การขจัดอาร์เซไนต์ อาร์เซเนต และไดเมทิลอาร์เซนิกแอซิดในน้ำเสียด้วยกากตะกอนจากการผลิต น้ำประปา

นางสาวไพรัตน์ ศรีชัยนาท

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเคมี ภาควิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2556 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

REMOVAL OF ARSENITE, ARSENATE AND DIMETHYLARSENIC ACID FROM WASTEWATER BY SLUDGE FROM TAP WATER PRODUCTION

Miss Pairat Srechainate

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in Chemistry

Department of Chemistry

Faculty of Science

Chulalongkorn University

Academic Year 2013

Copyright of Chulalongkorn University

_		_
	_	
-	-	-
=		=
	=	_
Ε		
Ξ	=	≡
=	=	=
Ξ		=
-	_	_
Ξ	_	_
Ξ		=
	-	-

Thesis Title	REMOVAL OF ARSENITE, ARSENATE AND
	DIMETHYLARSENIC ACID FROM WASTEWATER BY
	SLUDGE FROM TAP WATER PRODUCTION
Ву	Miss Pairat Srechainate
Field of Study	Chemistry
Thesis Advisor	Assistant Professor Apichat Imyim, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Dean of the Faculty of Science (Professor Supot Hannongbua, Dr.rer.nat.)

THESIS CON		0	
	Vals	ich Pl	Chairman
(As	ssociate Profe	ssor Vudhichai Pa	arasuk, Ph.D.)
	16-	-ye-	Thesis Advisor
(As	ssistant Profes	ssor Apichat Imyir	n, Ph.D.)
	Morning &	aghandut	Examiner
(As		ssor Narong Praph	
s	(Vipale	s S	Examiner
(Ni	paka Sukpiror Inarvat	n, Ph.D.) Pinnoulu f	External Examiner
(A <u>s</u>	ssistant Profes	ssor Anawat Pinisa	akul, Ph.D.)

ไพรัตน์ ศรีชัยนาท : การขจัดอาร์เซไนต์ อาร์เซเนต และไดเมทิลอาร์เซนิกแอซิดในน้ำ เสียด้วยกากตะกอนจากการผลิตน้ำประปา. (REMOVAL OF ARSENITE, ARSENATE AND DIMETHYLARSENIC ACID FROM WASTEWATER BY SLUDGE FROM TAP WATER PRODUCTION) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ผศ. ดร.อภิชาติ อิ่มยิ้ม, 72 หน้า

