CHAPTER III

MAIN RESULTS

This section derives an explicit formula for conditional expectations of a product of a P-EA transform of ECIR process with parameters $\gamma, \alpha, \beta \in \mathbb{R}$ and $\gamma \in \mathbb{N} \cup\{0\}$. Furthermore, the result is simplified to the standard CIR model with constants κ, θ and σ.

In this work, the assumption of Maghsoodi is assumed to guarantee that $r_{t} \geq 0$ for all $t \in[0, \infty)$, which is stated as follow.

Assumption The parameter functions $\theta(t), \kappa(t)$ and $\sigma(t)$ are positive and continuous on $[0, T]$ such that the dimension parameters $\delta(t):=\frac{4 \theta(t) \kappa(t)}{\sigma^{2}(t)}$ of the ECIR process (1.3) is bounded and $\delta(t) \geq 2$ for all $t \in[0, T]$.

3.1 ECIR process

Theorem 3.1. Suppose that V_{t} follows the ECIR process (1.3) with $\gamma, a, \beta \in \mathbb{R}$. Assume that the Assumption holds and let

$$
\begin{equation*}
U_{E}^{(\gamma, \alpha, \beta)}(v, \tau):=\mathbb{E}^{\mathbb{P}}\left[V_{T}^{\gamma} e^{\alpha V_{T}+\beta} \mid V_{t}=v\right] \tag{3.1}
\end{equation*}
$$

for $v>0$ and $\tau=T-t \geq 0$. Then,

$$
\begin{equation*}
U_{E}^{(\gamma, \alpha, \beta)}(v, \tau)=\sum_{k=0}^{\infty} A_{\gamma-k}(\tau) v^{\gamma-k} e^{B(\tau) v+\beta} \tag{3.2}
\end{equation*}
$$

given that the series converges, where

$$
\begin{equation*}
A_{\gamma}(\tau)=\exp \left[\int_{0}^{\tau}\left(\gamma \sigma^{2}(T-u) B(u)+\kappa(T-u) \theta(T-u) B(u)-\gamma \kappa(T-u)\right) d u\right](3 \tag{3.3}
\end{equation*}
$$

and for $k \in \mathbb{N}$,

$$
\begin{align*}
A_{\gamma-k}(\tau)= & \exp \left[\int_{0}^{\tau} Q_{\gamma-k}(T-u) d u\right] \times \\
& \int_{0}^{\tau} \exp \left[-\int_{0}^{s} Q_{\gamma-k}(T-u) d u\right] P_{\gamma-k+1}(T-s) A_{\gamma-k+1}(s) d s \tag{3.4}
\end{align*}
$$

where

$$
\begin{align*}
P_{\gamma-k+1}(\tau) & =(\gamma-k+1)\left[\frac{1}{2}(\gamma-k) \sigma^{2}(\tau)+\kappa(\tau) \theta(\tau)\right] \tag{3.5}\\
Q_{\gamma-k}(\tau) & =(\gamma-k) \sigma^{2}(\tau) B(T-\tau)+\kappa(\tau) \theta(\tau) B(T-\tau)-(\gamma-k) \kappa(\tau) \tag{3.6}
\end{align*}
$$

and

$$
\begin{equation*}
B(\tau)=\frac{\alpha \exp \left[-\int_{0}^{\tau} \kappa(T-u) d u\right]}{1-\alpha \int_{0}^{\tau} \frac{1}{2} \sigma^{2}(T-s) \exp \left[-\int_{0}^{s} \kappa(T-u) d u\right] d s} \tag{3.7}
\end{equation*}
$$

Proof By the definition of (3.1), $U_{E}^{(\gamma, \alpha, \beta)}(\gamma, \tau)$ is the conditional expectations of a PEA transform under the ECIR process of V_{t}. By applying the Feynman-Kac Theorem. we are seeking for the solution in the form

$$
\begin{equation*}
U:=U_{E}^{(\gamma, \alpha, \beta)}(v, \tau)=\sum_{k=0}^{\infty} A_{\gamma-k}(\tau) v^{\gamma-k} e^{B(\tau) v+\beta}, \tag{3.8}
\end{equation*}
$$

