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APPENDIX

Theorem 1. Given a data set Y wused for parameter adjustment of a VEBF, assume

that a data points Y, € Yis uncovered by the closest jlh VEBF, y/(yl:x7, 7, -)),

Ifthe width vector 7=10 [/ [ ee- /17 updated by / =S [/, where
- Y\ + *maxwl and >1, then the data set Y will eventually be covered by the

VEBF 1//(y, :X79 75 7).

Proof

Let r/>\ and maxwl= max(i//(y1, X7, 7, 7))

50, Vy,eY, ill(y. x7, 7, 7)< maxwl

; 2
n ((y' -x/ )/ u//)

: =1<,max.
I=1 (w,’)

Since > 1,

o (v, -X") ul)’

( /)3 =1 <n*max,,
I=1 w;
¢ (o

=1 ( /yjl +rj* maxwl

n ((y’ _i.l)'/'ul/ )2

> 129
t=l (w/ J1+1*max,, )
y/(yLXJ,E 7, 7) <o, where = yll+ *maxuil

By Defnition 1, the data set vy /s5covered if the width vector

isupdated by 7 = ‘Lwhere = Ji+ ry*maxwl.
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Theorem 2. Given a data chunk with samples, the time complexity Tg’gof the

Data-throwaway Learning Streaming Chunk (DLSC) algorithm is O (K +n2),where K

the number of hidden neurons before presenting a data chunk
Proof

Given VEBFNN with K hidden neurons and a data chunk with  samples,

={{X7,/7¥=1} where {\J,tJ}\ the set samples X7 with the class label f7and p

is a small number. Let |x7] denote the number of samples belonging to class label

p
t) and £ | X 7|=«. At lines 1-4, since the since the computational time does not

7=
depend on the number of data, the time taken in these lines is constant and then,
given by Ti1= 9(1).

For each category{X7?7}1if tJis the new class label, then Lines 6-13 are

performed. The time complexity is T2=<9(l) at lines 6. Do While loop at line 7,

the worst case is considered. Because the learning time of CreoteNewNeuron at line

s does not depend on the number of data, the time complexity is (9(1). Thus, the

time complexity of CreoteNewNeuron for all data with p class label s
T3=P<9(1) =<9(1). Then, the updateraram erer at line 10 is executed until X 7is

empty. The worst case is considered. The worst case appears when the size of each
category X7 is reduced by one at a time for parameter update in
Updateporam eter. The function vpdateraram eter contains a subfunction called
FormCoveredData. There are four operations including three computations and one
comparison within this subfunction. The computational time of each operation is
constant. Since the size of the X7is reduced by one at a time for worst case, the

computational time for each operation is given by
AX7D+(XT]-1)+(XT7|-2) +..+2+]1 =~ X 7|+ 1)|X7 |e<9(| X7 [2).Then,

the time for x 7is T4=4x(9(] X7R). Within vpdateraram eter, the worst case

appears when only one datum is used for parameter update given by 1Y 1=1. Then,

the time does not depend on the number of data. The time is (L X 7 1). The time of
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UpdatePorameter in DO'While Ioop iS 0(1X7|2)+0(|X7|2)=0(1X7|2) SO, the
time for new class labelis r2«+ 13+ 14 - 0(1)+0(1)+0(A X7R) =0(] x s P).

If - is the old class label, then Lines 15-31 are performed. As the old class
label, the worst case is considered. Do-While loop at lines 15-23, the worst case
appears when the data X jreduced by one for the data X 7. The computational time

at line 16 is TS= 0(1 X 71).At line 17, the time is Tb: O(K) . For merging process, the
time of worst case is equal to 7, =K + X7\:O{K+\x 1 1). Do-While loop at lines

24-29, the time of worst case is s - 0(1 X 7 R) as the old class label case.

Therefore, the time complexity of the pLSC algorithm for, classes is 7J+ time for

each new class+ time for each old class <7+, (t12+713+74) + p(15 + 76 + r? +7r8)
f p \ p

<0(1) + pom =+ >0(1) + £0(1 X' f) +5;01x: 1D+
\Y 7=

po{k)y+o0(k +v) XTD+O(E[ X7TR)6 0k + v XTR)=0 (xk + 2).
J J J
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