1As9NIS

= = ~ ¢
N15L58UNTEDULNBLEINUSYaUNITa

Yolasn1s  Aanavesd s leulamesuiuumasaes

A class of primes represented by some quadratic forms

Yoildn WNANFTUNT NN 593 35448 23

APV AMAANENSLAZINYINITADUNIADS

ANV AMAFIENS

UnsAnen 2562

AREINYIANENT QUIAINTAINNIINEIAY



AANEvRITILIURNEIUlAMmEFUL UL dDS

WNEAIITUNT Mgdna

Tassoufidudiuniswasnisfnuaundngnsiermanstiodio
A1UIVIAAFNEAT NIPIVIANRNAIANTUALINYINTABUNINDS
ANEINIANENT PRIAINTAUIUNNINSY
UnsAnwn 2562

AUANSYOIPUIAINTANNINEY



A class of primes represented by some quadratic forms

Miss Warintorn Pongsumrankul

A Project Submitted in Partial Fulfillment of the Requirements
for the Degree of Bachelor of Science Program in Mathematics
Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Academic Year 2019

Copyright of Chulalongkorn University



Wolasanu AATErRIIIINRNIETRBUlAme ULuUiNaaes

lng WINEAITUNT WIEdITIYNS tavUseadd 5933544823
A3 AAAENS
819159NUS N lATI9U 399FANTI9N5E AT.ASAY IveTUY

MATVIARAAIANTULAYINGINTABUNIADS AMLINIAIENT PUNAINTUUNINGIRY aYSTAL
tulpsaruatuiludumile veamsfinvinundnaasuSayardaudio Tusiedn 2301499 Tasaau

Ieengns (Senior Project)

......................................... FIMUNNIAIVIANANERS

LALANYINITABURNHDS

(A1En319158 A3.nquae o)

AMYNTTUNTEOULATINY

MogTm Lve®

......................................... A3IUNIT

(599M1@M3139158 AT.L08UNT TiNaITTO)



Funs negdsyna: aaavesduRmeNlisulaniesULUUMAsEas (A CLASS OF PRIMES

REPRESENTED BY SOME QUADRATIC FORMS) .71USnwilaseaiu: 5A.05. maesmi loewuy, 43 win

T p Wludiwruwaniz 1510819797 p d3Unvuiideaeanuuniuiuiniediuiuihiy
f(x,y) = ax? + bxy + cy? §183wudu muaz n 9 f(m,n) = p lulassnuilismeaiaves

PUIAN LT ULLAG L FULUUMAIERUUTIUNLATo TR UL UY

a

AIAIUN ANAANANILAZINGINITABUNADS AT ONAM. ..., 9 ?“'M ......................

a a s A A A
GUKRIPKIN AURAFITNT aqﬂﬂaﬂ@@.ﬂﬂiﬂﬂqiﬂﬁﬁﬂqu ...........................................

Un1sAnw 2562



# # 5933544823 : MAJOR MATHEMATICS.

KEYWORDS: PRIME, BINARY QUADRATIC FORM
WARINTORN PONGSUMRANKUL: A CLASS OF PRIMES REP-
RESENTED BY SOME QUADRATIC FORMS. ADVISOR: ASSOC.PROF.
TUANGRAT CHAICHANA, PH.D., 43 PP.

Let p be a prime number. An integral binary quadratic form f(z,y) =
ax? + bxy + cy? represents p if there exist m,n € Z such that f(m,n) = p.
In this project, we find a class of primes represented by some integral binary
quadratic forms.

Department . Mathematics and Computer Science. Student’s Signature .. NH.YIVIJ(OTVI ........
Field of Study ...Mathematics... Advisor’s Signature ....... LTI
Academic Year  ....... 2019.......



Acknowledgments

I sincerely thank to my project advisor, Assoc.Prof. Dr. Tuangrat Chaichana,
for her valuable help and constant encouragement throughout the course of
this project. I am most grateful to work with her. I have learnt many things
from her by her teaching, her advice and our work experience. Thanks to
my project committee: Prof.Dr. Patanee Udomkavanich and Assoc.Prof.Dr.
Oumporn Phuksuwan for their suggestions and comments. In addition, I wish
to express my thankfulness to His Majesty King Maha Vajiralongkorn Bodin-
dradebayavarangkun for giving me the scholarship in two previous semester.
Finally, thanks to my friends and my family for their support throughout my
education. This project is funded by His Majesty King Maha Vajiralongkorn
Bodindradebayavarangkun and Department of Mathematics and Computer
Science, Faculty of Science, Chulalongkorn University.

vi



Contents

Pages

Abstract (Thai) v
Abstract (English) %
Acknowledgements vi
Contents vii
1 Introduction 1
1.1 Background in Number theory. . . .. ... 1
LA A DIVISIDIIRY . .o 1

L.1.2 CONGIUBIICES . . . o vttt e e e e e e e e e e e e e e e e e 2

1.1.3 Quadratic Residue and the Quadratic Raciprocity Law. . ........................... 3

1.2 Minkowski Convex Body Theorem in R2. . ... ...ttt 6
1.3 Binary QuadratiC FOImMS. . ... . 8

2 Representation of primes by quadratic forms 10
3 Bibliography 31
4 Appendix Proposal 32

5 Author’s Profile 36



Chapter 1

Introduction

1.1 Background in Number theory

We begin by giving the basic definitions and theorems of number theory, see
[2], which are used in this project.

1.1.1 Divisibility
First, we explain the concepts of divisibility of integers.

Definition 1.1. Let a and b be integers such that a # 0. We say that b is

divisible by a if there is an integer x such that b = ax, and we write a | b.
Other language for the divisibility property a | b is that a divides b. The

integer a 1s called a divisor of b, and that b is called a multiple of a.

Theorem 1.2. Let a,b,c and d be integers. Then
1.a|0,1|aandala;

Ifa|bandb]|c, thenal|c;

Ifa|b andc|d, then ac | bd ;

Ifa>0andb>0 anda|b, then a <b ;

a | b if and only if Vm € Z\{0}, ma | mb ;

S & e

Ifa|bandalc, thenVr,y € Z, a| (bx + cy).

The next theorem is an important theorem about divisibility which will
be used to create conditions regarding divisibility for further using.



Theorem 1.3. The division algorithm. Given any integers a and b, with
a # 0, there exist unique integer q and r such that

b=qga+r, 0<r<la].

If atb, then r satisfies the stronger inequalities 0 <1 < | a | .
Here q is called the quotient and r is called the remainder obtained by
dividing b by a.

Definition 1.4. Let b and c be integers. The integer a is a common di-
visor of b and c if a | b and a | c¢. If at least one of b and ¢ is not 0,
the greatest among their common divisor is called the greatest common
divisor, denoted by ged(b, c).