which satisfies the corresponding PDE

$$
\begin{align*}
0= & \frac{\partial U}{\partial t}+\frac{1}{2} \hat{\sigma}^{2}(t, v) \frac{\partial^{2} U}{\partial v^{2}}+\hat{\mu}(t, v) \frac{\partial U}{\partial v} \\
= & -\frac{\partial U}{\partial \tau}+\frac{1}{2} \sigma^{2}(T-\tau) v \frac{\partial^{2} U}{\partial v^{2}}+\kappa(T-\tau)[\theta(T-\tau)-v] \frac{\partial U}{\partial v} \\
= & -e^{B(\tau) v+\beta} \sum_{k=0}^{\infty}\left[\frac{d}{d \tau} A_{\gamma-k}(\tau) v^{\gamma-k}+\frac{d}{d \tau} B(\tau) A_{\gamma-k}(\tau) v^{\gamma-k+1}\right] \\
& +\frac{1}{2} \sigma^{2}(T-\tau) v e^{B(\tau) v+\beta} \sum_{k=0}^{\infty}\left[A_{\gamma-k}(\tau)(\gamma-k)(\gamma-k-1) v^{\gamma-k-2}\right. \\
& \left.+2 B(\tau) A_{\gamma-k}(\tau)(\gamma-k) v^{\gamma-k-1}+B^{2}(\tau) A_{\gamma-k}(\tau) v^{\gamma-k}\right] \\
& +\kappa(T-\tau)[\theta(T-\tau)-v] \times \\
& e^{B(\tau) v+\beta} \sum_{k=0}^{\infty}\left[A_{\gamma-k}(\tau)(\gamma-k) v^{\gamma-k-1}+B(\tau) A_{\gamma-k}(\tau) v^{\gamma-k}\right] . \tag{3.9}
\end{align*}
$$

From (3.1) with condition at $\tau=0$, we get the terminal condition $U_{E}^{(\gamma, \alpha, \beta)}(v, 0)=$ $v^{\gamma} e^{\alpha v+B}$. To solve (3.9), we need the conditions on A and B, which are obtained via the terminal condition,

$$
\begin{equation*}
B(0)=\alpha, \quad A_{\gamma}(0)=1 \quad \text { and } \quad A_{\gamma-k}(0)=0 \tag{3.10}
\end{equation*}
$$

when $k \in \mathbb{N}$.
Since $e^{B(\tau) v+\beta}>0$, the PDE in (3.9) is simplified to

$$
\begin{align*}
0= & -\sum_{k=0}^{\infty}\left[\frac{d}{d \tau} A_{\gamma-k}(\tau) v^{\gamma-k}+\frac{d}{d \tau} B(\tau) A_{\gamma-k}(\tau) v^{\gamma-k+1}\right] \tag{3.11}\\
& +\frac{1}{2} \sigma^{2}(T-\tau) v \sum_{k=0}^{\infty}\left[A_{\gamma-k}(\tau)(\gamma-k)(\gamma-k-1) v^{\gamma-k-2}\right. \\
& \left.+B(\tau) A_{\gamma-k}(\tau)(\gamma-k) v^{\gamma-k-1}+B(\tau) A_{\gamma-k}(\tau)(\gamma-k) v^{\gamma-k-1}+B^{2}(\tau) A_{\gamma-k}(\tau) v^{\gamma-k}\right] \\
& +\kappa(T-\tau)[\theta(T-\tau)-v] \sum_{k=0}^{\infty}\left[A_{\gamma-k}(\tau)(\gamma-k) v^{\gamma-k-1}+B(\tau) A_{\gamma-k}(\tau) v^{\gamma-k}\right]
\end{align*}
$$

