NARAYVBINTRUANI TR AEURUULI

WINENINUNITIU FRUNYYRT 1auUs¥d 6033501223

Immuﬁﬁ‘]uﬁawﬁwmmsﬁﬂmmwé’ﬂgmﬁmmmamﬁmsﬁm
ANUNIVIAAAFNERS N1AIBIANAAIEARTLALINGINITABUNIADS
ANEINYIANENT TRIAINTANMING Y
Un1sfnw 2563

AUAVIEURIPIAINIAIUNTINENGY



Solutions of interval linear programming

Miss Kanokwan Suchantabut

A Project Submitted in Partial Fulfillment of the Requirements
for the Degree of Bachelor of Science Program in Mathematics
Department of Mathematics and Computer Science
Faculty of Science Chulalongkorn University
Academic Year 2020
Copyright of Chulalongkorn University



PUDLATIU NALRAYVDINNUANI DA ULUUYI

g WNATINUNITIN FHUNZUAS
ANV ANAANENS
219158NUS YA UNEN 599AENS19158 AT WURANT ANSTTinaun

AAIYIANAAENTLALINEINITABNTIADS ANEINIMIENT PUNAINTAUNTINEIS BUITR I
Tasanuatuilludmmia vesns@nemumdngnsusyayTnda lusiedn 2301499 Taswuineieans

(Senior Project)

‘ é é FINUINPITIADAFAERNT

LALINYINITADUNIADS

(&R 319158 A3.NGYME LHuLNA)

AENTTUNSADULASIY

K ; E 2197159N1US N LASIUAGN

N3IIUNT

(594AN8MT19158 AT.LBOUNS HNgITION)

n997enl  Irymt: 5531115

(599F@M5127158 A5.09591 weu)



NUNITIU FAUNLUAT: HARABYBIMVUANITRLEULUUTN. (SOLUTIONS OF INTERVAL
LINEAR PROGRAMMING)

2.71USNWASINUNGN: TRIANENTIDITY AT WUNNT ANgITUnaw, 61 wun.

Tnemly mruamsigadudenisnsilvesiugdiuuveiad ululanuisniy
I a a I A Y oa a f Y & v = '
Wuasinsisnazaunsans1uaAinasssanisidwasuwdululsennuinnssliaiunsansiu
elae duAoAveInTfmesnlaudulng tuanInNTUTEINMAT ATHURRUANITITLEY
wuurrdadunilsluedadiefazdrglunisdnnisiuauliviusuvestymmendadians
Tulanuemnuduase 015 ldanunsans uAI LS eamisdmes e vinlmsildanunse

NIUANNILVIATIvRIYaA1gnUsEaAlA Uiy AT elmingBnsnTn 335075 Belaun

q

WANTNATUMUUATEA TFN15RTWILUULENAALAZTTNTHINTANAIANUEL AL WU TN

ngaluussmaugydeiunige snlilunsesuieuazdislunisdedulalunisidendneu

ol = [

ANgavesiruansRLduluual Ingdsnislnuasimngaugaiuiuiuusazyanaind
AnuUsrassnuule wanwitlaannilanauiunaitu Tuu1asIn1sanuuInUILAazIeien
I3 q‘ d' o I3 o [ ) a ¥ 1 d' 6 g."/ a
zugswmandudmsuuelymassinnuan I afdunuuts iwelangdamashnveslam
AMUUANIIBLEULUUTE LM mnoU unldniniulusaadladnnsoulusinsuAauRines

voalagaslymuasmvuamsdaduluugIniiegneauazaIn i uglda

' 4
medn  edaenansiayinemseauiowes  aeiotelldn MUNATIM. AAHNYNT
GRURRR A . AdleeEns . aneliede 9. AUSnwlessunen | . . ﬂf .....

Unsfinen ... .2563. . ..



## 60335021223 : MAJOR MATHEMATICS. KANOKWAN SUCHANTABUT: SOLUTIONS
OF INTERVAL LINEAR PROGRAMMING.
ADVISOR: ASST PROF. PHANTIPA THIPWIWATPOTJANA, Ph.D., 61 pp.

In general, linear programming requires constant parameters. But in many
real-life situations, knowing the real value of parameters is fiendishly challenging or
impossible. Since most of parameters in linear programming are estimated, therefor
interval linear programming is utilized as one of the tools to handle the uncertainty
of the mathematical problems in the real-world. As we could not know the exact
value of some parameters in a linear programming problem, we could not perceive
its real objective value. As a consequence, optimistic, pessimistic and minimax regret
approaches are employed in this project to help people describing and choosing their
own best solutions that depend on their decisions and purposes. Moreover, some-
times reducing the size of each interval entry may become as a neccesary thing for
some interval linear programming problem when its original problem is infeasible. In
addition, this project provides computer programs of solutions of the interval linear

programming problem to facilitate users.
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Chapter 1

Introduction

1.1  Background and Rationale

In the real life, uncertainty is the only certain thing. As we can see in our daily
life, when handling many real-world optimization problems by means of a mathe-
matical program, it is often necessary to treat inexact or uncertain input data due
to various measurement errors or estimations. The parameters are not often known
exactly and most of them have to be estimated. Unfortunately, the linear program-
ming system requires constant parameters.

There are several tools to handle uncertainty and inexactness in a mathemati-
cal programming problem, such as stochastic approach and fuzzy set approach, each
bearing their own advantages and disadvantages. An interval linear program is also
one of the tools for solving the real-world optimization problems under interval-
valued uncertainty. It is a linear programming where its coefficients and parameters
are in the pattern of intervals. Instead of approximating or estimating crisp input data,
the coefficients of an interval program may perturb independently within the given
lower and upper bounds.

This project provides computer programs of many types of solutions of an in-
terval linear program by using knowledge in the course of Operations Research Il and
three approaches which are optimistic, pessimistic and minimax regret approaches
for finding the solutions. The most appropriate solution relies on the purpose of
each decision maker. When the width of interval is too large, some of these three
approaches may not have a solution. We then introduce an algorithm to reduce the

width of the interval parameters. We apply these algorithms to some small example



of real-world problem.

1.2

Objectives

Obtain an algorithm to solve interval linear programming problems that have

interval uncertain data by using optimistic, pessimistic and minimax regret approaches

to describe the solutions of the problems.

1.3

Scopes

. Explain the general idea of optimistic, pessimistic and minimax regret approaches.

Apply optimistic, pessimistic and minimax regret approaches in a linear pro-

gramming problem with interval data.

Provide an application of linear programming problem with interval data.

Project Activities

. Study linear programming problems.

Study the interval linear programming system.

Study optimistic and pessimistic approaches and apply them to an interval

linear programming problem.

Study minimax regret approach and apply it to an interval linear programming

problem.

Study strong solvability/feasibility of system of interval linear inequality.

. Study relationship between regret and strong solution of an interval linear pro-

gramming.