Definition 1.5. We say that a and b are relatively prime in case ged(a, b) =
1, and that ay, ag, ..., a, are relatively prime in case ged(ay, as, ..., a,) = 1. We

say that a1, ag, ..., a, are relatively prime in pair in case gced(a;, a;) =1

foralli=1,2,...n and j =1,2,...,n with i # j.

Theorem 1.6. Let a,b,c € Z. If a | bc and ged(a,b) =1, then a | c.

1.1.2 Congruences

Next, we will explain the concepts of the congruences.

Definition 1.7. Given integers a,b,m with m > 0. We say that a is con-
gruent to b modulo m, and we write

a=b (mod m),

if m divides the difference a — b. The number m is called the modulus of
the congruence.
In other words, the congruence is equivalent to the divisibility relation

m | (a —b).

In particular, a = 0 (mod m) if and only if m | a. Hence a = b (mod m) if
and only if a —b =0 (mod m).

Remark.
1. For alln € Z, n is even if and only if n =0 (mod 2),

2. For alln € Z, n is odd if and only if n =1 (mod 2),



3. For all a,b,m € Z, if a = b (mod m), then a = b (mod d) when
d|m,d>0.

Theorem 1.8. Congruence is an equivalence relation. that is, we have: For
allm e Z+

1. reflexivity: Ya € Z,a = a (mod m);
2. symmetry: Ya,b € Z, if a = b (mod m), then b = a (mod m);

3. transitivity: Ya,b,c € Z, if a = b (mod m) and b = ¢ (mod m), then
a = c (mod m).

Theorem 1.9. If a =b (mod m) and ¢ = d (mod m), then we have:
1. ax + cy = bz + dy (mod m) for all integer x and y,
2. ac = bd (mod m),

3. a™ = 0" (mod m), for every positive integer n.

1.1.3 Quadratic Residue and the Quadratic Raciproc-
ity Law

Definition 1.10. Let a and m be relatively prime integers, with m > 1. a
is called a quadratic residue modulo m if the congruence

2* = a (mod m)

has a solution. If it has no solution, then a is called a quadratic non-
residue modulo m.

Examples 1.11. To find the quadratic residues modulo 12 we square the
numbers 1,2, ...,11 and reduce mod 12. We obtain

PP=5=7"=11"=1,22=4=8=10>=4,3*= 9> =9 (mod 12).

Consequently, the quadratic residues modulo 12 are 1,4,9, and the non-
restdues are 2,3,5,6,7,8,10,11.

Definition 1.12. Let p be an odd prime and n an integer with n Z 0 (mod p).
We define Legendre’s symbol ( ) as follows:

n
p

(n) )1 if nis a quadratic residue mod p,
D —1 ifn is a quadratic nonresidue mod p.

If n =0 (mod p), we define <%> = 0.

3



Examples 1.13. From 4*> = 3 (mod 13), 3 is a quadratic residue mod 13.
Hence (%) = 1.

Examples 1.14. Since the congruence z* = 2 (mod 13) has no solution, 2

15 a quadratic nonresidue mod 13. Hence (1—23) =—1.

Corollary 1.15. Let p be an odd prime. Then for all integers m,n we have
(m) = (%) whenever m = n (mod p).

P

Theorem 1.16. Euler’s criterion. Let p be an odd prime. Then for all
integer n we have

(%) =n?" (mod p).

Examples 1.17. () =3013-V/2 = 3122 =35 =729 = 1 (mod 13). There-

fore (%) =1 and so 3 is a quadratic residue mod 13.

Theorem 1.18. Let p be an odd prime and m,n be integers. Then
5)-G)G)
p p)\p)
Theorem 1.19. For an odd prime p we have

AN if p=1 (mod 4),
( ) (=1) {—1 if p=3 (mod4).

Examples 1.20. (73) =1 because 13 = 1 (mod 4) and (Z) = —1 because
7=3 (mod 4).

Theorem 1.21. For every odd prime p we have
(g) = (=118 = 1 if p==1(mod 8),
b —1 if p=+3 (mod 8).

The following theorem provides a useful tool for computing Legendre
symbols.

Theorem 1.22. The Quadratic Reciprocity law. If p and q are distinct

odd prims, then
p q p=lg-1
- — ) =(=1)72 2.
(2) () -

S



Examples 1.23. From Theorem 1.22, we have

(3)- ()= (2)-(9
Q- (-6

Since

(1—73) =1 and so 7 is a quadratic nonresidue mod 13.

Definition 1.24. Let P be an odd integer with prime factorization
i=1

The Jacobi symbol (%) 1s defined for all integers n by the equation
n )\
(7) =11 (;) >
where <pﬁ) is the Legendre symbol. We also define (%) =1 and the possible
values of (1%) are 1,—1,0r 0.

Remark. If the congruence

2> =n (mod P)
has a solution and (1%) =11, (f) i , then (f) =1 for each prime p;, and
hence (1%) = 1. But the converse is not true because (%) can be 1 if an even

number of factors —1 appears in (1.1).

Examples 1.25. We have (2) = 1 but the congruence z* = 2 (mod 9)has

9
no solution.

Theorem 1.26. If P and Q are odd positive integers, then
L) () - ().
2 (3)(8) = ()



3. (%) = (%) whenever m =n (mod P),

4. (“%”) = (%) whenever gcd(a, P) = 1.

The following theorem is the general version of the Quadratic Reciprocity
Law.

Theorem 1.27. The Quadratic Reciprocity law for Jacobi symbols.
If P and Q are positive odd integers with ged(P, Q) = 1, then

(5(©)-

1.2 Minkowski Convex Body Theorem in R?

In this section, we introduce the Minkowski Convex Body Theorem that is
mainly used in this project. We start this section by giving the definition of
lattices in R", see [7].

Definition 1.28. Given n linearly independent vectors by, bo, ..., b, € R", the
n-dimensional lattice genereted by them is defined as

L(b1,ba; ... by) = {Z zib; | z; € L}
i=1

We refer to by, bs,...,b, as a basis of the lattice. FEquivalently, let B be the
n X n matriz whose rows are by, by, ..., b,, then the n-dimensional lattice
genereted by B is

E(B) = ,C(bl,bg, ,bn> = {BJZ‘ | xr e Zn}
and we say that the rank of L(B) is n.

Definition 1.29. Let A = L(B) be a lattice of rank n. We define the de-
terminant of A, denoted det(\), by det(A):=| det(B) |.

In this project, we deal with lattices in R? which can be explained as
follows: given 2 linearly independent vectors u,v € R2, the 2-dimensional
lattice genereted by them is defined as

L(u,v) ={x1u+ 290 | 11,29 € Z}.
We refer to u,v as a basis of the lattice.The determinant det(A) in R? is

det(L(u,v)) =| det(B) | where B = m .

6



Figure 1.1: Lattice in R? generated by vectors v and v

From the picture, the lattice points are the points at the intersection of two
grid lines of the parallelograms.