Collecting the coefficients of power of v, we set

$$
\begin{align*}
0= & {\left[-\frac{d}{d \tau} B(\tau) A_{\gamma}(\tau)+\frac{1}{2} \sigma^{2}(T-\tau) B^{2}(\tau) A_{\gamma}(\tau)-\kappa(T-\tau) B(\tau) A_{\gamma}(\tau)\right] v^{\gamma+1} } \\
& +\left[-\frac{d}{d \tau} A_{\gamma}(\tau)-\frac{d}{d \tau} B(\tau) A_{\gamma-1}(\tau)+\frac{1}{2} \sigma^{2}(T-\tau) B(\tau) A_{\gamma}(\tau)(\gamma)\right. \\
& +\frac{1}{2} \sigma^{2}(T-\tau) B(\tau) A_{\gamma}(\tau)(\gamma)+\frac{1}{2} \sigma^{2}(T-\tau) B^{2}(\tau) A_{\gamma-1}(\tau) \\
& \left.+\kappa(T-\tau) \theta(T-\tau) B(\tau) A_{\gamma}(\tau)-\kappa(T-\tau) A_{\gamma}(\tau)(\gamma)-\kappa(T-\tau) B(\tau) A_{\gamma-1}(\tau)\right] v^{\gamma} \\
& +\sum_{k=2}^{\infty}\left[-\frac{d}{d \tau} A_{\gamma-k+1}(\tau)-\frac{d}{d \tau} B(\tau) A_{\gamma-k}(\tau)\right. \\
& +\frac{1}{2} \sigma^{2}(T-\tau) A_{\gamma-k+2}(\tau)(\gamma-k+2)(\gamma-k+1) \\
& +\sigma^{2}(T-\tau) B(\tau) A_{\gamma-k+1}(\tau)(\gamma-k+1)+\frac{1}{2} \sigma^{2}(T-\tau) B^{2}(\tau) A_{\gamma-k}(\tau) \\
& +\kappa(T-\tau) \theta(T-\tau) A_{\gamma-k+2}(\tau)(\gamma-k+2)+\kappa(T-\tau) \theta(T-\tau) B(\tau) A_{\gamma-k+1}(\tau) \\
& \left.-\kappa(T-\tau) A_{\gamma-k+1}(\tau)(\gamma-k+1)-\kappa(T-\tau) B(\tau) A_{\gamma-k}(\tau)\right] v^{\gamma-k+1} . \tag{3.12}
\end{align*}
$$

Considering (3.12) as a power series of v, we obtain the followings.
(i) The coefficient function of $v^{\gamma+1}$ can be written as a deterministic PDE

$$
\begin{equation*}
\frac{d}{d \tau} B(\tau)=\frac{1}{2} \sigma^{2}(T-\tau) B^{2}(\tau)-\kappa(T-\tau) B(\tau) \tag{3.13}
\end{equation*}
$$

whose solution according to the condition of B in (3.10) is

$$
\begin{equation*}
B(\tau)=\frac{\alpha \exp \left[-\int_{0}^{\tau} \kappa(T-u) d u\right]}{1-\alpha \int_{0}^{\tau} \frac{1}{2} \sigma^{2}(T-s) \exp \left[-\int_{0}^{s} \kappa(T-u) d u\right] d s} \tag{3.14}
\end{equation*}
$$

(ii) Using the coefficient of v^{γ}, we obtain functional relationship between $A_{\gamma}(\tau)$, $A_{\gamma-1}(\tau)$ and $B(\tau)$ as

$$
\begin{align*}
\frac{d}{d \tau} A_{\gamma}(\tau)= & -\frac{d}{d \tau} B(\tau) A_{\gamma-1}(\tau) \\
& +\frac{1}{2} \sigma^{2}(T-\tau) B(\tau) A_{\gamma}(\tau)(\gamma)+\frac{1}{2} \sigma^{2}(T-\tau) B(\tau) A_{\gamma}(\tau)(\gamma) \\
& +\frac{1}{2} \sigma^{2}(T-\tau) B^{2}(\tau) A_{\gamma-1}(\tau)+\kappa(T-\tau) \theta(T-\tau) B(\tau) A_{\gamma}(\tau) \\
& -\kappa(T-\tau) A_{\gamma}(\tau)(\gamma)-\kappa(T-\tau) B(\tau) A_{\gamma-1}(\tau) \tag{3.15}
\end{align*}
$$

Using (3.14) and initial condition on A_{γ} in (3.10) yields

$$
\begin{equation*}
A_{\gamma}(\tau)=\exp [\int_{0}^{\tau}(\gamma \sigma^{2}(T-\underbrace{u) B(u)}+\kappa(T-u) \theta(T-u) B(u)-\gamma \kappa(T-u)) d u] \tag{3.16}
\end{equation*}
$$

(iii) Similarly, using (3.12) and initial conditions on $A_{\gamma-k}$ in (3.10), the coefficients of $v^{\gamma-k+1}$ for $k \in\{2,3,4, \ldots\}$, give

$$
\begin{equation*}
\frac{a^{\prime}}{d \tau} A_{\gamma-k+1}(\tau)=Q_{\gamma-k+1}(T-\tau) A_{\gamma-k+1}(\tau)+P_{\gamma-k+2}(T-\tau) A_{\gamma-k+2}(\tau) \tag{3.17}
\end{equation*}
$$

where

$$
\begin{align*}
P_{\gamma-k+2}(\tau)= & (\gamma-k+2)\left[\frac{1}{2}(\gamma-k+1) \sigma^{2}(\tau)+\kappa(\tau) \theta(\tau)\right] \text { and } \tag{3.18}\\
Q_{\gamma-k+1}(\tau)= & (\gamma-k+1) \sigma^{2}(\tau) B(T-\tau)+\kappa(\tau) \theta(\tau) B(T-\tau) \tag{3.19}\\
& -(\gamma-k+1) \kappa(\tau)
\end{align*}
$$

