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Chapter I

INTRODUCTION

The Gergonne 3-pile problem [5] is a mathematical card trick, which was
proposed in 1813. Hold a deck of 27 cards and the problem is to keep track of the
location of the card that was selected in the beginning. At first, a spectator selects
any card in a deck, memorizes it and shuffles the deck as much as desired. The ma-
gician create three face-up piles of nine cards by dealing the top cards respectively
onto the left, middle, then right pile and repeating until all the cards are gone. Now,
he gets 3 piles of cards. Next, the participant points to which pile contains the cho-
sen card. After that, the magician gather all those piles and put the chosen pile to
the middle. The problem involves distributing these cards with this same process 3

times. Finally, the magician can make the middle of the deck to be the chosen card.

In 1895, Dickson generalized Gergonne 3-pile problem, called Gergonne n-
pile problem [3]. We can perform the trick with any »n™ cards by doing the similar
procedure as the Gergonne 3-pile problem. The pack is dealt into n piles of n"1
cards each and we do the restacking procedure n times. Not surprisingly, the chosen

card shall appear at the middle of the deck.

During the past century the trick was included in books on recreational math-
ematics. In Mathematics, Magic and Mystery, Martin Gardner evolved Gergonne
3-pile problem to the 27-card trick [4]. In his trick, it is similar to the Gergonne 3-
pile problem, but at this time, the spectator can choose the position, say x, between
1 and 27 at which he wants the chosen card to finally appear. After performing the
Gergonne procedure with 3 piles and 3 times assembly restacked in any order the
magician wants, the z** card of the deck is revealed to be the chosen card. In gen-
eral, we can deal a pack of any n* cards into n piles and repeat this procedure k

times; we can place the chosen card at any desired position in the deck [2].



In 2010, Bolker generalized this trick by using radix sort [1]. Using a mixed
radix conversion, you can do Gardner’s trick with a deck of any number of cards
you wish by dealing the deck into factors of the number of cards in the deck. For
example, for a deck of 54 = 6 x 3 x 3 cards, we can perform by dealing the cards
into 6 piles for the first round, and 3 piles for the second and third rounds. You can
also perform the trick by dealing the cards into 3,9 and 2 piles for the first, second

and third rounds, respectively.

In this project, we call the problem that we finally put the chosen card to the
middle “Gergonne’s problem”, the problem that we can put the chosen card to the
position that the spectator desires “Gardner’s problem”, to his honor, the problem
that can be performed by dealing unequal cards in each round “Bolker’s problem”.
Note that, for Gergonne’s problem and Gardner’s problem, each pile must have the

same height in every single round.

It is interesting to find the deck with the size other than »* cards that we can
perform Martin Gardner’s card trick without mixed radix method. For example, we
can perform the Bolker’s trick with 52 cards by dealing the deck into 4 piles and 13
piles. However, it seems hard to deal the deck into 13 piles and it does not sound
like magic. Thus, as a real-world performance, we want to deal cards into a fixed
number of piles, say 4. Now, we want to know how many times that we need to do
the restacking procedure to guarantee that we can finally put the chosen card from

the spectator to the chosen position.

In this project, we want to provide an instant program which can tell whether a
Gardner’s problem with given parameters which are the number of piles, the number
of cards in each piles and the number of rounds to restack the piles is able to be
performed or not. If it is, all possible ways to perform the Gardner’s trick are also
provided. We hope that this instant program can be a tool to help study the Gardner’s

problem.



In Chapter II, some preliminaries and notations that we use are provided. The
algorithm for finding the solution, and Gardner’s trick solution instant program are
provided in Chapter I1I. We also show the result of some interesting cases in Chapter

I'V. Finally, conclusion and discussion are provided in Chapter V.



Chapter 11

PRELIMINARIES

In this chapter, we give some illustrations of the Gardner’s card trick. We also

provide definitions and notations that we use throughout this work.

2.1 Number Bases

The most commonly used number system is decimal, known as base 10. The
place value of each digit is a power of ten: 10°, 10', 102,103, and so on, which means
that, starting from the right most digit, the first digit is worth 1, the 2"? digit worth
10, the 37¢ digit worth 100, the 4*" digit worth 1000 and so on. The base number is
written as a subscript. For example, 237 is read as 23 base 7, which is 17 in base 10.

Normally, we do not need to write the base number for base 10.

In the Gardner’s problem with 27 cards, we need to convert from a regular
number in base 10 to a ternary number. The place value of each digit of a ternary
number is a power of three, which is 3°,3!,32 33, and so on. In the first step, di-
vide your desired number by 3 to get a remainder. Next, repeat this procedure by
dividing the previous quotient by 3. Continue repeating this division process until
your quotient number becomes zero. The answer is the remainders collected from
the last remainder to the first one. Table 2.1 shows an example of converting 125 in

base 10 to 111223.

Table 2.1: Changing 125 to base 3

Division | Quotient | Remainder (Digit) | Place Value

1% 41 2 30
4 13 2 3t
L 4 1 3?
: 1 1 33
3 0 1 3¢




We can also convert a number from base 10 to any base n. The place value of
each digit is n°,n!,n?,n3 and so on. We can follow the same process for a ternary
number, but we only need to change the divisor from 3 to n. For example, we can

convert 22 in base 10 to 1124. Table 2.2 shows details of this example.

Table 2.2: Changing 22 to base 4

Division | Quotient | Remainder (Digit) | Place Value
z 5 2 40
5 1 1 41
: 0 1 42

2.2 Codes for Performing

Performing the original 27-card Gardner’s trick depends on base three arith-
metic [6]. First, we subtract the desired position chosen from the spectator by 1 and
convert that resulting number into a three digit number in base 3. We will call this
base-3 number a “code”. Next, we decode each digit in the code starting from right
to left to perform the Gardner’s trick in each round by placing the indicated pile
(from the spectator) in the interpreted position. If the digit is 0, the chosen pile goes
on top (none above it); if it is 1, the chosen pile goes at the middle (one stack above
it); if it is 2, the chosen pile goes at the bottom (two stacks above it). Performing
the trick according to this strategy will finally bring the chosen card to the desired
position. Table 2.3 shows all corresponding pairs of desired positions and codes for

performing.

Table 2.3: Codes for performing the original Gardner’s card trick

Position 1 2 3 4 5 6 7 8 9

Code | 0003 | 0013 | 0025 | 0103 | 0113 | 0123 | 0203 | 0213 | 0223
Position | 10 11 12 13 14 15 16 17 18

Code 1003 | 1013 | 1023 | 1103 | 1113 | 1123 | 1203 | 1213 | 1223
Position | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27
Code 2003 | 2013 | 2023 | 2103 | 2113 | 2123 | 2203 | 2213 | 2223




2.3 Variables and Conditions

Definition 2.3.1. For a Gardner’s problem, we define parameters M, N, K as fol-
lows:

M is the number of dealing piles in each round,

N is the number of cards in each dealing pile, and

K is the number of dealing rounds.

Definition 2.3.2. For a Gardner’s problem with given parameters M, N, K, let = be

the desired position chosen by a spectator at the beginning of the performance.

Note that all possible positions of z are 1,274 ..., MN*. We can convert z
into a code for performing by subtracting it by 1 and converting the result into a K
digit number in base M. Note that this can be done only when M N < M¥ and we

will assume this condition.

Definition 2.3.3. For a given code, let I; be the i*" digit in the code (from the right),

fori=1,2,...,K,i.e., the given code is l...I5/; in base M.

Remark. The interpretation of the value of /; is that in round i, after dealing sepa-
rated piles, we will put any ; piles above the chosen pile from the spectator. Note
that the number of dealing rounds, K, is the number of digits of the code. Decoding
a code, we start from the most right digit and move forward to the left and end at

the most left digit.

Example 2.3.4. Performing with 64 cards, we deal cards into M = 4 piles in each
round. Thus, the parameter N = 16. Suppose that the chosen position z = 20. At
first, we expand z — 1 = 20 — 1 = 19 in base 4 which is 103,. Thus, the parameter
K is 3. In the first round, we put the chosen pile to the bottom (/; = 3), i.e., there
are 3 piles over the chosen pile. In the second round, the chosen pile goes to the
top (I = 0), and in the final round, the chosen pile goes to the second order out of
four (i3 = 1). Following all of these steps, we can finally move the chosen card to

position z = 20.



Obviously, in each round of performing, we separate the deck into minor piles
with the same number of cards. The number of performing cards is M N, whose
form is more general than MX. In this project, we focus on searching for some
solutions of the Gardner’s problem with M N cards that can be dealt into M piles,

with N cards each and K rounds of restacking those M piles.

Definition 2.3.5. Let a be the starting position of the chosen card in the deck.

Notice that all possible values of qg are 1,2,..., MN.

Definition 2.3.6. For a Gardner’s problem with parameters M, N, K, we call a given
code for performing a “usable code”, if there exists an z € {1,2,..., M N} such that
for every ayp € {1,2,..,MN} when we perform the Gardner’s trick according to
that given code with the starting position a, the chosen card finally appears at the

position x.

Definition 2.3.7. For a Gardner’s problem with parameters M, N, K, if for every de-
sired position x € {1,2,..., M N} we can find a usable code to perform the Gardner’s
trick that finally put any chosen card from the spectator to the position z, then we
say that this Gardner’s problem is “solvable”. Otherwise, we say that the Gardner’s

problem is “unsolvable”.