Use the knowledge about optimistic, pessimistic and regret appreaches to ex-

plain the solutions of an interval linear programming.



8. Build an algorithm for solving the interval linear programming problem.
9. Recheck and modify the algorithm.

10. Concludes the results and write a report.

1.5 Benefits

1. The benefits of the project owner.

(@) Apply knowledge from Operations Research Il course to solve linear pro-
gramming problems and built on this knowledge to solve interval linear

programming problems .

(b) Use Python version 3.7.9 to solve the problems.
2. The benefits of project users.

(a) Increase convenience and efficiency in each decision making, especially

someone who is such a risk aversion.

(b) Increase alternative ways for desicion making which users capable of choos-

ing solution depend on their satisfaction.

(c) Can use the interval linear programming method in finding many types
solutions and can apply this method to many interval linear programming

applications.

This project is structured as follows: Chapter 2 explains background knowledge
and liturature review. In chapter 3, we review the algorithms and demonstrate how
it works. Chapter 4 contains Application and Result. Lastly, Chapter 5 summarizes

and concludes the project.



Chapter 2

Background knowledge

In this chapter, we present related knowledge of our project including the
interval linear programing concept and literature review on listed constraints of an

uncertainty problem in each research paper.

2.1 Linear programming (LP)

A linear programming problem can be formulated as follows:

min z := 'z (2.1)
st. Az <-> b, (2.2)
z>0, (2.3)

where ¢ and x are n dimentional vectors, b is an m dimentional vector, A is an

m X n matrix, and the relation <-> can be >, < and =.

2.2 Interval linear programming (IvLP)

There are several ways to express the uncertainty of the data. One of them,
which has particularly good properties from the point of view of the uses, employs
the so-called interval matrices defined in this section.

If A, A are two matrices in M,,,(R) satisfying A < A, we define an

interval matriz as the set

A= [Aa_] - {A S men<R) |A§ A< Z}



The matrices A, A are called the lower and upper bound of A, respectively. Hence,

if A= (a;;) and A = (a;;), then A is the set of all matrices A = (a;;) satisfying
Q;; < i < Qg (2.4)

fori=1,...,m, 7 =1,...,n. Itis worth nothing that each coefficient may attain any
value in its interval (2.4) independently of the values taken on by other coefficients.
As shown later, in many cases it is more advantageous to express the

interval matrix A in terms of the center matrix
A, = %(A + Z) (2.5)

and of the radius matrix

A=1(A-A), (2.6)

which is always nonnegative. From (2.5), (2.6) we easily obtain

SN

A, <A,
A, A,

so that A can be given either as [A, A, or as [A. — A, A, + A].

An interval linear programming problem is formulated as:

min z := 'z (2.7)
st. Ax <-> b, (2.8)
x>0, (2.9)

where z is the vector of decision variables, ¢ is the n dimentional vector, A and b
are interval matrices where all their entries are intervals, and the relation <-> can
be >, < and =, see more details in [I1]], [[7] and [10]. However, in this project, we
will only study the case that the relation <-> is > . Note that the dimensions of
these vectors and matrices must be mathematically reasonable in order to perform
mathematical (multiplication) operations.

A special case of an interval matrix is an interval vector which is a one

column interval matrix b where



b={b|b<b<b}forsomebbecR™

We again use the center vector

be = 5(b+b)
and the nonnegative radius vector
5= 101
We employ both forms b = [b, b] = [b. — 6, b + §]. Notice that interval matrices and

vectors are typeset in boldface letters.

2.3  Strong solvable/feasibility of inequations
For Ac A=A A], b€ b=[bb|,asystem
Ax > b

is called a subsystem of an interval linear programming system A > b. This
subsystem is called feasible if it has a nonnegative solution or infeasible if it does

not have any nonnegative solution. An interval linear system
Az > b
is called strong feasibility if each subsystem is feasible.

Theorem 2.1. A system Az > b is strongly feasible if and only if the subsystem
Az >b (2.10)

is feasible.

Proof. If Az > b is strongly feasible, then (2.10) is feasible. Conversely, if (2.10) has

a solution & > 0, then for each A € A,b € b we have
Az > Az > b > b;

hence Az > b is strongly feasible. L]



Theorem 2.2. A system Az < b is strongly feasible if and only if the subsystem
Az <b (2.11)

is feasible.

Proof. If Az < b is strongly feasible, then (2.11) is feasible. Conversely, if (2.11) has

a solution = > 0, then for each A € A,b € b, we have
Ax < Az < b < b;
hence Az < b is strongly feasible. [

Definition 2.3. A nonnegative solution z is called a strong solution if it satisfies all

constrains.

Definition 2.4. We called z* is a strongly optimal solution if it is an optimal

solution for all constrains.

2.4  Optimistic and pessimistic approaches

Minimization interval LP problem

let Ac A=[A Al and b € b= [b,b]. We define z(A,b) as the optimal value of
Problem I.

Problem I: min 'z
st. Ax > b,

x> 0.

Forany given A€ Aandbe b, A=aA+ (1—a)A for some a € [0,1] and
b= Bb+ (1 — B)bfor some S € [0, 1]. If there exists x > 0 such that Az > b then

Ax > Ax > b>b.



This implies that

{z | Az > b} C{z| Az > b}, forany Ac Aand b e b. (2.12)
From (2.12), we perceive that the set {z | Az > b} is the largest feasible set.
Therefore, 2(A,b) < z(A,b).
On the other hand, if there exists z > 0 such that Az > b, then

Ar > Ax>b>b, forany Ac A beb.
This implies that
{x| Az >b} C{x | Az > b}, forany A€ A,bEb. (2.13)

From (2.13), the set {x | Az > b} is the smallest feasible set. Thereby, in this case
2(Ab) > 2(A,b).

Theorem 2.5. For any given A € A, b € b if the subsystem Az > b is infeasible for

all z > 0 then the subsystem Az > b and Az > b are infeasible for all z > 0.

Proof. Suppose the subsystem Az > b is infeasible for all 2 > 0 then Az < b for all
x> 0.Since A > A> Athen Ax > Az > Az forall z > 0. Since b < b < b and

Az < b then, forall z > 0,

Az < Az < Az <b<b<b.

So, Az < b and Ax < b.

Hence, Az > b and Az > b are infeasible for all z > 0. L]

2.4.1 An optimistic objective value function of minimization in-

terval LP problem

The optimistic objective value of the interval linear programming Problem I is the
best of all optimal values z(A,b) for all A € A and b € b. Therefore, the optimistic

objective value is
2(A,b) :=min{z(A,b),A € A,bc b},

if foreach Ae A,be b, {z| Az > b} # @.



2.4.2 A pessimistic objective value function of minimization in-

terval LP problem

The pessimistic objective value of the interval linear programming Problem T is the
worst of all optimal values z(A,b) forall A € A and b € b. As a result, the

pessimistic objective value is
2(A,b) :=max{z(A,b),A € A, bc b},

if there exists some = > 0 such that Az > b.