Definition 1.30. Let S be a subset of R%. S is said to be convez if
{u+tlv—u):tel0,1]} CS
for every u,v € S.

Examples 1.31. A disk with center (0,0) and radius ¢ is a convez subset in
R2.

Definition 1.32. We say S is symmetric with respsect to the origin
if (=1, —x2) € S for all (xq1,22) € S.

The Minkowski Convex Body Theorem for a 2-dimensional Lattice states
as follows.

Theorem 1.33. Minkowski Convex Body Theorem. Suppose that A is
a 2-dimensional lattice in R? with determinant det(A) and let S be a convex
subset of R? that is symmetric with respsect to the origin. Then if

area(S) > 4det(A),
S must contain at least one lattice point besides the origin.

Here det(A) can be considered as the area of the parallelogram having
u and v as adjacent sides. A convex set S that has been considered in our
entire project is the origin symetric ellipse whose its area is

area(S) = mwab,

7



Figure 1.2: An origin symetric ellipse

where a is the length of semi-major axis and b is the length of semi-minor
axis as shown in Figure 1.2.

By using a lattice A = L(u,v) and a symetric ellipse S centered at the
origin, the Minkowski Convex Body Theorem can be interpreted as follow :
“If the area of S is 4 times greater that the area of the parallelogram having
u and v as adjecent sides, then there exists a lattice point apart from (0, 0)
that is contained in S.”

1.3 Binary Quadratic Forms

In this section, we discuss a representation of integers by quadratic forms.

Definition 1.34. An integral binary quadratic form is a quadratic poly-
nomial f(x,y) in two variables

flz,y) = ax® + bry + cy?
over 7.

Definition 1.35. We say that a binary quadratic form f(z,y) is primitive
if a,b and c are relatively prime.

Definition 1.36. The discriminant of form f(x,y) = ax® + bxy + cy? is
defined as
D = b* — 4ac.

Definition 1.37. Let f(x,y) be an integral binary quadratic form. An integer
a is said to be represented by f(x,y) if there exist integers m and n such
that f(m,n) = a.



One of interesting problems relating to quadratic forms is representation
of primes by integral binary quadratic forms, see e.g. [1], [3], [5], [6], [8] and
[9]. Historically, a representation of primes of the form p = x* + ny? for
arbitrary n have been widely studies. For example, Euler gave the rigorous
proofs of the following four statements stated by Fermat, see e.g. [3] :

1. p=a?+y?ifand only if p=2 or p =1 (mod4);

2. p=12?+2y?if and only if p=2 or p = 1,3 (mod8);
3. p=1a?+3y*if and only if p=3 or p = 1 (mod3);
4. p = 2%+ 4y?* if and only if p = 1 (mod4).

and he also conjected that there is a prime p satisfying

p = 2%+ 6y? if and only if p = 1,7 (mod24).

This conjecture was proved by Kaplan [5] in 2014. The Fermat’s statements
and the result for the case n=7 were also shown in [5] by using the different
techniques of proofs. In [4], Hammonds proved the statement that there are
primes satisfying

1. p=a2*+y?ifand only if p=2 or p =1 (mod4);
2. p=a®+2y?if and only if p=2 or p=1,3 (mod8).

He mainly used the Minkowski Convex Body Theorem to proved this state-
ment.

In this project, we find a class of primes represented by some binary
quadratic form over Z. To do so, we give some sufficient conditions for primes
that can be represented by the form

flz,y) = 2% + ny?,

where n = 3,5,6,7,10,13,14 and the form f(z,y) = 22? + 7y? which are
primitive and have negative discriminant.



Chapter 2

Representation of primes by
quadratic forms

This chapter provides a class of primes that can be represented by the
quadratic form z2 4+ ny? where n = 3,5,6,7,10, 13,14 and the form f(z,y) =
222 + Ty?.

Lemma 2.1. Let p be a prime. If p = 1 (mod 3), then —3 is a quadratic
restdue modulo p.

Proof. Assume that p = 1 (mod 3). Then by Theorem 1.18, Theorem 1.19
and Theorem 1.22, we have

5)-G)0)
)
= (-1 (E) (—1)EHEH
- (-) (from p =1 (mod 3))

Hence —3 is a quadratic residue modulo p. O

The following known result was mentioned in [4] without proof. There-
fore, we show the proof in order to make this project self-contained.

Theorem 2.2. Let p be a prime. If p=1 (mod 3), then p is represented by
the form f(z,y) = 2 + 3y>.

10



Proof. Assume that p = 1 (mod 3). By the previous lemma, —3 is a quadratic
residue modulo p. Thus there exists u € Z such that

u? = —3 (mod p). (2.1)
Let
A = L(vy,v9) = {mvy + nvy: m,n € Z}
be a lattice in R? generated by v; = (1,u) and vy = (0, p). Thus

1 u

det\ = ‘O » = 1(p) — O(u) = p.

We observe that if (y,x) € A, there exist m,n € Z such that mv; + nvy =
(y,x), i.e., (m,mu) + (0,np) = (y,x). Then x = mu + np and y = m which
give

2% + 3y* = (mu + np)* + 3(m)?

= m*u® + 2munp + n*p* + 3m?

p(2mun + n’p) + m?(u* + 3)
= m?*(u® + 3) (mod p)
=0 (mod p) (by (2.1)).

Let S be the origin symetric ellipse defined by
S ={(y,x) € R*: 2% + 3y < 3p}.

Then the semi-major axis length is \/3p and semi-minor axis length is /p.
We note that

area(S) = 7(\/3p)(v/p) = 7(V3)p > 4p = 4det(A).

By the Minkowski Convex Body Theorem, there exists a lattice point (d, c) €
SN(0,0) such that

0 < c®+3d®> < 3pand ¢®+ 3d*> = 0 (mod p).

Then p | ¢ + 3d?, which implies that ¢* + 3d* = p or 2p.
Suppose, by contrary, that ¢ + 3d*> = 2p. From p = 1 (mod 3), then
3| p — 1. Then there exists k € Z such that p = 3k + 1. Thus

6k +2 =2p = ¢+ 3d* = ¢* (mod 3).

Hence 2 = ¢ (mod 3). That is 2 is a quadratic residue modulo 3. Thus
(%) = 1 which contradicts Theorem 1.19. Hence ¢ + 3d® = p,ie., p is

represented by the form 2 + 3y2. O

11



Examples 2.3. Since 7 =1 (mod 3), then, by the above theorem, 7 can be
represented by the form f(z,y) = > + 3y*. In fact, 7= 2% + 3(1)2.

Lemma 2.4. If a prime p = 1,9 (mod 20), then —5 is a quadratic residue
modulo p.

