SOLID-LIQUID-POLYMER MIXED MATRIX MEMBRANES FOR GAS SEPARATION: SILICONE RUBBER MEMBRANES FILLED WITH NAX AND KY ZEOLITES ADSORBED PEG

Sitthikiat Boonchoo

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Institut Français du Pétrole

2021

Solid-Liquid-Polymer Mixed Matrix Membranes for Gas Separation: Silicone Rubber Membranes Filled with NaX and KY Zeolites Adsorbed PEG

Mr. Sitthikiat Boonchoo

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Petroleum and Energy Technology Common Course The Petroleum and Petrochemical College Chulalongkorn University Academic Year 2020 Copyright of Chulalongkorn University

การศึกษาการแยกก๊าซโดยใช้เยื่อเลือกผ่านเนื้อผสมของแข็ง-ของเหลว-พอลิเมอร์: เยื่อเลือกผ่าน ซิลิโกนที่ประกอบด้วยซีโอไลต์โซเดียมเอกซ์และเควายซึ่งดูดซับโพลีเอทิลีนไกลคอล

นายสิทธิเกียรติ บุญชู

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีปิโตรเลียมและพลังงาน ไม่สังกัดภาควิชา/เทียบเท่า วิทยาลัยปิโตรเลียมและปิโตรเคมี จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2563 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	Solid-Liquid-Polymer Mixed Matrix Membranes for
	Gas Separation: Silicone Rubber Membranes Filled with
	NaX and KY Zeolites Adsorbed PEG
By	Mr. Sitthikiat Boonchoo
Field of Study	Petroleum and Energy Technology
Thesis Advisor	Professor THIRASAK RIRKSOMBOON, Ph.D.

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master of Science

	Dean of The Petroleum and
	Petrochemical College
(Professor PRAMOCH RANGSU	JNVIGIT, Ph.D.)

THESIS COMMITTEE

Chairma	an
(Professor BOONYARACH KITIYANAN	N, Ph.D.)
Thesis A	Advisor
(Professor THIRASAK RIRKSOMBOON	I, Ph.D.)
Externa	l Examiner
(Tanate Danuthai, Ph.D.)	

สิทธิเกียรติ บุญชู : การศึกษาการแยกก๊าซโดยใช้เยื่อเลือกผ่านเนื้อผสมของแข็ง-ของเหลว-พอลิเมอร์: เยื่อเลือกผ่าน ซิลิโคนที่ประกอบด้วยซีโอไลด์โซเดียมเอกซ์และเควายซึ่งดูดซับโพลีเอทิลีนไกลคอล. (Solid-Liquid-Polymer Mixed Matrix Membranes for Gas Separation: Silicone Rubber Membranes Filled with NaX and KY Zeolites Adsorbed PEG) อ.ที่ปรึกษาหลัก : ศ. ดร.ธีรศักดิ์ ฤกษ์สมบูรณ์

้ก๊าซคาร์บอนไดออกไซด์เป็นหนึ่งในองค์ประกอบหลักที่พบในแก๊สธรรมชาติและแก๊สชีวภาพ เมื่อมีปริมาณของ ้ก๊าซการ์บอนไดออกไซค์สูงจะทำให้เกิดปั้ญหาคือ การลดลงของก่ากวามร้อนเชื้อเพลิง (Heating value) และการสึก ้กร่อนของผิววัสดุ มากไปกว่านั้นการปลดปล่อยก๊าซการ์บอนไดออกไซด์ออกสู่บรรยากาศยังเป็นต้นตอสำคัญในการเกิดภาวะ เรือนกระจก ด้วยเหตนี้การแยกก๊าซโดยใช้เยื่อเลือกผ่าน (Membrane technology) จึงได้รับความสนใจเนื่องจาก ้ศักยภาพในการแยกก๊าซ เยื่อเลือกเนื้อผสม (Mixed matrix membranes, MMMs) จึงถูกศึกษาและพัฒนาเพื่อ ้นำข้อคีของวัสดุอินทรีย์และวัสดุอนินทรีย์มารวมกันในเยื่อเลือกผ่านตัวเดียวกัน ในการศึกษานี้ เยื่อเลือกผ่านเนื้อผสมของแข็ง-ของเหลว-พอลิเมอร์ที่มีโพลิเอทิลินไกลคอลเป็นสารเคิมของเหลว ซีโอไลต์โซเคียมเอกซ์ (NaX)และซีโอไลต์เควาย (KY) เป็นสารเติมของแข็ง และซิลิโคนเป็นพอลิเมอร์ถูกเตรียมโคยการวิธีเคลือบสารละลายบนผิวของแผ่นรองรับ (Solutioncasting method) และทำการทดสอบการซึมผ่าน (Permeability) และการเลือกผ่าน (Selectivity) โดยใช้ ้อุปกรณ์ทคสอบเยื่อเลือกผ่านที่อุณหภูมิห้องและความคัน 50 ปอนค์ต่อตารางนิ้ว ของแข็งผสมระหว่างซีโอไลต์โซเคียมเอกซ์ ้และเควายสามารถเพิ่มประสิทธิภาพในการแยกก๊าซการ์บอนไดออกไซด์ออกจากก๊าซมีเทน โดยเยื่อเลือกผ่านเนื้อผสมที่มี สัดส่วนของซีโอไลต์โซเดียมเอกซ์และเควายเท่ากับ 0:1 ทดสอบแล้วได้ก่าการซึมผ่านของก๊าซการ์บอนไดออกไซด์และการ ้เลือกผ่านระหว่างก๊าซคาร์บอนไดออกไซด์และก๊าซมีเทนสูงที่สุดเมื่อเปรียบเทียบระหว่างเยื่อเลือกผ่านเนื้อผสมของแข็ง-พอลิ เมอร์ เนื่องจากจากซีโอไลต์เควายมีความเป็นเบสมากกว่าซีโอไลต์โซเคียมเอกซ์จึงทำให้ประสิทธิภาพในการแยกก๊าซ ้คาร์บอนไคออกไซค์สูงกว่า เมื่อเปรียบเทียบประสิทธิภาพการแยกก๊าซระหว่างเยื่อเลือกผ่านเนื้อผสมของแข็ง-พอลิเมอร์และ ้ของแข็ง-ของเหลว-พอลิเมอร์ โพลิเอทิลินไกลคอลที่คุคซับบนซีโอไลต์ส่งผลต่อการแยกก๊าซได้อย่างมีประสิทธิภาพในเพิ่มค่า การซึมผ่านของก๊าซการ์บอนไดออกไซด์และการเลือกผ่านระหว่างก๊าซการ์บอนไดออกไซด์และก๊าซมีเทน

สาขาวิชา ปีการศึกษา เทกโนโลยีปิโตรเลียมและพลังงาน 2563 ลายมือชื่อนิสิต ลายมือชื่อ อ.ที่ปรึกษาหลัก

6273006063 : MAJOR PETROLEUM AND ENERGY TECHNOLOGYKEYWORMixed matrix membranes, CH4/CO2 separation, PolyethyleneD:glycol, Silicone rubber, NaX and KY zeolites

Sitthikiat Boonchoo : Solid-Liquid-Polymer Mixed Matrix Membranes for Gas Separation: Silicone Rubber Membranes Filled with NaX and KY Zeolites Adsorbed PEG. Advisor: Prof. THIRASAK RIRKSOMBOON, Ph.D.

Carbon dioxide (CO_2) is one of the major constituents of natural gas and biogas. The presence of high CO₂ content causes some serious problems including reduction of heating value and corrosion of equipment's surface. Additionally, CO2 emission is the main issue of the greenhouse effect. In consequence of these problems, membrane technologies have drawn much attention as potential techniques for gas separation. mixed matrix membranes (MMMs) have been studied and developed to provide the synergistic effect of inorganic and organic materials on membranes. In this study, PEG/NaX:KY/SR mixed matrix membranes (PZS MMMs) were prepared by the solution casting method using NaX and KY zeolites as the solid fillers, PEG as the liquid additive, and silicone rubber as the continuous phase. The fabricated PZS MMMs were evaluated through permeance and selectivity for the single gas measurements using a membrane testing unit at room temperature and a pressure of 50 psig. The combination of NaX and KY zeolites showed the improvement in gas separation CO₂/CH₄ gas separation. The PZS MMM with NaX/KY zeolite mass ratio of 0:1 yielded the highest CO₂ permeance and CO₂/CH₄ selectivity among the solid-polymer MMMs prepared. KY zeolite was more effective than NaX zeolite in term of higher CO₂ permeability and CO₂/CH₄ selectivity due to the basicity. PEG adsorbed into the zeolites effectively influenced the gas separation performance, CO₂ permeance and CO₂/CH₄ selectivity in comparison between solid-polymer and solid-liquid-polymer mixed matrix membranes.

Field of Study:	Petroleum and Energy	Student's Signature
	Technology	
Academic	2020	Advisor's Signature
Year:		

ACKNOWLEDGEMENTS

First of all, I would like to express sincere gratitude to my advisor, Prof. Thirasak Rirksomboon who originated this thesis and provided invaluable guidance, constructive advice and intensive attention throughout this research. They always give me good guidance to go through problems. I am privileged and always proud of being his student. Furthermore, I sincerely appreciate Dr. Santi Kulprathipanja, Sotheast Asia R&D Director of Honeywell UOP, USA for providing the support membranes and zeolite utilized in this work.

I am grateful for the partial scholarship and partial funding of the thesis work provided by The Petroleum and Petrochemical College and other support by the Center of Excellence on Petrochemical and Material Technology, Thailand. I also appreciate all staff of The Petroleum and Petrochemical College for warm support, help and useful suggestions.

Finally, the sincerest appreciation goes to my family for their love, encouragement and measureless support. I also gratefully acknowledge my friends. They provided me with good support and continuous encouragement throughout the period of study. This accomplishment would not have been possible without them.

Sitthikiat Boonchoo

TABLE OF CONTENTS

ABSTRACT (THAI) iii
ABSTRACT (ENGLISH)iv
ACKNOWLEDGEMENTSv
TABLE OF CONTENTSvi
LIST OF TABLES viii
LIST OF FIGURESx
CHAPTER 1 INTRODUCTION
CHAPTER 2 THEORETICAL BACKGROUND AND LITERATURE REVIEW3
2.1 Theoretical Background
2.1.1 Polymeric Membranes
2.1.2 Zeolites
2.1.3 Mixed Matrix Membranes (MMMs)9
2.1.4 Low Molecular Weight Materials (LMWMs)11
2.2 Literature Reviews
CHAPTER 3 METHODOLOGY
3.1 Objectives
3.2 Scope of Research
3.3 Materials and Equipment
3.4 Experimental Procedures
3.4.1 PEG Impregnated into Zeolite Preparation19
3.4.2 Membrane Preparation
3.4.3 Gas Permeance Measurements
CHAPTER 4 RESULTS AND DISCUSSION
4.1 Gas Permeance and Selectivity
4.1.1 Silicone Rubber Membranes

4.1.2 Mixed Matrix Membranes of Combination of NaX and KY Zeolites Incorporated in Silicone Rubber (NaX:KY/SR/CA)
4.1.3 Mixed Matrix Membranes of Combination of PEG Adsorbed NaX and KY Zeolites Incorporated in Silicone Rubber (PEG/NaX:KY/SR/CA)28
4.1.4 Comparison of Gas Separation Performance between Solid-Polymer and Solid-Liquid-Polymer Mixed Matrix Membranes
CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS
5.1 Conclusions
5.2 Recommendations
APPENDICES
Appendix A Graphical Abstract
Appendix B Experimental Data Attained from a Supporting Membrane
Appendix C Experimental Data Attained from a SR/CA Membrane40
Appendix D Experimental Data Attained from NaX and KY Zeolites Incorporated in SR/CA Membranes41
Appendix E Experimental Data Attained from PEG Adsorbed NaX and KY Zeolites Incorporated in SR/CA Membranes
REFERENCES
VITA