Maximization interval LP problem

In a linear programing problem, the objective of the problem can be either to
maximize or to minimize. Since we start with a minimization problem which is min
cx subjectto z € {x | Az > b,x > 0,A € A,b € b}, an equivalent maximization
problem is max —ctx subject toz € {z | Az > b,x > 0,A € A,b € b}. Therefore,
minimizing —c'z is the same as maximizing ¢’z and any solution to the
maximization problem will be a solution to the minimization problem.

In conclusion, for changing a minimization problem to a maximization

problem, we just multiply the objective function by —1.

2.5 Minimax regret model

Let S ={z | Az > b,z > 0,A € A, b€ b}. The regret function r(x) shows how the
optimal value c'z with respect to a candidate sotutionEI x € S differ from the true

objective value z(A,b), i.e,
r(z) = cte — z(A,b).

When the true objective is undiscovered, the worst (maximum) regret among all

regret r(x) can be defined by

A candidate solution x is a member in a set of possible solutions to a given problem. A candidate
solution does not have to be a likely or reasonable solution to the problem - it is simply in the set

that satisfies all constraints.
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R(z) = max r(z)
(see [2] and [8] for an overview of the minimax regret). Since a candidate solution x
has to satisfy the condition Az > b, a general minimax regret model of minimization

interval LP problem is

%
W
8 =
(AVARAV
)
|
g
S
=

8
Y
o

Since z(A,b) := min{z(A,b) | Az > b, A€ A be b}, ifeach A€ A,
be b, {r|Ax > b} # @ and R(z) > 'z — z(A,b), then the minimum possible
R(x) is ctz — z(A,b). As a result, a concisely general minimax regret model of

minimization interval LP problem is

min R (2.14)
st. R>ca— 2(A,b), (2.15)
Az > b, (2.16)
>0 (2.17)

Since one of the constraints of the minimax regret model of minimization IvLP
problem (2.16) is a duplicate of the constraint of the pessimistic model of
minimization IVLP problem, it follows that the minimax regret IvLP problem has to

be infeasible if the pessimistic IVLP problem is infeasible.

2.6 Areduced interval linear programming

As explained earlier, the minimax regret IVLP problem will be infeasible if the
pessimistic IVLP problem is infeasible. Thus, reducing the size of interval matrix may

result in the feasibility of the pessimistic IVLP problem as follows:

Let 7 and n be the natural numbers where ¢ < n.
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=A+ (Axi)yand 4;=A— (A x L) Itis obvious that

E)

Define b; = [b;,b;], b; =b+ (6 x ) and b; =b — (6 x £). When
i=mn,b,=b+d=>b.and b, =b—6=b..

Reducing the size of the interval is that each interval is divided into n portions.
After that, each interval will be simultaneously increased value of the lower bound
and decreased value of the upper bound with % In this project, the interval will be
reduced not more than 10 times (n = 10). Hence, we have the reduced IVLP as
shown below:

min z := c'x

st. A;x > b,
x>0,

where z is the vector of decision variables, ¢ is n dimentional vector, A; and b; are
it" reduced interval matrices where all their entries are intervals. In addition, when

i = 10, the 10" reduced IVLP problem will be become as a LP problem.

As described earlier, if there exists some 2 > 0 such that Az > b then the set
{z | Az > l_)} is the smallest feasible set. On the contrary, if this set is inadequate
then the increment of the smallest feasible set becomes a main concept of the

reduced IVLP.

Assume there exists some z > 0 such that A,z > b;, for some A; € A; and b; € b;,
where i < n and n = 10. Since Az > Az > b; > bforany A € A;,b € b;,

{z| Az >b;} C {z| Az > b}. This implies that {z | A;x > b;} is the smallest
feasible set of ™" reduced IVLP and z(A,, b;) > z(A, b).

Since the minimax regret IVLP problem will be infeasible if the pessimistic IvLP
problem is infeasible, the concept of reduced IVLP is used for solving the problem
when its original is infeasible. The pessimistic objective value function and the

minimax regret model of i** reduced IVLP Problem I are

2(A;, b)) == max{z(A,b) | A€ A;,bcb;} wherei <nandn = 10,
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if there exists some x > 0 such that A,z > b; and

min R
st. R > cda—z(A,b),
Ax > b,
z > 0,

respectively. We can conclude that the Problem I does not have minimax regret if

its pessimistic or minimax regret of reduced IVLP is still infeasible while ¢ = n.



Chapter 3

Algorithms and results

In the previous chapter, we show the inteval linear programming. Next, we
will show how to use Python version 3.7.9 to solve the interval linear programming

problems and results from these algorithms.

3.1 Python version 3.7.9

Python is an interpreted, object-oriented, high-level programming language
with dynamic semantics. Its high-level built in data structures, combined with
dynamic typing and dynamic binding, make it very attractive for Rapid Application
Development, as well as for use as a scripting or glue language to connect existing
components together. Python’s simple, easy to learn syntax emphasizes readability
and therefore reduces the cost of program maintenance. Python supports modules
and packages, which encourages program modularity and code reuse. The Python
interpreter and the extensive standard library are available in source or binary form
without charge for all major platforms, and can be freely distributed, see more

details in [4].

3.1.1  PulLP

PuLP is a library for the Python scripting language that enables users to
describe mathematical programs. PuLP works entirely within the syntax and natural
idioms of the Python language by providing Python objects that represent
optimization problems and decision variables, and allowing constraints to be

expressed in a way that is very similar to the original mathematical expression.
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PULP can easily be deployed on any system that has a Python interpreter, as it has
no dependencies on any other software packages. It supports a wide range of both
commercial and open-source solvers, and can be easily extended to support
additional solvers. Finally, it is available under a permissive open-source license
that encourages and facilitates the use of PuLP inside other projects that need

linear optimization capabilities, see more details in [3].

3.1.2 NumPy

NumPy is the fundamental package for scientific computing in Python. It is a
Python library that provides a multidimensional array object, various derived
objects (such as masked arrays and matrices), and an assortment of routines for fast
operations on arrays, including mathematical, logical, shape manipulation, sorting,
selecting, I/O, discrete Fourier transforms, basic linear algebra, basic statistical

operations, random simulation and much more, see more details in [6].

3.1.3 Pandas

Pandas is a high-level data manipulation tool developed by Wes McKinney.
It is built on the Numpy package and its key data structure is called the DataFrame.
DataFrames allow you to store and manipulate tabular data in rows of observations

and columns of variables, see more details in [5].

3.2 Algorithms

Task 1: Write a program that asks the user for a type of problem.
1 = minimization problem
2 = maximization problem

Output message displaying 1 or 2

Task 2: Write programs that asks the user for the dimensions of an interval matrix A.