Proof. Assume that p = 1,9 (mod 20). Then p%l is even. Moreover, p =

1,4 (mod 5), which are both square. Therefore (2) = 1. By Theorem 1.18,

Theorem 1.19, Theorem 1.21 and Theorem 1.22, we have
5)-G)6)
p p p
p=1 (D
-2 ()
p

(5) 07
1

Then —5 is a quadratic residue modulo p. O

Theorem 2.5. Let p be a prime. If p=1,9 (mod 20), then p is represented
by the form f(x,y) = x* + 5y°.

Proof. Assume that p = 1,9 (mod 20). Then, by Lemma 2.4, —5 is a
quadratic residue modulo p. Thus there exists u € Z such that

u* = —5 (mod p). (2.2)
Let A be a lattice in R? defined by
A = L(vy,v2) = {mv; +nve: m,n € Z},
1 u
) =10 -0 =
Note that if (y,z) € A, there exist m,n € Z such that mv; + nvy = (y, x),

ie., (m,mu)+ (0,np) = (y,z). Then x = mu + np and y = m. By direct
computation as in Theorem 2.2, we have

where v; = (1,u) and vy = (0,p). Thus det(A) = ‘

2% + 5y* = (mu + np)® + 5(m)?
= m?(u® + 5) (mod p)
= 0 (mod p) (by (2.2)).

12



Let S be the origin symetric ellipse with semi-major axis length /3p and

semi-minor axis length @/% defined by

S ={(y,x) € R*: 2° + 5y* < 3p}.

Then we have

area(S) = ﬂ(\/%)(\/?)_p) = W(%)p > 4p = 4Adet(A).

By the Minkowski Convex Body Theorem, there exists a lattice point (d, ¢) €
SN0, 0) be such that

0 < ¢®+5d* < 3p and ¢® + 5d*> = 0 (mod p).
These expressions show that we must consider two cases :
&+ 5d* = p or 2p.

Suppose ¢ +5d? = 2p. From p = 1,9 (mod 20), then 20 | p—1 or 20 | p—9.
Case 20 | p — 1 : Thus there exists k € Z be such that p = 20k + 1. Then

40k +2 =2p = ¢* + 5d*> = ¢ (mod 5).

Hence 2 = ¢ (mod 5). That is 2 is a quadratic residue modulo 5. Thus
(%) = 1, a contradiction.
Case 20 | p — 9 : Thus there exists k € Z be such that p = 20k + 9. Then

40k + 18 = 2p = * + 5d* = ¢ (mod 5).

Hence 3 = ¢ (mod 5). That is 3 is a quadratic residue modulo 5. Thus
(%) =1. Since 37 =9=—1 (mod 5), we obtain a contradiction.
Hence ¢® + 5d? = p, that is, p is represented by the form 22 + 512 O

Examples 2.6.

1. Since 41 is an odd prime satisfying 41 = 1 (mod 20), we can conclude
that 41 can be represented by the form f(x,y) = 2* + 5y. In fact
41 = 6% + 5(1)%

2. Since 89 is an odd prime satisfying 89 = 9 (mod 20), we can conclude
that 89 can also be represented by the form f(x,y) = x* + 5y?. Note
that 89 = 3? 4 5(4)>.

13



Lemma 2.7. If a prime p = 1,7 (mod 24), then —6 is a quadratic residue
modulo p.

Proof. Assume that p = 1,7 (mod 24).
Case p =1 (mod 24) : Then there exists k € Z be such that p = 24k + 1.
By Theorem 1.18, Theorem 1.19, Theorem 1.21 and Theorem 1.22, we have

()-G)G)G)

- ey (2)

12 Tok2 16k [ O
= (1) (1) (5)
- @)
-
=1 (from p =1 (mod 3)).

Case p = 7 (mod 24) : Then there exists k € Z be such that p = 24k + 7.
By Theorem 1.18, Theorem 1.19, Theorem 1.21 and Theorem 1.22; we have

2-O0
— (cpmsayerass (3)

p
()

Then —6 is a quadratic residue modulo p. O

Theorem 2.8. Let p be a prime. If p=1,7 (mod 24), then p is represented
by the form f(x,y) = x* + 63°.

14



Proof. Assume that p = 1,7 (mod 24). Then —6 is a quadratic residue mod-
ulo p. Thus there exists u € Z such that

u* = —6 (mod p). (2.3)
Let A be a lattice in R? defined by
A = L(vy,v9) = {mv; + nvg: m,n € Z},

where v; = (1,u) and vy = (0,p). By the same argument as in previous
theorem, we have det(A) = p and if (y,x) € A, then z* +6y*> = 0 (mod p) by
(2.3). By letting

S ={(y,x) € R*: 2° + 6y* < 4p},

we have

4 4
area(S) = m(4/ —p)(\/4p) =m(—=)p > 4p = 4det(A).
6 V6
Then there exists a lattice point (d,c) € SN\ (0, 0) such that
0 < c®+6d* < 4p and ¢® + 6d*> = 0 (mod p).

Consequently, we get ¢ + 6d% = p or 2p or 3p.
Suppose that ¢? + 6d* = 2p. From p = 1,7 (mod 24), we have

2p = 2,14 =2 (mod 3)

and so
=c+6d>=2p =2 (mod 3).
2

Therefore, (5) = 1, which is a contradiction.

Suppose that ¢ +6d? = 3p. Then 3 | ¢+ 6d>. Suppose that d is multiple
of 3. Then 3 | ¢* and so 9| ¢®. Thus 9 | ¢ + 6d?, i.e., 9 | 3p. Therefore 3 | p.
This implies that p = 3, which is impossible. Then d is not a multiple of 3.
Thus d*> =1 (mod 3). Hence 6d*> = 6 = 0 (mod 3). Therefore

0=3p=c’+6d°=c® (mod 3).

Then ¢ = 0 (mod 3) which implies that 3 | ¢. So there exists [ € Z be such
that ¢ = 3l. Now we have

c® + 6d* = (31)* + 6d*> = 3(31* + 2d°*) = 3p.

Then p = 2d? = 2 (mod 3), which is a contradiction.
Hence ¢? + 6d? = p, that is, p is represented by the form 2 + 632 O

15



Examples 2.9.

1. We have 73 is an odd prime with 73 = 1 (mod 24). Then 73 is repre-
sented by the form f(z,y) = x® + 6y?, that is, 73 = 7% + 6(2)%

2. We have 79 is an odd prime and 79 = 7 (mod 24). Then 79 is repre-
sented by the form f(z,y) = x® + 6y?, that is, 79 = 5% + 6(3)%.

Lemma 2.10. If a prime p = 1,9,11,15,23,25 (mod 28), then —7 is a
quadratic residue modulo p.