LIST OF TABLES

Page
Table 2.1 Commercial zeolites and their cations, pore size, and Si/Al ratios
Table 2.2 Physical properties of CO ₂ , CH ₄ , N ₂ , O ₂ , and H ₂
Table 2.3 The general information of FAU structure type
Table 2.4 Typical properties of common zeolites 8
Table 3.1 The chemical composition of fabricated membranes
Table 4.1 Gas permeances and selectivities for silicone rubber on cellulose acetate supporting membrane and cellulose acetate supporting membrane
Table 4.2 Gas permeances and selectivities for NaX and KY zeolites incorporated silicone rubber on cellulose acetate supporting membrane
Table 4.3 Gas permeances and selectivities for PEG adsorbed NaX and KY zeolites incorporated silicone rubber on cellulose acetate supporting membranes
Table B1 Cellulose acetate supporting membrane (CA)
Table C1 20wt.% silicone rubber on cellulose acetate supporting membrane (20wt.% SR/CA)
Table D1 4.76wt.% zeolite with NaX/KY mass ratio of 1:0 incorporated 20wt.%silicone rubber on cellulose acetate supporting membrane (4.76wt.%-NaX:KY,1:0/SR/CA)
Table D2 4.76wt.% zeolite with NaX/KY mass ratio of 3:1 incorporated 20wt.%silicone rubber on cellulose acetate supporting membrane (4.76wt.%-NaX:KY,3:1/SR/CA)
Table D3 4.76wt.% zeolite with NaX/KY mass ratio of 1:1 incorporated 20wt.%silicone rubber on cellulose acetate supporting membrane (4.76wt.%-NaX:KY,1:1/SR/CA)

Table D4 4.76wt.% zeolite with NaX/KY mass ratio of 1:3 incorporated 20wt.%silicone rubber on cellulose acetate supporting membrane (4.76wt.%-NaX:KY,1:3/SR/CA)

Table E2 2.96wt.%PEG adsorbed NaX zeolite and 3.85wt.%PEG adsorbed KYzeolite with NaX/KY mass ratio of 3:1 (4.76wt.%zeolite) incorporated 20wt.%silicone rubber on cellulose acetate supporting membrane (2.96wt.%PEG-NaX,4.76wt.%-NaX:KY, 3:1/SR/CA)

Table E3 2.96wt.%PEG adsorbed NaX zeolite and 3.85wt.%PEG adsorbed KYzeolite with NaX/KY mass ratio of 1:1 (4.76wt.%zeolite) incorporated 20wt.%silicone rubber on cellulose acetate supporting membrane (2.96wt.%PEG-NaX,3.85wt.%PEG-KY/4.76wt.%-NaX:KY, 1:1/SR/CA)

Table E4 2.96wt.%PEG adsorbed NaX zeolite and 3.85wt.%PEG adsorbed KYzeolite with NaX/KY mass ratio of 1:3 (4.76wt.%zeolite) incorporated 20wt.%silicone rubber on cellulose acetate supporting membrane (2.96wt.%PEG-NaX,3.85wt.%PEG-KY/4.76wt.%-NaX:KY, 1:3/SR/CA)

LIST OF FIGURES

Page
Figure 2.1 The Robeson's upper bound of CO ₂ and CH ₄
Figure 2.2 Framework structure for FAU zeolite formed by linking sodalite cages
through double six-rings7
Figure 2.3 Schematic of the mixed matrix membrane
Figure 2.4 Zeolite-based filler in mixed matrix membranes of CO_2 gas separation; (a)
Gas separation performance of MMMs compared to 2008 upper bound for CO_2/CH_4 .
respectively
Figure 2.5 Schematic illustration of possible existing forms of the third component in
solid-liquid-polymer MMMs and interfacial void healing by the third component11
Figure 2.6 Chemical structures of PEI (a) and PEG (b)12
Figure 3.1 Flow diagram of the PEG adsorbed zeolite preparation20
Figure 3.2 Flow diagram of the MMM preparation21
Figure 3.3 Schematic diagram of the single gas permeance measurement23
Figure 4.1 Comparison of gas permeance and selectivity between silicone rubber on
cellulose acetate (SR/CA) and cellulose acetate (CA) membranes
Figure 4.2 Comparison of gas permeance and selectivity among solid-polymer mixed
matrix membranes with varying the mass ratio of NaX to KY zeolites
Figure 4.3 Comparison of gas permeance and selectivity among solid-liquid-polymer
mixed matrix membranes with varying the mass ratio of NaX to KY zeolites
Figure 4.4 Comparison of CO ₂ permeance between solid-polymer and solid-liquid-
polymer mixed matrix membranes
Figure 4.5 Comparison of N ₂ and CH ₄ permeances between solid-polymer and solid-
liquid-polymer mixed matrix membranes

Figure 4.6 Comparison of CO_2/CH_4 and CO_2/N_2 selectivities between so	lid-polymer
and solid-liquid-polymer mixed matrix membranes	35
Figure A1 Graphical abstract	

CHAPTER 1 INTRODUCTION

Carbon dioxide (CO₂) is one of the major greenhouse gases (GHGs) which causes environmental impact leading to global warming. CO₂ is an acidic gas found industrially in natural gas, flue gas and biogas. The presence of CO₂ causes corrosion to the surface of equipment; moreover, it must be removed from gas streams to upgrade natural gas and biogas to meet the specifications of fuel gases and prevent CO₂ emission to the atmosphere. Various CO₂ capture technologies have been developed to effectively remove CO₂ from gas streams. Membrane technology has been an interesting and promising technique because of its advantages: low cost, simplicity of operation, and low energy consumption compared to other conventional separation technology.

Polymeric membranes were widely applied in membrane materials for the reason of low cost and processability. However, the intrinsic property of polymer does not provide the impressive gas separation performance because of limitation, trade-off between the permeability and selectivity under Robeson's upper bound. To enable feasibility of industrial applications of polymeric membranes, it is necessary to improve the gas permeability and selectivity by combining the high-performance materials with polymeric membranes. Consequently, the inorganic fillers which have high gas separation performance are dispersed in polymeric membranes. This kind of membrane is called mixed matrix membranes (MMMs). MMM has the prospects to attain both high permeability and selectivity relative to neat polymeric membranes, resulting from the incorporation of inorganic fillers with their inherent superior separation properties. Zeolites known as porous inorganic materials have been widely studied as fillers dispersed in mixed matrix membranes, because of their excellent gas separation performance. Owing to the very different physicochemical properties of organic and inorganic materials, the compatibility of inorganic fillers and polymer becomes the most considerable issue determining the accomplishment of gas separation. To settle the incompatibility of filler and polymer, Low molecular weight materials (LMWMs) are applied to mixed matrix membranes by filling the space

between filler particles and polymer chains; therefore, the polymer-filler interface region is improved. Additionally, LMWMs being CO_2 -philic materials can also significantly improve the gas permeability and selectivity of membranes. The combination of two inorganic fillers in the same polymer membrane is so interesting and attractive. When the combined fillers incorporated polymer membranes are successful, the mixed matrix membrane will take advantage of both fillers, resulting in the substantial enhancement of gas separation performance.

The purpose of this study is to investigate the gas separation performance of MMM composed of silicone rubber (SR) as polymer continuous phase, NaX and KY zeolites as inorganic fillers, and polyethylene glycol (PEG) as a liquid additive. This MMM is cast on Cellulose acetate supporting membrane. MMMs are fabricated by solution-casting methods and solvent evaporation methods. For measurement of gas separation performance, the single gas permeability is measured at the inlet pressure of 50 psi and the temperature of 25°C.

CHAPTER 2 THEORETICAL BACKGROUND AND LITERATURE REVIEW

2.1 Theoretical Background

2.1.1 Polymeric Membranes

Membrane separation is an energy efficient and economical technology in the field of gas separation. Polymeric membranes currently dominate gas separation processes because of the mechanical property and the easy processability.

In the area of membrane technology for gas separation, the gas transport mechanism of polymeric membrane is based on solution-diffusion mechanism. This mechanism mainly consists of three steps: (1) adsorption of molecules on the membrane surface, (2) diffusion of molecules through the membrane, and (3) desorption of molecules on the other side of membranes. The gas separation performance is evaluated by two parameters: permeability (P) and selectivity (α) (Alqaheem *et al.*, 2017).

Permeability (P), the permeation of molecules through the membrane, is the product of diffusivity (D) and solubility (S), expressed as Equation 2.1.

$$\mathbf{P} = \mathbf{D} \times \mathbf{S} \tag{2.1}$$

Diffusivity (D) is the mobility of individual gas molecules passing through the available space in the membrane, and solubility (S) is the ability of molecules dissolved in the membrane.

Experimentally, the permeability can be calculated based on the flux according to Equation 2.2.

$$\mathbf{P} = \mathbf{J} \frac{\Delta \mathbf{L}}{\Delta \mathbf{P}} \tag{2.2}$$

where J is the flux (volumetric flow rate per unit area), ΔL is the membrane thickness, and ΔP is the pressure difference across the membrane.

The other parameter used to evaluate the separation performance is selectivity (α), the ability to separate two species. It is the ratio of their permeabilities expressed as Equation 2.3.

$$\alpha_{AB} = \frac{P_A}{P_B} = \frac{D_A}{D_B} \cdot \frac{S_A}{S_B}$$
(2.3)

The polymers can be classified to two types: glassy and rubbery polymers. Glassy polymers which operate below their glass transition temperature (T_g) are rigid and brittle. These kinds of polymers have low chain mobility. In contrast, rubbery polymers which operate above T_g are flexible and soft. Moreover, rubbery polymers tend to have higher permeation but lower selectivity. On the other hand, glassy polymer provides higher selectivity but lower permeability. Due to a trade-off between permeability and selectivity (Robeson, 2008), as schematically illustrated in Figure 2.1, it is difficult to obtain high performance of both permeability and selectivity at the same time by using polymeric material as the membrane.

Figure 2.1 The Robeson's upper bound of CO₂ and CH₄ (Robeson, 2008).

2.1.2 Zeolites

Zeolites are crystalline aluminosilicate minerals with microporous structure. The porous structures of the zeolite can accommodate cations in it by adsorption and ion exchange. The general formula of the zeolite structure is as follows

$M_{x/n}[(AlO_2)_x(SiO_2)_y]$ ·zH₂O

where M and *n* are the structure cation (alkali- or alkaline-earths, such as Na^+ , K^+ , Ca^{2+} , and Mg^{2+}) and its valence, respectively, *x* and *y* denote the total number of the tetrahedra in each unit cell, and *z* is the number of water molecules in each unit cell. Some of the more important zeolite types, most of which have been used in commercial applications as shown in Table 2.1. Based on their origin, zeolites are divided into natural zeolites such as chabazite, faujasite, and mordenite, and synthetic ones such as types A, X, Y, and ZSM-5 zeolites. The advantage of natural zeolites is their innate low cost. Although synthetic zeolites have relatively high costs, the drawbacks of impurities and chemical composition alteration are avoided.

(Bakhtyari et al., 2020)				
Zeolite	Cation	Pore size (Å)	Si/Al ratio	
3A	\mathbf{K}^+	3.0	1.0	
4A	Na^+	3.8	1.0	
5A	Ca^{2+}/Mg^{2+}	4.3	1.0	

7.8

8.0

8.0

7.0

6.0

6.0

1.2

1.2

2.4

5.0

31.0

s

Table 2.1 Commercial zeolites and their cations, pore size, and Si/Al ratios (Bakhtyari *et al.*, 2020)

 Ca^{2+}

 Na^+

 K^+

 Na^+

 Na^+

_

10X

13X

Mordenite

ZSM-5

Silicalite

Y

Zeolites are promising inorganic porous materials which have excellent separation performance and stability. Zeolites have several structures which have different chemical composition and physicochemical properties; thereby, they are widely used in various applications such as catalysis, gas separation, and ion exchange. Transport mechanism through zeolites is based on adsorption, diffusion, and desorption, respectively. For gas separation, the pore size of zeolites acts as an important role to determine the success in separation. When a permeable molecule allows to pass through but does not allow another molecule to pass through or pass through with slower rate. This separation mechanism is called molecular sieving. For this reason, pore structure of zeolite and characteristics of penetrant are the important parameters determining the success in gas separation. The properties of each gas are shown in Table 2.2, such as different kinetic diameters and critical temperatures. The zeolite selection is essential for any applications.

Physical properties	Gas molecules				
	CO ₂	CH ₄	N_2	O ₂	H ₂
Molecular weight	44.01	16.04	28.01	31.99	2.02
Kinetic diameter (Å)	3.3	3.8	3.64	3.46	2.89
Density (at 0°C, 1 atm, g/L)	1.977	0.72	1.25 <u>a</u>	1.429	0.0899
Critical temperature (°C)	31	82.1	-147.1	-118.6	-240.2
Critical pressure (atm)	72.9	45.8	33.5	49.77	12.8
Critical density (g/mL)	0.468	0.162	0.311	0.436	0.031
W:	0.0148	$0.0106^{\underline{b}}$	0.017	0.019 ^{<u>d</u>}	0.00076
viscosity (at 21°C, 1 attil, cp)		0.0116 <u>c</u>	0.0174		0.0087-

Table 2.2 Physical properties of CO₂, CH₄, N₂, O₂, and H₂ (Bastani *et al.*, 2013)

^a At 20°C. ^b At 4.4°C. ^c At 37.8°C. ^d At 0°C. ^e At 15°C.