Example 2.3.8. Performing with a deck of 12 cards, we can perform the Gardner’s
trick in several ways. For example, we can consider the Gardner’s problem with

parameters M =2, N =6, K =4, M =3, N=4, K =3;0or M =4, N =3, K =2.

1. Problem1: M =2,N=6,K =4
Table 2.4 shows all possible = that can be done within K = 4 rounds with some
corresponding codes. Table 2.5 shows performing with code 00003, 00015,
and 0010,. In Table 2.5, the first column represents the initial position of the
chosen card; the second, third, forth and fifth columns represent the position of

the tracking card after restacking the deck in round 1, 2, 3 and 4, respectively.



Table 2.4: Code for M =2, N =6, K =4
Position (z) 1 3 4 6 7 9 10 12
Code 00002 | 00115 | 01002 | 01115 | 10002 | 10115 | 11009 | 11119

Table 2.5: All initial positions are performed with codes 00002, 00012, and 00102, respectively
from left to right, for the Gardner’s problem with parameters M =2, N =6, K =4

111711 1| 714121 11117142
2 (111 /1]1 2|7 (4121 2 117142
312|111 318115132 3 (2|7 14]2
4 1211111 4 [ 81532 4 1217142
5131211 519 |6|3]2 5 131842
6 32|11 6 |9 | 632 6 (3842
7141211 7410|7142 71418142
8 (41211 8 1107142 8 (48|42
915321 9 111|842 91519153
1051321 10|11 84| 2 10151953
11161321 11 11219153 11161953
12161321 12 11219153 12161915 |3
0 0 0 O dwsimtrl) 4|0 0 1 0 0

This problem seems to be solvable because they have 16 different ways of
performing and we only need just 12 positions for xz. Surprisingly, it is un-
solvable. Some desired positions cannot be done within K = 4 rounds. For
instance, we cannot perform the trick for = = 2. Thus, this Gardner’s problem
is unsolvable. This is because some codes are not usable. For example, per-
forming with code 00012 or 0010, cannot rearrange all initial positions to the

desired position = = 2. Hence, codes 00012 and 0010, are not usable codes.

2. Problem 2: M =3, N=4,K =3

Table 2.6 shows all possible z, that can be done within K = 3 rounds.

Table 2.6: Code for M =3, N =4, K =3

Position | 1 2 3 4 5 6 7 8 9 | 10 | 11 | 12

Code | 000 | 010 | 012 | 021 | 100 | 110 | 112 | 121 | 200 | 210 | 212 | 221

001 022 | 101 122 | 201 222




Every desired position x has a code to perform. Moreover, some = can be
performed in several ways. For example, 2 = 1 can be performed with code

0003 or 0015. Thus, this Gardner’s problem is solvable.

3. Problem 3: M =4, N =3, K =2

Table 2.7 shows all possible x that can be done within K = 2 rounds.

Table 2.7: Code for M =4, N =3, K =2

Position | 1 | 3 |4 | 6|79 |10 12

Code | 00| 03|10 | 13|20 |23 30 | 33

At the position = = 2,5,8, 11 cannot be done within K = 2 rounds. Thus, this

Gardner’s problem is unsolvable.

2.4 Wolfram Language

The Wolfram Language [7] is a general multi-paradigm computational lan-
guage developed by Wolfram Research and is the programming language of the
mathematical symbolic computation program Mathematica and the Wolfram Pro-
gramming Cloud. It emphasizes symbolic computation, functional programming,
and rule-based programming and can employ arbitrary structures and data. Wol-
fram Mathematica (usually termed Mathematica) is a modern technical computing
system spanning most areas of technical computing, including neural networks, ma-
chine learning, image processing, geometry, data science, visualizations, and oth-
ers. The system is used in many technical, scientific, engineering, mathematical,
and computing fields. It was conceived by Stephen Wolfram and is developed by
Wolfram Research of Champaign, Illinois. The Wolfram Language is the program-

ming language used in Mathematica.



Chapter 111

GARDNER’S TRICK PROGRAM

Let’s dissect roughly about how to perform Gardner’s trick in one game with
parameters M, N, K. We have M choices to put the chosen pile in each round, and
we have K round to perform the Gardner’s trick; thus, the most possible ways to
perform are M¥. For each number in {1,2, ..., M¥} representing each possible way,
we can find a corresponding code to perform the trick by subtracting it by 1 and
converting the result from base 10 to base M to get a code Ixlx_1...Ial;. The code
will show us how to rearrange the order of the tracking pile in each round. If we
know all usable codes, we can simulate performing in every position. One code of
performing should move the tracking card to only one desired position = no matter

what the starting position «, of the tracking card is.

From the beginning, the tracking card can be shuffled to any position of the
whole deck. There are tremendous cases to generate. However, using computer
programming can do hundreds of cases in a second. The overview of our algorithm

is as follows.

1. Input the value of M, N, K and check for validity of those parameters.
2. Find all M¥ possible codes.
3. Run a loop over all possible codes to find all usable codes

4. If every z can be matched by a usable code, the problem is solvable. If not, it

is unsolvable.

Remark. The number of possible beginning positions is M N.

The number of possible performing codes is MX.
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3.1 Conditions and Main Result for Qur Program

3.1.1 Conditions on parameters M, N, K

Parameters M, N, K must satisfy some conditions in order to get a possible

solvable problem.

l. M\,\N,K €N, M > 2
Recall that M is the number of piles, N is the number of cards in each pile,
and K is the number of performing rounds. Obviously, M, N, K have to be
positive integers. Also, the number of piles must be greater than 1 to create a

magic.

2. MN < M¥ or equivalently N < M&-1
Observe that the number of possible desired positions is M N and the number
of possible performing codes is M*. In an ideal situation when all possible
codes to perform the trick are usable. Then, we have a map from each possible
code to an z € {1,2,..., MN}. Suppose MN > M¥. Then, there will be an =
which does not have a usable code to perform. Thus, the problem with this
set of parameters M, N, K is unsolvable. Hence, M* must be greater than or

equal to M N.

3.1.2 New position after performing the trick one round

We will create an equation describing all possible positions of the tracking
card after one round of performing. Let us recall a procedure to perform the trick in
each round. Firstly, we separate M N cards into M piles. Hence, the tracking card
starting at position a, in that round, will be at the position {%W of a minor pile after
dealing the cards. Next, we rearrange the order of the tracking pile according to a
digit / in a code. Then, [ is the number of piles above the tracking pile. Since each

minor pile has N cards, we can conclude that the number of card above the tracking

pile is IN.
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Example 3.1.1. Suppose that we perform one round with 27 cards using parameters

M=3and N =09.

2 15
J16 10(2 (K]
LMK

T

Figure 3.1: An example of performing: before dealing cards [8]

Assume that the chosen card is Q#. As you can see from Figure 3.1, the position at

the beginning is the 27¢ from the top of the deck when the deck faces down. Then,

we deals this deck into 3 piles.

-

© o N o OO N~ W N

Figure 3.2: An example of performing: after dealing cards [8]

From Figure 3.2, the position of the tracking card in the separated pile is now the

1%¢. In other cases, 2& and QO also go to the 1%%; 100, Q& and 3 go to the 2"¢, and
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so on. On the other hand, we have a map f from a starting position to a position
of the tracking card on the minor pile, say, {1,2,3} — {1}, {4,5,6} — {2}, ... ,
{25,26,27} — {9}. Thus, the function f is given by f(a) = {%W where « is the
position from the beginning of that round and M is the number of separated piles,

which is 3 in this example.

Figure 3.3: A example of performing: after performing the trick one round [8]

Afterwards, suppose that the digit in a code of that round is [ = 1; thus, we rearrange
the deck by putting the Q&’s pile to the second place. This means that there is 1
pile above the Q&’s pile. Now, the new position of Q& in the deck is the position
in a separated pile which is E] adding up with the number of cards above it which
is the number of pile(s) above it times the number of cards in each pile. Thus, the

.. |2 .
new position is [3-‘ +1(9) = 10*" as we can see from Figure 3.3.

In general, the new position of the chosen card is given by the following for-

mula.

Lemma 3.1.2. For each round i € {1,2,..., K},

let P be the starting position of the tracking card,
P. be the position after performing the trick one round, and
l; be the value of the it digit in the code.

Then,

P
P.=|=2| +N.
]
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Remark. We assure that this formula for P. gives a valid value for the position of a

card in the deck, i.e. 1 < P, < M N. To see this, assume that 1 < P, < M N. Then,

1 P,
— <2 <<N
M~ M —
1 P
1=|— | <|—| <|N|=N
[M _[M—‘_(_I
P
1+L;N =< M + LN < N+ILN

"
i
I
=
=

because 0 <l; <M —1foralli=1,2,... K.

3.1.3 Main Theorem

The possibility of the tracking card position after shuffling the deck can be at
the 15,274 ..., or M N*" position. Recall that aq is the starting position of the chosen

card in the deck. Notice that all possible values of ag are 1,2, ..., M N.

Definition 3.1.3. With the starting position a and a given code of performing, we
define q; to be the position of the tracking card after performing in round ¢ for all

i=1,2,.., K.