Proof. Assume that p =1,9,11,15,23,25 (mod 28).
By Theorem 1.18, Theorem 1.19, Theorem 1.21 and Theorem 1.22, we have

) -G)0)
— (-7 (g) (—1)FFED
- () 24

Case p =1,15 (mod 28) : Then p =1 (mod 7) and so, by (2.4), we obtain

()=6)=

Case p = 9,23 (mod 28) : Then p = 2 (mod 7). By (2.4) and Theorem 1.21,

we obtain
— = 1.
= =

Case p = 11,25 (mod 28) : Then p = 4 mod 7. By (2.4) and 4 is square, we

R

Then —7 is a quadratic residue modulo p. O

Theorem 2.11. Let p be a prime. If p=1,9,11,15,23,25 (mod 28), then
p is represented by the form f(x,y) = 2 + Ty>.

Proof. Assume that p = 1,9, 11, 15,23, 25 (mod 28). By the previous lemma,
—T7 is a quadratic residue modulo p. Thus there exists u € Z such that

u? = —7 (mod p). (2.5)
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Let A be a lattice in R? defined by
A = L(vy,v2) = {mv; +nve: m,n € Z},

where v; = (1,u) and vy = (0,p). By the same argument as in previous
theorem, we have det(A) = p and if (y,x) € A, 2% + Ty*> = 0 (mod p) by
(2.5). By letting

S ={(y,x) € R*: 2% + Ty* < 4p},

we have area(S) = ﬁ(\/g)(\/él_p) = W(\iﬁ)p > 4p = 4det(N).

Then there exists a lattice point (d,c¢) € SN\ (0, 0) such that
0<c®+7d* < 4p and ¢ + 7d* = 0 (mod p).

Consequently, we get ¢ + 7d? = p or 2p or 3p.

Suppose that ¢? + 7d> = 2p. In order to obtain a contradiction we divide
the proof into four case as follows.
Case c is even and d is odd : Thus there exist k,[ € Z be such that ¢ = 2k
and d = 21 + 1. We have

2p =+ 7d* = (2k)* + 7(21 + 1)?
=4k + T(41* + 41 + 1)
= 2(2k* + 141> + 141 + 3) + 1.

Thus 2p is odd, a contradiction.
Case c¢ is odd and d is even : Thus there exist k,I € Z be such that
c=2k+1 and d = 2]. We have

o2p = +7d? = (2k + 1)% + 7(20)*
(4k* + 4k + 1) + 7(41%)
2(2k* + 2k + 141%) + 1.

Thus 2p is odd, a contradiction.
Case c and d are even : Thus there exist k,[ € Z be such that ¢ = 2k and
d = 2l. We have

2p = &+ 7d* = (2k)* + 7(21)?
(4Kk%) + 7(41%)
2(2k* + 141°)

and so p = 2k% + 141%2. Thus p is even, a contradiction.
Case ¢ and d are odd : Thus there exist k,[ € Z be such that ¢ =2k + 1

17



and d = 21 + 1. We have

2p =+ 7d* = (2k + 1)* + 7(20 + 1)?
= (4k* + 4k + 1) + 7(4° + 41 + 1)
= 2(2k* + 2k + 4 + 141 + 141).

Therefore, we have

p = 2k* 4+ 2k 4 4 + 141* 4 141
=2(k* + k+ 2+ 712+ 71).

Thus p is even, a contradiction.

Suppose that ¢® +7d? = 3p. Then 3 | ¢+ 7d?. Suppose that d is multiple
of 3. Then 3 | ¢* and so 9| ¢®. Thus 9 | ¢ + 7d?, i.e., 9 | 3p. Therefore 3 | p.
This implies that p = 3, which is impossible. Then d is not a multiple of 3.
Thus d*> = 1 (mod 3). Hence 7d*> =7 =1 (mod 3). Therefore

0=3p=c+7d>=c*+1 (mod 3).

Then ¢* = —1 (mod 3) which implies that —1 is a quddratic residue modulo
3, then (%1) =1, but from

<_?1) _ (_1)% = —1#1 (mod 3),

which is a contradiction.
Hence ¢ + 7d? = p, that is, p is represented by the form 22 + 7y2. O

Examples 2.12.

1. Since 29 is an odd prime with 29 = 1 (mod 28), we get 29 can be
represented by the form f(z,y) = x> + Ty*. In fact, 29 = 1? + 7(2)%.

2. Since 37 is an odd prime with 37 = 9 (mod 28), we get 37 can be
represented by the form f(x,y) = x* + Ty*®. In fact, that is 37 =
32+ 7(2)2

3. Since 67 is an odd prime with 67 = 11 (mod 28), we get 67 can be
represented by the form f(x,y) = x* + Ty*®. In fact, that is 67 =
22 4+ 7(3)2.

4. Since 127 is an odd prime with 127 = 15 (mod 28), we get 127 can
be represented by the form f(z,y) = x*> + Ty*. In fact, that is 127 =
82 4+ 7(3)>.
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5. Since 23 is an odd prime with 23 = 23 (mod 28), we get 23 can be
represented by the form f(x,y) = z* + Ty*>. In fact, that is 23 =
42 +7(1)2

6. Since 53 is an odd prime with 53 = 25 (mod 28), we get 53 can be
represented by the form f(x,y) = z* + Ty*>. In fact, that is 53 =
52 +7(2)%

Lemma 2.13. Let p be a prime. If p=1,9,11,19 (mod 40), then —10 is a
quadratic residue modulo p.

Proof. Assume that p = 1,9,11,19 (mod 40). By Theorem 1.18, Theorem
1.19, Theorem 1.21 and Theorem 1.22, we have

5)-G)G)E)
= (- (2) (e (%)
-7 (5 () (26)

Case p = 1 (mod 40) : Then 21 is even. Moreover p = 1 (mod 5) and

p=1 (mod 8). By (2.6), we have

5)-G)6) -

Case p = 9 (mod 40) : Then 21 is even. Moreover p = 4 (mod 5) and

p=1 (mod 8). By (2.6), we have

5)-6)C) -

Case p = 11 (mod 40) : Then 22 is odd. Moreover, p = 1 (mod 5) and
p =3 (mod 8). By (2.6), we have

-0 ) (o

Case p = 19 (mod 40) : Then 2 is odd. Moreover, p = 4 (mod 5) and
p =3 (mod 8). By (2.6),

00 B

Then —10 is a quadratic residue modulo p. O]

19



Theorem 2.14. Let p be a prime. If p = 1,9,11,19 (mod 40), then p is
represented by the form f(z,y) = 22 + 10y°.

Proof. Assume that p = 1,9,11,19 (mod 20). By the previous lemma, —10
is a quadratic residue modulo p. Thus there exists u € Z such that

u? = —10 (mod p). (2.7)
Let A be a lattice in R? defined by
A = L(v1,v2) = {mvy + nve: m,n € Z},

where v; = (1,u) and v = (0,p). By the same argument, we have det(A) = p
and if (y,x) € A, 22 4+ 10y*> = 0 (mod p) by (2.7). Put

S ={(y,r) € R*: 2> + 10y* < 5p},
We have

area(S) = m( ?—g)(\/f)_p) = ﬂ(\/il_o)p > 4p = 4det(A).