M = the number of rows of an interval matrix A



N = the number of columns of an interval matrix A

Output message displaying the numbers of rows and columns of A

Task 3: Write programs that ask the user for the interval coefficients of a known
interval matrix A, an interval vector b and the coefficients of a known vector ¢,
respectively.
a, a,, = lower bound, upper bound of each interval in interval matrix A
Print the arrays of A, center matrix of A, lower bound matrix of A, upper

bound matrix of A and radius matrix of A

by, b, = lower bound, upper bound of each interval in interval matrix b

15

Print the arrays of b, center matrix of b, lower bound matrix of b, upper bound

matrix of b and radius matrix of b

¢ = each entry of matrix ¢

Print the array of matrix ¢

Task 4: Write programs that find an optimistic solution.
if the optimistic solution does not exist
stop finding

Print “This interval linear programming problem is infeasible.”

else
Print the optimistic objective value and its solutions

Continue finding a pessimistic solution

Task 5: Write programs that find a pessimistic solution.
if the pessimistic solution exists
Continue finding a minimax regret solution
if the minimax regret exists

Print the minimax regret and its solution

else

Print “This interval linear programming problem does not have minimax
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regret solution.”

else
Print “This interval linear programming problem does not have pessimistic and
minimax regret solutions.”

Reduce the size of each interval entry o A and b
Find a pessimistic solution of the reduced IVLP

if the pessimistic solution of the reduced IVLP exists

Continue findind a minimax regret solution of the reduced IVLP

if the minimax regret of the reduced IVLP exists

Print the minimax regret of the reduced IVLP and its solution

else
Print “This interval linear programming problem does not have
pessimistic and minimax regret solutions.”
else
The reduced pessimistic problem still infeasible while the entries of the
interval matrices A and b are the center matrices which are A, and b, respectively.
Print “This interval linear programming problem does not have pessimistic

and minimax regret solutions.”



Input min or max problem
Input dimentions of A and b
Input A and b and ¢

Find an optimistic solution

|

If a status of
the optimistic
problem =
“Optimal”

Find a pessimistic solution

l

If a status of
the pessimistic No

Reduce the size of each entry of

problem =
“Optimal”

Yes

A and b

Find a pessimistic solution of the reduced IvLP

l

If status of
some it

reduced

Find a minimax regret solution

End )

pessimistic
problem =
“Optimal”

No

Find the reduced minimax regret solution

Figure 3.1: Flowchart of Python algorithms
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3.3 Example

Consider the following interval linear programming problem:
max i + 3o
s.t. [4,6]x; + [—8, —6]zy < [—10, 8],
(9, 11]2y 4 [11,13]z, < [19,21],

e and To > 0.
9.11] (1,13 )
[~10, —8]
b= and ¢ =
[19,21] 3
2x1 2x1

Step 1: Choose either minimization IVLP or maximization IvLP.

Minimization problem -> Input 1
Maximization problem -> Input 2

Min or Max: 2

18

Step 2: Input the dimensions of an interval matrix A.
Input number of rows of matrix A: 2

Input number of columns of matrix A: 2

Step 3: Input the interval coefficients of a known interval matrix A, an interval

vector b and the coefficients of a known vector ¢, respectively.

Please, input each interval in a matrix A with a comma in between a lower

bound and an upper bound of each interval.

Ex. Assume [a b] is an interval in matrix A. User has to input "a,b".

Enter 2 numbers (with a comma in between):

Enter 2 numbers (with a comma in between):

Enter 2 numbers (with a comma in between):

Enter 2 numbers (with a comma in between): 11,13

Matrix A is [[[4.e, 6.0], [-8.0, -6.0]], [[9.0, 11.0], [11.0, 13.0]]]

Center matrix of A = [[5.0, -7.0], [10.0, 12.0]]
Lower bound matrix of A = [[4.0, -8.0], [9.0, 11.0]]
Upper bound matrix of A = [[6.0, -6.0], [11.0, 13.0]]

Radius matrix of A = [[1.0, 1.0], [1.0, 1.0]]
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Please, input each interval in a matrix B with a comma in between a lower
bound and an upper bound of each interval.
Ex. Assume [a b] is an interval in matrix B. User has to input "a,b".

Enter 2 numbers (with a comma in between): -10,-8

Enter 2 numbers (with a comma in between): 19,21
Matrix B is [[-10.0, -8.0], [19.0, 21.0]]

Center matrix of B = [-9.0, 20.0]

Lower bound matrix of B = [-10.0, 19.0]

Upper bound matrix of B = [-8.0, 21.0]

Radius matrix of B = [1.0, 1.0]

Please, input data in matrix C
Enter number: 1

Enter number: 3
Matrix C = [1.0, 3.0]

Step 4: Find an optimistic solution.

| Stop finding the rest of the solutions if the optimistic solution does

not exist.

II' Continue finding a pesstimistic solution if the optimistic solution of the

original IVLP exists.

Optimistic obj. value fn of maximization interval LP:
MAXIMIZE

1.0*X_ 1 + 3.0*X 2 + 0.0

SUBJECT TO

C1: 4 X1 -8 X2 <= -8

€2: 99X 1+ 11X2<=21
VARIABLES

X_1 Continuous
X_2 Continuous

Status Optimal
Optimistic obj. value fn of this maximization interval LP is: 5.7272727

= 0.0
= 1.9090909

i. Find a minimax regret solution if the pessimistic solution of the

original IVLP exists.

i. If the pessimistic solution of the original IVLP does not exist then
reduce the size of each entry of interval matrices A and b to find

a pessimistic solution of the reduced IVLP.
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Pessimistic obj. value fn of maximization interval LP:
MAXIMIZE

1.0*X_1 + 3.0*X_2 + 0.0

SUBJECT TO

Cl: 6 X1 -6X2<=-10

_€2: 11 X_1 + 13 X_2 <= 19

VARIABLES
X_1 Continuous
X_2 Continuous

Status Infeasible

A. If the entries of the interval matrices A and b are the center
matrices (which are A, and b.) and the reduced pessimistic
problem is still infeasible then this problem does not have

the minimax regret solution.

B. If the solution of the reduced pessimistic problems exists

then continue finding the reduced minimax regret solution.
This interval linear programming does not have minimax regret.
Notice: We are restricting the bounds of interval matrix A and
searching for the solution of new approximated minimax regret
model solution.