Definition 3.1.4. With a given code of performing, define I, = 1 and Ey = MN,

and for all i = 0,1, ..., K — 1, we define recursively

I; E;
Ii—i—l = ’VM-‘ + ;N and E’H—l = ’VM—‘ +I;N.

Remark. 7; and E; represent the position of the tracking card after performing in
round ; with ap = 1 and ap = M N, respectively. For a usable code, we must have
that Ix = Ex. For the case that we considered to be a usable code, performing from
Iy or Ey should give the same position of z, i.e., if we start from I, and E,, after
K rounds of performing, Ix and Fx must be equal. We will show that for a usable

code starting from any position ag will eventually end up at Ix = Ex as well.

Theorem 3.1.5. I, < a; < E; foralli=0,1,2,...,K.
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Proof. We will prove by induction. Clearly, Iy = 1 < a9 < MN = E,. For each

i=0,1,..,K — 1, assume that I; < a; < F;. Then, by Lemma 3.1.2 we have that

Note that for a usable code, we must have that ax = z (for some z) for any
initial position ag € {1,2,..., MN}. From Theorem 3.1.5, we have that for a usable
code I = ax = Fx. Thus, we get the main result for our program as the following

corollary.

Corollary 3.1.6. The given code is usable if and only if I = Ex. In such case, the

corresponding desired position for the usable code is x = I (or equivalently Ex).

To check if a problem is solvable, we can create a computer program to run a
loop to check for every starting position whether we can find a usable code to per-
form or not; and then check if every desired position can be performed by a usable
code. From Corollary 3.1.6, we can construct a program that can run significantly
faster than the obvious choice of program mentioned above by keeping track of only
two sequences of positions, (I;)X , and (FE;)X , since earlier we had to clarify every

ao € {1,2,..., MN}.

3.2 Our Proposed Program

We make an instant program using Mathematica which can tell whether a
Gardner’s problem with given parameters is solvable or unsolvable. Moreover, for a
solvable problem, the program can show all possible ways to perform the Gardner’s

trick. Figure 3.4 is the flow chart of our program which is described as follows.



@.

Clear all variables

2.3)

Find all possible cod

es

No Run a loop over all
possible codes to find all
usable codes
i<MK?
(3.2.6)

Pop up detecting
window

Match each usable
code to the desired
position

Does the i code
make Iy = Ex?

Print usable code

Print unusable code

Does every

possible x have

a usable code?

Unsolvable

Solvable

Print a table of

results <

V

Figure 3.4: The flow chart for our program

16
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3.2.1 Input parameters M, N, K

ClearAll["Global *"]

CreateDialog[DialogNotebook[{TextCell["Enter piles (M): "], InputField[Dynamic[m], String],
TextCell["Enter numbers of cards 1in each piles (N): "], InputField[Dynamic[n], String],
TextCell["Enter rounds (K): "], InputField[Dynamic[k], String],
DefaultButton[DialogReturn[]]}

115
CreateWindow[DialogNotebook[ {TextCell["Please enter M, N, K"], DefaultButton[]},

WindowFloating - True]];

Figure 3.5: Input parameters M, N, K

First of all, we start with clearing all variable. Then, the program will show two
pop-up windows. The first window reminds us to input the parameters M, N, K; we
press the OK button and then the second pop-up window will allow us to insert the

values of M, N, K. Now, the program keeps the value of M, N, K as a string.

Please enter new M,N,K

OK

Figure 3.6: Pop-up window(1)

Enter piles (M):

Enter numbers of cards in each piles (N):

Enter rounds (K):

Figure 3.7: Pop-up window(2): input window
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3.2.2 Check the conditions on parameters M, N, K

m = ToExpression[m];
n = ToExpression[n];
k = ToExpression[k];

mn=m#*n;

If[IntegerQ[m] & IntegerQ[n] && IntegerQ[k],
If[m>1 & n>0 && k> 0,
If[n-m-lgo,
Return[],

Print["\" error: N > \I\(\*SuperscriptBox[\(M\), \(\(-1\) + K\)I\) \""1;
CreateWindow[DialogNotebook[{TextCell[Row[{"M = ", ToString[m], " N = ", ToString[n], " K =
", ToString[k], " 1is unsolvable, Please enter new M, N, K"}]], DefaultButton[]},
WindowFloating - True]]l]l;
Exit[],

Print[" error: M < 1 or N and K < 0"];
CreateWindow[DialogNotebook[{TextCell["M or N or K € 0, Please enter new M, N, K"],
DefaultButton[]}, WindowFloating = True]]];
Exit[],

Print["error: A1l {inputs are not an interger"];

CreateWindow[DialogNotebook[ {TextCell["All inputs are not an interger, Please enter new M,
N, K"], DefaultButton[]}, WindowFloating - True]];

Exit[]]

Figure 3.8: Check the conditions on parameters

After we press OK, the program collects the values of M, N, K in the variables
m,n, k, respectively. The program will convert the string to an expression of the
number, and now we can m,n, k to calculate and proceed our algorithm. This blog

of coding check the basic conditions of M, N, K from 3.1.1 which are as follows.
1. All inputs must be integers.
2. M>2,N>0and K > 0.
3. MN < MK,

If one value of the parameters M, N, K is not conformed to condition 1,2 or 3, then

the program will pop up a detecting window and inform us to input new M, N, K.
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4 X
| Allinputs are not an interger, Please enter new M, N, K
OK
Figure 3.9: Detecting all inputs are not an integer
[ X
§
Mor N or K< 0, Please enter new M, N, K
OK
Figure 3.10: Detecting M or N or K <0
2 X

M=3N=10K=3isunsolvable, Please enter new M, N, K

OK

Figure 3.11: Detecting MN < M*¥

3.2.3 Create all possible codes to perform

case = Tuples[Range[0, m-1], k];

Figure 3.12: Finding all codes

case is a set of tuples that collects all possible performing codes. The sample space
for rearranging the chosen pile is 0, 1,..., M — 1. Coming to the event of finding all
possible codes, each digit of a code would yield 0,1, ..., and M — 1. Performing K

rounds needs K digits of a code; thus, case has M* members.
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Example 3.2.1. For M = 3, K = 2, we have
case = {{0,0},{0,1},{0,2},{1,0},{1,1},{1,2},{2,0},{2,1},{2, 2}}.

3.2.4 Run a loop over all possible codes to find all usable codes

rs =List[];
rf=List[];
For[‘i =1, i smk, i+,
f= case[[i]];
pstart=1;
pend = mn;
For'[j =1, jsk, j++,
1=F[[j1];
pstart

pstart =Ce'il'ing[ ]+('I.*n);

pend

pend=Ce1'11’ng[ ]+('L*n);

Print[f, ",", 3, ",", 1, ",", pstart, ",", pend];

IE

Figure 3.13: Finding all usable codes

* rs = List| ], prepare empty list for usable codes.

rf = List| ], prepare empty list for unusable codes.
* pstart =1 = I
* pend = mn = Ey

* (new)pstart = [P 4 In

* (new)pend = {pend—‘ +1In

m

Coding in this section is a simulation of performing all possible codes for
every ao € {1,2, ..., MN}. However, from Theorem 3.1.5, it suffices to perform only
2 positions, Iy and Ey; in this context, they are pstart and pend, respectively. The loop
is run through a variable j = 1,2, ..., K which represents the performing round and a

variable i = 1,2, ..., M which represents each possible codes ordered in a monotone
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increasing manner, i.e., i = 1 represents the code 000...0y, i = 2 represents the code
000...1,7, and so on. In loop j, pstart and pend will be recomputed to keep the values
for I; and E;. After the final round of looping, pstart and pend will keep the values

for Ix and Ex, respectively.

3.2.5 Classify usable or unusable codes

If[pstart == pend
, AppendTo[rs, {pstart, pend, f}];
, AppendTo[rf, {pstart, pend, f}];
K

s

Print["====Success Results===="];
Print[rs];
Print["=====Fail Results====="];
Print[rf];
Print[" "3

Figure 3.14: Usable code and unusable code checking

From Corollary 3.1.6, I of the usable code must equal Ex. In this context, if
pstart = pend, it will be considered a usable code and it will be appended to rs,
otherwise it is an unusable code and it will be appended to rf. The lists for both
kinds of codes will be displayed, sorted by the values of Ix and distributed into
success results and fail results, e.g., {10, 10, {0,3}} € rs, which means Iy = 10 = Ex
and a code to perform the trick is 30,,; and {7,8,{1,2}} € rf, which means Iy =

7 #+ 8 = Ex, and the code 21,, is not a usable code.



3.2.6 Match each usable code to the corresponding desired position

rs = Sort[rs];

tposition =. ;

tcode=. ;

tposition = List[Position];
tcode = List[Code];

i=1;

isfindall ="Y";
For[i=1, i <mn, i+,

AppendTo[ tposition, i];

listcode = List[];

isfind = "N";

Figure 3.15: Match the code to the desired position(1)

table.
tcode = List[{code}] prepares a list of codes for the resulting table.
Loop i will create the i** desired position and append it to tposition.

listcode = List| | prepares a list collecting all codes.