Then there exists a lattice point (d,c) € SN\ (0, 0) such that
0 < ¢®+10d* < 5p and ¢® + 10d* = 0 (mod p).

Then ¢ + 10d? = p or 2p or 3p or 4p.
Suppose that ¢ + 10d? = 2p.
Case p =1 (mod 40) : Then

2=2p=c+10d* = & (mod 10).

Then ¢* = 2 (mod 10). It obvious that this congruence has no solution mod
10.
Case p =9 (mod 40) : Then

18 =2p = + 10d* = ¢ (mod 10).

Then ¢ = 8 (mod 10). The congruence also has no solution mod 10.
Case p = 11 (mod 40) : Then

22 = 2p = ¢ + 10d*> = ¢ (mod 10).

Then ¢® = 2 (mod 10). The congruence also has no solution mod 10.
Case p =19 (mod 40) : Then

38 =2p =+ 10d° = ¢ (mod 10).
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Then ¢? = 8 (mod 10). The congruence also has no solution mod 10.
Suppose that ¢ + 10d> = 3p. Then 3 | ¢® + 10d*>. Suppose that d is
multiple of 3. Then 3 | ¢® and so 9 | ¢ Thus 9 | ¢ + 10d?, i.e., 9 | 3p.
Therefore 3 | p. This implies that p = 3, which is impossible. Then d is not
multiple of 3 and so d> = 1 (mod 3). Hence 10d*> = 10 = 1 (mod 3). Thus

0=3p=c+10d* = c*+ 1 (mod 3).

Then ¢* = —1 (mod 3) which implies that —1 is a quadratic residue modulo

3, then (%1) = 1. But from

(%1) — (_1)% = —1#1 (mod 3),

this is a contradiction.
Suppose that ¢ + 10d? = 4p. Then 4 | ¢® + 10d? so there exists k € Z
such that 4k = ¢ + 10d%. Hence

c® =4k — 10d* = 2(2k — 5d?).

Then 2 | ¢® and so 4 | ¢®. From 4 | ¢ + 10d?, then 4 | 10d* we also get 2 | d.
Thus both ¢ and d are even. Then there exist m,n € Z such that ¢ = 2m
and d = 2n. We have
4p = &+ 10d* = (2m)” + 10(2n)?
= 4m?® + 40n>.
Therefore p = m? + 10n%. That is there exist m,n € Z be such that p =

m? + 10n%. Hence p is represented by the form f(z,y) = x? + 10y>.
For the last case that ¢? 4+ 10d? = p, the theorem obviously holds. O

Examples 2.15.

1. Since 41 is an odd prime with 41 = 1 (mod 40), we get 41 can be
represented by the form f(x,y) = x> + 10y>. In fact, 41 = 12 + 10(2)%.

2. Similarly, 89 is an odd prime with 89 = 9 (mod 40). So 89 can be
represented by the form f(x,y) = x> + 10y>. In fact, 89 = 7> + 10(2)2.

3. 91 is an odd prime with 91 = 11 (mod 40). So 91 can be represented
by the form f(x,y) = 2? + 10y?. In fact, 91 = 12 + 10(3)%.

4. 59 is an odd prime with 59 = 19 (mod 40). So 59 can be represented
by the form f(x,y) = x>+ 10y2. In fact, 59 = 72 + 10(1)2.
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Lemma 2.16. Let p be a prime. If p = 1,9,17,25,29,49 (mod 52), then
—13 is a quadratic residue modulo p.

Proof. Assume that p = 1,9,17,25,29,49 (mod 52). Then p = 1,9, 4,25,16,49 (mod 13),
respectively. Since they are all squares,

(%)

Moreover, in any case, p = 1 (mod 4). Therefore p%l is even. By Theorem

1.18, Theorem 1.19, Theorem 1.21 and Theorem 1.22, we have

3)-()6)

Hence —13 is a quadratic residue modulo p. O

Theorem 2.17. Let p be a prime. If p = 1,9,17,25,29,49 (mod 52), then
p is represented by the form f(z,y) = x* + 13y%.

Proof. Assume that p = 1,9, 17,25,29,49 (mod 52). By the previous lemma,
—13 is a quadratic residue modulo p. Thus there exists u € Z such that

u? = —13 (mod p). (2.8)
Let A be a lattice in R? defined by
A = L(vy,v3) = {mv; + nvg: m,n € Z},

where v; = (1,u) and vy = (0,p). Then det(A) = p and if (y,z) € A,
7?4+ 13y* = 0 (mod p) by (2.8). Put

S ={(y,r) € R*: 2 + 13y* < 5p},

We have

area(S) = m( %)(\/5_p> = W(\/il_S)p > 4p = Adet(A).

Then there exists a lattice point (d, ¢) € S\ (0, 0) such that 0 < 2+13d* < 5p
and ¢? 4+ 13d* = 0 (mod p). Consequently, we get ¢ + 13d*> = p or 2p or 3p
or 4p. The case ¢ + 13d? = p is obvious.
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Suppose that ¢? + 13d? = 2p.
Case p =1 (mod 52) : Then

2=2p=c"+13d* = ¢* (mod 13).

Thus ¢® = 2 (mod 13). It obvious that this congruence has no solution mod
13.
Case p =9 (mod 52) : Then

18 = 2p = ¢ + 13d* = ¢* (mod 13).

Thus ¢? =5 (mod 13). It obvious that this congruence has no solution mod
13.
Case p = 17 (mod 52) : Then

34 =2p = c* + 13d* = ¢ (mod 13).

Thus ¢® = 8 (mod 13). Similarly, this congruence has no solution mod 13.
Case p = 25 (mod 52) : Then

50 = 2p = ¢* + 13d* = & (mod 13).

Thus ¢® = 11 (mod 13). Similarly, this congruence has no solution mod 13.
Case p =29 (mod 52) : Then

58 = 2p = ¢* + 13d* = ¢ (mod 13).

Thus ¢? = 6 (mod 13). Similarly, this congruence has no solution mod 13.
Case p =49 (mod 52) : Then

98 = 2 + 13d* = ¢ (mod 13).

Thus ¢ = 7 (mod 13). Similarly, this congruence has no solution mod 13.
Suppose that ¢? + 13d? = 3p. Then 3 | ¢ + 13d>.

Suppose that d is multiple of 3. Then 3 | ¢> and so 9 | ¢®>. Thus 9 | ¢® + 13d?,

i.e., 9| 3p. Therefore 3 | p which implies that p = 3, which is impossible.

Then d is not multiple of 3. Then d* = 1 (mod 3). Hence 13d*> = 13 =

1 (mod 3). Thus

0=3p=c+13d* =c*+ 1 (mod 3).