In commercial adsorption processes for CO₂ capture, Types A, X, and Y zeolites are the most utilized ones (Bakhtyari *et al.*, 2020). The structural unit of type X and Y zeolites is the Faujasite (FAU) demonstrated in Figure 2.2 and the general information is shown in **Table 2.3**. They have a large cavity in FAU called the "supercage" (which should really be called a supercavity). Owing to the large cavity, X and Y zeolites have been used for the CO₂ adsorption process.

Type material	Faujasite (FAU)
Chemical formula	$ (Ca,Mg,Na)_{29}(H2O)_{240} [Al_{58}Si_{134}O_{384}] - FAU$
Space group	Cubic, Fd-3m, a = 24.74 Å
Pore structure	Three-dimensional 12-ring
Mineral forms	Faujasite
Synthetic forms	Beryllophosphate X, Li-LSX, LZ-210, SAPO-37, siliceous
	Na-Y, zeolite X (Linde X), zeolite Y (Linde Y),
	zincophospate X

Table 2.3 The general information of FAU structure type (Broach, 2010)

Figure 2.2 Framework structure for FAU zeolite formed by linking sodalite cages through double six-rings (Broach, 2010).

The faujasite framework possesses the largest central cavity pore. In the fully hydrated state, the central cavity pore of the faujasite framework can

accommodate about 235 water molecules, while in the fully dehydrated state, it results in almost 50% void fraction. The free diameter of the aperture of the faujasite framework, which is formed by 12-membered oxygen rings, is approximately 7.4Å. Type X and Y zeolites possess a similar framework to that of faujasite but with different Si/Al ratio shown in Table 2.4. Due to the different Si/Al ratio between them, this affects the total acidity of the zeolite. Zeolite acidity increases in strength as the molar ratio of Si/Al decreases due to the strength of the electro-static field in the zeolite and increase in the number of acid sites (Kulprathipanja and James, 2010). For this reason, zeolite X, Si/Al ratio of 2.5, is more acidic than zeolite Y, Si/Al ratio of 4.8. The cations can alter acidity or enhance the basic strength of zeolites in the following order: $\text{Li}^+ < \text{Na}^+ < \text{K}^+ < \text{Rb}^+ < \text{Cs}^+$. Moreover, the replacement of cations through ion exchanges results in the adjustment of the pore dimensions of the zeolite channels. For CO2, which is an acidic gas, the interaction between the acidic and basic sites of zeolite and CO₂ is the important parameter for separation performance.

Table 2.4 Typical properties of common zeolites (Kulprathipanja and James, 2010)

Zeolite type	Channel	Pore openings (Å;	Typical	Theoretical ion
	system	hydrated form)	SiO ₂ /Al ₂ O	exchange
			₃ mole	capacity
			ratio	(meq/g; Na form,
				anhydrous)
Anlcime	One-	2.6	4	4.9
	dimensional			
Chabazite	Three-	3.7×4.2 and 2.6	4	4.9
	dimensional			
Clinoptilolite	NK	4.0×5.5 ,	10	2.6
		4.4×7.2		
		and 4.1×4.7		
Erionite	Three-	3.6×5.2	6	3.8
	dimensional			
Ferrierite	Two-	4.3×5.5 and	11	2.4
	dimensional	3.4×4.8		

Phillipsite	Three-	4.2×4.4 ,	4.4	4.7
	dimensional	2.8×4.8 and 3.3		
Zeolite A	Three-	4.2 into alfa-cage;	2	7.0
	dimensional	2.2 into beta-cage		
Zeolite L	One-	7.1	6	3.8
	dimensional			
Mordenite	Two-	2.9×5.7	10	2.6
	dimensional			
Zeolite Omega	One-	7.5	7	3.4
	dimensional			
Silicate-1	Three-	(5.7-5.8) × (5.1-	50	0.63
	dimensional	5.2)		
Zeolite X	Three-	7.4 into supercage;	2.5	6.4
	dimensional	2.2 into beta-cage		
Zeolite Y	Three-	7.4 into supercage;	4.8	4.4
	dimensional	2.2 into beta-cage		

2.1.3 Mixed Matrix Membranes (MMMs)

Zeolite particles dispersed in the polymer matrix

Figure 2.3 Schematic of the mixed matrix membrane (Bastani et al., 2013).

Mixed matrix membranes (MMMs) illustrated by Figure 2.3 are well known to enhance the gas separation performance of polymeric membranes to overcome the Robeson's upper bound. Generally, it consists of a polymer as a continuous phase and an inorganic filler as a dispersed phase. The incorporation of inorganic filler and polymer can lead to the synergistic effect of both materials. Inorganic materials provide enhancement of gas separation performance in terms of permeability and selectivity while retaining the advantages of polymeric materials.

Figure 2.4 Zeolite-based filler in mixed matrix membranes of CO₂ gas separation; (a) Gas separation performance of MMMs compared to 2008 upper bound for CO₂/CH₄. (b) Permeability and selectivity factors of CO₂/CH₄ (filled) and CO₂/N₂ (unfilled) respectively (Vinoba *et al.*, 2017).

As seen in Figure 2.4, inorganic materials, such as zeolite, mesoporous silica, silica nanoparticles, and others, can improve the CO_2 permeability and selectivity from trade-off region to enhanced region. For these results, these inorganic materials as solid fillers can enhance the separation performance of polymeric membranes. However, the factors to succeed in development of MMMs depends on several key factor including the compatibility between polymer and filler, the gas separation characteristic of polymer and filler, filler concentration, and defect in MMMs (Bastani *et al.*, 2013; Cheng *et al.*, 2018; Rezakazemi *et al.*, 2014). The compatibility and adhesion between polymer and filler is the important issue that affects the overall performance of MMMs. For this reason, many approaches have been introduced and studied to modify the outside surface of the zeolite particles to improve the compatibility between the zeolite particles and the polymer matrix (Liu and Kulprathipanja, 2010) including small organic molecules, sizing agents, surface

treatment agents, electro-stabilizing additives, and low molecular weight materials (LMWMs).

2.1.4 Low Molecular Weight Materials (LMWMs)

To improve compatibility between inorganic filler and polymer, there are several methods to improve compatibility. The promising and convenient method is the addition of a third component into solid-polymer mixed matrix membranes. The third component can be located in several ways, as schematically illustrated in Figure 2.5, In addition to improving compatibility, the introduction of this component can optimize gas separation performance in terms of increase in CO_2 diffusion selectivity, CO_2 solubility selectivity, and the fractional free volume.

Figure 2.5 Schematic illustration of possible existing forms of the third component in solid-liquid-polymer MMMs and interfacial void healing by the third component (Guo *et al.*, 2019).

Macromolecules have long molecular chains, abundant functional groups, and good compatibility with polymer matrix, which result in filling the gaps between filler and polymer matrix, introducing a large amount of CO₂-philic functional groups into MMMs, or bridging the filler and polymer matrix through covalent or noncovalent interactions. Macromolecules commonly used, as schematically demonstrated in Figure 2.6, are O-containing or N-containing materials, such as polyethylene glycol (PEG) and its derivatives, polydopamine (PDA), polyethyleneimine (PEI) and some other polymers. The presence of polar functional groups that provide affinity for CO₂ results in the enhancement of CO₂ separation (Guo *et al.*, 2019).

Figure 2.6 Chemical structures of PEI (a) and PEG (b).

2.2 Literature Reviews

Junaidi et al. (2013) examined the gas separation performance of SAPO-44 zeolite incorporated PSf polymeric matrix. The well-dispersed homogeneous MMMs could be achieved when SAPO-44 was loaded less than 5 wt.% in MMMs. In consequence of higher zeolite loading, the particle agglomeration and interfacial void were formed, and then the separation performance was severely declined. They reported that the filler modification was required to embed more filler loading without defect on MMM. Zarshenas et al. (2016) investigated the gas separation performance of NaX/Pebax®1657 mixed matrix membranes. They found that the addition of nanozeolite NaX led to the agglomeration at 4 wt.% of zeolite contents. The gas permeation results showed that the incorporation of nano-zeolite NaX impacted on the gas separation performance of Pebax[®]1657. The ideal selectivity of CO₂/N₂ improved but the permeabilities of all gases passing through the MMMs decreased. Zhao et al. (2019) prepared mixed matrix membrane consisting of Matrimid and Li/Na-ZSM-25. The MMM incorporating low zeolite loading (5 wt.%) was well dispersed homogeneous, further increase in zeolite loading came up with filler agglomeration and precipitation of zeolite particles. Due to ZSM-25 addition, the results revealed that the CO₂ permeance increased but the CO₂/CH₄ selectivity decreased. The reason for this was the presence of filler-polymer interfacial defect enhancing both CO₂ and CH₄ permeation. Ahmad et al. (2021) studied the gas separation performances of SSZ-16 zeolite dispersed in a 6FA-based PI matrix. The fabricated MMMs could remarkably enhance CO₂ permeability about 2 times, while the selectivity was still the same as a pristine polymeric membrane. The best performance was found at 5 wt.% SSZ-16 zeolite dispersed in PI. When the zeolite loading was too high, the sedimentation of filler occurred in MMM. Resulting from defects on MMM, it negatively impacts the overall performance of the membrane. Surva Murali et al. (2014) introduced 4A zeolite to Pebax®1657 to investigate the gas separation performance of MMMS. The prepared MMMs were well dispersed without defects on MMMs at low zeolite content. 4A/Pebax®1657 MMMs increased the permeability of all gases as well as the ideal selectivity of CO₂/CH₄ compared to the neat polymeric membrane.

Many research groups have studied the incorporation of zeolite as inorganic filler into polymeric membranes and reported in the same way. Although zeolite showed significant enhancement in the gas separation performance of MMMs, the compatibility between zeolite and polymer is the issue leading to the negative impact in terms of separation performance and mechanical strength on membranes. The physicochemical properties between polymer and zeolite are completely different; consequently, the incorporation of zeolite in the polymeric matrix always encounters defects on MMMs. This results in the formation of interfacial void and agglomeration of zeolite in the polymeric matrix. To improve polymer-zeolite compatibility, plenty of approached, such as silanation, thermal annealing, priming, and Grignard treatment, have been studied and developed recently (Bastani et al., 2013; Rezakazemi et al., 2014). One of the convenient modifications is an addition of additive or low molecular weight materials (LMWMs) to MMM (Bastani et al., 2013; Cheng et al., 2018). These additives fill the available space in the membrane. The voids are fulfilled, thus. Moreover, the surface of zeolites is coated by additives, and then the polymer-zeolite interaction is also improved. In addition to improvement of interfacial morphology, the materials which have affinity to penetrant will be selected to improve both compatibility and separation performance. For CO₂ separation membrane, CO₂-philic material, especially polyethylene glycol (PEG), has been selected and studied due to the existence of an oxygen polar group in the structure (Kargari and Rezaeinia, 2020). PEG enhances CO₂ separation in the reason of a favorable ether-CO₂ interaction. Reijerkerk et al. (2010) studied the effect of PEG-PDMS as an additive on the gas separation performance. They simultaneously combined the permeable polymers, PDMS and PEG, in the same membrane. The addition of PDMS-PEG to PEBAX[®]1657 increased CO₂ permeability about 5 times. Conversely, the CO₂/N₂ and CO₂/CH₄ selectivity decreased. Loloei, Moghadassi, et al. (2015) introduced a low molecular weight polyethylene glycol (PEG 200) to Matrimid[®]5218 to investigate the effect of PEG in the form of a blended-polymeric membrane. The addition of PEG 200 led to increase both permeability and selectivity. From the most improved membrane (Matrimid[®]5218/PEG 200 (95:5)), the CO₂ permeability and CO₂/CH₄ selectivity were improved about 25% and 14%, respectively. Loloei, Omidkhah, et al. (2015) examined the effect of a liquid additive,

PEG 200, on Matrimid[®]5218/ZSM-5 MMMs' performance. They found that PEG 200 improved the interface between zeolite and polymer. The incorporation of PEG 200 and ZSM-5 in polymeric membrane significantly enhanced the gas separation performance of a neat Matrimid[®]5218. 5 wt.% PEG and ZSM-5 in Matrimid[®]5218 yielded an increase in CO₂ permeability about 50% and CO₂/CH₄ selectivity about 72%. Castro-Muñoz et al. (2019) fabricated ternary mixed matrix membranes (Matrimid[®]5218/ZIF-8/PEG 200) to investigate the effect of PEG as CO₂-philic additives. They obtained a homogeneous dispersion of ZIF-8 particles in a polymeric matrix. The addition of PEG 200 enhanced the CO₂/N₂ selectivity of Matrimid[®]5218-PEG blend membranes, while the incorporation of PEG 200 in MMMs could not improve the CO₂/CH₄ selectivity. Although CO₂ permeability significantly improved, the permeabilities of other gases were also improved by a reason of enhancing motion of the polymer chain. Nadeali et al. (2020) introduced PEG (MW 550) to improve the filler-polymer compatibility and the gas separation performance. The results showed that the existence of PEG in PEBAX/PEG550 (30 wt.%)/CA (0.5%) could remarkably improve the CO₂ permeability from 122.71 to 632.60 Barrer compared to the neat membrane. Furthermore, the selectivity of CO2/CH4 was also enhanced from 20.76 to 59.83. Wang et al. (2014) investigated the effect of PEG on mixed matrix membranes to obtain well – dispersed MWCNTs in MMM and improve the CO₂ permeability and selectivity. The results showed that PEG could reduce the filler agglomeration by improving the surface hydrophilicity of MWCNT. The incorporation of PEG could lead to enhancing the CO₂ permeability and selectivity of CO₂/light gas. Azizi et al. (2017) introduced PEG to modify the surface of TiO₂ nanoparticles and investigate the effect of PEG and TiO₂ nanoparticles on CO₂ and CH₄ permeability and CO₂/CH₄ selectivity. They reported that the presence of PEG modified TiO₂ particles could prevent the filler agglomeration and achieve well-dispersed MMMs. The gas separation performance was also improved due to the influence of PEG and TiO₂.