For[j=3j, j < Length[rs], j++,
rsc=rs[[jll;
rsccl=rsc[[1]];

If[i # rsccl, Break[]; 1;

isfind ="Y";

rscc3 =rsc[[3]];

rscc3 = Reverse[rscc3];

rscc3 = StringDelete[StringDelete[ToString[rscc3], PunctuationCharacter],
WhitespaceCharacter];

AppendTo[ listcode, rscc3];

|H

If[isfind =="N", isfindall="N"; ];

AppendTo[tcode, listcode];
|H

Figure 3.16: Match the code to the desired position(2)
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tposition = List[Position] prepares a list of desired positions for the resulting
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Now, for a usable code, Ix = Fx. The variable i representing the desired po-
sition z will run through 1,2, ..., M N. For each i, we will check whether the variable
pstart is equal to 7. On the other hand, we check if I);x = x. If they are matched, the
program will reverse the code; for example, from 1202 to 2021, because performing
from the code in base M, we will begin interpreting the code from the most right
digit. The matched pair will be appended to listcode from the 15 position to the
M N* position. The program will run through every case and pair one by one until
there is no member left in rs. Then, the list collecting all codes is ready to appear

in the result table. Now, we get
* tpostion = {position, 1,2, ....,mn}
o tcode = {{“code”},{1%code}, ..., {M N code} }

At first, we set is findall = “Y”. If all usable codes can be paired with all =, we
set another value isfind = “Y”". If not, we set isfind = “N”. After running through
all cases, if isfind = “N”°, we set isfindall = “N”, which means that the program

cannot find a performing code for some z.

3.2.7 Check whether the Gardner’s problem is solvable or not and show the

result

If[isfindall == "N"
, CreateWindow[DialogNotebook[ {TextCell[Row[{"M = ", ToString[m], " N = ", ToString[n],
" K =", ToString[k], " is 'unsolvable'"}]], Button['"Show result",

DialogReturn[CreateWindow[DocumentNotebook[TableForm[ {tposition,

tcode}]1111}11;
, CreateWindow[DialogNotebook[ {TextCell[Row[{"M = ", ToString[m], " N = ", ToString[n],
" K =", ToString[k], " 1is 'solvable'"}]], Button["Show result",

DialogReturn[CreateWindow[DocumentNotebook[TableForm[ {tposition,

tcode}]1111} 115

Figure 3.17: Show a resutling table

If isfindall = “N”, we create the window saying that M, N, K is “unsolvable”.
If not, we create the window saying that M, N, K is “solvable”. Both of these win-
dows have a button which allows clicking to show results as a table created from

tposition and tcode.
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M=3N=3K=2is'solvable'

Show result

Figure 3.18: Solvable pop-up window

M=5N=4K=2is'unsolvable'

Show result

Figure 3.19: Unsolvable pop-up window

3.3 Some Experiments

The base program can work for any set of parameters M, N, K perfectly. How-
ever, it is good and fast only if it cannot be given many sets of parameters at once.
After I try some of parameters M, N, K, I wish I have an overview program to see
the relationship of M, N, K, where I might find some conditions on the parameters
that make the Gardner’s problem solvable or unsolvable. Then, an extra program

appears. Figure 3.20 shows command function name as “Solver”.
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Solver[a_, b_, c_] :=Run[

ab=axb;
case = Tuples[Range[0, a-1], c];
rs =List[];
rf =List[];
For['i =1, isga% i+,
f = case[[i]];
pstart=1;
pend = ab;
For[j =1, jSc, j++,
1=F[[j1];

pstart

pstart =Ce-i1'ing[ ]+(1*b);

a

pend

pend=Ce'i1'ing[ ]+(1*b);

IE

If[pstart == pend

a

, AppendTo[rs, {pstart, pend, f}];
, AppendTo[rf, {pstart, pend, f}];
I

IE

rs =Sort[rs];

tposition = List[Position];
tcode = List[Code];

i=1;

isfindall="Y";
For[i=1, i < ab, i++,

AppendTo[tposition, 1i];

listcode = List[];

isfind = "N";

For[j =3, j s Length[rs], j+,
rsc=rs[[j]l];
rsccl=rsc[[1]];

If[i # rsccl, Break[]; ];

isfind = "Y";

rscc3=rsc[[3]];

rscc3 = Reverse[rscc3];

rscc3 = StringDelete[StringDelete[ToString[rscc3],
PunctuationCharacter], WhitespaceCharacter];

AppendTo[ listcode, rscc3];

|H

If[isfind == "N", isfindall="N"; ];

AppendTo[tcode, listcode];
15

|

| If[isfindall == "N"
|

, result = ab - Length[rs]

. , result=Y
1 -aa”

]
|

v

Figure 3.20: Extra program

“Solver” command is quite similar to coding in 3.2, except that checking M, N, K

conditions from 3.2.1 and 3.2.2 is gone and the last blog from 3.2.7 is changed to the

red block. Instead of popping up the window, if the program cannot find the code to

every x, we have that result is equal to M N minus the number of desired positions,

x, that have a usable code. Now, result will keep the number of = that cannot be

performed. If the Gardner’s problem with a set of parameters M, N, K is solvable,

result will keep the value Y. On the other hands, the resulting table will display a

number, if it is an unsolvable case; and it will display Y, if it is a solvable case. I

decide to simulate this extra program for some experiments as follows.
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3.3.1 Fix M and K, run N

For any given values of M piles and K rounds, it is interesting to search for
values of N cards that can make the Gardner’s problem solvable. For any given fixed
values of M and K, this program will solve for N € {1,2, ..., No} when we input the

threshold Ng.

m=;

n=;

k=;
tn =List['"n"];
tr = List[m];

For[d=1,d<n, d+,

Print['"'m = ", my ", n =", d];
AppendTo[tn, d];

Solver[m, d, k];

AppendTo[tr, result];

1
TableForm[{tn, tr}]

Figure 3.21: Fix M and K, run N program

* You input m and k as fixed variables, and n as a running variable starting
from 1 to Ny by yourself behind the equal sign. Note that this program will

not detect whether your inputs are inappropriate variables.

tn is a list for showing all values of N.

tr is a list prepared for all results.

Loop d: after solved by Solver command, the result will be appended to ¢r.

3.3.2Fix M and N, run K

For a given number of deck that will dealt into M piles and each pile have
N cards, it is interesting to search for the number of rounds, K, that can make the
Gardner’s problem solvable. For any given fixed values of M and N, this program
will solve for K = {1,2,..., Ko} when we input the threshold when we input the
threshold K.



This program is the same as 3.3.1, only change running variable from n to k.

m= 3

n= 3

k= 3

tn=List["k"];

tr = List["Result"];

For[d=1, d s k, d++,
AppendTo[tn, d];

Solver[m, n, d];

1
TableForm[{tn, tr}]

AppendTo[tr, result];

Figure 3.22: Fix M and N, run K program

3.3.3Fix K, run M and N

27

For any given number of round, K, it is interesting to search for A/ and NV that

can perform the Gardner’s problem. For any given fixed values of K, this program

will solve for M = {1,2,...,My} and N = {1,2,..., No} when we input the threshold

My and Ng.

This program is extended from 3.3.1 by adding another loop for running M.

m=;

n=;

k=;

tn=List["n"];

tr=List[];

For[i=1, i<sm, i+,
AppendTo[tr, {i}];

I;

For[d=1, d s n, d++,
AppendTo[tn, d];
For[e=1, esm, e+,

Solver[e, d, k];
AppendTo[tr[[e]], result];
1

1

PrependTo[tr, tn];

CreateWindow[DocumentNotebook[TableForm[tr]]]

Figure 3.23: Fix K, run M and N program

The extra program is good for an overview. However, for the parameters

M, N, K, solving for a code to perform the Gardner’s trick still needs to use the

main program.
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RESULTS

4.1 FixM and K, run N

The following results are from 3.3.1.

(i) M =2
a) K=2
"n" 1 2 3 4 5 6 7 8 9 10
2 Y Y 6 8 10 12 14 16 18 20
b) K=3
"n" 1 2 3 4 5 6 7 8 9 10
2 Y Y = Y 10 12 14 16 18 20
c) K=4
"n" 1 2 3 4 5 6 7 8 9 10
2 Y Y Y Y 2 4 10 Y 18 20
d K=5
"n" 1 2 3 4 5 6 7 8 9 10 11
2 Y Y Y Y Y Y Y Y 2 4 10

12 13 14 15 16 17 18 19 20
8 18 20 26 Y 34 36 38 40
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(i) M=3
a) K=2
"n" 1 2 3 4 5 6 7 8 9 10
3 Y Y Y 12 15 18 21 24 27 30
b) K =3
"n" 1 2 3 k) 5 6 7 8 9 10
3 Y Y Y Y Y Y 12 18 Y 30
c) K=4
"n" 1 2 3 4 5 6 7 8 9 10
3 Y Y Y Y Y Y Y Y Y Y
11 12 13 14 15 16 17 18 19 20
Y Y Y Y Y 12 18 Y 30 36
21 22 23 24 25 26 27 28 29 30
36 48 54 54 66 72 Y 84 87 90
(iii) M =4
a) K=2
"n" 1 2 3 4 5 6 7 8 9 10
4 Y Y 4 Y 20 24 28 32 36 40
b) K=3
"n" 1 2 3 4 5 6 7 8 9 10 11
4 Y Y Y Y Y Y Y Y 4 8 20
12 13 14 15 16 17 18 19 20
16 36 40 52 Y 68 72 76 80
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c) K=4
" 102 4 5 6 7 8 9 10
4 Y Y Y Y Y Y Y Y Y
11 12 13 14 15 16 17 18 19 20
Y Y Y Y Y Y Y Y Y Y
21 22 23 24 25 26 27 28 29 30
Y Y Y Y Y Y Y Y Y Y
31 32 33 34 35 36 37 38 39 40
Y Y 4 8 20 16 36 40 52 32
41 42 43 44 45 46 47 48 49 50
68 72 84 80 100 104 116 64 132 136
51 52 53 54 55 56 57 58 59 60
148 144 164 168 180 160 196 200 212 208
61 62 63 64 65 66 67 68 69 70
228 232 244 Y 260 264 268 272 276 280
(iv) M =5
a) K=2
"n" 1 2 3 4 5 7 8 9 10
5 Y Y \ 10 Y 30 35 40 45 50
b) K =3
"t i 2 3 4 5 6 71 8 10
5 Y Y Y Y Y Y Y Y Y
11 12 13 14 15 16 17 18 19 20
Y Y Y 0 Y 30 40 50 60 50
21 22 23 24 25 26 27 28 29 30
80 90 100 110 Y 130 135 140 145 150




4.2 FixM and N, run K

The following results are from 3.3.2.

