 500

outputPressure 500

outputtiming 500

พ Minimization

minimize 2000

reinitvels 310

run
II

500000 ะ#! ns 310K

set fb  [ open $conf พ ] 

puts $fb $text_filel

close $fb 

}

To run the script file, type the command:

vmd -dispdev text -e  run.tcl

After executing run.tcl, a total of six output files were generated for the next 

run with NAMD simulation.

proteininput.pdb: a protein coordinate file or p d b  file that serves as the 

initial coordinate of all atoms in the system in the Cartesian coordinate.
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proteininput.psf: the protein structure file or psf file. This file is generally 

used in accompany with the pdb file to run the simulation on NAMD. It tells NAMD 

that which atoms in a pdb file are bonded together.

proteininputfix.pdb: almost similar to the proteininput.pdb. It differs in the 

beta column. The value of 1 is for fixed atoms and 0 for non-fixed atoms.

namd.conf: a NAMD configuration file used in MD simulation.

bubble.tcl: a file containing script commands for maintaining the boundary 

for the movement of NICs and OXYs during the simulation via tclBC (tel boundary 

condition) command. This file is added in the namd.conf.

extrabond.txt: files for restraining the secondary structure of the protein via 

extrabond commands.

To run a simulation, type the following command 

namd2 +p8 namd.conf > namd.out 

proteininput.dcd: an output file containing MD trajectory.

>Main< (runfile) 54 % Is

bubble.tcl

namd

proteininput.coor

proteininput.pdb

proteininput.restart.vel

proteininput.vel

proteininputfix.pdb

extrabonds.txt

paraml9-epr.inp

proteininput.coor.BAK

proteininput.psf

proteininput.restart.vel.old
proteininput.vel.BAK

ทาก sd_all.dat

namd.conf

proteininput

proteininput.dcd

proteininput.restart.coor

proteininput.restartxsc

proteininput.xsc

rmsdall.tcl

namd.out

proteininput.BAK

proteininput.dcd.BAK

proteininput.restart.coor.old

proteininput.restart.xsc.old
proteininput.xsc.BAK

Figure 3.2 Output files from NAMD

3.2 Am ount o f CPU time

3.2.1 The effect o f tclBC and the modification o f bubble.tcl

For a typical calculation of pair interactions, an amount of CPU time in the 

MD simulation depends on the number of atoms. This calculation took a lot of time 

because the bubble.tcl script has to verify whether NICs and OXYs positions are in 

the boundary for every step of simulation.

To speed up the computational performance, the modification of the 

bubble.tcl by incorporating dropotom and cleardrops script commands was 

introduced12. This very differs from the original bubble.tcl because all atoms in pdb 

file will be picked up at the first time and if the current atom is not OXY or NIC that
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atom will not be taken into consideration and assigned as “ dropped atom” . If the 

OXY or NIC are in their layer it will be assigned as dropped atom. All dropped atoms 

will not be picked up to the calculation loop (in tclBC) until the number of step 

reach the number that specified in the deardrops script. The deardrops is always 

used in accompany with the condition loop. For example “ i f  { $step % 200 == 0} { 

deardrops} ” , the bubble.td  executes all atoms in every 200 steps and tclBC can 

omit these dropped atoms during these steps (Figure 3.3). The concept introducing 

the dropped atoms is similar to the neighbor list technique used in MD simulation.

The comparison of the simulation time between the original and the 

modified bubble.td  is shown in Table 3.1. The simulations were carried out for

50,000 steps. The result shows that in case of a total of 300 OXY and NIC atoms the 

total CPU time in modified bubble.tcl is reduced by 39.2 % with respect to the 

original one. And the % CPU time reduction increases as the number of atoms 

increases. The computational efficiency is greater for the system with a larger size 

because there are more omitted atoms in the system. Note that even the % CPU 

time reduction increases, the time of CPU usage in the larger scale is still longer than 

the smaller scale.

TclBC w ithout deardrop and dropatom

•  •  • •  
•  •  • • ะ .  : •  • ะ .  : •

TclBC loop TclBC loop TclBC loop TdBC loop

TdBC loop TclBC loop TclBC loop TdBC loop

•  •  •
® •  • •  • •  • •

9 ®  •  • •  • •  •  •

Step 1 Step 2 Step 3 Step ท1,’

TclBC w ith cleardrop and dropatom

•  •  • • • ® » •

TdBC loop TdBC loop TdBC loop TdBC loop

TclBC loop 

. * •  • .

TclBC loop 

•  •

TclBC loop TdBC loop 

. • •  • .
•  •  • •  •  •

Step 1

Frist cleardrop 
step

Step 2 Step 3 ......  Step ท1,1

Second
cleardrop step

•  Drop atom

•  OXY 

NIC

•  Protein and 
other atom

Figure 3.3 The cartoon represents how the deardrops and dropatom  work. 