Then ¢ = —1 (mod 3) which implies that —1 is a quadratic residue modulo
3. Then (%1) = 1. But from

(%) (1) = 121 (mod 3),
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this is a contradiction.
Suppose that ¢ + 13d? = 4p, then 4 | ¢® + 13d>. Suppose that d is odd,
then there exists n € Z be such that d = 2n + 1. Thus

13d* =13(2n + 1)* = 13(4n* + 4n + 1) = 1 (mod 4).

Hence

0=4p=ct+13d* =c*+ 1 (mod 4).
Then ¢ = —1 (mod 4), i.e., 4 | ¢ — 1. Then c¢ is odd. Thus ¢ = 1 (mod 4).
Now we have

O=dp=c+13d°=1+1=2 (mod 4),

which is a contradiction. Then d is even. Thus there exists k& € Z such that
d = 2k and then 4 | 13d*. From 4 | ¢ + 13d?, then 2 | ¢ and so there exists
[ € Z such that ¢ = 2]. We have

4p = + 13d* = (20)* + 13(2k)?
= 41* + 4(13K?).

This means that p = [2 + 13k%. Hence there exist [,k € Z such that p =
I> + 13k?, i.e., p is represented by the form f(z,y) = x* + 13y

Combining four cases, we can conclude that p is represented by the form
flx,y) = 2% + 132 O

Examples 2.18.

1. From 53 is an odd prime with 53 = 1 (mod 52), 53 can be represented
by the form f(x,y) = x* + 13y?. In fact, 53 = 1% + 13(2)2.

2. From 61 is an odd prime with 61 =9 (mod 52), 61 can be represented
by the form f(x,y) = x*> + 13y>. In fact, 61 = 3% + 13(2)?.

3. From 17 is an odd prime with 17 = 17 (mod 52), 17 can be represented
by the form f(x,y) = x> + 13y?. In fact, 17 = 22 + 13(1)%

4. From 181 is an odd prime with 181 = 25 (mod 52), 181 can be repre-
sented by the form f(z,y) = 2* + 13y%. In fact, 181 = 8% + 13(3)%.

5. From 29 is an odd prime with 29 = 29 (mod 52), 29 can be represented
by the form f(x,y) = x*> + 13y>. In fact, 29 = 4% + 13(1)2.

6. From 101 is an odd prime with 101 = 49 (mod 52), 101 can be repre-
sented by the form f(z,y) = 2® + 13y%. In fact, 101 = 7% + 13(2)%
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Lemma 2.19. Let p be a prime. If p = 1,9,15,23,25,39 (mod 56), then
—14 is a quadratic residue modulo p.

Proof. Assume that p = 1,9, 15,23, 25,39 (mod 56). Thenp =1,9,1,9,25,4 (mod 7),
respectively. Since they are all squares, we have

)

By Theorem 1.18, Theorem 1.19, Theorem 1.21 and Theorem 1.22; we have

-)00
-0

Case p =1 (mod 56) : Then p =1 (mod 8) and so (%) = 1. By (2.9), we

have
(—_14) 1
p

Case p =9 (mod 56) : Then p =1 (mod 8) and so (%) = 1. By (2.9), we

have
(=)
— ) =1.
p

Case p = 15 (mod 56) : Then p = —1 (mod 8) and so (%) = 1. By (2.9),

we have
(=)
— ) =1.
p

Case p = 23 (mod 56) : Then p = —1 (mod 8) and so (%) = 1. By (2.9),

we have
(=)
— | =1.
p
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Case p =25 (mod 56) : Then p =1 (mod 8) and so <%> = 1. By (2.9), we

have
—1
()
p

Case p = 39 (mod 56) : Then p = —1 (mod 8) and so (%) = 1. By (2.9),

we have
(=)
— ) =1.
p

Then —14 is a quadratic residue modulo p. O

Theorem 2.20. Let p be a prime. If p = 1,9,15,23,25,39 (mod 56), then
p is represented by the form x* + 14y or the form 2z* + Ty?.

Proof. Assume that p = 1,9, 15,23, 25,39 (mod 56). By the previous lemma,
—14 is a quadratic residue modulo p. Thus there exists u € Z be such that

u? = —14 (mod p). (2.10)
Let A be a lattice in R? defined by
A = L(vy,v2) = {mvy + nvg: m,n € Z},

where v; = (1,u) and vy = (0, p). Then we have det(A) = p and if (y,z) € A,
22 + 14y? = 0 (mod p) by (2.10). By letting

S ={(y,x) € R*: 2° + 14y* < 5p},

We have

area(S) = 7 %)(\/5_]9) _ W(\/%)p > dp — ddet(A).

Then there exists a lattice point (d,c) € S\ (0, 0) such that
0 < c®+ 14d* < 5p and ¢ + 14d* = 0 (mod p).

Then p | ¢® + 14d?, i.e. ¢+ 14d*> = p or 2p or 3p or 4p. The first case is
obvious.
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Suppose that ¢? + 14d? = 2p. Then ¢? + 14d? is even. From 14d? is even,
then ¢ is even. Hence there exists & € Z such that ¢ = 2k
Case d is odd : Then there exists [ € Z such that d = 2] + 1. We have

o2p = + 14d* = (2k)* + 14(21 + 1)*
= 4K% + 14(41% + 41 + 1)
= 2(2k% + 281* + 281 + 7).
Then

p=2(k*) + T(41* + 41 +1)
2(k)* +7(21 + 1)%

Case d are even : Thus there exists [ € Z such that d = 2]. We have

2p = ¢ + 14d* = (2k)* + 14(20)?
2p = (4k?) + 14(41%)
2p = 2(2k* + 281%).

Then

p = 2k* + 28/°

p=2(k*) +7(20)%
We can conclude that if ¢ + 14d? = 2p, then p is represented by the form
2% + Ty?.

Suppose that ¢? + 14d? = 3p.
Case p = 1,15 (mod 56) : Then
® =c® 4 14d® = 3p = 3 (mod 14).
Then
¢® =3 (mod 14) and so ¢ = 3 (mod 7).

Then 3 is a quadratic residue modulo 7, i.e. (%) = 1. Thus

7-1

1:<?>E3252756(m0d7),

a contradiction.
Case p = 9,23 (mod 56) : Then

& =c+14d* = 3p = —1 (mod 14).
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Then ¢* = 6 (mod 7) and so 6 is a quadratic residue modulo 7, i.e. (£) = 1.
Thus

(-G Q- (o ) en--

a contradiction.
Case p = 25,39 (mod 56) : Then

=+ 14d* = 3p =5 (mod 14).

Then ¢? =5 (mod 7) and so 5 is a quadratic residue modulo 7. i.e. (2) =1.
Thus

1= (2) = (D) o = (D) 0= (0% = (19 =1

a contradiction.