(i) M=3N=3
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"k" 1 2 3 5 6 8
"Result" 9 Y Y Y Y Y
a) K = 2: Solvable
Position 1 2 3 4 5 6 7 8 9
Code "00" "01" H02" "10" "11" "12" "20" "21" "22"
b) K = 3: Solvable
Position 1 2 3 4 5 6 7 8 9
"000" "010" llezoll "100" "110" ||120|| llzeoll "21@" "220"
Code "ee1" "e11" "g21" "ie1" "111n "121" "201" "211" "221"
"0@2" "012" ll@zzll "102" "112" ll122ll ll202ll ll212" "222"
¢) K = 4: Solvable
Position 1 2 3 4 5
llooooll llolooll "0200" llloooll "]_]_OO"
n0010u "0110" n0210u "1010" "1110"
noozou "0120" nozzou "1020" "1120"
n0001u n0101u n0201u "1001" "1101"
Code "0011" "0111" "0211" "1011" "1111"
n0021u n0121u n0221u n1021u "1121u
"0002" "0102" "0202" "1002" "1102"
"0012" "0112" "0212" "1012" "1112"
noozzu n0122u n0222u "1022" "1122"
6 7 8 9
"1200" »2000" "2100" "2200"
"1210" »2010° "2110" "2210"
"1220" $2020° "2120" "2220"
"1201" »2001° "2101" "2201"
"1211" 2011 "2111" "2211"
“1221" “2021" u2121n u2221n
II1202II II2002I' II2102I' II2202I'
II1212II “2012" II2112I' II2212I'
u1222n “2022" u2122n u2222n




(i) M =3,N =17
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k" 2 3 4 5 6 7 8
"Result" 21 21 12 Y Y Y Y Y
a) K = 3: Unsolvable
Position 1 2 3 4 5 6 7 8 9 10 11
Code "090" nn nn "011" nn nn "022" "100" nn nn "111"
12 13 14 15 16 17 18 19 20 21
nn nn "122" "200" nn nn "211" nn nn "222"

b) K = 4: Solvable

Position 1 2 3 4 5 6 7
IIOOOOI' II0020II "0100" I|0110II “0200" “0210" II0220II

Code “0001" Iloollll I10101I' “0111" II0121II “0211" II0221II
“0002" II0012II ||0022Il I|0112Il II0122II II0202II II0222II
8 9 10 11 12 13 14
llloool' "1020" "1100" "1110" "1200" "1210" "1220"
"1001"  "1011"  "1101"  "1111"  "1121"  "1211"  "1221"
"1002"  "1012"  "1022"  "1112" = "1122"  "1202" = "1222"
15 16 17 18 19 20 21
"2000" ll2020" |I2100|l "2110" "2200" ll2210" "2220"
ll2001" "2011" ll2101" ||2111" "2121" ll2211" "2221"
"2002"  "2012"  "2022"  "2112"  "2122" = '"2202"  "2222"

(iii) M =4,N =3
nkn 1 2 3 4 5 6 7
"Result" 12 4 Y Y Y Y Y
a) K = 2: Unsolvable
Position 1 2 3 4 5 6 7 8 9
Code "00" nn "03" "10" nn "13" "20" nn ll23"

10 1 12
"30" nn "33"




b) K = 3: Solvable

Position 1 2 3 4 5 6
n"eEE" " " "e30" n"100" " " ny13Q"
ne1e" "8§?" ne31" LERTL "i%?" ny31n
Code "ee1"  ,giow  "e32"  mieiv 1230 wi3oe
"ee2"  ,oyge  "023"  "102" .73 123"
neE3" ng33" n1p3" ny33"
7 8 9 10 11 12
npE" ny3Q" n3pQ" " " n33Q"
nyiQ" ::%%2:: ny3qn n3iEn "g%g" n33zqn
np1" nsI3m np32mn n3p1" n31om n33an
202"  wyyEe  "223"  "302" 375 "323"
naQ3" ny33" n3Q3" n333"
¢) K = 4: Solvable
Position 1 2 3 4 5 6
"eEEE" " i "9300" "1000" "1300"
"9100" "gg(i)g" 19310" "1100" ::12@0:: "1310"
"eE10" "9120" "e320" "1010" "1210" "1320"
"p110" "p220" "p230" "1110" "1120“ "1230"
"eE20" "e130" "e330" "1020" "1220" "1330"
"pE30" "9201" "p301" "1030" "1130" "1301"
"eEA1" ng211" "e311" "1001" "12@1" "1311"
"9101" ne121" "e321" "1101" "i§%i" "1321"
"eE1L" ng221" "e231" "1011" n1351m n1231"
"eE21" ne131" "e331" "1021" n1131" "1331"
Code "e031" 1g202" "e302" "1031" n1202" "1302"
"eEE2" ne112" "e312" "1002" n1112" n1312"
"e102" np212" ng322" "1102" niz1an n1322"
"OO12"  ,gip5m  "0232"  "1012"  wyipow  "1232"
"eE22" ne132" np332" "1022" n1132" n1332"
"eE32" "9203" "e303" "1032" n1293" "1303"
"REE3" ng113" "e313" "1003" n1113" "3313"
"e1e3" "9213" ng223" "1103" n1213" n1223"
"pE13" ng123" np323" "10913" n1123" n1323"
"eE23" ng133" "e233" "1023" n1133" n1233"
"eE33" ne333" "1033" n1333"
7 8 9 10 11 12
12000" "2300" "3000" " " n3300"
"2100" ::22@0:: 12310Q" "3100" "g%?g" n3310"
"2010" "2210" n2320" "3010" "3120" n3320Q"
"2110" "2120“ n23Q" "3110" "3220" n323Q"
"2020" "2220" n233Q" "3020" n3130" n333Q"
"2030" "2130" "2301" "3030" "3291" n3301"
"2001" "22@1" "2311" "3001" n3211" n3311"
"2101" "2211" n321" "3101" w3121" n3321"
"2911" "%%%%" ny231M "3911" n3321m n3231"
"2021" n3I31" n331" "30p21" n3131" n3331"
"2031" "3202" n23@2" "3p31" "3202" n33p2"
"2002" n3112" n312" "3002" n3112" n3312"
"2102" n5315m np322M "3102" n3279m n3322"
"2012"  wyipyw  "2232"  "3012" 3755«  "3232"
"2022" n3135m np332" n3p22" n3132" n3332"
n2032" n3593" n2393" n3p32" "3203" n3393"
"2003" n3113" n313" "3003" n3113" n3313"
"2103" n3213m np223M "3103" n3273" n3223"
"2013" n3123" np323M "30p13" n3123" n3323"
"2023" n3133m n233" n3p23" n3133" n3233"
"2033" np333" n3p33" n3333"

33



(iv) M =4,N =13

34

nkn 1 2 3 4 5 6 7
"Result" 52 52 36 Y Y Y Y
a) K = 3: Unsolvable

Position Code

1 "000" 14 "100" | 27 200" | 40 "300"

2 " 15 " 28 " 41 "

3 " 16 " 29 " 42 "

4 n 17 m 30 m 43 m

5 "011" 18 "111" | 31 "211" | 44 "311"

6 m 19 " 32 m 45 m

7 m 20 " 33 m 46 m

8 " 21 " 34 nn 47 i

9 "022" 22 "122" | 35 "222" | 48 "322"

10 m 23 " 36 o 49 "

11 m 24 i 37 o 50 "