This gives the solutions in the form

$$
\begin{align*}
A_{\gamma-k+1}(\tau)= & \exp \left[\int_{0}^{\tau} Q_{\gamma-k+1}(T-u) d u\right] \int_{0}^{\tau}\left(\exp \left[-\int_{0}^{s} Q_{\gamma-k+1}(T-u) d u\right] \times\right. \\
& \left.P_{\gamma-k+2}(T-s) A_{\gamma-k+2}(s)\right) d s \tag{3.20}
\end{align*}
$$

as required.
Remark 3.2. Note that $B(\tau)$ is unbounded if

$$
\begin{equation*}
\mu(\tau):=\int_{0}^{\tau} \frac{1}{2} \sigma^{2}(T-s) \exp \left[-\int_{0}^{s} \kappa(T-u) d u\right] d s=\frac{1}{\alpha} \tag{3.21}
\end{equation*}
$$

Since $\mu(\tau)$ is an increasing function in τ with $\mu(0)=0$, then $B(\tau)$ is bounded given that $\tau \in(0, T]$ where $\mu(T)<\frac{1}{\alpha}$. Therefore, if $\alpha<\mu(T)$, then it guarantees that $B(\tau)$ is bounded for all $\tau \in[0, T]$.

Remark 3.3. The result of the Theorem 3.1 can produce the same result of Rujivan [11] for $\mathbb{E}^{\mathbb{P}}\left[V_{T}^{\gamma} \mid V_{t}=v\right]$ when α and β are set to be 0 in (3.1).

The following corollary describes a consequence that is deduced from Theorem 3.1 when $\gamma=1-\frac{2 \kappa(\tau) \theta(\tau)}{\sigma^{2}(\tau)}$, the explicit form is reduced into the closed-form as shown in the following corollary.

Corollary 3.4. Suppose that V_{t} follows the ECIR process (1.3) where $\gamma, \alpha, \beta \in \mathbb{R}$ and γ satisfies

$$
\begin{equation*}
\gamma=1-\frac{2 \kappa(\tau) \theta(\tau)}{\sigma^{2}(\tau)} \tag{3.22}
\end{equation*}
$$

for all $\tau \geq 0$. Then, (3.2) is reduced into the form
$U_{E}^{(\gamma, \alpha, \beta)}(v, \tau)=$
$\exp \left[B(\tau) v+\beta+\int_{0}^{\tau}\left(\gamma \sigma^{2}(T-u) B(u)+\kappa(T-u) \theta(T-u) B(u)-\gamma \kappa(T-u)\right) d u\right] v^{\gamma}$.
Proof It is obvious from (3.5) when $k=1$ that $P_{\gamma}=0$ if $\gamma=1-\frac{2 \kappa(\tau) \theta(\tau)}{\sigma^{2}(\tau)}$ for all $\tau \geq 0$. Therefore, (3.4) implies $A_{\gamma-k}(\tau)=0$ for all $k \in \mathbb{N}$, and the remaining term of (3.2) is A_{γ}.

The result of Theorem 3.1 can be simplified into a finite sum in the case when γ is a non-negative integer, as stated in the following result.

Theorem 3.5. Suppose that V_{t} follows the ECIR process (1.3) with $\alpha, \beta \in \mathbb{R}$. Let n be a non-negative integer. Then,

$$
\begin{equation*}
U_{E}^{(n, \alpha, \beta)}(v, \tau)=e^{B(\tau) v+\beta} \sum_{j=0}^{n} A_{j}(\tau) v^{j}, \tag{3.24}
\end{equation*}
$$