The tclBC A. without deardrops and dropatom  commands. All atom in system will 

be considered in tclBC loop every step. B. with the deardrops and dropatom  

command. All atoms will be considered only the step that set as the deardrops step 

and the atom labelled dropatom  will not be considered for the other.
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Table 3.1 The comparison of the simulation time spending.

data tclBC

(bubble.tcl)

Number of 

OXY and NIC 

PsDAs

Time (min) % CPU time 

reduction

1 original 300 4.36 -

2 modified 300 2.65 39.2

3 original 600 6.44 -

4 modified 600 3.21 50.2

5 original 1200 11.29 -

6 modified 1200 3.90 65.5

3.2.2 Number o f OXY and NIC PsDAs.

เท a PaDSAR simulation, there are three groups of atoms in the system. The 

first group is protein atoms. The second is EPs pseudoatoms. And the last group is 

OXY and NIC pseudoatoms. Number of atoms of the first two groups depends on the 

protein size that is a total number of residues used in the calculation, it, therefore, 

remained constant during simulation. Number of OXY and NIC can be varied. Four 

NAMD-PaDSAR simulations were performed by setting the number of OXY and NIC to 

300, 600, 1200 and 2400. This corresponds to the ratio of OXY:NIC: residue of 

0.74:0.74:1, 1.47:1.47:1, 2.94:2.94:1 and 5.88:5.88:1, respectively (total number of 

residues of KcsA = 102 X 4 = 408). Each model were regenerated and re-run for ten 

times.

The averaged RMSD calculated from the last 10 steps for 4 X 10 samples is 

shown in Figure 3.4. The RMSD from the results, all runs gave structure with RMSD 

with respect to the native structure lower than 3Â. This suggests that NAMD-PaDSAR 

does not significantly distort the structure. Comparing overall performance (CPU and 

RMSD results) among these dataset, the simulation with 300 OXY and NIC atoms gave 

the best choice. Therefore 300 atoms will be used in the subsequent test.
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Figure 3.4 The box chart shows the average RMSD of 4 models.

3.2.3 The number o f simulation step.

For the refolding simulation, NAMD-PaDSAR was performed with eight 

distorted KcsA structures. First four datasets were set to 1,000,000 steps (2ns) and the 

last four datasets were performed for 50,000 steps. The RMSD results suggest that 

the protein systems reach equilibrium and are well-behaved. (Figure 3.5 A). It 

appears that the number of step can be set up at 50,000 steps for the simulation to 

reach the equilibrium (Figure 3.5 B).

Figure 3.5 The RMSD for 8 data sets A. 1,000,000 steps B. 50,000 steps.
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3.3 The radial distribution function o f pseudoatoms.

An analysis of radial distribution function (RDF) is a good measure of how well 

the restrained potentials are utilized. เท CHARMM-PaDSAR, three types of Lennard- 

Jones (บ) like interactions were previously introduced. However, due to the 

limitation of NAMD-PaDSAR, only two types of บ  like potentials that are type I and 

type III can be implemented in this study. The type I refers to the favor interaction as 

the EP-type being in the favor environment whereas the type III indicates unflavored 

interaction. The matching pair of pseudoatoms of type I includes EP2-NIC and EP3- 

OXY.For type III, the repulsive interaction potential is computed due to mismatching 

pairs which include the following pair: EP1-OXY, EP2-OXY, EP1-NIC, EP1-OXY, EP1-PVP, 

EP2-PVP and EP3-PVP. It should also be noted that the EP1-PVP interaction which 

was the type II potential in the previous study was computed using the type III 

potential.

The radial distribution function plots of type I show the single sharp peak in 

EP2-NIC and EP3-OXY RDF at roughly 2 Â (black line), indicating that EP2 and EP3 

particles position in the correct surrounding environments (water and lipid 

respectively). เท type III, the RDF plots of EP1-NIC, EP1-OXY, EP2-OXY and EP3-NIC 

revealed a similar pattern (Figure 3.6). No apparent peak found for the RDF of EP1- 

NIC and EP1-OXY suggested that EP1 particles are not accessible by NIC and OXY, 

implying that they are inside the protein. An interpretation for the EP2-OXY and EP3- 

NIC RDF is that no EP2 particles are positioned in the lipid membrane region whereas 

none of EP3 is outside the membrane. เท addition, the evidence of the EP2-PVP and 

EP3-PVP RDF plots revealed that EP2 and EP3 particles are located on the solvent 

exposed surface. A peak at 6 Â in the RDF plot of EP1-PVP, EP2-PVP and EP3-PVP is 

due to the pseudo-bond with a bond-length of 6Â defined the force field. Based on 

the RDF results, one can conclude that the simulation with NAMD-PaDSAR are 

capable of maintaining membrane and non-membrane parts of protein structure with 

the appropriate orientation in both water and membrane environment.
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Figure 3.6 The radial distribution function plot, §(r) black line, and its 

integration, blue line, of nine pairs of pseudoatoms.