12 m 25 o 38 " 51 m

13 "033" 26 "133" | 39 "233" | 52 "333"

b) K = 4: Solvable

Position Code " il it
1 "0000" "0001" "0002" "0003" |27 "2000" "2001" "2002" "2003"
2 "0020" "0011" "0012" "0013" |28 "2020" "2011" "2012" "2013"
3 "0030" "0031" "0022" "0023" |29 "2030" "2031" "2022" "2023"
4 "0100" "0101" "0102" "0033" | 30 "2100" "2101" "2102" "2033"
5 "0110" "0111" "0112" "0113" |31 "2110" "2111" "2112" "2113"
6 "0130" "0121" "0122" "0123" |32 "2130" "2121" "2122" "2123"
7 "0200" "0201" "0132" "0133" |33 "'2200" "2201" "2132" "2133"
8 "0210" "0211" "0212" "0203" | 34 "2210" "2211" "2212" "2203"
9 "0220" "0221" "0222" "0223" |35 "2220" "2221" "2222" "2223"
10 "0300" "0231" "0232" "0233" |36 "2300" "2231" "2232" "2233"
11 "0310" "0311" "0302" "0303" |37 "2310" "2311" "2302" "2303"
12 "0320" "0321" "0322" "0313" |38 "2320" "2321" "2322" "2313"
13 "0330" "0331" "0332" "0333" |39 "2330" "2331" "2332" "2333"
14 "1000" "1001" "1002" "1003" |40 "3000" "3001" "3002" "3003"
15 "1020" "1011" "1012" "1013" |41 "3020" "3011" "3012" "3013"
16 "1030" "1031" "1022" "1023" |42 "3030" "3031" "3022" "3023"
17 "1100" "1101" "1102" "1033" |43 "3100" "3101" "3102" "3033"
18 "1110" "1111" "1112" "1113" |44 "3110" "3111" "3112" "3113"
19 "1130" "1121" "1122" "1123" |45 "3130" "3121" "3122" "3123"
20 "1200" "1201" "1132" "1133" |46 "3200" "3201" "3132" "3133"
21 "1210" "1211" "1212" "1203" |47 "3210" "3211" "3212" "3203"
22 "1220" "1221" "1222" "1223" |48 "3220" "3221" "3222" "3223"
23 "1300" "1231" "1232" "1233" |49 "3300" "3231" "3232" "3233"
24 "1310" "1311" "1302" "1303" |50 "3310" "3311" "3302" "3303"
25 "1320" "1321" "1322" "1313" |51 "3320" "3321" "3322" "3313"
26 "1330" "1331" "1332" "1333" |52 "3330" "3331" "3332" "3333"




43 FixK,run M and N

The following results are from 3.3.3.

35

431K=2
n
m 1 2 3 4 5 6 7 8 9 10
2 Y Y 6 8 10 12 14 16 18 20
3 Y Y Y 12 15 18 21 24 27 30
4 Y Y 4 Y 20 24 28 32 36 40
5 Y Y Y 10 Y 30 35 40 45 50
6 Y Y Y Y 18 Y 42 48 54 60
7 Y Y Y NG 14 28 Y 56 63 70
8 Y Y Y Y 8 16 40 Y 72 80
9 Y Y Y Y Y Y 36 54 Y 90
10 Y Y Y Y Y Y 30 40 70 Y
(i) M =2,N = 2: Solvable
Position 1 2 3 4
Code lIOOll llolll "10" llll"
(i) M =3
a) N = 2: Solvable
Position 1 2 3 4 5 6
Code IIOOII ll02l| "10" l|12ll ll20l| ll22ll
b) N = 3: Solvable (The result table is in 4.2(i)a)
(iii) M =4
a) N = 2: Solvable
Position 1 2 3 4 5 6 7 8
IIOOII l|02ll llloll "12" l|20ll ll22l| ll30ll l|32ll
COde uOllv ||03u ulln "13" ||21u "23" ll3lll l|33ll




b) N =3:

Unsolvable (The result table is in 4.2(iii)a)

c) N = 4: Solvable
Position 1 2 3 4 5 6 7 8
Code llooll l|01l| II02|I llo3l| llloll |l11ll l|12l| II13|I
9 10 11 12 13 14 15 16
"20" l|21l| II22" ll23l| l|30ll ll3lll l|32l| II33II
(iv) M =5
a) N = 2: Solvable
Position 1 2 3 4 5 6 7 8 9 10
Code llooll II03II ||10ll ll13ll II20II ||23|| ll3oll ll33ll Il40|l ll43ll
lI01lI II04II llllll ll14ll II21II ||24|| ll31ll ll34ll Il4l|l ll44ll
b) N = 3: Solvable
Position 1 2 3 4 5 6 7 8
Code llooll I|02l| "04“ Illoll "12" lll4ll Il20l| II22II
9 10 11 12 13 14 15
l|24l| Il30|l Il32l| l|34ll ll4oll ll42l| II44II
¢) N = 4: Unsolvable
Position 1 2 3 4 5 6 7 8 9 10
Code lloon nn nn ||04|| llloll nn nn ||14u u20|| nn
11 12 13 14 15 16 17 18 19 20
nn ||24|| ||3o|| nn nn l|34l| ||40|| nn nn n44||
d) N =5: Solvable
Position 1 2 3 4 5 6 7 8 9
Code l|00l| llolll l|02l| II03II ll04l| llloll llllll l|12l| lll3ll
10 11 12 13 14 15 16 17 18
lll4ll ll20l| l|21l| ll22ll l|23l| II24II ll30l| l|3ll| ll32ll
19 20 21 22 23 24 25
II33II ll34l| lI40II "41" I|42l| II43II ll44l|




V) M=6

a) N = 2: Solvable

Position

Code

1

"00"
llolll
"02"

7

l|30|l
I|3lll
"32"

2

llo3l|
llo4l|
|I05||

8

ll33l|
II34I|
ll35ll

3
"10"

n n

"12"
9
l|40ll

n n

II42"

4
n 13"

"15"

10
ll43ll

"45"

5
II20II

l|22l|
11

"50"
llslll
II52II

6
ll23|l

n n

ll25ll

12

l|53ll
II54II
"55"

b) N = 3: Solvable
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Position
Code

1
"00"
IIOlll
10

II30II
"31"

2
ll02l|
ll03ll
11

ll32l|
ll33l|

3
lI04lI
"05"
12

l|34l|
"35"

4
"lo"
llllll
13

ll4o|l
ll4lll

5

n 13"
14

Il43l|

6

n n

"15"
15

n n

I|45n

7
ll20l|
|I21||
16

"50"
ll51l|

8

n n

l|23ll

17

lI52II
II53"

9

ll25ll

18

ll54ll
"55"

c) N = 4: Solvable

Position
Code

1
llooll

9
llzoll

17
II40"

2
ll02ll

10
l|22l|

18
|l42ll

3
l|03l1

11
II23II

19
l|43l|

4
ll05ll

12
ll25l|

20
"45"

5
llloll

13
lI30II

21
"50"

6
ll12ll

14
ll32ll

22
l|52ll

7
lll3l|

15
l|33l|

23
|l53ll

8
"15"

16
II35II

24
"55"

d) N =5: Unsolvable

Position
Code

1

llooll

11

ll20l|

21

II4OI|

2

12

22

3

13

nn

23

nn

14

24

5
l|05l|
15
ll25l|
25
ll45l|

6
llloll
16
l|30ll
26
l|50ll

17

27

8

18

nn

28

nn

9

19

29

10
l|15l|
20
l|35ll
30
l|55ll




e) N = 6: Solvable
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Position 1
Code "0Q"

10
lll3ll

19
||30I|

28
II43II

2
"01"

11
"14"

20
|I31||

29
l|44l|

3
l|02l|

12
||15||

21
I|32n

30
ll45ll

4
ll03ll

13
||20||

22
||33||

31
l|50Il

5
l|04ll

14
l|21l|

23
n34|l

32
||51||

6
ll05l|

15
ll22ll

24
||35I|

33
Il52ll

7
"10"

16
l|23ll

25
ll4oll

34
l|53l|

8
llllll

17
II24I|

26
||4l||

35
ll54ll

9
n 12"

18
Il25ll

27
||42||

36
l|55Il

(vi)y M =7

a) N = 2: Solvable

Position

Code

1

llooll
ll01l|
"02"

8

ll34l|
ll35’l
"36"

2

l|04ll
l|05ll
II06l|

9
l|40ll

ll42ll

3
llloll

"12"
10

ll45ll
|l46|l

4

lllsll
"16"

11

"50"
Ilslll
II52I|

5
"20"

n n

"22"

12

II54II
"55"
ll56ll

6

ll25l|
"26"

13

"60"
ll61’|
ll62l|

7

II30"
l|3lll
II32"

14
l|64||

II65"

"66"

b) N = 3: Solvable

Position
Code

1

l|00II
"01"

ll23ll
15

lI45II
l|46ll

2
"03"

9
lI25II
II26"
16

ll50ll
"51"

3

||05l|
l|06ll

10

"30"
"31"

17
I|53l|

Illoll
"11"

11
ll33l|

18

II55H
"56"

5
lll3l|

12
Il35ll
"36"
19

"60"
ll61’|

6

"15“
II16"

13

|I4o||
ll41l|

20
l|63ll

ll20ll
"21"

14
l|43ll

21

"65"
"66"




c) N = 4: Solvable

Code

Position

1
"00"

8
“16"

15
II34II

22
ll52ll

2
I|02II

9
lI20ll

16
"36"

23
II54II

3
"04"

10
l|22Il

17
ll40ll

24
"56"

4
ll06l|

11
ll24ll

18
l|42l|

25
ll60l|

5
lIlOll

12
"26"

19
Il44ll

26
"62"

6
n 12"

13
Il30ll

20
"46"

27
ll64ll

7
||l4l|

14
lI32ll

21
l|50II

28
II66"

d) N =5: Unsolvable

Position
Code

1
IIOOII

8
||l3l|

15
lI26l|

22

29

nn

16
ll3oll

23
"43"

30
ll56ll

3
llo3ll

10
"16"