(1st)

Optimistic obj. value fn of the new maximization interval LP:
MAXIMIZE

1.0%X_1 + 3.0%X 2 + 0.0

SUBJECT TO

_C1: AN = g =T

€2: 9.1 X1+ 11.1 X2 <= 20.9
VARIABLES
X_1 Continuous

X_2 Continuous

Status: Optimal

New optimistic obj. value fn of maximization interval LP is:
5.6486487

X1=0.0

X_2 = 1.8828829

Pessimistic obj. value fn of the new maximization interval LP:
MAXIMIZE

1.0%X_1 + 3.0%X 2 + 0.0

SUBJECT TO

C1: 5.9 X1 -6.1X2<=-9.9

_C2: 10.9 X 1 + 12.9 X 2 <= 19.1
VARIABLES
X_1 Continuous

X_2 Continuous

Status: Infeasible



(4th)

Optimistic obj. value fn of the new maximization interval LP:
MAXIMIZE

1.0%X_1 + 3.0*X_2 + 0.0

SUBJECT TO

C1: 4.4 X1 - 7.6 X2 <= -8.4

C2: 9.4 X1+ 11.4 X 2 <= 20.6

VARIABLES
X_1 Continuous
X_2 Continuous

Status: Optimal

New optimistic obj. value fn of maximization interval LP is:
5.4210525

X1=20.0
X_2 = 1.8070175

Pessimistic obj. value fn of the new maximization interval LP:
MAXIMIZE

1.0%X_1 + 3.0%X 2 + 0.0

SUBJECT TO

_C1: 5.6 X1 - 6.4 X2 <= -9.6

C2: 10.6 X 1 +12.6 X 2 <= 19.4
VARIABLES

X_1 Continuous
X_2 Continuous

Status: Optimal
New pessimistic obj. value fn of maximization interval LP is:
4.619047500000001

X1=20.0

X_2 = 1.5396825

Minimax regret of new maximization interval linear programming problem:
MINIMIZE

1*R 1 + 0

SUBJECT TO

C1: 5.6 X1 - 6.4 X2 <= -9.6

C2: 10.6 X 1 + 12.6 X 2 <= 19.4
C3: - R1-X1-3X2 <= -5.4210525

VARIABLES

R_1 Continuous
X_1 Continuous
X_2 Continuous

Optimal

Minimax regret is: 0.80200488
R_1 = 0.80200488

X1=20.0

X_2 = 1.5396825

Step 5: Conclude the results.
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3.4 Results

From the above example, after reducing the size of each interval 4 times, the 4"
pessimistic IVLP is feasible. Thus, we continue to find the minimax regret of the 4"
reduced IVLP and it exists. We can notice that if the minimax regret exists then the
result is the difference between pessimistic objective value and optimistic objective
value as follows:

the optimistic objective value of the 4" reduced IVLP is 5.4210525

the pessimistic objective value of the 4 reduced IVLP is 4.6190475

the minimax regret of the 4% reduced IvLP is 0.802005

the optimistic objective value of the 4" reduced IVLP — the pessimistic

objective value of the 4" reduced IvLP is 5.4210525 — 4.61904750 = 0.802005.

2
A 3
(0, 1.9p9091) / 0
1 2 o
o vll 1
-1 1 2 3

-1

Figure 3.2: the optimistic IVLP of Example
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Figure 3.4: the pessimistic IVLP of Example
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(0, 1.5F

-1

-1

Figure 3.6: the optimistic, the 4" optimistic and the 4" pessimistic reduced IVLP of Example

From those above graphs, the distance between points A and B is minimax regret



(min R) of 4'" reduced IVLP, if the 4" pessimistic reduced IvLP exists. Moreover,
those graphs reveal that reducing the size of each interval in interval matrices A

and b result in the bigger feasible region of the pessimistic IvLP.
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Chapter 4
Applications

4.1 Industrial applications

Product mix problem

The Healthy Pet Food Company manufactures two types of dog food: Meaties and
Yummies. Each package of Meaties contains 1.5-2 pounds of cereal and 2-3 pounds
of meat; each package of Yummies contains 2-3 pounds of cereal and 1-1.5 pounds
of meat. The company would like to make its monthly profit as much as possible
and it believes that it can sell as much of each dog food as it can make. Meaties

sell for $2.80 per package and Yummies sell for $2.00 per package.

Meaties Yummies
Sales price per package $2.80 $2.00
Raw materials per package
Cereal 1.5-2.0 lb. 2.0-3.0 lb.
Meat 2.0-3.0 lb. 1.0-1.5 lb.
Variable cost-blending and packing 50.25 package | $0.20 package

Resources

Production capacity for Meaties | 90,000 packages per month
Cereal available per month 400,000-450,000 lb.
Meat available per month 300,000-320,000 lb.

Table 4.1: Healthy Pet Food Data
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Healthy’s production is limited in several ways. First, the company can buy up to
400,000-450,000 pounds of cereal each month at $0.20 per pound. It can buy up to
300,000-320,000 pounds of meat per month at $0.50 per pound. In addition, a
special piece of machinery is required to make Meaties, and this machine has a
capacity of 90,000 packages per month. The variable cost of blending and packing
the dog food is $0.25 per package for Meaties and $0.20 per package for Yummies.
Solution:
In this problem, we have direct control over two quantities: the number of
packages of Meaties to make each month, and the number of packages of Yummies
to make each month. Thus, we designate the decision variables by the symbols z;
and x4 as follows:

x1 = the number of packages of Meaties to make each month

x9 = the number of packages of Yummies to make each month.

Objective function
The profit earned by this company is a direct function of the amount of each dog
food made, sold and the decision variables. Monthly profit, designated as z, is

written as follows:

z = (profit per package of Meaties) x (number of packages of Meaties made and
sold monthly) + (profit per package of Yummies) x (number of packages of

Yummies made and sold monthly)

The profit per package for each dog food is the difference between selling price and

expenses as shown in Table 4.2.

Expenses
Selling price Profit per package
Meat | Cereal | Blending
Meaties 2.80 1.50 | 0.40 0.25 0.65
Yummies 2.00 0.75 | 0.60 0.20 0.45

Table 4.2: The profit per package for each dog food
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We write the monthly profit as z := 0.65z; + 0.45x5.

Constraints

Let’s begin with the availability of cereal constraint:
(The number of lb. of cereal used in production each month) < [400000, 450000] lb.,

[1.5,2.0]z; + [2.0,3.0]z2 < [400000, 450000] lb.
Using similar reasoning, the restriction on the availability of meat is expressed as

(The number of lb. of meat used in production each month) < [300000, 320000] lb.,

[2.0,3.0]x1 + [1.0,1.5]xz2 < [300000, 320000] b.
In addition to these constraints,

(The number of packages of Meaties produced each month) < 90000 packages,

x1 < 90000 packages.
Finally, negative production levels do not make sense, so we require that 1 > 0

and x5 > 0.