กากตะกอนจากการประปานครหลวง (บางเขน, ประเทศไทย) ถูกนำมาใช้เป็นตัวดูดชับ ทางเลือกราคาประหยัดสำหรับการกำจัดอาร์เซไนต์ As(III), อาร์เซเนต As(V) และไดเมทิลอาร์เซ นิกแอชิด (DMA) ในน้ำปนเปื้อนอาร์เซนิก ใช้เทคนิคเอกซเรย์ฟลูออเรสเซนต์ (XRF) และอินตักทีฟ ลีคัปเปิลพลาสมาออฟติคัลสเปกโทรเมตรี (ICP-OES) ในการวิเคราะห์ชนิดและปริมาณของธาตุที่มี อยู่ในกากตะกอน ผลการวิเคราะห์ด้วยเทคนิค ICP-OES บ่งชี้ว่ากากตะกอนนั้นมีปริมาณ อะลูมิเนียมและเหล็กสูงมากที่ 113.8 และ 43.7 มิลลิกรัมต่อกรัมตามลำดับ และผลของเอ็กซเรย์ ดิฟแฟรกชันแสดงโครงสร้างสารประกอบของอะลูมิเนียมและเหล็กในกากตะกอนน่าจะเป็น โครงสร้างอสัณฐาน และค่าพีเอชของสารละลายที่ทำให้ผลรวมของประจุบนผิวของกากตะกอนมี ค่าเป็นศูนย์ (pHpzc) คือค่าพีเอชที่ 6.7 จากการศึกษาการดูดชับในระบบแบชท์ พบว่าค่าพีเอชที่ เหมาะสมในการดูดซับ As(III), As(V) และ DMA คือ 2 และระยะเวลาของการดูดซับที่เข้าสู่สมดุล คือ 12 ชั่วโมง สำหรับการศึกษาจลนศาสตร์ของการดูดชับ พบว่าพฤติกรรมการดูดชับ As(III), As(V) และ DMA เป็นไปตามความสัมพันธ์แบบการดูดซับแบบอันดับสองเทียม ในงานวิจัยนี้ได้ ทำการศึกษาไอโซเทอมของการดูดซับด้วย พบว่าการดูดซับ As(V) เป็นไปตามความสัมพันธ์ของ แบบจำลองของแลงเมียร์ ขณะที่การดูดชับ As(III) และ DMA เป็นไปตามความสัมพันธ์แบบจำลอง ของแลงเมียร์และฟรุนดิช โดยความจุในการดูดชับสูงสุดที่คำนวณได้จากการทดลองของ As(III), As(V) และ DMA เท่ากับ 8.76, 1.89 and 1.78 มิลลิกรัมต่อกรัมตามลำดับ จากนั้นศึกษาผลของ ตัวรบกวนฟอสเฟตและซัลเฟต พบว่าฟอสเฟตส่งผลรบกวนต่อการดูดซับอาร์เซนิก แต่ซัลเฟตไม่ ส่งผลรบกวน เมื่อศึกษาการดูดชับอาร์เซนิกในระบบคอลัมน์ แสดงให้เห็นว่าประสิทธิภาพของการ ดูดชับ As(III) และ DMA ลดลงเมื่อเพิ่มอัตราการไหลของสารละลาย ขณะที่ประสิทธิภาพของการ ดูดชับ As(V) ไม่เปลี่ยนแปลงที่อัตราการไหลของสารละลายระหว่าง 0.5 ถึง 4.0 มิลลิลิตรต่อนาที นอกจากนี้นำกากตะกอนมาใช้ในการกำจัดอาร์เซนิกทั้งหมดในน้ำตัวอย่างจริงที่มีความเข้มข้นของ อาร์เซนิกประมาณ 74 ถึง 77 มิลลิกรัมต่อกรัม และใช้กำจัด As(V) ในน้ำตัวอย่างที่มาจากสระน้ำ จุฬาลงกรณ์มหาวิทยาลัยที่มีการเติมอาร์เซนิก ผลการทดลองทั้งหมดแสดงให้เห็นว่ากากตะกอน จากการประปานครหลวงบางเขนมีประสิทธิภาพที่ดีในการใช้เป็นตัวดูดชับ As(V) ในน้ำ

ภาควิชา เคมี

สาขาวิชา เคมี

ปีการศึกษา 2556

ลายมือชื่อนิสิต โพร์ภษ์ คัรชื่อนายา ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก ไม่ไม # # 5372522823 : MAJOR CHEMISTRY

KEYWORDS: ARSENIC / ADSORPTION / WATER TREATMENT SLUDGE

PAIRAT SRECHAINATE: REMOVAL ARSENITE, ARSENATE OF **AND** DIMETHYLARSENIC ACID FROM WASTEWATER BY SLUDGE FROM TAP WATER PRODUCTION. ADVISOR: ASST. PROF. APICHAT IMYIM, Ph.D., 72 pp.

Sludge of tap water production from the Metropolitan Waterworks Authority (Bangkhen, Thailand) was utilized as alternative low-cost adsorbent for the removal of arsenite (As(III)), arsenate (As(V)) and dimethylarsenic acid (DMA) from contaminated water. The elemental analysis of the sludge was done using Xray fluorescence (XRF) technique and inductively coupled plasma optical emission spectrometry (ICP-OES). The result of ICP-OES indicated that the sludge have high contents of aluminium and iron at 113.8 and 43.7 mg/g, respectively. The XRD result illustrated that the structure of aluminium and iron compounds in the sludge might be amorphous, while the pH of point zero charge of the sludge was 6.7. In the batch study, the optimal pH of As(III), As(V) and DMA solution was 2 and the equilibrium contact time was 12 hours. For the kinetics study, the adsorption behaviours of As(III), As(V) and DMA showed a good compliance with the pseudo-second order kinetics model. The Langmuir and Freundlich adsorption isotherms were also studied, it was found that the adsorption of As(V) fitted to the Langmuir isotherm, while those of As(III) and DMA preferably obeyed both isotherms. The maximum adsorption amounts calculated from experiments of As(V), As(III) and DMA in the batch system were 8.76, 1.89 and 1.78 mg/g. respectively. After that, the effects of phosphate and sulphate anions were evaluated. It was found that phosphate significantly affected the adsorptive ability for arsenic, but sulphate did not interfere in adsorption. In case of the column study, the percent removal of As(III) and DMA decreased with increasing the flow rate of solution, whereas the flow rates of 0.5-4.0 mL/min did not affect the adsorption efficiency of As(V). Furthermore, the sludge was applied to remove total arsenic in contaminated water containing arsenic of around 74-77 mg/L and used for the removal of arsenic from a surface water sample collected from the Chulalongkorn University pond and spiked with As(V). All results showed that the sludge has a good potential to be used as adsorbent for removal As(V) from

water. Department:

