CHAPTER II
PRELIMINARIES

In this chapter, we collect notation and hasic results that will be used through-
out this research.

2.1 Notation

Let 6be a real number and p: R" —»(0. 00) be defined by
p(x) = (In(e + I12)61 XGR”.

For  GN, we denote the weighted Lebesgue space on Rn with weight p to be the
Set

L°D( ) {/: R” =»R:[ is measuarable and 1U/ILQ), < oo},
where II1LOD, is the weighted Lebesgue norm on the L°°,p( ) defined by

1WMlioop = ess R {X) [/(x)] .

For convenience, we use ||| instead of ||-|L0p and also denote C(Rn) to be the
set of all continuous real-valued functions on IRn. Finally, we denote

L™p{ ) = Lxp{ ) C(Rn)

For any function / and glthe notation / < g means that there exists a positive
constant ¢ such that / < Cg at every point in the domain. For any x GR”, tne
Japanese bracketis (x) J 1+ |r|2,



2.2 Basic Analysis

In this section, we provide fundamental knowledges that will be used through-
out in this work. See [5], [7], [11] for more information.

Theorem 2.1 (Holder’s inequality). Let 1< ,q< 00 with —+ =L Iff and
g are measurable functions on a measure space (X,p), then

J Ifg)\ a< (J \f\irdp] p (J \Q\qdp?yj "

Theorem 2.2 (Minskowski’s inequality). Let 1< p < oo and f.,g£ Lp(X,p),

6 (iR

Lemma 2.3. Let I<p<ooandi,yER . Then

WMP1- ylyf 1 < Cofw\ VIy)p1\x- y\
where G —p ifa and b have the same sign and G = 2P if a and b have different
Signs.

Theorem 2.4 (Generalized Dominated Convergence Theorem). Let (X,A,p) be
a measure space and (/,) a sequence of measurable functions on a measurable
subset E of X that converges pointwise a. on E to afunction f . Suppose there is
a sequence gn of nonnegative measurable functions on E that converges pointwise
ae.onE togand |/n(@) < gn(x) for ae. XGE andall €N. If limj gn=

769 <00 then Ai%e fn —J(/e /.

Theorem 2.5 (Weierstrass M-test). Suppose that (X. -) is a Banach space,
(Y,d) is a metric space, for each € N, fn:Y —X, and there exists a sequence
of positive real number {Mn}* satisfying;

%9 In(y)ll Vn6 N



and \"M n<oo. Then Sn(v):=  fn(y) converges absolutely and uniformly to

n=1

S(y) := i/”(y). Moreover, iffn 6 C(Y,X) for all e N, then € C(Y, X).

n=1

Theorem 2.6 (Banach Fixed Point Theorem). Let X be a complete metric Space
with the metric d. Let A :X —X beamap. IfA isstrictly contractive on X, 1.
there exists a constant 0 < k < L such that d(Ax,Ay) <kd(x,y), forall Xy £ X.
Then A has a unique fixed point.

2.3 Uniformly Continuous Semigroups

Definition 2.7. [l1] Let X be a Banach space. A family {G(t)}t>0 of bounded
linear operators from X into A isa semigroup if

L G(0) =idx
2. G(t +s) —G(t)G(s) for every t, >0.
Definition 2.8. [11] A semigroup of bounded linear operators {G(t)}t>0 on a
Banach space X is uniformly continuous if
figg, MIG(t) - idx 1= 0

where I- Il is the operator norm of bounded linear operators on X.



/

Lemma 2.9. [11] Let {G(t)}t>0 be a uniformly continuous semigroup of bounded
linear operators on a Banach space X. Then we have for any ,t> 0 that

lim\Q(t) —£( ) =0
Proof. Lets.t >0. Assume <t Then

hm IG(t) - G( )I= hm IG((t- )+ )- ()
= hm \G)G{t- )- G{)I
=(m AC)(Cft- )- idx) I
-0

because \G( )l < oo and IG(t - ) —idxl = 0ast — + So, the proof is
complete. [

Example 2.10. [11] Let X be a Banach space and A : X —>X is a bounded
linear operator. Then

jew :e'AtA!Y t>0

is a uniformly continuous semigroup of bounded linear operators on X .
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