The above described problem can be formulated as follows:

max 0.65x1 + 0.45x9

s.t. [1.5,2.0]x1 + [2.0, 3.0z < [400000, 450000,

[2.0,3.0]x; + [1.0, 1.5]z2 < [300000, 3200001,

90000,
0

[\

Ty

1 and )

AV

Optimistic obj. value fn of maximization interval LP:
MAXIMIZE

0.65%X_1 + 0.45*X_2 + 0.0

SUBJECT TO

_C1:1.5X_1 + 2X_2 <= 450000

_C2: 2 X_1 + X_2 <= 320000
_C3: X_1 <= 90000

VARIABLES
X_1 Continuous
X_2 Continuous

Status Optimal
Optimistic obj. value fn of this maximization interval LP is: 125000.0

76000.0
168000.0

X1
X 2
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Pessimistic obj. value fn of maximization interval LP:
MAXIMIZE

0.65%X_1 + 0.45*X_2 + 0.0

SUBJECT TO

_C1:2X_1 + 3 X_2 <= 400000

_C2:3X_1+1.5X_2 <= 300000
_C3: X_1 <= 90000

VARIABLES
X_1 Continuous
X_2 Continuous

Status Optimal
Pessimistic obj. value fn of this maximization interval LP is: 77500.0

50000.0
100000.0

X1
X 2

Minimax regret of this interval linear programming problem:
MINIMIZE

1*R_1+0

SUBJECT TO

_C1:2X_1 + 3 X_2 <= 400000
_C2:3X_1+ 1.5X_2 <= 300000

_C3: X_1 <= 90000
_C4:-R_1-0.65X_1-0.45X_2 <=-125000
VARIABLES

R_1 Continuous

X_1 Continuous

X_2 Continuous

Optimal

Minimax regret is: 47500.0

R_1 = 47500.0
X_1 = 50000.0

X_2 = 100000.0

Figure 4.1: Solutions of Healthy Pet Food problem

In each production, if the company can make each package of Meaties contains 1.5
pounds of cereal and 2 ponds of meat, each package of Yummies contains 2
pounds cereal and 1 pounds of meat and it can buy up to 450,000 pounds of
cereal and 320,000 pounds of meat per month, then the company will earn a
monthly maximum profit of $125,000. That is, the company should make 76,000
packages of Meaties and 168,000 packages of Yummies each month. On the other

hand, if the company can make each package of Meaties contains 2 pounds of
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cereal and 3 ponds of meat, each package of Yummies contains 3 pounds cereal
and 1.5 pounds of meat and it can buy up to 400,000 pounds of cereal and 300,000
pounds of meat per month, then it will earn a monthly profit of $77,500. That s,
the company should make 76,000 packages of Meaties and 168,000 packages of
Yummies each month where the difference of monthly profits between these two

situations (optimistic and pessimistic situations) is $47,500.

4.2 Miscellaneous application

Diet problem

The diet problem can be easily stated as follows:

Minimize the cost of food eaten during one day
Subject to  the requirements that the diet satisfy a person’s nutritional

requirements and that not too few of any one food be eaten.

Consider the problem of diet optimization. There are six different foods: bread,
milk, cheese, potato, fish, and yogurt. The cost and nutrition values per unit are
displayed in Table 4.3. The objective is to find a minimum-cost diet that contains at
least 280-300 calories, not less than 7.5-9 grams of protein, not less than 8-10 grams
of carbohydrates, and not less than 5-8 grams of fat. In addition, the diet should

contain at least 1 unit of fish and no more than 1 unit of milk.

Bread Milk Cheese | Potato Fish Yogurt

Variables T T T3 Ty Ts Tg

Protein, g 4-5 8-8.5 7-8.5 1.3-1.6 8-9 9.2-94

Fat, ¢ 1-2 5-7 9-9.5 0.1-0.2 7-8 1-2
Carbohydrates, g | 15-17 | 11.7-12 | 0.4-0.6 | 22.6-22.8 0 17-17.5
Calories, kcal | 90-92.5 | 120-125 | 106-109 | 97-100 | 130-134 | 180 -183

Table 4.3: Cost and nutrition values



The above data can be formulated as interval linear programming as follows:

min 2z + 3.529 + 8x3 + 1.524 + 115 + 24

s.t. [4.0,5.0]x; + [8.0,8.5]x9 + [7.0,8.5]x3 + [1.3, 1.6]z4
+[8.0,9.0]z5 + [9.2,9.4]z¢ > [7.5,9.0],

[1.0,2.0]z1 + [5.0, 7.0]z2 + [9.0,9.5]x5 + [0.1,0.2]x4
]

]

]

3 ]
+[7.0,8.0]z5 + [1.0,2.0z5 > [5.0,8.0],

]

]

]

]

3
5
[15, 17)ay + [11.7,12.0)z5 + [0.4, 0.6] x5 + [22.6,22.8
+[17.0,17.5]zg > [8.0,10.0],

[90, 92.5]z1 + [120, 125], + [106, 109]25 + [97, 100]4
+[130, 134]5 + [180, 183z

Xy

—

> [280, 300),

v

X5 3

X2 9

VAN
=

v

T1,T2, X3, T4, T5 and Te

Opsimistic obj. valus fn of minimization interva! LP:

MINIMIZE

2.0%%_1 + 3.5%%_2 = 8.0%%_3 + 1.5%X 4 + 11.0%% 5 + 1.0™X 6 + 0.0
SUBJECT TO

CL1:5X 1+85X 2+85X3+16X4+9X5+94X6>=75
Cu2X 1+7X2+95X 3+02X 4+8X5+2X6==5
017X 1+12X2+06X3+228X 4+175X 6>=8
C4:925X 1+125X 2+ 109X 3+ 100X 4+ 134X 5+183X 6 >=280
X 5>5=1

05 -X2>=-1

VARIABLES

¥_1 Continuous
X2 Continuous

rmstnc ‘obj. value fn of minimization interval LP is: 11.79781421

XXX O

\n'-hlw‘h.llH q
LU LI 1 [ I 1
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>
o
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Pessimistic o). valua fn of minimization intenval LP:

MINIMIZE

2.0%_1 + 3.5%X 2 + 8.0%°%_3 + 1.5%X 4 + 11.0%X 5 + 1.0°X_6 + 0.0
SUBJECT TO

C1:4X 1+8X2+7X3+13X4+8X5+92X6>=9
CuX1+5X2+9X3+01X4+7X5+X6>=8

€ 15X 1+ 117X 2+04X 3+226X 4+ 17X 6>=10

C4:90X 1+ 120X 2+ 106 X_3 + 97X 4 + 130 X_5 + 180 X_6 >= 300

X Bix=1

: Optimal
simistic obj. value fn of minimization interval LP is: 11.9807692355

Bif

12820513

l><|><l><l><l><

LU SN RV SN R
LU I I 1 I )
oroooo
WOOOOo

x
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Minimax regret of this interval linear programming problem:

MINIMIZE

1*R_1+0

SUBJECT TO

C1:4X 1+8X2+7X3+13X4+8X5+9.2X65=9
CuX1+5X2+9X3+01X4+7X5+X 6>=8

C1 15X 1+ 117X 2+ 04X 3+22.6X 4 +17X 6 »=10

C4 90X 1+120X 2+106 X 3+97X &4+130X 5+3180X 6>=300
C5:X5>=1

08 -X2>=-1

C7:-R1+2X1+35X2+8X 3+15X 4+11X5+X_6 <= 1179781421
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Figure 4.2: Solutions to the diet problem
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There are many ways to eat these six different foods for satisfying a person’s
conditions but to minimize cost of food eaten during one day if each food is prime
(the nutrition values of each food reach its pinnacle value) then the minimum cost
will be $11.797814 which a person have to eat 1 unit of fish and 0.797814 unit of of
yogurt in a day. Unfortunately, if each food is not that good (the nutrition values of
each food just only reach its lowest value) then the minimum cost will be
$11.980769 which is greater than the minimum cost of the prime situation is
$0.182955 and in this situation, a person have to eat 0.012821 unit of milk, 1 unit of
fish and 0.935897 unit of yogurt in a day.