Chemistry

Student's Signature ใหร์ตน์ ศรีรัยนภท

Advisor's Signature # Ly

Field of Study: Chemistry

Academic Year: 2013

ACKNOWLEDGEMENTS

For the success of this thesis, I wish to express the highest appreciation and paramount thanks to my advisor, Assistant Professor Dr. Apichat Imyim for his extreme kindness, valuable guidance, understanding and forgiveness for my mistake. In addition, I am also grateful to Associate Professor Dr. Vudhichai Parasuk, Assistant Professor Dr. Narong Praphairaksit, Dr. Nipaka Sukpirom and Assistant Professor Dr. Anawat Pinisakul, for their valuable suggestions and comments as committee members and thesis examiners.

This thesis cannot be completed without kindness and help from many people. Firstly, I would like to thank Assistant Professor Dr. Fuanfa Unob for her suggestion and helps. Next, I would like to thank all people in the Environmental Analysis Research Unit for the friendship and good supports. Furthermore, I would like to thank Miss Warangkana kaodee, Miss Pimpimon anekthirakun and Miss Amornrat saithongdee for their support.

Finally, I am grateful to my family for the education, understanding, love, care, support, and especially for the encouragement they provide me throughout my study.

CONTENTS

	Page
THAI ABSTRACT	iv
ENGLISH ABSTRACT	V
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xii
CHAPTER I INTRODUCTION	4
1.1 Statement of problem	4
1.2 Objective and scope of the research	5
1.3 Benefits of this research	5
CHAPTER II THEORY AND LITERATURE REVIEW	6
2.1 Arsenic	6
2.1.1 Arsenic element	6
2.1.2 Arsenic compounds	6
2.2 Method of removal of arsenic from wastewater	9
2.2.1 Oxidation	9
2.2.2 Coagulation, precipitation and filtration	10
2.2.3 Ion-exchange	10
2.2.4 Reverse osmosis	11
2.2.5 Biological process	11
2.2.6 Adsorption	11
2.3 Adsorption process	12
2.3.1 Adsorption mechanism	12
2.3.2 Physical adsorption or physisorption	13
2.3.3 Chemical adsorption or chemisorption	13
2.4 Adsorption equilibrium and adsorption isotherm	13
2.4.1 Langmuir isotherm	14

	Page
2.4.2 Freundlich isotherm	15
2.4.3 BET Adsorption Isotherm	16
2.5 Adsorption kinetics	17
2.5.1 Pseudo-first order kinetics	17
2.5.2 Pseudo-second order kinetics	17
2.6 Tap water production	19
2.7 Sludge from tap water production (STWP)	20
2.7.1 Sludge treatment	22
2.8 Management of sludge wastes containing arsenic	22
2.8.1 Landfill	22
2.8.2 Incineration	23
2.8.3 Stabilization/solidification (S/S)	23
2.9 Metropolitan waterworks authority, Thailand	23
2.10 Literature review	24
2.10.1Arsenic removal from water by low-cost adsorbent	25
2.10.2Heavy metal and other compound removal from water by sludge	27
CHAPTER III EXPERIMENTAL	30
3.1 Analytical instruments	30
3.2 Chemicals	31
3.3 Preparation of adsorbent	32
3.4 Characterization of sludge	32
3.4.1 Elemental content using ICP-OES	32
3.4.2 Measurement of point of zero charge	33
3.5 Batch study	33
3.5.1 Effect of solution pH	33
3.5.2 Adsorption kinetics	33
3.5.3 Adsorption isotherms	34

			Page
	3.5.4	Effect of competing ions	34
3.6	Colum	nn study	35
	3.6.1	Effect of flow rate	35
	3.6.2	Effect of adsorbent layer height	35
	3.6.3	Breakthrough curve	36
3.7	Applic	cation in real contaminated water samples	36
CHAF	TER IV	RESULTS AND DISCUSSION	37
4.1	Chara	cterization of adsorbent	37
	4.1.1	Surface analysis	38
	4.1.2	Elemental analysis (EA)	38
	4.1.3	X-ray fluorescence spectrometer	39
	4.1.4	Inductively coupled plasma-optical emission spectrometry	39
	4.1.5	X-ray diffractometry (XRD)	40
	4.1.6	Point of zero charge	41
4.2	2 Adsor	ption study by batch method	42
	4.2.1	Effect of pH of arsenic solution	42
	4.2.2	Effect of contact time	44
	4.2.3	Adsorption kinetics	45
	4.2.4	Effect of initial arsenic concentration and adsorption isotherms	49
	4.2.5	Effect of competing ions	54
4.3	B Adsor	ption study by column system	55
	4.3.1	Effect of flow rate	56
	4.3.2	Effect of adsorbent layer height	58
	4.3.3	Breakthrough curve	60
4.4	Applio	cation in real contaminated water samples	61
	4.4.1	Arsenic removal from contaminated water samples	61
	442	Arsenic removal from surface water sample	62