3.4 Varying the Improper dihedral force constant (Kimp) o f EPs atom.

According to the concept of PaDSAR, the covalent bond between a EP atom 

and PVP (which is overlaid on top of the a-carbon atom of amino acid residue) is 

defined as a rigid bond. A strong interaction from the บ  potential between OXY or 

NIC and EPs atoms can result in local structure distortion of the protein. The 

improper dihedral angle of EP atoms (Ca-N-CO-EPs) are defined at 0 degree in order 

to keep the EP atom on the N-Ca-CO plane. Apparently, this is not always the case 

for the nitroxide spin as the flexibility of the spin labeled sidechain which consists of

5 rotatable bonds (X1 , X21 X3, X4i and Xs)- Thus, the force constant of this improper

dihedral angle, Kimp has been modified by taking into account the flexibility of the 

nitroxide sidechain. To define the appropriate value of Kimp , five runs of NAMD- 

PaDSAR were performed with different Kimp values corresponding to 10, 25, 55 and 70 

kcal m o l1 rad 2 respectively (Figure 3.7). It appears that the case of Kjmp = 10 kcal 

m o l1 rad2 gives the lowest RMSD in almost all cases even in case of distorted 

protein cannot be refolded back to the native structure (RMSD more than 3.0 Â ).
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Figure 3.7 The RMSD of five samples with varying the improper dihedral force 

constant

To demonstrate the fluctuation of improper dihedral angles caused by 

varying Kimp of the EP atoms in the different environment, amino acid residues of 

KcsA in sample number 4 were classified into water-soluble (WAT), membrane 

(MEM) and water-membrane interfacial (INT) residues (Figure 3.8 and Table 3.2). WAT 

residues are residues that exposed to solution either extracellular or intracellular side 

of the lipid bilayer. With a common representation of membrane protein orientation, 

WAT residues are defined by the z-position in which every atoms of the WAT residue 

are z > 15 or z < -15 from the origin in Â unit. MEM residues are embedded in the 

membrane region where every atoms of MEM residues position -15 > z > 15 Â. INT 

residue is defined in a way that some of residue atoms are located in either water or 

membrane region.

For more deeply details, amino acid residues were distinguished by the 

solvent accessibility (SA) into three groups (Table 3.3), high, medium and low. The 

high group represents the residues that highly exposed to the solvent (SA > 0.51 -1.0) 

and expected that it is the main part of interaction between EP atoms and NIC and 

OXY PsDAs. The medium is the moderately exposed group and the low group is 

almost buried in the structure.
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Table 3.2 Classification of amino acid residues by the position in environments.

Environment Amino acid residue

Solution SER22 ALA23 LEU24 HSD25 GLU51

ARG52 GLY53 ALA54 PR055 GLY56

ALA57 GLN58 ILE60 THR61 VAL84

A L A I11 THR112 TRP113 PHE114 VAL115

GLY116 ARG117 GLU118 GLN119 GLU120

ARG121 ARG122 GLY123 HSD124

Membrane ALA29 GLY30 ALA31 ALA32 THR33

VAL34 LEU35 LEU36 VAL37 ILE38

VAL39 LEU40 LEU41 ALA42 GLY43

SER44 TYR45 LEU46 ALA47 ALA65

LEU66 TRP67 TRP68 SER69 VAL70

GLU71 THR72 ALA73 THR74 THR75

VAL76 GLY77 TYR78 TRP87 GLY88

CYS90 VAL91 ALA92 VAL93 VAL94

VAL95 MET96 VAL97 ALA98 GLY99

1 LE100 THR101 SER102 PHE103 GLY104

LEU105 VAL106 THR107

Interface TRP26 ARG27 ALA28 VAL48 LEU49

ALA50 LEU59 TYR62 PR063 ARG64

GLY79 ASP80 LEU81 TYR82 PR083

THR85 LEU86 ARG89 ALA108 ALA109

LEU110
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Figure 3.8 The cartoon shows classification of amino acid residues into three 

types related with environments and defined by the distance in z direction (Â) form 

the origin coordinate. SOL: solution (z > 15 or z < -15), MEM: membrane (-15< z < 15) 

and INT: interface (residue that overlaps both SOL and MEM).