The applications of interval linear programming do not end here because when the
uncertainties appear, there are many linear progralmming problems will become as
the interval linear programming problems (see a bunch of linear programming
applications in [9]). The interval linear programming is widely used in real-world
which the using is up to the purpose of each user so that there are many more
applications of interval linear programming that will be used to manipulate and

deal with the uncertainties.
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Chapter 5

Summary and Conclusion

5.1 Summary

In this project, we employ the optimistic, the pessimistic and the minimax
regret approaches to help in finding and describing the solutions of the interval
linear programming (IVLP) problem, by starting with the solution of the optimistic
IVLP problem. The process of finding any solution is stop when the optimistic IvLP
problem is infeasible. On the other hand, if it is feasible, we will continue to find
the other solutions. Then, the pessimistic IvLP problem will be solved. If the
pessimistic IVLP problem is feasible, we will continue finding the minimax regret and
conclude the results. Nonetheless, if it is infeasible, we will reduce the size of each
interval entry until the reduced IVLP is feasible. “Reduced IVLP” is what we call the
IVLP whose its interval sizes are reduced. After that, we will continue finding the
minimax regret of the reduced IVLP problem and conclude the results. The

computer programs facilitate the users for solving the IVLP problems.

5.2 Conclusion

In this project, an interval linear programming is employed for solving linear
programming problems with imprecise data in the pattern of intervals. Three
approaches are used in this project to help users in describing and choosing their
own best solutions. The first two approaches are optimistic and pessimistic
approaches. The optimistic approach estimates each decision alternative in terms

of the optimal value among all the objective values of the IVLP problem. If the
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problem is to maximize then the maximum objective value of all objective values is
the optimistic objective value. On the other hand, the pessimistic approach is the
antithesis of the previous approach. As a consequence, the minimum objective
value among all objective values of the IVLP problem is the pessimistic objective
value, if the problem is to maximize. The last approach is a minimax regret
approach. As mentioned before, this approach is to minimize the worst-case
(maximum) regret which its purpose is to operate as closely as possible to the real
optimal value. In this project, the minimax regret (min R) is obtained as the different
value from the optimistic objective value and the pessimistic objective value.

To reiterate the point of this project as follows, the optimistic and the
minimax regret approaches are suitable for people who are risk lover and risk
aversion, respectively. The other approach is suitable for considering as the worst
situation that can happen among all the circumstance of each problem. Finally,
when the uncertainties appear, we do not know what situation of problems will
occur, in other words, we do not know the real value of each parameter in the
linear programming so generating the linear programming is worthless. As a result,
we use the interval linear programming as a tool to deal with the uncertainties,
each solution of its in this project (optimistic, pessimistic and minimax regret
solution) is just an approximated value and just a representation of the many

solutions of the linear programming with inexact data.

5.3 Suggestions

Reducing size of the interval

There are several ways to reduce size of the interval. It is not neccesary that in
reducing the size of the interval, each interval will be simultaneously increased
value of the lower bound and decreased value of the upper bound. For example,
each user can decide to reduce only at the lower bound or just only interval matrix

A will be reduced, etc.
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Language programs

Using Python language is not essential and neccesary. Users can build on the

algorithms by following their convinient computer language.

Utilization from the project’s aim

Since project owner is not good at computer language, the algorithms are not
concise as much as it can. The series of algorithms in this project may not be
suitable for all types of real-world problems. As a consequence, the algorithms still
require the development by users in order to make it more effective and more

suitable for some problems.
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Appendix

Appendix A: Code for Python

P

Figure 5.1: QR code of Python’s code

URL: https://github.com/paang/Kanokwan-Senoir_ project/blob/

dddaalcd9e629eab7d11d408beddcd6892065765/Code’,20f or%20Python?20-7%

20IvLP.ipynb
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Appendix B: Project Proposal

The Project Proposal of Course 2301399 Project Proposal
Academic Year 2020

Project Tittle (Thai) NALRAYYOIMUUANTITIAULUUY

Project Tittle (English)  Solutions of Interval Linear Programming

Project Advisor Associate Professor Phantipa Thipwiwatpotjana, Ph.D.

By Miss Kanokwan Suchantabut ID 6033501223
Mathematics, Department of Mathematics and
Computer Science, Faculty of Science,

Chulalongkorn University

Background and Rationale

In the real life, uncertainty is the only certain thing. As we can see in our
daily life, when handling real-world optimization problems by means of
mathematical modeling, it is often necessary to treat inexact or uncertain input
data due to various measurement errors or estimations. The parameters are not
often known exactly and most of them have to be estimated. Unfortunately, the
linear programming system requires constant parameters.

There are several different tools to handle uncertainty and inexactness in
mathematical modeling, such as stochastic programming and fuzzy set theory, each
bearing their own advantages and disadvantages. An interval linear programming is
also one of the tools for solving real-world optimization problems under
interval-valued uncertainty. It is a linear programming where its coefficients and
parameters are in the pattern of intervals. Instead of approximating or estimating
crisp input data, the coefficients of an interval program may perturb independently
within the given lower and upper bounds.

This project provides many types of solutions of an interval linear

programming by using knowledge in Operations Research Il and three approaches
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which are optimistic, pessimistic and minimax regret approaches for finding the
solutions. The most appropriate solution relies on the purpose of each decision

maker.

Objectives

Obtain an algorithm to solve interval linear programming problems that have
interval uncertain data (in it) by using optimistic, pessimistic and minimax regret

approaches to describe the solutions of the problems.

Scopes

1. Explain the general idea of optimistic, pessimistic and minimax regret

approaches.

2. Apply optimistic, pessimistic and minimax regret approaches in a linear

programming problem with interval data.

3. Provide an application of linear programming problem with interval data.

Project Activities

1. Study linear programming problems.
2. Study the interval linear programming system.

3. Study optimistic and pessimistic approaches and apply them to an interval

linear programming problem.

4. Study minimax regret approach and apply it to an interval linear programming

problem.

5. Study strong solvability/feasibility of system of interval linear inequality.



10.

. Study relationship between regret and strong solution of an interval linear

programming.

Use the knowledge about optimistic, pessimistic and regret appreaches to

explain the solutions of an interval linear programming.
Build an algorithm for solving the interval linear programming problem.
Recheck and modify the algorithm.

Conclude the results and write a report.

a2



Duration
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Procedue

Month

1.Study linear programming prob-

lems.

2.Study the interval linear pro-

gramming system.