17

24

31
"60"

4

nn

11
"20"

18
"33"

25
"46"

32

5
"06"

12

19

26
llsoll

33
II63II

6
llloll

13
"23"

20
"36"

27 28
nn ||53||

34 35
nn "66"

14

21
ll4ol|

e) N = 6: Unsolvable

Position

OCo~NoOOUh WN

Code
"00"

“06"
"10"

"16"

13
14
15
16
17
18
19
20
21
22
23
24

II20"

"26“
II3OI|

ll36ll

25
26
27
28
29
30
31
32
33
34
35
36

ll4ol|

ll46l|
ll50ll

"56"

37
38
39
40
41
42

"60"

"66"

39



f) N =7: Solvable
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Position 1 2 3 4 5 6 7
Code "00" "01" Il02" Il03ll Il04ll Ilosll "06"
8 9 10 11 12 13 14
"10" "11" Il12" Il13ll Il14ll "15" "16"
15 16 17 18 19 20 21
Il20'l Il21'l Il22'l Il23ll Il24ll Il25'l "26"
22 23 24 25 26 27 28
Il30'l Il31'l Il32'l Il33ll Il34ll Il35'l "36"
29 30 31 32 33 34 35
ll40ll "41" II42lI ll43ll ll44ll ll45ll "46"
36 37 38 39 40 41 42
Il50'l Il51|l Il52|l Il53ll Il54ll Il55'l "56"
43 44 45 46 47 48 49
"60" II61" ll62ll "63" "64" "65" "66"
432K=3
n
1 2 3 4 D 6 1t 8 9 10 11 12 13
2 Y Y 2 Y 10 12 14 16 18 20 22 24 26
3 Y Y Y Y Y Y 12 18 Y 30 33 36 39
4 Y Y Y Y Y Y Y Y 4 8 20 16 36
5 Y Y Y Y Y Y Y Y Y Y Y Y Y
6 Y Y Y Y Y Y Y \A Y Y Y Y Y
7 Y Y Y Y Y Y Y Y Y Y Y Y Y
8 Y Y Y Y Y Y Y Y Y Y Y Y Y
9 Y Y Y Y Y Y Y Y Y Y Y Y Y
10 Y Y Y Y Y Y Y Y Y Y Y Y Y
n
m 14 15 16 17 18 19 20 21 22 23 24 25
2 28 30 32 34 36 38 40 42 44 46 48 50
3 42 45 48 51 54 57 60 63 66 69 72 75
4 40 52 Y 68 72 76 80 84 88 92 96 100
5 10 Y 30 40 50 60 50 80 90 100 110 Y
6 Y Y Y Y Y 6 Y 18 36 54 Y 78
7 Y Y Y Y Y Y Y Y Y Y Y Y
8 Y Y Y Y Y Y Y Y Y Y Y Y
9 Y Y Y Y Y Y Y Y Y Y Y Y
10 Y Y Y Y Y Y Y Y Y Y Y Y




() M =2

a) N = 2: Solvable

41

Position 1 2 3 4
IIOOOII "010" lllooll "110"
COde lIOOlll IIOll" lllolll Illllll
b) N = 3: Unsolvable
Position 1 2 3 4 5 6
Code lloooll nn nOllll lllooll nn lllllll
¢c) N = 4: Solvable
Position 1 2 3 4 5 6 7 8
Code IIOOOU "001" "010" IIOllll "100" l|101" "110" "lll"
(i) M =3
a) N = 2: Solvable
Position 1 2 3 4 5 6
"000" "020" lllooll ||120" "200" "220"
Code ||010|v u021u ullon "121" u210u "221"
"001" "012" lllolll "112" "201" "212“
"002" II022II "102“ "122" ll202ll "222"
b) N = 3: Solvable (The result table is in 4.2(i)b)
c) N = 4: Solvable
Position 1 2 3 4 5 6
"000" n n n n "021" "100" n n
COde lloolll 010 012 l|022ll lllolll 110
7 8 9 10 11 12
n n "121" "200" n n n n "221"
112 l|122ll "201" 210 212 l|222ll




d) N =5: Solvable
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Position 1 2 3 4 5 6 7 8
Code nooolv lloozll "011" I|020Il ll022" "100" lllozll llllln
9 10 11 12 13 14 15
"120" lllzzll "200" I|202Il vl211lv "220" l1222"
e) N =6: Solvable
Position 1 2 3 4 5 6 7 8 9
Code "000" "002" "010" "012" "020" 022" "100" "102" "110"
10 11 12 13 14 15 16 17 18
lI112I| |I120I| Il122|1 ll200" I|202Il ll210|| |I212I| Il220|| I|222Il
(i) M =4
a) N = 2: Solvable
Position 1 2 3 4 5 6 7 8
"000" 020" "100" "120" 200" 220" "300" "320"
ll010" "030" nllon "130" n210|| "230" "310" "330"
ll001" "021" nlOlu “121“ ||201|| |1221|| "301" "321"
Code "011" "031" "111" "131" "11" 31" "311" "331"
"002" "022" "102" " " 02" " " "302" n32o"
||012u ||032u ||112u ll132ll 11212|| ll232ll u312u u332n
||003u ||023u ll103" "123" "203" ll223ll u303u u323n
||013u ||033u ll113" "133" "213" ll233ll u313u u333n
b) N = 3: Solvable (The result table is in 4.2(iii)b)
c) N = 4: Solvable
Position 1 2 3 4 5 6 7 8
llooon llololl “020" l|o3oll “100" “110" ||120" l|13oll
Code ||001n ||011n ||021n “031" ||101n ||111" ||121" ||131n
l|002ll l|012ll l|022ll “032" l|102ll l|112ll l|122ll l|132ll
||003n ||013n ||023n l|o33ll ||103n “113" “123" ||133n
9 10 11 12 13 14 15 16
||200n “210" ||220" “230" ||300n l|3loll ||320n l|33oll
||201n ||211" ||221" ||231n ||301n ||311n l|321ll ||331n
l|202ll l|212ll l|222ll l|232ll l|302ll l|312ll l|322ll l|332ll
||203n “213" “223" ||233n ||303n l|3l3ll ||323n ||333n




d) N =5: Solvable
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Position 1 2 3 4 5 6 7 8 9 10
"000" 10" "noa" 19N "031" "100" nyqom 190" ny9yn "131"
Code o1 010, 0200 (0220 ugzpe wyepe  (MIOT 1200 (1220 wigpe
"002" 011 013 023 "033" "102" 111 113 123 n133"
11 12 13 14 15 16 17 18 19 20
"200" 10 990 y9yn "231" "300" a1 a9 na9yn "331"
501" 210 220 n539m w301 310 320 322 n3350
201 et w572 n553n 232 301 w3qqm n372m n352n 332
902" 211 213 223 ny33m 302" 311 313 323 333"
e) N = 6: Solvable
Position 1 2 3 4 5 6 7 8
Code "000" "010" 012" "020" "030" "032" "100" "110"
"001" "003" "013" "021" "023" "033" "101" "103"
9 10 11 12 13 14 15 16
"112" "120" "130" "132" "200" "210" "12" "220"
"113" u121u ||123u ||133u ||201u ||203u "213" ||221u
17 18 19 20 21 22 23 24
"230" "32" "300" "310" "312" "320" "330" n332"
"yo3" "y33" "301" "303" "313" "321" "323" "333"

f) N = 7: Solvable

O oo NOOUDd WN -

Position

Code
"000"
"003"
"011"
"020"
"022"
"030"
"032"
"100"
"103"
"111"
"120"
"122"
"130"
"132"

ll001ll
II013II

ll033ll
n 101"

lI113II

II133II

15
16
17
18
19
20
21
22
23
24
25
26
27
28

200"
"203"
"211"
"220"
222"
"230"
"232"
"300"
"303"
"311"
"320"
"322"
"330"
"332"

II201|1

nn

nn

"213"

nn

nn

||233||
II30lIl

II313|1

nn

"333"




g) N =38: Solvable

Position Code "
1 "000" "001" 17 "200" "201"
2 "002" "003" 18 "202" "203"
3 "010" "011" 19 "210" "211"
4 "012" "013" 20 "212" "213"
5 "020" "021" 21 "220" "221"
6 "022" "023" 22 "222" "223"
7 "030" "031" 23 "230" "231"
8 "032" "033" 24 "232" "233"
9 "100" "101" 25 "300" "301"
10 "102" "103" 26 "302" "303"
11 "110" "111" 27 "310" "311"
12 "112" "113" 28 "312" "313"
13 "120" "121" 29 "320" "321"
14 "122" "123" 30 "322" "323"
15 "130" "131" 31 "330" "331"
16 "132" "133" 32 "332" "333"
h) N =9: Unsolvable
Position Code
1 "000" | 13 "112" 25 "223"
2 "002" | 14 26 "231"
3 "010" | 15 "121" 27 "233"
4 v012" 16 "123" 28 "300"
5 17 "131" 29 "302"
6 "021" | 18 "138Y 30 "310"
7 "023" | 19 "200" 31 "312"
8 "031" | 20 "202" 32
9 "033" | 21 "210" 33 "321"
10 "100" | 22 "212" 34 "323"
11 "102" | 23 35 "331"
12 "110" | 24 "221" 36 "333"