where

$$
\begin{align*}
A_{n}(\tau)= & \exp \left[\int_{0}^{\tau}\left(n \sigma^{2}(T-u) B(u)+\kappa(T-u) \theta(T-u) B(u)-n \kappa(T-u)\right) d u\right], \\
A_{j}(\tau)= & \exp \left[\int_{0}^{\tau} Q_{j}(T-u) d u\right]\left(\int _ { 0 } ^ { \tau } \left(\exp \left[-\int_{0}^{s} Q_{j}(T-u) d u\right] \times\right.\right. \tag{3.25}\\
& \left.\left.P_{j+1}(T-s) A_{j+1}(s)\right) d s\right), \tag{3.26}\\
P_{j+1}(\tau)= & (j+1)\left[\frac{1}{2} j \sigma^{2}(\tau)+\kappa(\tau) \theta(\tau)\right] \text { and } \tag{3.27}\\
Q_{j}(\tau)= & j \sigma^{2}(\tau) B(T-\tau)+\kappa(\tau) \theta(\tau) B(T-\tau)-j \kappa(\tau), \tag{3.28}
\end{align*}
$$

for $j \in\{1,2,3, \ldots, n-1\}$, and $B(\tau)$ is given by (3.7). In addition. $U_{E}^{(n, \alpha, \beta)}(v, \tau)$ is strictly increasing with respect to v for any $\tau>0$.

Proof From the result of Theorem 3.1, let $\gamma=n$ be a non-negative integer when $k=n+1$, (3.5) gives $P_{0}(\tau)=0$. Therefore, from (3.4), we get $A_{-1}(\tau)=0$. Similarly, by setting $k=n+2, n+3, n+4, \ldots$, we obtain recursively $A_{-2}(\tau)=0, A_{-2}(\tau)=0, \ldots$. respectively. Thus, (3.2) is reduced to a finite sum in the form

$$
\begin{equation*}
U_{E}^{(n, \alpha, \beta)}(v, \tau)=e^{B(\tau) v+\beta} \sum_{k=0}^{n} A_{n-k}(\tau) v^{n-k} . \tag{3.29}
\end{equation*}
$$

Setting $k=n-j$. the sum (3.29) can be rewritten as

$$
\begin{equation*}
U_{E}^{(n, \alpha, \beta)}(u, \tau)=e^{B(\tau) v+\beta} \sum_{j=0}^{n} A_{j}(\tau) v^{j}, \tag{3.30}
\end{equation*}
$$

where the indexes of $A_{\gamma}(\tau), A_{\gamma-k}(\tau), P_{\gamma-k+1}(\tau)$ and $Q_{\gamma-k}$ in (3.3)-(3.6) become $A_{n}(\tau)$, $A_{j}(\tau), P_{j+1}(\tau)$ and Q_{j} as shown in (3.25)-(3.28), respectively.

Furthermore, since from (3.27) $P_{j+1}(\tau)>0$ for all $\tau>0$, and (3.25) and (3.26) guarantee that $A_{j}(\tau)>0$ for $j \in\{0,1,2, \ldots, n\}$, we can conclude that, $U_{E}^{(n, \alpha, \gamma)}(v, \tau)$ is strictly increasing with respect to v for $\tau>0$ and $v>0$.

Calculations of the expectation (1.7) when $\kappa(t), \theta(t)$ and $\sigma(t)$ are constants for all $0 \leq t \leq T$, the ECIR model (1.3) reduces to the CIR model (1.2) as stated in Theorems 3.6 and 3.8.

3.2 CIR process

Theorem 3.6. Suppose that V_{t} follows the CIR process with $\kappa(t)=\kappa, \theta(t)=\theta$ and $\sigma(t)=\sigma$. Let $\gamma, \alpha, \beta \in \mathbb{R}$. Then,

$$
\begin{align*}
U_{C}^{(\gamma, \alpha, \beta)}(v, \tau):= & \mathbb{E}^{\mathbb{P}}\left[V_{T}^{\gamma} e^{\alpha V_{T}+\beta} \mid V_{t}=v\right] \\
= & \exp \left[\frac{2 \alpha \kappa}{\alpha \sigma^{2}+e^{\kappa \tau}\left(2 \kappa-\alpha \sigma^{2}\right)} v+\beta+\gamma \kappa \tau+\frac{2 \theta \kappa^{2} \tau}{\sigma^{2}}\right] \times \\
& \left(\frac{2 \kappa}{\alpha \sigma^{2}+e^{\kappa \tau}\left(2 \kappa-\alpha \sigma^{2}\right)}\right)^{\frac{2}{\sigma^{2}}\left(\imath \sigma^{2}+\kappa \theta\right)} v^{\gamma} \\
& +\sum_{k=1}^{\infty}\left\{\exp \left[\frac{2 \alpha \kappa}{\alpha \sigma^{2}+e^{\kappa \tau}\left(2 \kappa-\alpha \sigma^{2}\right)} v+\beta+(\gamma-k) \kappa \tau+\frac{2 \theta \kappa^{2} \tau}{\sigma^{2}}\right] \times\right. \\
& \left.\left(\prod_{m=1}^{k} \bar{P}_{\gamma-m+1}\right)\left(\frac{e^{\kappa \tau}-1}{\alpha \sigma^{2}+e^{\kappa \tau}\left(2 \kappa-\alpha \sigma^{2}\right)}\right)^{k}\right\}_{v} \gamma-k, \tag{3.31}
\end{align*}
$$