Some researcher groups have not only studied the capability of molecular sieving but also the ability to adsorb a liquid additive inside pores of porous filler to obtain the advantages of liquid additive and prevent the additive leakage. The hybrid membranes called solid-liquid-polymer mixed matrix membranes have been studied CU iThesis 6273006063 thesis / recv: 14092564 15:31:36 / seq: 30

recently (Rezakazemi et al., 2014). They combine adsorbed liquid additive, filler, and polymer in the same membrane. Mahmoudi et al. (2015) introduced PEG (MW 200) as a liquid additive into PEBA/NaX mixed matrix membranes to investigate the improvement in CO₂/CH₄ separation. They found that the homogeneous dispersion of NaX particles was achieved. Due to the addition of PEG, the surface roughness was reduced as well. Compared to neat PEBA membrane and NaX/PEBA membrane, the PEG addition significantly improved the CO₂ permeability and CO₂/CH₄ selectivity. Besides, the gas separation performance of this work was located above Robeson's upper bound. Chultheera et al. (2017) introduced PEG 400 as a liquid additive into activated Carbon (AC)/Silicone rubber (SR) MMMs to examine the enhancement in CO₂ separation performance and the capability to adsorb liquid PEG in pores of AC. The results showed that 10 wt.% PEG/AC/SR/CA MMM achieved the best selectivity (14.12) compared to AC/SR/CA MMM (5.98). Besides, they found that the existence of AC in MMM could also enhance the performance and prevent the leakage of liquid additives. When the separation performance between PEG/SR/CA MMM and PEG/AC/SR/CA MMM were compared, the CO₂ permeability and CO₂/CH₄ selectivity were improved from 83.63 to 114.82 GPU and 6.31 to 12.42, respectively. Poogkasorn (2018) inspected the gas separation performance of the liquid-solidpolymer mixed matrix membranes consisting of NaX as an inorganic filler, PEG 400 as a liquid additive, and a silicone rubber as polymer matrix. The results showed that PEG adsorbed NaX significantly improved the CO₂/CH₄ selectivity compared to the neat silicone rubber on the CA support membrane. Khonkhlong (2019) studied the addition of KY zeolite as a filler embedded by PEG and dispersed in a silicone rubber. They found that the simultaneous incorporation of KY zeolite and PEG 400 in SR yielded the highest CO₂/CH₄ selectivity compared to both neat SR and KY/SR MMMs. They reported that there was additive leaking from filler, resulting in lowering the gas separation performance.

Some research groups have tried to find new approaches to develop mixed matrix membranes. They attempted to combine two kinds of fillers within the same polymer matrix. They expected that this approach might yield the synergistic effect on gas separation performance of MMMs. Zornoza et al. (2011) incorporated two types

of fillers, including metal-organic framework (MOF) and zeolite in the same membrane. They reported that the different surface properties of two fillers facilitated the dispersion and disaggregation of fillers in MMMs. The combination of MOFs (HKUST-1 and ZIF-8) and silicalite-1 zeolite significantly enhanced the CO₂ permeability; nevertheless, the CO₂/light gas selectivity was unimproved. Galve et al. (2013) investigated the combination of MCM-41 mesoporous silica and JDF-L1 microporous titanosilicate incorporated into copolyamide to improve the H₂ separation performance. The existence of JDF-L1 in MCM-41/PI MMM resulted in good dispersion of MCM-41 within the membrane. Besides, the H₂ permeability and H₂/CH₄ selectivity improved as well. They revealed that the gas performance of JDF-L1/MCM-41/PI MMM was in the attractive zone in the Robeson diagram. Valero et al. (2014) combined MCM-41 mesoporous silica and NH2-MIL-53(Al) metal-organic framework in the same MMM. They found that the presence of MCM-41 particles aided the formation of MOF agglomeration. In addition to good dispersion of filler, synergistic effects of two fillers resulted in superior gas separation performance.

CHAPTER 3 METHODOLOGY

3.1 Objectives

- To study the effect of NaX/KY zeolite mass ratios on CO₂/CH₄ gas separation performance of the MMMs
- To investigate the synergistic effects of NaX, KY, PEG, and silicone rubber on CO₂/CH₄ gas separation performance of MMMs

3.2 Scope of Research

To achieve the objectives of this study, the following scope of work is proposed:

- 1) The amount of silicone rubber was 20 wt.% with respect to hexane.
- 2) The amount of zeolite dispersed in each membrane was 4.76 wt.% with respect to silicone rubber and hexane.
- The amounts of PEG adsorbed NaX and KY zeolites were 2.94 and 3.85 wt.% with respect to zeolite, silicone rubber, and hexane.
- 4) The size of solid fillers was smaller than 80 mesh or $180 \,\mu m$.
- 5) The thickness of the fabricated membrane was 16 mils (1 mil = 10^{-3} in).
- 6) The membranes were prepared at room temperature and atmospheric pressure.
- The gas permeances of all membranes were determined at room temperature, inlet pressure of 50 psi.
- 8) The sequence of tested gases was N₂, CH₄, N₂, CO₂, and N₂, respectively.

3.3 Materials and Equipment

Equipment:

- 1) The in-house membrane testing apparatus
- 2) Oven (ED056, Binder World)
- 3) Casting knife
- 4) Glass plate
- 5) Magnetic stirrer

Chemicals:

- Silicone rubber (KE-1300T/CAT-1300, Shin-Etsu, Japan, CAS No. 63394-02-5)
- 2) Zeolites (NaX and KY, Honeywell UOP, USA)
- Polyethylene glycol (Carbowax PEG 400, Dow Chemical, Malaysia, CAS No. 25322-68-3)
- 4) Cellulose acetate (Semipermeable film, Honeywell UOP, USA)
- 5) Carbon dioxide (HP, 99.99%, Air Liquide, Thailand, CAS No. 124-38-9)
- 6) Nitrogen (HP, 99.99%, Air Liquide, Thailand, CAS No. 7727-37-9)
- 7) Methane (HP, 99.99%, Air Liquide, Thailand, CAS No. 74-82-8)
- 8) n-Hexane (AR, 99%, Aldrich, Thailand, CAS No. 110-56-3)
- 9) Ethanol (AR, 99.9%, Aldrich, Thailand, CAS No. 64-17-5)

3.4 Experimental Procedures

3.4.1 PEG Impregnated into Zeolite Preparation

Zeolites were mashed and sieved to be smaller than $180 \ \mu m$ or $80 \ mesh$. The sieved zeolite was dried at $120^{\circ}C$ for 5 h to get rid of the moisture. To prepare a 60 vol.% PEG solution, PEG *MW*-400 was dissolved in ethanol. The PEG solution was stirred about 30 min or until the solution was homogeneous. After that, the resulted PEG solution was impregnated dropwise onto the zeolite until it was wetted. The PEG impregnated zeolites were dried at $80^{\circ}C$ for 12 h to evaporate the solvent.

Figure 3.1 Flow diagram of the PEG adsorbed zeolite preparation.

3.4.2 Membrane Preparation

All the membranes were prepared via the casting and solvent evaporation methods. Firstly, the desired amount of each filler was dispersed in hexane and then sonicated for 15 min to break aggregation among the fillers. The elastomer part of silicone rubber was added to the dispersion and was stirred for 2 h to enable complete dissolution of polymer. The solution was sonicated for 15 min prior to adding the curing agent. The resultant solution was stirred further for 2 h and then cast on a supporting membrane. The cast membrane was dried at room temperature for 1 h and then at 85°C for 5 h to evaporate the residual solvent from the membrane. Thickness of the different membrane samples prepared in this study was 16 mils.

Figure 3.2 Flow diagram of the MMM preparation.

		70	alita	PEG		
Mambrana	Polymer			(wt	.%)	Supporting
Memorane	(wt.%)	Loading	Mass ratio	NoV	VV	membrane
		(wt.%)	(NaX:KY)	пал	ΓI	
SR/CA		-	-	-	-	
			1:0			
			3:1			
NaX:KY/SR/CA		4.76	1:1	-	-	
	Silicone		1:3			Cellulose
	rubber		0:1			acetate
	(20wt.%)		1:0			
			3:1			
PEG/NaX:KY/SR/CA		4.76	1:1	2.94	3.85	
			1:3			
			0:1			
		1				

 Table 3.1 The chemical composition of fabricated membranes

3.4.3 Gas Permeance Measurements

The experimental setup used for the determination of gas permeability is schematically shown in Figure 3.3. The fabricated membrane was shaped into a 7.5 cm-diameter circle and then placed in a membrane testing unit with an O-ring sealing around the edge. The testing unit was pressurized at 50 psig on the feed side, whereas the permeate side was at an atmospheric pressure (1 atm) and at room temperature. After the testing system was steady, the gas flux was measured using a bubble flow meter. The sequence of gases passing through the membrane was N₂, CH₄, N₂, CO₂, and N₂. The gas permeance was calculated according to Eq. (2.1).

$$\frac{P_A}{L} = \frac{J_A}{\Delta P_A}$$

where P_A/L is the gas permeance in GPU, J_A is the penetrant diffusive flux through the membrane (cm³/cm²-s) and ΔP_A is the change in partial pressure across the membrane (cmHg). The ideal CO_2/CH_4 selectivity was determined according to Eq. (2.3).

$$\alpha_{ij} = \frac{P_i}{P_j}$$

where α_{ij} is the selectivity between i and j gases, P_i and P_j are the gas permeabilities of i and j gases, respectively.

Figure 3.3 Schematic diagram of the single gas permeance measurement.

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Gas Permeance and Selectivity

4.1.1 Silicone Rubber Membranes

To determine the separation performance, there are two important parameters influencing penetrants passing through polymeric membranes, namely solubility (S) and diffusivity (D). The solubility depends on the condensability of the penetrants and interaction between the penetrant and polymer. The other one, diffusivity, is determined by polymer chain mobility and physical characteristics of penetrants (Alqaheem *et al.*, 2017). The product of these two factors is called permeability (P). Permeability is used to evaluate how much the penetrant can pass through a membrane. To evaluate which species is more permeable, selectivity (α) is the ratio of permeability between two penetrants. For both parameters, the selection of polymer is an important issue for success in polymeric membrane separation.

Permeance was determined from steady-state permeation rates of CO_2 , CH_4 , and N_2 through the membranes. The volumetric flow rates were collected using a bubble flow meter at room temperature, inlet pressure of 50 psi. The single gas permeances were determined by using Eq. (2.1) accordingly.