44



(iv) M =5

a) N = 13: Solvable

45

Position Code

1 "000" | 14 "100" |27 "200" |40 "300" |53 "400"
2 "002" | 15 "102" | 28 "202" |41 "302" |54 "402"
3 "004" | 16 "104" | 29 "204" |42 "304" |55 "404"
4 "011" | 17 "111" |30 "211" |43 "311" |56 "411"
5 "013" | 18 "113" |31 "213" | 44 "313" |57 "413"
6 "020" | 19 "120" |32 "220" |45 "320" |58 "420"
7 "022" |20 "122" |33 "222" |46 "322" |59 "422"
8 "024" |21 "124" | 34 "224" | 47 "324" | 60 "424"
9 "031" |22 "131" |35 "231" | 48 "331" |61 "431"
10 "033" | 23 "133" |36 "233" |49 "333" |62 "433"
11 "040" | 24 "140" |37 "240" | 50 "340" |63 "440"
12 "042" |25 "142" |38 "242" |51 "342" | 64 "442"
13 "044" |26 "144" |39 "244" | 52 "344" | 65 "444"

b) N = 14: Unsolvable

Position Code

1 "000" |15 "100" | 29 "200" | 43 "300" | 57 "400"
2 "002" |16 "102" | 30 "202" | 44 "302" | 58 "402"
3 "004" |17 "104" | 31 "204" | 45 "304" | 59 "404"
4 "011" |1g "111" | 32 "211" | 46 "311" | 60 "411"
5 19 33 47 61
6 "014" |99 "114" | 34 "214" | 48 "314" | 62 "414"
7 "021" |91 "121" | 35 "221" | 49 "321" | 63 "421"
8 "023" | 22 "123" | 36 "223" | 50 "323" | 64 "423"
9 "030" |23 "130" | 37 "230" | 51 "330" | 65 "430"
10 24 38 52 66
11 "033" |25 "133" | 39 "233" | 53 "333" | 67 "433"
12 "040" | 26 "140" | 40 "240" | 54 "340" | 68 "440"
13 "042" |27 "142" | 41 "242" | 55 "342" | 69 442"
14 "044" |28 "144" | 42 "244" | 56 "344" | 70 "444"

c) N = 15: Solvable

Position Code

1 "000" | 16 "100" |31 "200" | 46 "300" | 61 "400"
2 "002" | 17 "102" |32 "202" | 47 "302" | 62 "402"
3 "004" | 18 "104" | 33 "204" | 48 "304" | 63 "404"
4 "010" | 19 "110" | 34 "210" |49 "310" | 64 "410"
5 "012" | 20 "112" |35 "212" |50 "312" | 65 "412"
6 "014" 21 "114" | 36 "214" |51 "314" | 66 "414"
7 "020" | 22 "120" | 37 "220" |52 "320" | 67 "420"
8 "022" | 23 "122" |38 "222" |53 "322" | 68 "422"
9 "024" | 24 "124" |39 "224" |54 "324" | 69 "424"
10 "030" | 25 "130" | 40 "230" |55 "330" | 70 "430"
11 "032" | 26 "132" |41 "232" |56 "332" | 71 "432"
12 "034" | 27 "134" | 42 "234" |57 "334" | 72 "434"
13 "040" | 28 "140" | 43 "240" |58 "340" | 73 "440"
14 "042" | 29 "142" | 44 "242" | 59 "342" | 74 "442"
15 "044" | 30 "144" | 45 "244" | 60 "344" | 75 "444"




Chapter V

CONCLUSION AND DISCUSSION

In this project, we provide an instant program as a tool to study Gardner’s
problem. The program can tell whether a Gardner’s problem with given parameters
is solvable or unsolvable. For a solvable problem, all possible ways to perform the
Gardner’s trick are provided. We also provide 3 extra programs for an overview of
solvable cases and unsolvable cases. Given the number of piles and the number of
cards in each pile, the first program can give some values of the given number of
rounds that make the Gardner’s problem solvable or unsolvable. Given the number
of piles and the number of rounds, the second program can give some values of
the given number of cards in each pile that make the Gardner’s problem solvable or
unsolvable. Given the number of rounds of performing, the program can give some
values of the given number of piles and some values of the given number of cards
in each pile that make the Gardner’s problem solvable or unsolvable. Moreover, for
each unsolvable problem, the number of desired position z that cannot be performed

are also provided.

From our main result, for any M, N, K € N, M > 2, we can conclude condi-
tions for the parameters that make the Gardner’s problem solvable or unsolvable as

follows.

(i) N > ME-!
The Gardner’s problem is unsolvable. This is discussed in 3.1.1. According
to our results, we conjecture the number of unusable positions in each case is

MN.

(ii)) N =MmE-L
The Gardner’s problem is solvable. For the number of deck is exactly M %,
this condition have been reveal in Mathematics Card Tricks [2]. Furthermore,

we know a way to perform the desired position = by converting = — 1 to base
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M as a K digit performing code.

(iii) N < mE-1

From our experiments, we conjecture the following results.

a) If N = MX-1 — 1, then the Gardner’s problem is unsolvable. Moreover,
the number of unusable positions in such case is M (M~ —3), for every

ME-1 >3

K-1
b) If M is an even number and N <

, then the Gardner’s problem is

solvable.
K-1

¢) If M is and odd number and N < [M + 1, then the Gardner’s prob-

K-1

lem is solvable. Moreover, if M is divisible by 3 and N < {M J + 2,

then the Gardner’s problem is solvable.

K-1

For { J < N < M&~1, most sets of parameters M, N, K are unsolvable.
However, there are some interesting cases that are solvable. The relationship con-
dition that makes those sets of parameters solvable still remains open for future

works.

Although we have an easy way to perform the Gardner’s trick for a deck of size
n*, we did not study about how to perform the trick for a person when we actually
get the desired position from a spectator in real life when we actually get the desired
position from a spectator, since we need a computer to tell us the code to perform.
We hope that this instant program and the anticipated conditions can be useful for

study the Gardner’s problem in future works.
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Appendix I

The Project Proposal of course 2301399

Project Proposal

Academic Year 2018

Project Tittle (Thai) nsveesUsUUNalnvasniiunsaes

Project Tittle (English) An Extension of Martin Gardner’s Card Trick

Project Advisor Raywat Tanadkithirun Ph.D.

By Athisa Laungvarunyoo ID 5833552723
Mathematics, Department of Mathematics and
Computer Science Faculty of Science,

Chulalongkorn University

A.1 Background and Rationale

The Gergonne p-pile problem [5] was first proposed by Gergonne in 1813. At
first, a spectator select any card in a deck, memorizes it and shuffies the deck as much
as desired. We creates three face-up piles of nine cards, dealing the top card onto
the left, middle, then right deck and repeating until all the cards are gone. Now we
get 3 piles card. Next, the participant then points to which pile contains the chosen
card. The problem involves distributing these cards repeated this same proceses
many times. Finally, we can make the middle of the deck to be the chosen card.
During the past century the trick was included in books on recreational mathematics.
In Mathematics, Magic and Mystery [4], Martin Gardner evolved Gergonne p-pile
problem to the 27 card trick. In his trick is like the Gergonne p-pile problem, but
this time the spectator can choose the positon between 1 and 27 of deck that they

want the chosen card to be (call this number n). After the procedure with 3 piles
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and 3 times assembly, we can reveals the nth card to be position of the chosen card

in the packet of 27.

Dickson [3] generalized 27 card trick to the trick for any deck n" cards which
the pack is dealt into n piles of n"~! cards each. Finally, after the n*" times procedure
the card selected will be the ‘" from the top. Moreover, in general, if you deal a
pack of n* cards into n piles and repeat this procedure k times, you can place the
card at any desired position in the deck. Recently, Bolker [1] generalized this trick
by using radix sort. Using a mixed radix you can do Gergonne’s trick with a deck
of any cards you wish. Example, 54 cards, first time, the pack is dealt into 6 piles,
second times and third times is dealt into 3 piles. So, it is interesting to find the
others number of deck which not in form of »n* cards that can play Martin Gardner’s

card trick without mixed radix method.

A.2  Objectives

To search for some solution of number of cards (M N cards) that can dealt to
M piles and N cards each and number of times (K times) to do the procedure which

can play Martin Gardner’s card trick.

A.3 Scope

In this study, we only consider a number of packet of card with composite
number and the minimum number of times that can play Martin Gardner’s card

trick.

A.4 Project Activities

1. Study Martin Gardner’s card trick and other related study from [5], [6] and

other.

2. Select the scope for study and consider algorithm of Martin Gardner’s card

trick.
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. Write code in Mathematica program.
. Write a report.

. Present the project.

Durations

. Study Martin Gardner’s card trick and other related study.

. Select the scope for study and consider algorithm of Martin Gardner’s card

trick.
. Write code in Mathematica program.
. Write a report.

. Present the project.

2018 [ 2019 | 2021

08 [ 09 |10 |11 |12 01 [02]o01]02]03] 04




A.6

A7

Benefits

. The benefits for student who implement this project.

* Learn and understand sorting algorithm.

* Improve Mathemetica coding skill.

. The benefits for users of the project.

* Know how to play Gardner’s trick with others number of cards.

* Understand mathematics after a magic trick.

Equipment

. Computer

i. Microsoft word
ii. Adobe PDF

iii.Wolfram Mathematica

. Deck of cards
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