The results in Figure 3.9 show that the degree of solvent accessibility and the 

position of EP atoms in different environment region do not affect to the fluctuation 

of an improper dihedral angle during the simulation when compare the same value 

of K in each data set and no significantly different between EP atoms located in low, 

medium and high solvent accessibility as same as the EP atoms located in different 

environment region. Contrast with two factors above the variation of K is directly 

effect to fluctuation of EP atoms, 70 (blue), 55 (red), 25(green) and 10 (black) kcal 

mol Vad 2. A low value of K allows a more fluctuation of the EP atoms. It appears 

that refolding of decoy proteins to the native structure is related with the fluctuation 

of the EP atoms. Because of the flexibility of the spin-labeled side chain allowing EP 

atoms to fluctuate might be more capable to explain the real system.
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Table 3.3 Classification of amino acid residues by the solvent accessibility.

Solvent

accessibility

Amino acid residue

Low (0.00-0.20) ALA23 LEU24 HSD25 ALA28 ALA29

ALA32 LEU36 VAL39 LEU40 GLY43

SER44 ALA47 VAL48 ALA50 GLU51

ALA54 ALA57 LEU59 ALA65 TRP67

TRP68 SER69 VAL70 GLU71 THR72

ALA73 THR74 THR75 VAL76 GLY77

TYR78 GLY79 ASP80 LEU81 PR083

GLY88 ARG89 VAL91 ALA92 VAL95

MET96 ALA98 GLY99 ILE100 SER102

PHE103 GLY104 LEU105 VAL106 THR107

ALA108 ALA109 LEU110 A LA I11 THR112

PHE114 VAL115 GLY116 GLU118 GLN119

Medium (0.21 TRP26 GLY30 THR33 VAL37 ALA42

0.50) LEU46 ILE60 THR61 TYR62 ARG64

LEU66 TYR82 VAL84 THR85 CYS90

VAL93 VAL97 THR101 TRP113 ARG117

ARG122 HSD124

High ( 0.51-1.00 ) ARG27 ALA31 VAL34 LEU35 ILE38

LEU41 TYR45 LEU49 ARG52 GLY53

PR055 GLY56 GLN58 PR063 LEU86

TRP87 VAL94 GLU120 ARG121 GLY123
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Figure 3.9 The graph of the improper dihedral angle of EP atoms varying K 

values during the simulation, 70 (blue), 55 (red), 25(green) and 10 (black) kcal m o l1 

rad2 in different positions related with the environment (column) and solvent 

accessibility (row), y-axis is the improper dihedral angle and x-axis is the simulation 

frame.
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3.5 Refolding the decoy to  the native conformation

This test used a set of distorted structures of KcsA as the starting decoy. To 

generate decoy structures, the TM1 and TM2 segments of the KcsA structure were 

forced to distort from its native conformation with RMSD in range of 3 -  13 Â using 

steered MD, giving rise to a total of 524 decoys. For refolding simulation of each 

decoy, NAMD-PaDSAR was performed using the best condition obtained from 

previous section. For each decoy, the refolding simulation was performed for 0.10 ns 

(50,000 steps) after 2000 steps of minimization.

Figure 3.10 shows the initial RMSD (x-axis) versus final RMSD (y-axis) for 524 

decoys. Two shade of background represents the acceptable (orange, RMSD < = 3 Â) 

and unacceptable (blue, RMSD > 3 Â) areas. 433 out of 524 samples or about 82% 

can be refolded back to the native conformation using NAMD-PaDSAR.

D
to

| 3H

91 decoys

433 decoys

6 9

Initial RM SD (A)
12

Figure 3.10 The graph shows the initial and final RMSD of 524 samples and 

the orange shade is the acceptable area for the final RMSD.
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The percent refolding of an individual range were calculated and shown in 

Figure 3.11. เท case of initial RMSD 3 sX < 4 Â, all 68 decoys or 100% can be 

refolded. 4 ร X < 5 Â, 54 out of 62 decoys or 87%. 5 <; X < 6 Â, 54 out of 59 decoys 

or 92%. 6 ร X < 7 À, 56 out of 77 decoys or 72%. 7 ร; X < 8 Â, 53 out of 67 decoys or 

79%, 8 £ X < 9 Â, 94 out of 113 decoys or 83%. 9 <; X < 10 Â, 38 out of 53 decoys or 

72%. 10 4 X < 11 Â, 2 out of 4 decoys or 50%, 11 < 12 A, 6 out of 11 decoys or

55% and 12 ร X < 13 A, 8 out of 10 or 80%. It appears that NAMD-PaDSAR is very 

effective for refolding the decoys that the initial RMSD in range 3 -  6 A and also good 

for 6 -  10 A. Although 10 -13 A is quite good. More data samples are needed.
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Figure 3.11 The bar graph shows the percent refolding. The first column is 

the overall decoys and the others are the percent refolding in an individual range.
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