CHAPTER II

PRELIMINARIES

In this chapter, we collect notation and basic results that will be used throughout this research.

2.1 Notation

Let b be a real number and $\rho: \mathbb{R}^n \to (0, \infty)$ be defined by

$$\rho(x) := \left(\ln(e + |x|^2)\right)^b, \quad x \in \mathbb{R}^n.$$

For $n \in \mathbb{N}$, we denote the weighted Lebesgue space on \mathbb{R}^n with weight ρ to be the set

$$L^{\infty,\rho}(\mathbb{R}^n):=\left\{f\colon \mathbb{R}^n\to\mathbb{R}: f \text{ is measuarable and } \|f\|_{L^{\infty,\rho}}<\infty\right\},$$

where $||f||_{L^{\infty,\rho}}$ is the weighted Lebesgue norm on the $L^{\infty,\rho}(\mathbb{R}^n)$ defined by

$$||f||_{L^{\infty,\rho}} = \operatorname{ess \, sup}_{x \in \mathbb{R}^n} \rho(x) \, |f(x)| \, .$$

For convenience, we use $\|\cdot\|_{\rho}$ instead of $\|\cdot\|_{L^{\infty,\rho}}$ and also denote $C(\mathbb{R}^n)$ to be the set of all continuous real-valued functions on \mathbb{R}^n . Finally, we denote

$$L_C^{\infty,\rho}(\mathbb{R}^n) := L^{\infty,\rho}(\mathbb{R}^n) \cap C(\mathbb{R}^n).$$

For any function f and g, the notation $f \lesssim g$ means that there exists a positive constant C such that $f \leq Cg$ at every point in the domain. For any $x \in \mathbb{R}^n$, the Japanese bracket is $\langle x \rangle := \sqrt{1 + |x|^2}$.

2.2 Basic Analysis

In this section, we provide fundamental knowledges that will be used throughout in this work. See [5], [7], [11] for more information.

Theorem 2.1 (Hölder's inequality). Let $1 \le p, q \le \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$. If f and g are measurable functions on a measure space (X, μ) , then

$$\int_X |fg| \, d\mu \le \left(\int_X |f|^p \, d\mu\right)^{\frac{1}{p}} \left(\int_X |g|^q \, d\mu\right)^{\frac{1}{q}}.$$

Theorem 2.2 (Minskowski's inequality). Let $1 \leq p < \infty$ and $f, g \in L^p(X, \mu)$, then

$$\left(\int_{X} |f + g|^{p} d\mu \right)^{\frac{1}{p}} \leq \left(\int_{X} |f|^{p} d\mu \right)^{\frac{1}{p}} + \left(\int_{X} |g|^{p} d\mu \right)^{\frac{1}{p}}.$$

Lemma 2.3. Let $1 \le p < \infty$ and $x, y \in \mathbb{R}$. Then

$$|x|x|^{p-1} - y|y|^{p-1}| \le c_p(|x| \lor |y|)^{p-1}|x - y|.$$

where $c_p = p$ if a and b have the same sign and $c_p = 2^p$ if a and b have different signs.

Theorem 2.4 (Generalized Dominated Convergence Theorem). Let (X, \mathcal{A}, μ) be a measure space and (f_n) a sequence of measurable functions on a measurable subset E of X that converges pointwise a.e. on E to a function f. Suppose there is a sequence g_n of nonnegative measurable functions on E that converges pointwise a.e. on E to g and $|f_n(x)| \leq g_n(x)$ for a.e. $x \in E$ and all $n \in \mathbb{N}$. If $\lim_{n \to \infty} \int_E g_n = \int_E g < \infty$ then $\lim_{n \to \infty} \int_E f_n = \int_E f$.

Theorem 2.5 (Weierstrass M-test). Suppose that $(X, \|\cdot\|)$ is a Banach space, (Y, d) is a metric space, for each $n \in \mathbb{N}$, $f_n : Y \to X$, and there exists a sequence of positive real number $\{M_n\}_n^{\infty}$ satisfying;

$$\sup_{y \in Y} \|f_n(y)\| \le M_n \quad \forall n \in \mathbb{N}$$

and
$$\sum_{n=1}^{\infty} M_n < \infty$$
. Then $S_N(y) := \sum_{n=1}^N f_n(y)$ converges absolutely and uniformly to $S(y) := \sum_{n=1}^{\infty} f_n(y)$. Moreover, if $f_n \in C(Y, X)$ for all $n \in \mathbb{N}$, then $S \in C(Y, X)$.

Theorem 2.6 (Banach Fixed Point Theorem). Let X be a complete metric space with the metric d. Let $A: X \to X$ be a map. If A is strictly contractive on X, i.e. there exists a constant 0 < k < 1 such that $d(Ax, Ay) \le kd(x, y)$, for all $x, y \in X$. Then A has a unique fixed point.

2.3 Uniformly Continuous Semigroups

Definition 2.7. [11] Let X be a Banach space. A family $\{\mathcal{G}(t)\}_{t\geq 0}$ of bounded linear operators from X into X is a *semigroup* if

- 1. $\mathcal{G}(0) = id_X$
- 2. $\mathcal{G}(t+s) = \mathcal{G}(t)\mathcal{G}(s)$ for every $t, s \ge 0$.

Definition 2.8. [11] A semigroup of bounded linear operators $\{\mathcal{G}(t)\}_{t\geq 0}$ on a Banach space X is uniformly continuous if

$$\lim_{t\to 0^+}\|\mathcal{G}(t)-id_X\|=0.$$

where $\|\cdot\|$ is the operator norm of bounded linear operators on X.

Lemma 2.9. [11] Let $\{\mathcal{G}(t)\}_{t\geq 0}$ be a uniformly continuous semigroup of bounded linear operators on a Banach space X. Then we have for any $s,t\geq 0$ that

$$\lim_{t\to s}\|\mathcal{G}(t)-\mathcal{G}(s)\|=0.$$

Proof. Let $s, t \ge 0$. Assume $s \le t$. Then

$$\lim_{t \to s^{+}} \|\mathcal{G}(t) - \mathcal{G}(s)\| = \lim_{t \to s^{+}} \|\mathcal{G}((t-s)+s) - \mathcal{G}(s)\|$$

$$= \lim_{t \to s^{+}} \|\mathcal{G}(s)\mathcal{G}(t-s) - \mathcal{G}(s)\|$$

$$= \lim_{t \to s^{+}} \|\mathcal{G}(s)\left(\mathcal{G}(t-s) - id_{X}\right)\|$$

$$= 0,$$

because $\|\mathcal{G}(s)\| \leq \infty$ and $\|\mathcal{G}(t-s) - id_X\| \to 0$ as $t \to s^+$. So, the proof is complete.

Example 2.10. [11] Let X be a Banach space and $A: X \to X$ is a bounded linear operator. Then

$$\left\{ \mathcal{G}(t) = e^{tA} = \sum_{n=1}^{\infty} \frac{(tA)^n}{n!} : t \ge 0 \right\}$$

is a uniformly continuous semigroup of bounded linear operators on X.