Table 4.1 Gas permeances and selectivities for silicone rubber on cellulose acetate

 supporting membrane and cellulose acetate supporting membrane

Membranes	Gas p	ermeance (Selectivity		
The moral de la company de la compa	CO_2	Selectiv Selectiv CH4 N2 CO2/CH4 10.52 8.52 23.88 4.71 3.69 32.91	CO_2/N_2		
CA^1	213.51	10.52	8.52	23.88	25.07
SR/CA ²	155.43	4.71	3.69	32.91	42.17
1					

¹ CA = Cellulose acetate supporting membrane

 2 SR/CA = 20 wt.% silicone rubber on cellulose acetate supporting membrane

Figure 4.1 Comparison of gas permeance and selectivity between silicone rubber on cellulose acetate (SR/CA) and cellulose acetate (CA) membranes.

Gas permeance and CO₂/CH₄ selectivity are shown in Table 4.1 and Figure 4.1. After silicone rubber was cast on cellulose acetate, the CO₂, N₂, and CH₄ permeances declined about 73%, 43%, and 45%, respectively. Conversely, the CO₂/CH₄ selectivity is inclined about 38% and 68%, respectively. It is clearly seen that silicone rubber as a polymeric membrane can improve the gas separation performance in terms of selectivity, although gas permeance decreases. Penetrants pass through rubbery polymer, silicone rubber, via a transient gap of sufficient size to accommodate the penetrants (Chultheera *et al.*, 2017). As a result, gas permeance of SR/CA decreases. Since CO₂ permeance is higher than the others because of its smaller kinetic diameter and facile condensability, the permeance of CO₂ was higher than the permeance of N₂ and CH₄ leading to increase in CO₂/CH₂ selectivity

4.1.2 <u>Mixed Matrix Membranes of Combination of NaX and KY Zeolites</u> <u>Incorporated in Silicone Rubber (NaX:KY/SR/CA)</u>

In this section, solid-polymer mixed matrix membranes were fabricated and investigated the effect of mass ratio of NaX and KY zeolites on their CO₂/CH₄ gas separation performance. 4.76 wt.% of zeolites were incorporated in 20 wt.% silicone rubbers as a continuous phase which in turn was cast on a cellulose acetate supporting membrane. Gas permeance and selectivity were determined and reported in Table 4.2.

Table 4.2 Gas permeances and selectivities for NaX and KY zeolites incorporated

 silicone rubber on cellulose acetate supporting membrane

Membranes	Gas per	meance (Selectivity		
memorales	CO ₂	CH ₄	N_2	CO ₂ /CH ₄	CO_2/N_2
NaX:KY, 1:0/SR/CA	46.98	4.81	4.11	9.76	11.44
NaX:KY, 3:1/SR/CA	65.44	5.52	5.15	11.87	12.72
NaX:KY, 1:1/SR/CA	75.06	5.79	4.12	12.98	18.23
NaX:KY, 2:1/SR/CA	96.43	4.99	3.62	19.34	26.62
NaX:KY, 0:1/SR/CA	150.11	6.00	4.17	25.01	35.98

<u>Notes</u>

¹ NaX:KY, Y:Z/SR/CA = 4.76 wt.% NaX and KY zeolites with NaX to KY zeolite mass ratio of Y:Z incorporated silicone rubber cast on cellulose acetate supporting membrane.

Zeolite content was calculated with respect to the total weight of silicone rubber and zeolites.

 $GPU = 1 \cdot 10^{-6} \text{ cm}^3 (\text{STP})/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg}$

As shown in Table 4.2 and Figure 4.2, with increasing the content of KY zeolite, the results reveal an increase in CO_2 permeance. The highest CO_2 permeance is obtained from the membrane with NaX/KY ratio of 0:1 that was ca. 150 GPU. In contrast, the CO_2 permeance of the membrane with NaX/KY ratio of 1:0 was ca. 47 GPU. In addition, the CO_2/CH_4 selectivity of the membrane with NaX/KY ratio of 0:1 is higher than that of membrane with NaX/KY ratio of 1:0. Clearly, KY zeolite is

CU iThesis 6273006063 thesis / recv: 14092564 15:31:36 / seq:

ω0

better in gas separation than NaX zeolite in the form of a solid filler dispersed silicone rubber matrix. Moreover, KY zeolite dominated the gas separation performance of MMMs combined with NaX zeolite in the same membranes. NaX and KY zeolites have no significant difference in pore size; therefore, the factor determining gas separation performance does not depend on the kinetic diameter of gases. Conversely, acid-base interaction becomes an aspect for CO₂/CH₄ gas separation. It was implied that the basicity of KY zeolite is stronger than NaX zeolite. In other words, NaX zeolite is more acidic or less basic than KY zeolite (Bakhtyari et al., 2020). The theoretical ion exchange capacity of zeolites X and Y is listed in Table 2.4. The ion exchange capacity of Y zeolite is lower than that of X zeolite. Although zeolite with a lower Si/Al ratio, that is KY zeolite in this study, has obviously a lower cation density and acid-basic sites, the performance of KY zeolite as solid filler is still better than that of NaX zeolite. This behavior could be resulted from the lower occupancy in the cages resulting in more spaces for gas diffusion and less steric hindrance (Busca, 2017). Additionally, the high density of Na⁺ ions on type X zeolite covers and masks part of the basic oxygen ions in orthosilicate (Busca, 2017). In addition to Si/Al ratio and ion exchange capacity, the cation is another parameter considered. Potassium ion (K^+) which is a stronger basic cation than sodium ion (Na^+) results in good interaction with an acidic gas (Bakhtyari et al., 2020; Kulprathipanja and James, 2010). Owing to the increment of CO₂ permeance, CO₂/CH₄ selectivity is enhanced with increasing the amount of KY in combination of zeolite.

Figure 4.2 Comparison of gas permeance and selectivity among solid-polymer mixed matrix membranes with varying the mass ratio of NaX to KY zeolites.

4.1.3 <u>Mixed Matrix Membranes of Combination of PEG Adsorbed NaX and</u> <u>KY Zeolites Incorporated in Silicone Rubber (PEG/NaX:KY/SR/CA)</u>

In this section, solid-liquid-polymer mixed matrix membranes were investigated for the effect of mass ratio of PEG adsorbed NaX and KY zeolites on CO_2/CH_4 gas separation performance. Polyethylene glycol (PEG) (MW = 400), as a liquid polymer, was used to improve CO_2 permeance and CO_2/CH_4 selectivity due to its affinity for CO_2 . It was reported that liquid PEG can leak from the membrane (Chultheera *et al.*, 2017) and then affect the CO_2/CH_4 gas separation performance. In previous works, individual NaX and KY zeolites were introduced to accommodate and stabilize liquid PEG to prevent the leakage (Poogkasorn 2018, Khonkhlong 2019). In this study, NaX and KY zeolites were combined and impregnated with 2.96 and 3.85 wt.%, respectively. The 4.76 wt.% of PEG/zeolite particles were incorporated in 20 wt.% silicone rubbers as a continuous phase and then cast on

cellulose acetate supporting membrane. Gas permeance and selectivity were observed and reported in the following section.

Membranes	Gas per	rmeance	Selectivity		
Wembranes	CO_2	CH ₄	N_2	CO ₂ /CH ₄	CO_2/N_2
PEG/NaX:KY, 1:0/SR/CA	66.00	2.95	2.06	22.35	32.10
PEG/NaX:KY, 3:1/SR/CA	113.43	4.63	3.25	24.52	34.91
PEG/NaX:KY, 1:1/SR/CA	105.48	3.99	3.21	26.43	32.84
PEG/NaX:KY, 1:3/SR/CA	86.60	3.29	2.61	26.32	33.23
PEG/NaX:KY, 0:1/SR/CA	97.80	4.13	2.94	23.69	33.27
NT- (

Table 4.3 Gas permeances and selectivities for PEG adsorbed NaX and KY zeolites

 incorporated silicone rubber on cellulose acetate supporting membranes

<u>Notes</u>

PEG/NaX:KY, Y:Z/SR/CA = 2.96 wt.% PEG adsorbed NaX and 3.85 wt.% PEG adsorbed KY with NaX to KY mass ratio of Y to Z (4.76 wt.% zeolite) incorporated silicone rubber cast on cellulose acetate supporting membrane.

PEG content was calculated with respect to the total weight of silicone rubber, zeolite, and PEG.

Zeolite content was calculated with respect to the total weight of silicone rubber and zeolite.

GPU = $1 \cdot 10^{-6} \text{ cm}^3(\text{STP})/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg}$

Table 4.3 and Figure 4.3 show the effect of PEG adsorbed zeolite filler mass ratio on membrane performance. When CO₂/CH₄ gas separation performances of MMMs with PEG-NaX/PEG-KY ratio of 1:0 and 0:1 are compared, the results reveal that the CO₂ permeance of membrane containing PEG-KY, 97.80 GPU, is higher than that of membrane containing PEG-NaX, 66.00 GPU. about 48%. This is due to the characteristic of zeolite as described in the previous section. KY zeolite has a lower density of cation on zeolite structure resulting in more space and less steric hindrance. For this reason, KY zeolite could impregnate liquid PEG (3.85 wt.%) more than NaX zeolite (2.98 wt.%). This is confirmed by the literature (Khonkhlong, 2019;

Poogkasorn, 2018). CO₂ permeance tends to decrease after the highest CO₂ permeance is observed. PEG-to-PEG interaction and higher amounts of PEG adsorbed zeolite result in the precipitation and agglomeration of solid fillers during membrane preparation. Agglomeration and precipitation of solid fillers were obviously found in the case of PEG-KY particles. For this reason, the membrane performance could be deviated from the expectation. Even though CO₂ permeance decreased, it rose again for membranes containing PEG-KY. KY zeolite as a solid filler performs better than NaX zeolite as a solid filler despite the lower number of solid particles. In terms of CO₂/CH₄ selectivity, CO₂/CH₄ selectivities of membranes dispersing PEG-NaX and PEG-KY are 22.35 and 23.69, respectively. Consequently, there is no significant difference in selectivity between them. The highest CO₂ permeance is yielded from MMM with PEG-NaX/PEG-KY ratio of 3:1. Meanwhile, the highest CO₂/CH₄ selectivity is 26.4 obtained from the membrane with PEG-NaX/PEG-KY ratio of 1:1. Although the loss of solid filler occurred, CO₂/CH₄ separation performance was improved compared to some previous works. To compare CO₂/CH₄ separation performance among solid-liquid-polymer MMMs having the same supporting membranes, the membrane with PEG-NaX/PEG-KY ratio of 1:1 has CO₂ permeance of 105.48 GPU which is higher than that of PEG-NaX (96.49 GPU) and PEG-AC (91.70 GPU). In addition to CO₂ permeance, CO₂/CH₄ selectivity (26.43) is higher than that of PEG-NaX (16.30) and of PEG-AC (14.12) about 162% and 187%, respectively. Moreover, filler loading for this work was also less than the mentioned works (Khonkhlong, 2019; Poogkasorn, 2018). It is suggested that the combination of NaX and KY zeolites shows synergetic effect on CO₂/CH₄ separation performance.

Figure 4.3 Comparison of gas permeance and selectivity among solid-liquid-polymer mixed matrix membranes with varying the mass ratio of NaX to KY zeolites.

4.1.4 <u>Comparison of Gas Separation Performance between Solid-Polymer and</u> <u>Solid-Liquid-Polymer Mixed Matrix Membranes</u>

In this section, CO₂/CH₄ gas separation performance of solid-polymer and solid-liquid-polymer mixed matrix membranes was compared.

From Figure 4.4, it reveals that CO₂ permeance of solid-liquid-polymer MMMs are almost higher than that of solid-polymer MMMs except for the membranes with NaX/KY ratio of 1:3 and 0:1. For membranes with NaX/KY ratio of 1:3 and 0:1, this is mainly caused by loss of PEG/zeolite particles mentioned in the previous section. The most improved CO₂ permeance is achieved for the membrane with NaX/KY ratio of 3:1. This is because of the presence of PEG, a CO₂-philic material, in mixed matrix membranes. PEG containing ethyl ether (EO) unit forms dipole-quadrupole interaction with CO₂ molecules. As a result, PEG prefers to dissolve CO₂ more than other gases (Guo *et al.*, 2019; Loloei, Moghadassi, *et al.*,

2015). In addition to CO₂ permeance, N₂ and CH₄ permeances as shown in Figure 4.5 were suppressed after PEG was impregnated into the pore channel of zeolite. Since PEG is not selective to N₂ and CH₄, it would behave as a pore-blocking material to both gases. For this reason, the decline in N2 and CH4 permeance was caused by longer tortuosity of diffusion path or the relatively slow diffusion rate of N_2 (3.64Å) and CH₄ (3.8Å) in pore channels (Zhang et al., 2021). Although the kinetic diameter of CH₄ (3.8Å) is larger than that of N₂ (3.64Å), the results exhibit that CH₄ permeance is higher than N₂ permeance for any membranes. The penetrant gas passes through the polymeric membrane via the solution-diffusion mechanism, therefore, solubility of each gas in polymer is the key parameter determining its permeability. Another key parameter is the critical temperature of gases as shown in Table 2.2. Difference in critical temperature results in different solubility of each gas. The penetrant which has higher critical temperature provides higher solubility on the polymer membrane than the other penetrants which have lower critical temperature. CH₄ has the critical temperature of 82.1°C that is higher than that of N₂ (-147.1°C), therefore, the solubility of CH₄ on silicone rubber is higher than that of N₂. In case of selectivity shown in Figure 4.6, CO₂/CH₄ selectivity of solid-liquid-polymer MMMs is higher than that of solid-polymer MMMs excluding the membrane with NaX/KY ratio of 0:1. The presence of liquid additive, PEG, resulted in the increment of CO_2/CH_4 selectivity by the means of enhancement of CO₂ permeance and decrease in N₂ and CH₄ permeance.