where

$$
\begin{equation*}
\bar{P}_{\gamma-m+1}=(\gamma+1)\left(\frac{1}{2}(\gamma-m) \sigma^{2}+\kappa \theta\right) \tag{3.32}
\end{equation*}
$$

when $m \in\{1,2, \ldots, k\}$.

Proof From (3.3)-(3.7), when $\kappa(t), \theta(t)$ and $\sigma(t)$ are constants, (3.7) can be written as

$$
\begin{align*}
\bar{B}(\tau) & =\alpha \exp \left[-\int_{0}^{\tau} \kappa d u\right]\left[1-\alpha \int_{0}^{\tau} \frac{1}{2} \sigma^{2} \exp \left[-\int_{0}^{s} \kappa d u\right] d s\right]^{-1} \tag{3.33}\\
& =\frac{2 \alpha \kappa}{\alpha \sigma^{2}+e^{\kappa \tau}\left(2 \kappa-\alpha \sigma^{2}\right)} \tag{3.34}
\end{align*}
$$

Thus, we have

$$
\begin{align*}
\int_{0}^{\tau} \bar{B}(u) d u & =\int_{0}^{\tau} \frac{2 \alpha \kappa}{\alpha \sigma^{2}+e^{\kappa u}\left(2 \kappa-\alpha \sigma^{2}\right)} d u \tag{3.35}\\
& =\frac{2}{\sigma^{2}}\left[\kappa \tau+\ln \left[\frac{2 \kappa}{\alpha \sigma^{2}+e^{\kappa \tau}\left(2 \kappa-\alpha \sigma^{2}\right)}\right]\right] \tag{3.36}
\end{align*}
$$

Consider $A_{\gamma}(\tau)$ from (3.3), we have

$$
\begin{align*}
\bar{A}_{\gamma}(\tau) & =\exp \left[-\gamma \kappa \tau+\left(\gamma \sigma^{2}+\kappa \theta\right) \int_{0}^{\tau} \bar{B}(u) d u\right] \tag{3.37}\\
& =\exp \left[\gamma \kappa \tau+\frac{2 \theta \kappa^{2} \tau}{\sigma^{2}}\right]\left[\frac{2 \kappa}{\alpha \sigma^{2}+e^{\kappa \tau}\left(2 \kappa-\alpha \sigma^{2}\right)}\right]^{\frac{2}{\sigma^{2}}\left(\gamma \sigma^{2}+\kappa \theta\right)} \tag{3.38}
\end{align*}
$$

Letting

$$
\begin{equation*}
\bar{Q}_{\gamma-k}(\tau)=(\gamma-k) \sigma^{2} \bar{B}(T-\tau)+\kappa \theta \bar{B}(T-\tau)-(\gamma-k) \kappa \tag{3.39}
\end{equation*}
$$

yields

$$
\begin{align*}
\exp \left[\int_{0}^{\tau} \bar{Q}_{\gamma-k}(T-u) d u\right]= & \exp \left[-(\gamma-k) \kappa \tau+\left((\gamma-k) \sigma^{2}+\kappa \theta\right) \int_{0}^{\tau} \bar{B}(u) d u\right] \tag{3.40}\\
= & \exp \left[(\gamma-k) \kappa \tau+\frac{2 \theta \kappa^{2} \tau}{\sigma^{2}}\right] \times \\
& {\left[\frac{2 \kappa}{\alpha \sigma^{2}+e^{\kappa \tau}\left(2 \kappa-\alpha \sigma^{2}\right)}\right]^{\frac{2}{\sigma^{2}}\left((\gamma-k) \sigma^{2}+\kappa \theta\right)} } \tag{3.41}
\end{align*}
$$