Suppose that ¢* 4+ 14d? = 4p, then 4 | ¢? + 14d?. From c¢? + 14d* and 14d*
are even, then c is even, i.e., ¢ = 0 (mod 4). Suppose that d is odd, then
d?> =1 (mod 4). We have

4p = + 14d* = 0+ 14(1) = 2 (mod 4),

which is a contradiction. Hence d is even. From ¢ and d are both even, then
there exist m,n € Z such that ¢ = 2m and d = 2n. We have

4p = + 14d* = (2m)? + 14(2n)*
= 4(m?* + 14n?).

This means that
p=m?+ 14n°.
Then p is represented by the form x? + 14y ]

Examples 2.21.

1. From 113 is an odd prime with 113 = 1 (mod 56), 113 can be repre-
sented by the form z? + 14y* or the form 2z% + Ty?. In fact, 113 =
2(5)% + 7(3)2.

2. From 233 is an odd prime with 233 = 9 (mod 56), 233 can be repre-
sented by the form x* + 14y® or the form 2x* + Ty*. In fact, 233 =
(3)% + 14(4)%
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3. From 71 is an odd prime with 71 = 15 (mod 56), 71 can be represented
by the form x®+14y? or the form 22?4+ Ty?. In fact, 71 = 2(2)?+7(3)%.

4. From 23 is an odd prime with 23 = 23 (mod 56), 233 can be represented
by the form x4 14y? or the form 2x?+Ty?. In fact, 23 = (3)*+14(1)%

5. From 137 is an odd prime with 137 = 25 (mod 56), 137 can be rep-
resented by the form x? 4+ 14y* or the form 2x* + Ty?. In fact, 137 =
(9)% + 14(2)2.

6. From 151 is an odd prime with 151 = 39 (mod 56), 151 can be rep-
resented by the form x? 4+ 14y? or the form 2x% + Ty?. In fact, 151 =
(5)? + 14(3)%
Remark. According to the form x*+11y?, we cannot find the sufficient con-
gruent condition for representing primes by this form. From [10], we know
that —11 is a quadratic residue modulo p if p = 1,5,9,25,37 (mod 44). But
we can find examples of prime numbers that satisfies the congruences p =
1,5,9,25,37 (mod 44) but they cannot be represented by the form x? + 11y?
as follows:

Examples 2.22.

1. 89 = 1 (mod 44) but 89 can not represented by the form z* + 11y?
which can be shown as follows: If there exist m,n € Z be such that
m? 4+ 11n? = 89, then

n=-2,—-1,0,1 or2.
In the case that n = 0, we have m? = 89, a contradiction. In the case

that n =1 or — 1, we get m? = 78, a contradiction. And in the case
that n =2 or — 2, we then have m? = 45, a contradiction.

2. 5 =5 (mod 44). If there exist m,n € Z be such that m* 4+ 11n* = 5,
then n = 0. Therefore m?® = 5, a contradiction. This implies that 5 can
not represented by the form x* + 11y2.

3. 97 = 9 (mod 44) but 97 can not represented by the form x* + 113>
which can be shown as follows: If there exist m,n € Z be such that
m? 4+ 11n? = 97, then

n=-2,—-1,0,1 or 2.
In the case that n = 0, m? = 97 yield a contradiction. And in the case

that n =1 or — 1, m? = 86 which is a contradiction. And in the case
that n = 2 or — 2, we have m? = 53, a contradiction.
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4. 113 = 25 (mod 44) but 113 can not represented by the form x? + 11y?
which can be shown as follows: If there exist m,n € Z be such that
m? + 11n? = 113, then

n=-3,-2,—-1,0,1,2 or 3.

In the case that n = 0, m? = 113 yields a contradiction. And in the
case thatn =1 or — 1, m? = 102 which is a contradiction. And in the
case that n = 2 or — 2, m? = 69 yields a contradiction. And in the
case that n = 3 or — 3, m? = 14 which is a contradiction.

5. 37 = 37 (mod 44) but 37 can not represented by the form z* + 11y
which can be shown as follows: If there exist m,n € Z be such that
m? + 11n? = 37, then

n=-—1,0orl.

Similarly, in any case, we obtain a contradiction.
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Background and Rationale

An integral binary quadratic form is a quadratic polynomial of two variables

f(x,y) = ax? + bxy + cy?
over Z and the integer D = b? — 4ac s called the discriminant of form f(x,y). We say that a

binary quadratic form f(x,y) is primitive if a, b and ¢ are relatively prime. An integer m is said to
be represented by f if there exist integers x and y such that f(x,y) = m.

One of interesting problems relating to quadratic forms is representation of primes by
binary quadratic forms, see e.g. [1], [3], [5], [6], [8] and [9]. Historically, a representation of primes
of the form p = x? 4+ ny? for arbitrary n have been widely studies. For example, Euler gave the
rigorous proofs of the following four statements stated by Fermat, see e.¢. [3] :

W p=x2+y?ifandonlyifp =2orp = 1(mod 4);

@ p=x%+2y%ifandonlyifp =2orp = 1,3(mod 8);

3 p=x%+3y%ifand only if p = 3 orp = 1(mod 3);

@ p = x% + 4y?if and only if p = 1(mod 4).
and he also conjected statement that there are primes satisfying

p =x%2+ 6y?ifand only if p = 1, 7(mod 24).

This conjecture was proved by Kaplan [5] in 2014. The Fermat’s statements and the result for
the case n = 7 were also shown in [5] by using the different techniques of proofs.
The failure of representability of primes by quadratic forms using the congruence condition was
also studied. For example, in 1992, Spearman et al [9] proved that there do not exist positive

integers s, ay, ..., ag, mwith (a;,m) =1 (i = 1, ..., s) such that for primes p # 2,7
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p = x2 + 14y?ifand only if p = ay, ..., a; (mod m).

In this project, we will find a class of primes represented by some binary quadratic form

with negative discriminant.

Objectives

Find a class of primes represented by some binary quadratic form with negative

discriminant.

Scope

In this project, we restrict our attention to the binary quadratic forms which are

primitive, irreducible and have negative discriminant.

Project Activities

1.

2
3.
a

Review basic knowledge on binary quadratic forms

Study reseach papers related to our project

Present a proposal of the project

Find a class of primes represented by some binary quadratic forms with negative
discriminant

Write the report
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Duration

Procedue August 2019 — April 2020
Aug. . | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr.

1. Review basic
knowledge on
binary quadratic

forms

2. Study reseach
papers related to

our project

3. Present a proposal

of the project

4. Find a class of
primes represented
by some binary
quadratic forms
with negative

discriminant

5. Write the report

Benefits
1. Obtain the information searching skills and thinking skills

2. Obtain a class of primes represented by some binary quadratic forms with negative

discriminant
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Equipment

e

Computer
Microsoft word 2013
Latex

Stationery
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