3.Study optimistic and pessimistic
approaches and apply them to an
interval linear programming prob-

lem.

4.Study minimax regret approach
and apply it to an interval linear

programming problem.

5.5tudy strong solvability/
feasibility of system of interval

linear inequality.

6.Study relationship between re-
gret and strong solution of interval

linear programming.

7.Use the knowledge about opti-
mistic, pessimistic and regret ap-
preaches to explain the solutions

of an interval linear programming.

8.Build an algorithm for solving the
interval linear programming prob-

lem.

9.Recheck and modify the algo-

rithm.

10.Conclude the results and write

a report.




aq

Benefits

1. The benefits of the project owner.

| Apply knowledge from Operations Research Il course to solve linear
programming problems and built on this knowledge to solve interval

linear programming problems.

Il Use Python version 3.7.9 to solve the problem.
2. The benefits of project users.

| Increase convenience and efficiency in each decision making, especially

someone who is such a risk aversion.

Il Increase alternative ways for desicion making which users capable of

choosing solution depend on their satisfaction.

Il Can use the interval linear programming method helped in finding many
types solutions and can apply this method to many interval linear

programming applications.

Equipments
1. Hardware

| Notebook computer Intel(R) Core(TM) i7(i7 - 7700HQ, 2.80 GHz, 6MB)
Il Printer

Il Flash drive
2. Software

| Python version 3.7.9

Il TeXworks software version 0.6.5



Budgets

1

2
3
4.
5
6
7

. Wireless Mouse

. Tray DVD Drive for HHD
. Flash drive

SSD 240 GB

. Notebook Service Fee
. Battery Notebook

. Bluetooth Keyboard

Total

900
280
140
920
500
1,260
1,000
5,000

Baht
Baht
Baht
Baht
Baht
Baht
Baht
Baht
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Appendix

Linear programming

Linear programming problem (LP) can be formulated as follows:

min z := 'z (5.1)
st Ar <-> b, (5.2)
z >0 (5.3)

where ¢ and x are n dimentional vectors, b is an m dimentional vector, A is an

m X n matrix, and <-> can be >, <, =.

Linear programming with N uncertainties

The linear programming problem with N uncertainties is formulated as :

min z = c'zx
sttt Az > b
z > 0

where z is the vector of decision variables. The realizations of [A, b, ¢] could be

[AY, Y, cl], [A%, 02, 2, ..., [AN, b, V).

Pessimistic and optimistic approaches

A linear programming problem with N discrete uncertain data can be extented into

N deterministic standard linear programming problem as follows:



ar

Minimization LP problem

2(€%) == min c'x
s.t. Akz > bk,

x>0

where & = (AF VF) for k =1,2,..., N is the k' realization of uncertain data.

A pessimistic objective function value of these minimization LP problems is
the maximum value of all N optimal solutions, i.e., Ik* € {1,2,..., N} s.t.

2(6) = max {2(€"), k=1,2,.., N}.

An optimistic objective function value of these minimization LP problems is
the minimum value of all N optimal solutions, i.e., k. € {1,2,..., N} s.t.

2(&%) =min {z(¢%), k=1,2,...,N}.

Maxmization LP problem

2(€F) == max clz
Sk f=hp

z >0

where & = (AF %) for k =1,2,..., N is the k' realization of uncertain data.

A pessimistic objective function value of these maximization LP problems is
the minimum value of all N optimal solutions, i.e., 3k, € {1,2,..., N} s.t.

2(€F) = min {z(¢%), k=1,2,...,N}.

An optimistic objective function value of these maximization LP problems is
the maximum value of all N optimal solutions, i.e., 3k* € {1,2,..., N} s.t.

2(€F) =max {z(¢%), k=1,2,....,N}.
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Example 1

Let [AY,b!] and [A?, b?] be the realizations of [A, b]. Each realization has the same

objective value function i.e., 10x + 18y.

4 10 -2 10
Al=1]_-2 1 A= 3 —10
7T =2 21 5
150 120
b= 8 b= | 20
85 325
LP1:
max z(¢') = 10z + 18y
st.dx 4+ 10y < 150,
Tr—2y < 85,
randy > 0.

The optimal value is 330 where z = 15 and y = 10.

LP2:

10z + 18y
120,

20,

325,

0.

max z(&2)

IN

st. — 2z + 10y
3x — 10y

IN

21z + 5y

IA

v

xand y

The optimal value is 379.8198 where x = 12.0456 and y = 14.4091.
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A pessimistic objective value function of this uncertainty linear programming

problem is the minimum value of all optimal solution, i.e.,

min{z(¢%), k = 1,2} = min{330, 379.8198} = 330 where (z,y) = (15, 10)".

An optimistic objective value function of this uncertainty linear programming

problem is the maximum value of all optimal solution, i.e.,
max{z(¢F), k = 1,2} = max{330, 379.8198} = 379.8198

where (x,7)" = (12.0456, 14.4091)".
Minimax regret model

The regret function ry(x) shows the amount a candidate solution A deviates form

the true objective value z(&%), ie.,
re(r) = o — 2(&%), k=1,2,...,N.

As a consequence, the maximum (worst) regret of a candidate solution x is
R(z) = max{ry(z), k=1,2,...,N}.

As a result, a general minimax regret model is

min R

st. R > ri(x), k=1,2,...,N,

Ak > b k=1,2,...,N,
z > 0

Since the value of regret function r(x) can reiterate for each k = 1,2, ..., N, then
the candidate solution z that gives the maximum regret can be more than one.

Hence, the optimal solution of the minimax regret model does not unique.

A candidate solution x is a member in a set of possible solutions to a given problem. A candidate
solution does not have to be a likely or reasonable solution to the problem - it is simply in the set

that satisfies all constraints.
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From Example 1, minimax regret model is

r(x,y) = 2(&¥) — (10z + 18y) for k =1, 2.

Hence, the maximum regret of a candadate solution (z,y) is

R(x,y) = max{z(&') — (10z + 18y), 2(£%) — (10x + 18y)}.

We formulate the minimax regret model for the problem as:

min R

st. R

—2x + 10y
3x — 10y

NIV

IN

21z + by

IA

4z + 10y

IA

-2z +vy

IA

IN

Tr — 2y

v

xand y

2(€F) = (102 +18y), k =1,2,
120,

20,

325,

160,

8,

85,

0.

Since R is a max{z(&¥) — (10x + 18y), k = 1,2}, the minimum possible R is

379.8198 — (102 + 18y). Then the new concise minimax regret model is

min R

st R

—2x + 10y
3x — 10y
21z + 5y
4r + 10y
-2z +vy
Tr — 2y
xand y

v

379.8198 — (10z + 18y),
120,

20,

325,

160,

8,

85,

0.

VAN VAN VAR VAN VAN VAN

v

The optimal solution is (z,y)" = (12.894737,10.842105)".
The minimax regret is obtained as R = 55.714537.
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