Figure 4.4 Comparison of CO₂ permeance between solid-polymer and solid-liquid-polymer mixed matrix membranes.

■ N2 permeance of solid-polymer MMMs

Figure 4.5 Comparison of N_2 and CH_4 permeances between solid-polymer and solidliquid-polymer mixed matrix membranes.

CO2/CH4 selectivity of solid-liquid-polymer MMMs

- CO2/N2 selectivity of solid-polymer MMMs
- CO2/N2 selectivity of solid-liquid-polymer MMMs

Figure 4.6 Comparison of CO₂/CH₄ and CO₂/N₂ selectivities between solid-polymer and solid-liquid-polymer mixed matrix membranes.

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

Polymeric membrane, solid-polymer mixed matrix membranes, and liquidsolid-polymer mixed matrix membranes were fabricated by the solution-casting and solvent evaporation methods. Silicone rubber, NaX and KY zeolites, polyethylene glycol (PEG), and cellulose acetate were used as polymer, solid filler, liquid additive, and supporting membrane, respectively. The gas separation performance was evaluated by determining the permeabilities of CO₂, CH₄, and N₂ and selectivities between the gas pairs. Single gas permeance measurements were carried out at room temperature, inlet pressure of 50 psi, and outlet pressure of 1atm.

In the study of mass ratio of NaX to KY zeolite dispersed polymer matrix for solid-polymer mixed matrix membrane, CO₂ permeance and CO₂/CH₄ selectivity increase with increasing the amount of KY zeolite in the combination of zeolite. It was found that KY zeolite is a better zeolite than NaX zeolite in the form of an inorganic filler dispersed polymeric membrane.

In case of liquid/solid/polymer mixed matrix membranes, PEG impregnated zeolite as a solid filler was dispersed in the polymer matrix. The trend of CO_2 permeance and CO_2/CH_4 selectivity was different from solid-polymer mixed matrix membranes. The reason for this was due to the loss of PEG/zeolite particles during the membrane preparation that negatively impacts on the membrane performance.

By comparing the CO₂/CH₄ gas separation performances of solid-polymer and solid-liquid-polymer mixed matrix membranes, PEG as a liquid additive significantly improves gas separation performance in terms of CO₂ permeance and CO₂/CH₄ selectivity. Furthermore, it can suppress N₂ and CH₄ permeances leading to the enhancement of CO₂/CH₄ selectivity. Among the MMMs studied in this work, the PEG/NaX:KY/SR/CA MMM with NaX/KY ratio of 1:1 is the best performing membrane which provides the highest CO₂/CH₄ selectivity.

5.2 Recommendations

From this work, it was found that PEG impregnated zeolite incorporated in silicone rubber significantly improved CO₂/CH₄ gas separation performance in terms of permeability and selectivity. However, the membrane performance suffers from the loss of PEG/zeolite particles owing to strong PEG-to-PEG interaction. To improve performance of solid-liquid-polymer mixed matrix membrane, the dissolution and dispersion of PEG/zeolite during membrane preparation is an interesting topic for preventing filler precipitation. It is suggested that N-containing materials, such as PEI or PDA, should be considered as liquid filler.

APPENDICES

Appendix A Graphical Abstract

Figure A1 Graphical abstract.

Appendix B Experimental Data Attained from a Supporting Membrane

The experimental fluxed of carbon dioxide (CO_2) , methane (CH_4) , and nitrogen (N_2) of studied mixed matrix membranes are shown in the following tables.

Gas	Time	Flow ^c	Flux ^d	Avg flux ^e	Permeance ^f	Std. Dev. ^g	Average ^h
	31.69 ^a	170.40	3.86		322.58		
	31.01 ^a	174.14	3.94		329.65		
CO ₂	30.83 ^a	175.15	3.96	3.95	331.58	6.07	330.76
	30.94 ^a	174.53	3.95		330.40		
	30.10 ^a	179.40	4.06		339.62		
	8.16 ^b	7.35	0.17		13.92		
	8.14 ^b	7.37	0.17		13.95		
CH ₄	8.18 ^b	7.33	0.17	0.17	13.89	0.13	13.85
	8.19 ^b	7.33	0.17		13.87		
	8.34 ^b	7.19	0.16		13.62		
	12.37 ^b	4.85	0.11		9.18		
	12.22 ^b	4.91	0.11		9.29		
N_2	12.19 ^b	4.92	0.11	0.11	9.32	0.08	9.31
	12.16 ^b	4.93	0.11		9.34		
	12.09 ^b	4.96	0.11		9.39		

 Table B1 Cellulose acetate supporting membrane (CA)

^a Time to reach 90 cm^3 (s)

^b Time to reach 1 cm³ (s)

^c Flow rate (cm³/min)

^d Flux (cm³/min·cm²)

^r Average flux (cm³/min·cm²)

^f Permeance $(1 \cdot 10^{-6} \text{cm}^3(\text{STP})/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg})$

^g Standard deviation of permeance

^h Average permeance (1·10⁻⁶cm³(STP)/cm²·s·cmHg)

= 330.76 GPU
= 13.85 GPU
= 9.31 GPU
= 23.88
= 35.54

Appendix C Experimental Data Attained from a SR/CA Membrane.

Table C1 20wt.% silicone rubber on cellulose acetate supporting membrane (20wt.%SR/CA)

Gas	Time	Flow ^c	Flux ^d	Avg flux ^e	Permeance ^f	Std. Dev. ^g	Average ^h
	65.99 ^a	81.83	1.85		154.91		
	65.40 ^a	82.57	1.87		156.31		
CO ₂	65.16 ^a	82.87	1.88	1.86	156.88	1.23	155.43
	65.82 ^a	82.04	1.86		155.31		
	66.50 ^a	81.20	1.84		153.72		
	23.76 ^b	2.53	0.06		4.78		
	24.05 ^b	2.49	0.06		4.72		
CH ₄	24.15 ^b	2.48	0.06	0.06	4.70	0.04	4.71
	24.20 ^b	2.48	0.06		4.69		
	24.33 ^b	2.47	0.06		4.67		
	29.98 ^b	2.00	0.05		3.79		
	31.07 ^b	1.93	0.04		3.66		
N_2	30.87 ^b	1.94	0.04	0.04	3.68	0.06	3.69
	30.84 ^b	1.95	0.04		3.68		
	31.35 ^b	1.91	0.04		3.62		

^a Time to reach 90 cm³ (s)

^b Time to reach 1 cm³ (s)

^c Flow rate (cm³/min)

^d Flux (cm3/min·cm²)

^r Average flux (cm3/min·cm²)

^f Permeance $(1 \cdot 10^{-6} \text{cm}^3(\text{STP})/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg})$

^g Standard deviation of permeance

^h Average permeance $(1 \cdot 10^{-6} \text{cm}^3(\text{STP})/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg})$

Permeance of CO_2 = 155.43 GPU

Permeance of CH_4 = 4.71 GPU

Permeance of N_2 = 3.69 GPU

Selectivity of $CO_2/CH_4 = 32.97$

Selectivity of $CO_2/N_2 = 42.17$

Appendix D Experimental Data Attained from NaX and KY Zeolites Incorporated in SR/CA Membranes.

Table D1 4.76wt.% zeolite with NaX/KY mass ratio of 1:0 incorporated 20wt.%silicone rubber on cellulose acetate supporting membrane (4.76wt.%-NaX:KY,1:0/SR/CA)

Gas	Time	Flow ^c	Flux ^d	Avg flux ^e	Permeance ^f	Std. Dev. ^g	Average ^h
	31.69 ^a	24.59	0.56		46.55		
	31.01 ^a	24.09	0.55		45.60		
CO ₂	30.83 ^a	24.09	0.55	0.56	45.60	1.93	46.98
	30.94 ^a	24.77	0.56		46.89		
	30.10 ^a	26.56	0.60		50.28		
	8.16 ^b	2.63	0.06		4.99		
	8.14 ^b	2.61	0.06		4.94		
CH ₄	8.18 ^b	2.54	0.06	0.06	4.80	0.15	4.81
	8.19 ^b	2.47	0.06		4.67		
	8.34 ^b	2.47	0.06		4.67		
	12.37 ^b	2.21	0.05		4.19		
N_2	12.22 ^b	2.19	0.05		4.14		4.11
	12.19 ^b	2.14	0.05	0.05	4.05	0.06	
	12.16 ^b	2.16	0.05		4.09		
	12.09 ^b	2.15	0.05		4.06		

^a Time to reach 9 cm^3 (s)

^b Time to reach 1 cm³ (s)

^c Flow rate (cm³/min)

^d Flux (cm³/min·cm²)

^r Average flux (cm³/min·cm²)

^f Permeance $(1 \cdot 10^{-6} \text{cm}^3(\text{STP})/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg})$

^g Standard deviation of permeance

^h Average permeance $(1 \cdot 10^{-6} \text{cm}^3(\text{STP})/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg})$

Permeance of CO ₂	= 46.98 GPU
Permeance of CH ₄	= 4.81 GPU
Permeance of N ₂	= 4.11 GPU
Selectivity of CO ₂ /CH ₄	= 9.76
Selectivity of CO ₂ /N ₂	= 11.44

Table D2 4.76wt.% zeolite with NaX/KY mass ratio of 3:1 incorporated 20wt.%silicone rubber on cellulose acetate supporting membrane (4.76wt.%-NaX:KY,3:1/SR/CA)

Gas	Time	Flow ^c	Flux ^d	Avg flux ^e	Permeance ^f	Std. Dev. ^g	Average ^h
	15.07 ^a	35.83	0.81		67.83		
	15.48 ^a	34.88	0.79		66.04		
CO_2	15.92 ^a	33.92	0.77	0.78	64.21	1.51	65.44
	15.83 ^a	34.11	0.77		64.58		
	15.84 ^a	34.09	0.77		64.54		
	20.57 ^b	2.92	0.07		5.52		5.52
	20.57 ^b	2.92	0.07		5.52	0.05	
CH_4	20.32 ^b	2.95	0.07	0.07	5.59		
	20.73 ^b	2.89	0.07		5.48		
	20.79 ^b	2.89	0.07		5.46		
	22.17 ^b	2.71	0.06		5.12		
	21.92 ^b	2.74	0.06		5.18		
N_2	22.09 ^b	2.72	0.06	0.06	5.14	0.02	5.15
	22.10 ^b	2.71	0.06		5.14		
	22.10 ^b	2.71	0.06		5.14		

^b Time to reach 1 cm³ (s)

^c Flow rate (cm³/min)

^d Flux (cm³/min·cm²)

^r Average flux (cm³/min·cm²)

^f Permeance $(1 \cdot 10^{-6} \text{cm}^3(\text{STP})/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg})$

^g Standard deviation of permeance

^h Average permeance $(1 \cdot 10^{-6} \text{cm}^3(\text{STP})/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg})$

Permeance of CH ₄	= 5.52 GPU
Permeance of N ₂	= 5.15 GPU
Selectivity of CO ₂ /CH ₄	= 11.87

Selectivity of $CO_2/N_2 = 12.72$

Table D3 4.76wt.% zeolite with NaX/KY mass ratio of 1:1 incorporated 20wt.%silicone rubber on cellulose acetate supporting membrane (4.76wt.%-NaX:KY,1:1/SR/CA)