From the result presented in (3.4), we obtain

$$
\begin{align*}
\bar{A}_{\gamma-k}(\tau)= & \bar{P}_{\gamma-k+1} e^{(\gamma-k) \kappa \tau+\frac{2 \omega \kappa^{2}}{\sigma^{2}}}\left[\frac{2 \kappa}{\alpha \sigma^{2}+e^{\kappa \tau}\left(2 \kappa-\alpha \sigma^{2}\right)}\right]^{\frac{2}{\sigma^{2}\left((\gamma-k) \sigma^{2}+\kappa \theta\right)}} \times \\
& \int_{0}^{\tau} e^{-(\gamma-k) \kappa \tau-\frac{20 \kappa^{2} \tau}{\sigma^{2}}}\left[\frac{2 \kappa}{\alpha \sigma^{2}+e^{\kappa \tau}\left(2 \kappa-\alpha \sigma^{2}\right)}\right]^{-\frac{2}{\sigma^{2}}\left((\gamma-k) \sigma^{2}+\kappa \theta\right)} A_{\gamma-k+1}(s) d s \tag{3.42}
\end{align*}
$$

for $k \in \mathbb{N}$. Using the inductive hypothesis

$$
\begin{equation*}
\bar{A}_{\gamma}(\tau)=e^{\gamma \kappa \tau+\frac{2 \theta \kappa^{2} \tau}{\sigma^{2}}}\left[\frac{2 \kappa}{\alpha \sigma^{2}+e^{\kappa \tau}\left(2 \kappa-\alpha \sigma^{2}\right)}\right]^{\frac{2}{\sigma^{2}}\left(\gamma \sigma^{2}+\kappa \theta\right)} \tag{3.43}
\end{equation*}
$$

with

$$
\begin{align*}
\bar{A}_{\gamma-1}(\tau)= & \exp \left[\frac{2 \alpha \kappa}{\alpha \sigma^{2}+e^{\kappa \tau}\left(2 \kappa-\alpha \sigma^{2}\right)} v+\beta+(\gamma-1) \kappa \tau+\frac{2 \theta \kappa^{2} \tau}{\sigma^{2}}\right] \times \\
& \bar{P}_{\gamma}\left(\frac{e^{\kappa \tau}-1}{\alpha \sigma^{2}+e^{\kappa \tau}\left(2 \kappa-\alpha \sigma^{2}\right)}\right) \tag{3.44}
\end{align*}
$$

yields
Chulalongioorn University

$$
\begin{align*}
\bar{A}_{\gamma-k}(\tau)= & \exp \left[\frac{2 \alpha \kappa}{\alpha \sigma^{2}+e^{\kappa \tau}\left(2 \kappa-\alpha \sigma^{2}\right)} v+\beta+(\gamma-k) \kappa \tau+\frac{2 \theta \kappa^{2} \tau}{\sigma^{2}}\right] \times \\
& \left(\prod_{m=1}^{k} \bar{P}_{\gamma \cdots m+1}\right)\left(\frac{e^{\kappa \tau}-1}{\alpha \sigma^{2}+e^{\kappa \tau}\left(2 \kappa-\alpha \sigma^{2}\right)}\right)^{k} \tag{3.45}
\end{align*}
$$

for $k \in \mathbb{N}$. The formula (3.31) is obtained by inserting $A_{\gamma-k}(\tau), k \in\{0,1,2, \ldots\}$ into (3.2).

Similarly, for ECIR case, the following corollary shows a consequence that is deduced from Theorem 3.6 when $\gamma=1-\frac{2 \kappa \theta}{\sigma^{2}}$. the explicit form is reduced to a closed-form as shown in the following corollary.

Corollary 3.7. Suppose that V_{t} follows the CIR process with $\kappa(t)=\kappa, \theta(t)=\theta$ and γ satisfies

$$
\begin{equation*}
\gamma=1-\frac{2 \kappa \theta}{\sigma^{2}} . \tag{3.46}
\end{equation*}
$$

Then.

$$
\begin{align*}
U_{C}^{(\gamma, \alpha, \beta)}(v, \tau)= & \exp \left[\frac{2 \alpha \kappa}{\alpha \sigma^{2}+e^{\kappa \tau}\left(2 \kappa-\alpha \sigma^{2}\right)} v+\beta+\kappa \tau\right] \times \\
& \left(\frac{2 \kappa}{\alpha \sigma^{2}+e^{\kappa \tau}\left(2 \kappa-\alpha \sigma^{2}\right)}\right)^{\frac{2}{\sigma^{2}}\left(\sigma^{2}-\kappa \theta\right)} v^{1-\frac{2 \kappa \theta}{\sigma^{2}}} . \tag{3.47}
\end{align*}
$$

Proof Similar to the proof of Corollary 3.4, from (3.32) when $k=1$, that $\bar{P}_{\gamma}=0$ if $\gamma=1-\frac{2 \kappa \theta}{\sigma^{2}}$ for all $\tau \geq 0$. Therefore, (3.45) implies $\bar{A}_{\gamma-k}(\tau)=0$ for all $k \in \mathbb{N}$ and the remaining term of (3.31) is \bar{A}_{γ}.