	Page
CHAPTER V CONCLUSION	.64
REFERENCES	.67
VITA	.68

LIST OF TABLES

Table		Page
2.1	Arsenic compounds in the environment	7
3.1	List of instruments	30
3.2	Operational parameters for ICP-OES	31
3.3	List of chemicals	31
3.4	The techniques for characterization of sludge adsorbent	32
4.1	The result of surface analysis of the sludge	38
4.2	Amount of carbon, hydrogen and nitrogen in the sludge	38
4.3	X-ray fluorescence spectrometric result	39
4.4	The elemental analysis result by ICP-OES	40
4.5	Pseudo-first order kinetics constant for adsorption of arsenic	
	on sludge sorbent	47
4.6	Pseudo-second order kinetics constant for adsorption of arsenic	
	on sludge sorbent	47
4.7	Parameters of the Langmuir isotherm for adsorption of arsenic	52
4.8	Parameters of the Freundlich isotherm for adsorption of arsenic	52
4.9	Adsorption amounts of some adsorbent for As(V) adsorption	54
4.10	Effect of flow rate of As(V) adsorption on sludge sorbent	56
4.11	Effect of flow rate of As(III) adsorption on sludge sorbent	57
4.12	Effect of flow rate of DMA adsorption on sludge sorbent	57
4.13	Effect of column height of As(V) adsorption on sludge sorbent	59
4.14	Effect of column height of As(III) adsorption on sludge sorbent	59
4.15	Effect of column height of DMA adsorption on sludge sorbent	59
4.16	The result of arsenic removal in wastewater using batch system	62
4.17	The result of arsenic removal in wastewater using column system	62
4.18	The result of arsenic removal from natural water sample	
	using batch and column systems	63

LIST OF FIGURES

Figure		Page
2.1	Arsenic compounds in water	7
2.2	Arsenic forms of arsenate, arsenite, methylarsenic acid	
	and dimethylarsenic acid at different pH of solution	8
2.3	The phenomenon of adsorption in a monolayer of surface adsorbent	14
2.4	The phenomenon of adsorption in multilayer of surface adsorbent	15
2.5	The linear plot of Brunauer-Emmett-Teller (BET)	17
2.6	(a) pseudo-first order and (b) pseudo-second order kinetics	18
2.7	The picture showed the tap water treatment process	20
2.8	Mechanism of arsenate ligand exchange on the surface of	
	metal oxohydroxides	21
3.1	Photograph of the homemade cylinder column	35
4.1	The sludge from the Metropolitan Waterworks Authority	37
4.2	XRD diffractogram of the sludge	40
4.3	Mass titration curve for the determination of pH _{pzc} of the sludge	41
4.4	Effect of pH on As(III), As(V) and DMA adsorption	43
4.5	Effect of contact time on As(III), As(V) and DMA adsorption	45
4.6	Pseudo-first order kinetics plots of arsenic adsorption	48
4.7	Psedo-second order kinetics plots of arsenic adsorption	48
4.8	The relation between arsenic concentration at equilibrium	
	and adsorption amount of arsenic	51
4.9	Langmuir isotherm plots of of arsenic adsorption.	53
4.10	Freundlich isotherm plots of of arsenic adsorption	53
4.11	Effect of competing ions with various mole ratios of arsenic	55
4.12	Photograph of column system for arsenic removal	56
4.13	Relation between flow rate and the percent removal of arsenic	57
4.14	The relation between the adsorbent layer height and	
	the percent removal of arsenic	60
4.15	Breakthrough curves of arsenic adsorption on column system	61

LIST OF ABBREVIATION

% Percent

°C Degree celsius

μM Microns

g Gram

mg Milligrams

M Molar

mg/L Milligram per litre

mg/g Milligram per gram

L/mg Litre per milligram

min Minutes

L/min Litre per minutes

mL Milliliters

mmol Millimole

nm Nanometers

m²/g Square meter per gram

cm Centimeters

cm²/g Square centimeter per gram

w/w Weigh by weigh