Gas	Time	Flow ^c	Flux ^d	Avg flux ^e	Permeance ^f	Std. Dev. ^g	Average ^h
	13.77 ^a	39.22	0.89		74.24		
	13.63 ^a	39.62	0.90		75.00		
CO ₂	13.50 ^a	40.00	0.90	0.90	75.72	0.82	75.06
	13.76 ^a	39.24	0.89		74.29		
	13.44 ^a	40.18	0.91		76.06		
	19.65 ^b	3.05	0.07	0.07	5.78	0.02	5.76
	19.72 ^b	3.04	0.07		5.76		
CH_4	19.60 ^b	3.06	0.07		5.80		
	19.59 ^b	3.06	0.07		5.80		
	19.61 ^b	3.06	0.07		5.79		
	27.67 ^b	2.17	2.17 0.05		4.10		
N ₂	27.25 ^b	2.20	0.05	0.05	4.17	0.03	4.12
	27.63 ^b	2.17	0.05		4.11		
	27.75 ^b	2.16	0.05		4.09		
	27.65 ^b	2.17	0.05		4.11		

^b Time to reach 1 cm³ (s)

^c Flow rate (cm³/min)

^d Flux (cm³/min·cm²)

^r Average flux (cm³/min·cm²)

^f Permeance $(1 \cdot 10^{-6} \text{cm}^3(\text{STP})/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg})$

^g Standard deviation of permeance

^h Average permeance $(1 \cdot 10^{-6} \text{cm}^3(\text{STP})/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg})$

Permeance of CH ₄	= 5.76 GPU
Permeance of N ₂	= 4.12 GPU
Selectivity of CO ₂ /CH ₄	= 12.98

Selectivity of CO_2/N_2 = 18.23

Table D4 4.76wt.% zeolite with NaX/KY mass ratio of 1:3 incorporated 20wt.%silicone rubber on cellulose acetate supporting membrane (4.76wt.%-NaX:KY,1:3/SR/CA)

Gas	Time	Flow ^c	Flux ^d	Avg flux ^e	Permeance ^f	Std. Dev. ^g	Average ^h
	10.51 ^a	51.38	1.16		97.26	1.06	
	10.73 ^a	50.33	1.14		95.27		96.43
CO_2	10.59 ^a	50.99	1.15	1.15	96.53		
	10.71 ^a	50.42	1.14		95.45		
	10.47 ^a	51.58	1.17		97.64		
	22.30 ^b	2.69	0.06		5.09		
	22.60 ^b	2.65	0.06	0.06	5.02	0.07	4.99
CH_4	23.03 ^b	2.61	0.06		4.93		
	23.01 ^b	2.61	0.06		4.94		
	22.94 ^b	2.62	0.06		4.95		
	31.13 ^b 1.93 0.04		3.65				
N ₂	31.92 ^b	1.88	0.04	0.04	3.56	0.04	3.62
	31.35 ^b	1.91	0.04		3.62		
	31.14 ^b	1.93	0.04		3.65		
	31.27 ^b	1.92	0.04		3.63		

^b Time to reach 1 cm³ (s)

^c Flow rate (cm³/min)

^d Flux (cm³/min·cm²)

^r Average flux (cm³/min·cm²)

^f Permeance $(1 \cdot 10^{-6} \text{cm}^3(\text{STP})/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg})$

^g Standard deviation of permeance

^h Average permeance $(1 \cdot 10^{-6} \text{cm}^3(\text{STP})/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg})$

= 4.99 GPU
= 3.62 GPU
= 19.34

Selectivity of CO_2/N_2 = 26.62

Table D5 4.76wt.% zeolite with NaX/KY mass ratio of 0:1 incorporated 20wt.%silicone rubber on cellulose acetate supporting membrane (4.76wt.%-NaX:KY,0:1/SR/CA)

Gas	Time	Flow ^c	Flux ^d	Avg flux ^e	Permeance ^f	Std. Dev. ^g	Average ^h
	6.82 ^a	79.18	1.79		149.89		
	6.78 ^a	79.65	1.80		150.77		150.11
CO_2	6.79 ^a	79.53	1.80	1.79	150.55	0.60	
	6.85 ^a	79.83	1.78		149.23		
	6.81 ^a	79.30	1.79		150.11		
	18.80 ^b	3.19	0.07	0.07	6.04	0.05	6.00
	18.85 ^b	3.18	0.07		6.03		
CH_4	18.77 ^b	3.20	0.07		6.05		
	19.01 ^b	3.16	0.07		5.97		
	19.18 ^b	3.13	0.07		5.92		
	27.25 ^b	2.20	0.05	0.05	4.17		4.17
N ₂	27.30 ^b	2.20	0.05		4.16	0.01	
	27.20 ^b	2.21	0.05		4.18		
	27.25 ^b	2.20	0.05		4.17		
	27.12 ^b	2.21	0.05		4.19		

^b Time to reach 1 cm³ (s)

^c Flow rate (cm³/min)

^d Flux (cm³/min·cm²)

^r Average flux (cm³/min·cm²)

^f Permeance $(1 \cdot 10^{-6} \text{cm}^3(\text{STP})/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg})$

^g Standard deviation of permeance

^h Average permeance $(1 \cdot 10^{-6} \text{cm}^3(\text{STP})/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg})$

Permeance of CO ₂	= 150.11 GPU
Permeance of CH ₄	= 6.00 GPU
Permeance of N ₂	= 4.17 GPU
Selectivity of CO ₂ /CH ₄	= 25.01

Selectivity of CO_2/N_2 = 35.98

Appendix E Experimental Data Attained from PEG Adsorbed NaX and KY Zeolites Incorporated in SR/CA Membranes.

Table E1 2.96wt.% PEG adsorbed on 4.76wt.% NaX zeolite with NaX/KY mass ratio of 1:0 incorporated 20wt.% silicone rubber on cellulose acetate supporting membrane (2.96wt.%PEG-NaX, 4.76wt.%-NaX:KY, 1:0/SR/CA)

Gas	Time	Flow ^c	Flux ^d	Avg flux ^e	Permeance ^f	Std. Dev. ^g	Average ^h
	15.38 ^a	35.11	0.79		66.47		66.00
	15.49 ^a	34.86	0.79		65.99	0.30	
CO ₂	15.49 ^a	34.86	0.79	0.79	65.99		
	15.58 ^a	34.66	0.78		65.61		
	15.50 ^a	34.84	0.79		65.95		
	38.80 ^b	1.55	0.04	0.04	2.93	0.02	2.95
CH4	38.37 ^b	1.56	0.04		2.96		
	38.50 ^b	1.56	0.04		2.95		
	38.44 ^b	1.56	0.04		2.95		
	38.20 ^b	1.57	0.04		2.97		
	55.01 ^b 1.09 (0.02		2.06			
N ₂	54.94 ^b	1.09	0.02	0.02	2.07	0.01	2.06
	55.80 ^b	1.08	0.02		2.04		
	55.17 ^b	1.09	0.02		2.06		
	55.28 ^b	1.09	0.02		2.05		

^a Time to reach 9 cm^3 (s)

^b Time to reach 1 cm³ (s)

^c Flow rate (cm³/min)

^d Flux (cm³/min·cm²)

^r Average flux (cm³/min·cm²)

^f Permeance $(1 \cdot 10^{-6} \text{cm}^3(\text{STP})/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg})$

^g Standard deviation of permeance

^h Average permeance $(1 \cdot 10^{-6} \text{cm}^3(\text{STP})/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg})$

Permeance of CO ₂	= 66.00 GPU
Permeance of CH ₄	= 2.95 GPU
Permeance of N ₂	= 2.06 GPU
Selectivity of CO ₂ /CH ₄	= 22.35
Selectivity of CO ₂ /N ₂	= 32.10

Table E2 2.96wt.%PEG adsorbed NaX zeolite and 3.85wt.%PEG adsorbed KY zeolite with NaX/KY mass ratio of 3:1 (4.76wt.%zeolite) incorporated 20wt.% silicone rubber on cellulose acetate supporting membrane (2.96wt.%PEG-NaX, 4.76wt.%-NaX:KY, 3:1/SR/CA)

Gas	Time	Flow ^c	Flux ^d	Avg flux ^e	Permeance ^f	Std. Dev. ^g	Average ^h
CO ₂	9.03 ^a	59.80	1.35		113.21	0.16	
	9.02 ^a	59.87	1.36		113.33		113.43
	9.01 ^a	59.93	1.36	1.36	113.46		
	9.00 ^a	60.00	1.36		113.58		
	9.00 ^a	60.00	1.36		113.58		
CH4	24.56 ^b	2.44	0.06	0.06	4.62	0.01	4.63
	24.60 ^b	2.44	0.06		4.62		
	24.59 ^b	2.44	0.06		4.62		
	24.54 ^b	2.44	0.06		4.63		
	24.46 ^b	2.45	0.06		4.64		
N ₂	34.98 ^b	1.72	0.04		3.25		
	34.91 ^b	1.72	0.04		3.25		
	34.90 ^b	1.72	0.04	0.04	3.25	0.01	3.25
	34.91 ^b	1.72	0.04		3.25		
	35.06 ^b	1.71	0.04		3.24		

^b Time to reach 90 cm³ (s)

^c Flow rate (cm³/min)

^d Flux (cm³/min·cm²)

^r Average flux (cm³/min·cm²)

^f Permeance $(1 \cdot 10^{-6} \text{cm}^3(\text{STP})/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg})$

^g Standard deviation of permeance

^h Average permeance $(1 \cdot 10^{-6} \text{cm}^3(\text{STP})/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg})$

Permeance of CO_2 = 113.43 GPU

Permeance of CH ₄	= 4.63 GPU		

Permeance of N_2 = 3.25 GPU

Selectivity of $CO_2/CH_4 = 24.52$

Selectivity of CO_2/N_2 = 31.91

Table E3 2.96wt.%PEG adsorbed NaX zeolite and 3.85wt.%PEG adsorbed KY zeolite with NaX/KY mass ratio of 1:1 (4.76wt.%zeolite) incorporated 20wt.% silicone rubber on cellulose acetate supporting membrane (2.96wt.%PEG-NaX, 3.85wt.%PEG-KY/4.76wt.%-NaX:KY, 1:1/SR/CA)

Gas	Time	Flow ^c	Flux ^d	Avg flux ^e	Permeance ^f	Std. Dev. ^g	Average ^h
CO ₂	9.64 ^a	56.02	1.27		106.04	0.57	105.48
	9.76 ^a	55.33	1.25		104.74		
	9.64 ^a	56.02	1.27	1.26	106.04		
	9.72 ^a	55.56	1.26		105.17		
	9.70 ^a	55.67	1.26		105.39		
CH4	28.33 ^b	2.12	0.05	0.05	4.01	0.02	3.99
	28.54 ^b	2.10	0.05		3.98		
	28.42 ^b	2.11	0.05		4.00		
	28.68 ^b	2.09	0.05		3.96		
	28.32 ^b	2.12	0.05		4.01		
N ₂	35.92 ^b	1.67	0.04		3.16		
	35.19 ^b	1.70	0.04		3.23		
	35.58 ^b	1.69	0.04	0.04	3.19	0.03	3.21
	35.21 ^b	1.70	0.04		3.23		
	34.94 ^b	1.72	0.04		3.25		

^b Time to reach 1 cm³ (s)

^c Flow rate (cm³/min)

^d Flux (cm³/min·cm²)

^r Average flux (cm³/min·cm²)

^f Permeance $(1 \cdot 10^{-6} \text{cm}^3(\text{STP})/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg})$

^g Standard deviation of permeance

^h Average permeance $(1 \cdot 10^{-6} \text{cm}^3(\text{STP})/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg})$

Permeance of CH ₄	= 3.99 GPU

Permeance of $N_2 = 3.21 \text{ GPU}$

Selectivity of CO_2/CH_4 = 26.43

Selectivity of $CO_2/N_2 = 32.84$

Table E4 2.96wt.%PEG adsorbed NaX zeolite and 3.85wt.%PEG adsorbed KY zeolite with NaX/KY mass ratio of 1:3 (4.76wt.%zeolite) incorporated 20wt.% silicone rubber on cellulose acetate supporting membrane (2.96wt.%PEG-NaX, 3.85wt.%PEG-KY/4.76wt.%-NaX:KY, 1:3/SR/CA)