Similarly, the result of Theorem 3.6 can be simplified into a finite sum in the case when γ is a non-negative integer, as stated in the following result.

Theorem 3.8. Suppose that V_{t} follows the CIR process with $\kappa(t)=\kappa, \theta(t)=\theta$ and $\sigma(t)=\sigma$. Let n be a non-negative integer. Then,

$$
\begin{align*}
U_{C}^{(n . \alpha, \beta)}(v, \tau):= & \mathbb{E}^{\mathbb{P}}\left[V_{T}^{n} e^{\alpha V_{T}+\beta} \mid V_{t}=v\right], \\
= & \exp \left[\frac{2 \alpha \kappa}{\alpha \sigma^{2}+e^{\kappa \tau}\left(2 \kappa-\alpha \sigma^{2}\right)} v+\beta+n \kappa \tau+\frac{2 \theta \kappa^{2} \tau}{\sigma^{2}}\right] \times \\
& \left.\left(\frac{2 \kappa}{\alpha \sigma^{2}+e^{\kappa \tau}\left(2 \kappa \alpha \alpha \sigma^{2}\right)}\right)\right)^{\frac{2}{\sigma^{2}}\left(n \sigma^{2}+\kappa \theta\right)} v^{n} \\
& +\sum_{j=0}^{n-1} \exp \left[\frac{2 \alpha \kappa}{\alpha \sigma^{2}+e^{\kappa \tau}\left(2 \kappa-\alpha \sigma^{2}\right)} v+\beta+j \kappa \tau+\frac{2 \theta \kappa^{2} \tau}{\sigma^{2}}\right] \times \\
& \prod_{m=1}^{n-j} \bar{P}_{n-m+1} \frac{2^{n-j}}{(n-j)!}\left(\frac{2 \kappa}{\alpha \sigma^{2}+e^{\kappa \tau}\left(2 \kappa-\alpha \sigma^{2}\right)}\right)^{\frac{2}{\sigma^{2}}\left(j \sigma^{2}+\kappa \theta\right)} \times \\
& \left(\frac{e^{\kappa \tau}-1}{\alpha \sigma^{2}+e^{\kappa \tau}\left(2 \kappa-\alpha \sigma^{2}\right)}\right)^{n-j} v^{j} \tag{3.48}
\end{align*}
$$

for all $v>0$ and $\tau=T-t \geq 0$ where $\bar{P}_{n-m+1}=(n-m+1)\left(\frac{1}{2}(n-m) \sigma^{2}+\kappa \theta\right)$ when $m \in\{1,2,3, \ldots, n-j\}$, for $j \in\{1,2,3, \ldots, n-1\}$.

Proof From the result of Theorem 3.6, for $\gamma=n$ be a non-negative integer and $k=n+1$, (3.32) gives $\bar{P}_{0}(\tau)=0$. Therefore, from (3.44), we get $\bar{A}_{-1}(\tau)=0$. Similarly,
by setting $k=n+2, n+3, n+4, \ldots$, we obtain recursively $\bar{A}_{-2}(\tau)=0, \bar{A}_{-3}(\tau)=$ $0, \bar{A}_{-4}(\tau)=0, \ldots$, respectively. Thus. (3.2) is reduced to a finite sum in the form

$$
\begin{equation*}
U_{C}^{(n, \alpha, \beta)}(v, \tau)=e^{\bar{B}(\tau) v+\beta} \sum_{k=0}^{n} \bar{A}_{n-k}(\tau) v^{n-k} . \tag{3.49}
\end{equation*}
$$

Setting $k=n-j$, the sum (3.49) can be rewritten in the form

$$
\begin{equation*}
U_{C}^{(n, \alpha, \beta)}(v, \tau)=e^{\bar{B}(\tau) v+\beta} \sum_{j=0}^{n} \bar{A}_{j}(\tau) v^{j}, \tag{3.50}
\end{equation*}
$$

as required.