Gas	Time	Flow ^c	Flux ^d	Avg flux ^e	Permeance ^f	Std. Dev. ^g	Average ^h
CO ₂	11.72 ^a	46.08	1.04		87.22	0.57	86.60
	11.87 ^a	45.49	1.03		86.12		
	11.89 ^a	45.41	1.03	1.04	85.98		
	11.81 ^a	45.72	1.03		86.56		
	11.73 ^a	46.04	1.04		87.15		
CH4	34.35 ^b	1.75	0.04	0.04	3.31	0.02	3.29
	34.64 ^b	1.73	0.04		3.28		
	34.55 ^b	1.74	0.04		3.29		
	34.32 ^b	1.75	0.04		3.31		
	34.77 ^b	1.73	0.04		3.27		
N ₂	43.67 ^b	1.37	0.03		2.60		
	43.73 ^b	1.37	0.03		2.60		
	43.35 ^b	1.38	0.03	0.03	2.62	0.01	2.61
	43.32 ^b	1.39	0.03		2.62		
	43.87 ^b	1.37	0.03		2.59		

^b Time to reach 1 cm³ (s)

^c Flow rate (cm³/min)

^d Flux (cm³/min·cm²)

^r Average flux (cm³/min·cm²)

^f Permeance $(1 \cdot 10^{-6} \text{cm}^3(\text{STP})/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg})$

^g Standard deviation of permeance

^h Average permeance $(1 \cdot 10^{-6} \text{cm}^3(\text{STP})/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg})$

Permeance of CO_2 = 86.60 GPU

Permeance of CH ₄	= 3.29 GPU

Permeance of $N_2 = 2.61 \text{ GPU}$

Selectivity of $CO_2/CH_4 = 26.32$

Selectivity of CO_2/N_2 = 33.23

Table E5 2.96wt.%PEG adsorbed NaX zeolite and 3.85wt.%PEG adsorbed KY zeolite with NaX/KY mass ratio of 0:1 (4.76wt.%zeolite) incorporated 20wt.% silicone rubber on cellulose acetate supporting membrane (2.96wt.%PEG-NaX, 3.85wt.%PEG-KY/4.76wt.%-NaX:KY, 0:1/SR/CA)

Gas	Time	Flow ^c	Flux ^d	Avg flux ^e	Permeance ^f	Std. Dev. ^g	Average ^h
CO ₂	10.50 ^a	51.43	1.16		97.36	0.31	97.80
	10.45 ^a	51.67	1.17		97.82		
	10.44 ^a	51.72	1.17	1.17	97.92		
	10.41 ^a	51.87	1.17		98.20		
	10.46 ^a	51.63	1.17		97.73		
CH4	27.50 ^b	2.18	0.05		4.13		
	27.50 ^b	2.18	0.05		4.13		
	27.42 ^b	2.19	0.05	0.05	4.14	0.01	4.13
	27.59 ^b	2.17	0.05		4.12		
	27.56 ^b	2.18	0.05		4.12		
N ₂	38.67 ^b	1.55	0.04		2.94		
	38.66 ^b	1.55	0.04		2.94		
	38.76 ^b	1.55	0.04	0.04	2.93	0.01	2.94
	38.57 ^b	1.56	0.04		2.94		
	38.50 ^b	1.56	0.04		2.95		

^b Time to reach 1 cm³ (s)

^c Flow rate (cm³/min)

^d Flux (cm³/min·cm²)

^r Average flux (cm³/min·cm²)

^f Permeance $(1 \cdot 10^{-6} \text{cm}^3(\text{STP})/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg})$

^g Standard deviation of permeance

^h Average permeance $(1 \cdot 10^{-6} \text{cm}^3(\text{STP})/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg})$

Permeance of CO_2 = 97.80 GPU

Permeance of CH ₄	= 4.13 GPU

Permeance of $N_2 = 2.94 \text{ GPU}$

Selectivity of CO_2/CH_4 = 23.69

Selectivity of $CO_2/N_2 = 33.27$

REFERENCES

- Ahmad, M.Z., Martin-Gil, V., Supinkova, T., Lambert, P., Castro-Muñoz, R., Hrabanek, P., Kocirik, M., and Fila, V. (2021). Novel MMM using CO2 selective SSZ-16 and high-performance 6FDA-polyimide for CO2/CH4 separation. <u>Separation</u> <u>and Purification Technology</u>, 254, 117582.
- Alqaheem, Y., Alomair, A., Vinoba, M., and Pérez, A. (2017). Polymeric Gas-Separation Membranes for Petroleum Refining. <u>International Journal of</u> <u>Polymer Science</u>, 2017, 4250927.
- Azizi, N., Mohammadi, T., and Behbahani, R.M. (2017). Synthesis of a new nanocomposite membrane (PEBAX-1074/PEG-400/TiO2) in order to separate CO2 from CH4. Journal of Natural Gas Science and Engineering, 37, 39-51.
- Bakhtyari, A., Mofarahi, M., and Lee, C.-H. (2020). <u>Chapter 9 CO2 adsorption by</u> <u>conventional and nanosized zeolites</u>. Advances in Carbon Capture. M. R. Rahimpour, M. Farsi, & M. A. Makarem, Woodhead Publishing: 193-228.
- Bastani, D., Esmaeili, N., and Asadollahi, M. (2013). Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review. Journal of Industrial and Engineering Chemistry, 19(2), 375-393.
- Broach, R.W. (2010). <u>Zeolite Types and Structures</u>. Zeolites in Industrial Separation and Catalysis: 27-59.
- Busca, G. (2017). Acidity and basicity of zeolites: A fundamental approach. <u>Microporous and Mesoporous Materials</u>, 254, 3-16.
- Castro-Muñoz, R., Fíla, V., Martin-Gil, V., and Muller, C. (2019). Enhanced CO2 permeability in Matrimid® 5218 mixed matrix membranes for separating binary CO2/CH4 mixtures. <u>Separation and Purification Technology</u>, 210, 553-562.
- Cheng, Y., Wang, Z., and Zhao, D. (2018). Mixed Matrix Membranes for Natural Gas Upgrading: Current Status and Opportunities. <u>Industrial & Engineering</u> <u>Chemistry Research</u>, 57(12), 4139-4169.
- Chultheera, P., Rirksomboon, T., Kulprathipanja, S., Liu, C., Chinsirikul, W., and Kerddonfag, N. (2017). Solid-Liquid-Polymer Mixed Matrix Membrane Using Liquid Additive Adsorbed on Activated Carbon Dispersed in Polymeric Membrane for CO2/CH4 Separation. <u>World Academy of Science, Engineering</u>

and Technology, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 11, 482-485.

- Galve, A., Sieffert, D., Staudt, C., Ferrando, M., Güell, C., Téllez, C., and Coronas, J. (2013). Combination of ordered mesoporous silica MCM-41 and layered titanosilicate JDF-L1 fillers for 6FDA-based copolyimide mixed matrix membranes. Journal of Membrane Science, 431, 163-170.
- Guo, X., Qiao, Z., Liu, D., and Zhong, C. (2019). Mixed-matrix membranes for CO2 separation: role of the third component. <u>Journal of Materials Chemistry A</u>, 7(43), 24738-24759.
- Junaidi, M.U.M., Leo, C.P., Kamal, S.N.M., Ahmad, A.L., and Chew, T.L. (2013). Carbon dioxide removal from methane by using polysulfone/SAPO-44 mixed matrix membranes. Fuel Processing Technology, 112, 1-6.
- Kargari, A., and Rezaeinia, S. (2020). State-of-the-art modification of polymeric membranes by PEO and PEG for carbon dioxide separation: A review of the current status and future perspectives. <u>Journal of Industrial and Engineering</u> <u>Chemistry</u>, 84, 1-22.
- Khonkhlong, B. (2019). Solid-Liquid-Polymer Mixed Matrix Membrane Development for Gas Separation: Influence of Silicone Rubber, Polyethylene Glycol and KY Zeolite on CO₂/CH₄ Separation. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Kulprathipanja, S., and James, R.B. (2010). <u>Overview in Zeolites Adsorptive</u> <u>Separation</u>. Zeolites in Industrial Separation and Catalysis: 173-202.
- Liu, C., and Kulprathipanja, S. (2010). <u>Mixed-Matrix Membranes</u>. Zeolites in Industrial Separation and Catalysis: 329-353.
- Loloei, M., Moghadassi, A., Omidkhah, M., and Amooghin, A.E. (2015). Improved CO2 separation performance of Matrimid®5218 membrane by addition of low molecular weight polyethylene glycol. <u>Greenhouse Gases: Science and Technology</u>, 5(5), 530-544.
- Loloei, M., Omidkhah, M., Moghadassi, A., and Amooghin, A.E. (2015). Preparation and characterization of Matrimid® 5218 based binary and ternary mixed matrix membranes for CO2 separation. <u>International Journal of Greenhouse Gas</u>

Control, 39, 225-235.

- Mahmoudi, A., Asghari, M., and Zargar, V. (2015). CO2/CH4 separation through a novel commercializable three-phase PEBA/PEG/NaX nanocomposite membrane. Journal of Industrial and Engineering Chemistry, 23, 238-242.
- Nadeali, A., Kalantari, S., Yarmohammadi, M., Omidkhah, M., Ebadi Amooghin, A., and Zamani Pedram, M. (2020). CO2 Separation Properties of a Ternary Mixed-Matrix Membrane Using Ultraselective Synthesized Macrocyclic Organic Compounds. <u>ACS Sustainable Chemistry & Engineering</u>, 8(34), 12775-12787.
- Poogkasorn, W. (2018). Solid-Polymer Mixed Matrix Membranes For Gas Separation Silicone Rubber Membranes Incoporated NaX Absorbed Polyethylene Glycol.
 M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Reijerkerk, S.R., Knoef, M.H., Nijmeijer, K., and Wessling, M. (2010). Poly(ethylene glycol) and poly(dimethyl siloxane): Combining their advantages into efficient CO2 gas separation membranes. <u>Journal of Membrane Science</u>, 352(1), 126-135.
- Rezakazemi, M., Ebadi Amooghin, A., Montazer-Rahmati, M.M., Ismail, A.F., and Matsuura, T. (2014). State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. <u>Progress in Polymer Science</u>, 39(5), 817-861.
- Robeson, L.M. (2008). The upper bound revisited. Journal of Membrane Science, 320(1), 390-400.
- Surya Murali, R., Ismail, A.F., Rahman, M.A., and Sridhar, S. (2014). Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations. <u>Separation and Purification Technology</u>, 129, 1-8.
- Valero, M., Zornoza, B., Téllez, C., and Coronas, J. (2014). Mixed matrix membranes for gas separation by combination of silica MCM-41 and MOF NH2-MIL-53(Al) in glassy polymers. <u>Microporous and Mesoporous Materials</u>, 192, 23-28.
- Vinoba, M., Bhagiyalakshmi, M., Alqaheem, Y., Alomair, A.A., Pérez, A., and Rana, M.S. (2017). Recent progress of fillers in mixed matrix membranes for CO2 separation: A review. <u>Separation and Purification Technology</u>, 188, 431-450.

- Wang, S., Liu, Y., Huang, S., Wu, H., Li, Y., Tian, Z., and Jiang, Z. (2014). Pebax– PEG–MWCNT hybrid membranes with enhanced CO2 capture properties. Journal of Membrane Science, 460, 62-70.
- Zarshenas, K., Raisi, A., and Aroujalian, A. (2016). Mixed matrix membrane of nanozeolite NaX/poly (ether-block-amide) for gas separation applications. <u>Journal of</u> <u>Membrane Science</u>, 510, 270-283.
- Zhang, B., Yang, C., Zheng, Y., Wu, Y., Song, C., Liu, Q., and Wang, Z. (2021). Modification of CO2-selective mixed matrix membranes by a binary composition of poly(ethylene glycol)/NaY zeolite. <u>Journal of Membrane</u> Science, 627, 119239.
- Zhao, J., Xie, K., Liu, L., Liu, M., Qiu, W., and Webley, P.A. (2019). Enhancing plasticization-resistance of mixed-matrix membranes with exceptionally high CO2/CH4 selectivity through incorporating ZSM-25 zeolite. <u>Journal of</u> <u>Membrane Science</u>, 583, 23-30.
- Zornoza, B., Seoane, B., Zamaro, J.M., Téllez, C., and Coronas, J. (2011). Combination of MOFs and Zeolites for Mixed-Matrix Membranes. <u>ChemPhysChem</u>, 12(15), 2781-2785.

VITA

NAME	Sitthikiat Boonchoo
DATE OF BIRTH	1 January 1997
PLACE OF BIRTH	Chiang Mai, Thailand
INSTITUTIONS ATTENDED HOME ADDRESS	 B. Eng. (Petrochemical and Polymeric Materials), Silpakorn University, 2018 Bangkok Horizon House no. 471/96, Phetkasem Road, Bang Wa Sub-district, Phasi Charoen District, Bangkok, 10160