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บทคัดยŠĂ 
กćรควบคčมระบบควอนตĆมĒบบđปŗดคČอกćรควบคčมกćรวĉวĆฒนŤของระบบควอนตĆมทĊęถĎกรบกวนจćกÿĉęงĒวดลšอมǰ

วĉธĊดĆĚงđดĉมÿĈĀรĆบอธĉบćยกćรวĉวĆฒนŤของระบบควอนตĆมĒบบđปŗดคČอกćรวĉวĆฒนŤĒบบลĉนบลĆด (Lindblad evolu-

tion) ÿćมćรถอธĉบćยถċงวĉถĊđฉลĊęยǰ (Mean path) ของกćรวĉวĆฒนŤทĆĚงĀมดทĊęđปŨนĕปĕดšของระบบควอนตĆมĒบบđปŗดǰ

ĒตŠอยŠćงĕรกĘตćมĔนกรณĊทĊęกćรกระจćยตĆวของÿถćนะÿčดทšćยของระบบĕมŠกระจćยตĆวรอบÿถćนะทĊęคćดĀวĆงǰ

ดĆงนĆĚนđÿšนทćงēดยđฉลĊęยของกćรวĉวĆฒนŤจċงĕมŠĔชŠวĉถĊทĊęดĊÿĈĀรĆบอธĉบćยกćรวĉวĆฒนŤของระบบควอนตĆมĒบบđปŗดǰ 
ĔนēครงกćรนĊĚđรćจċงนĈđÿนอวĉธĊĔĀมŠซċęงĕดšจćกกćรทĈปรĉพĆนธŤđชĉงวĉถĊของระบบÿčŠมÿĈĀรĆบกćรวĉวĆฒนŤของระบบ

ควอนตĆมĒบบđปŗดǰ ÿćมćรถอธĉบćยถċงวĉถĊทĊęđปŨนĕปĕดšมćกทĊęÿčดǰ (Most likely path) ของระบบǰ ขอบđขตของ

ēครงงćนนĊĚคČอพĉจćรณćปŦญĀćกćรควบคčมกćรวĉวĆฒนŤของระบบควอนตĆมÿองÿถćนะĀรČอคĉวบĉทēดยถĎกรบกวน

จćกÿĉęงĒวดลšอมทĊęđกĉดขċĚนขณะกćรđปลĊęยนÿถćนะจćกÿถćนะđรĉęมตšนĕปยĆงÿถćนะทĊęคćดĀวĆงผŠćนกćรควบคčม

ควćมถĊęรćบĊǰ (Rabi frequency) กćรควบคčมระบบควอนตĆมĒบบđปŗดēดยĔชšวĉถĊทĊęđปŨนĕปĕดšมćกทĊęÿčดĔĀšผลđปŨน

ÿมกćรđชĉงวĉđครćะĀŤǰ (Analytical solution) ของควćมถĊęรćบĊĒละđวลćทĊęĔชšĔนกćรควบคčมทĆĚงĀมดĔนรĎปของตĆว

ĒปรÿถćนะđรĉęมตšนĒละÿถćนะทĊęคćดĀวĆงซċęงĕมŠÿćมćรถทĈĕดšจćกกćรวĉวĆฒนŤของลĉนบลĆดǰ จćกกćรđปรĊยบđทĊยบผล

ของกćรกระจćยตĆวของÿถćนะÿčดทšćยระĀวŠćงกćรควบคčมēดยĔชšวĉถĊทĊęđปŨนĕปĕดšมćกทĊęÿčดĒละวĉธĊกćรวĉวĆฒนŤของลĉ

นบลĆดǰ พบวŠćกćรควบคčมēดยĔชšวĉถĊทĊęđปŨนĕปĕดšมćกทĊęÿčดĔĀšผลÿถćนะÿčดทšćยกระจćยตĆวรอบÿถćนะทĊęคćดĀวĆงซċęง

đĀมćะĒกŠกćรควบคčมคĉวบĉทมćกกวŠćวĉธĊกćรวĉวĆฒนŤของลĉนบลĆด 

คำÿำคัญ: กćรควบคčมระบบควอนตĆมĒบบđปŗด, วĉถĊทĊęđปŨนĕปĕดšมćกทĊęÿčด, ปรĉพĆนธŤđชĉงวĉถĊของระบบÿčŠม 
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ABSTRACT

We propose a new optimal control protocol for quantum state preparation in the presence

of environmental noises based on the Most Likely Path (MLP) approach. The standard

method for dealing with unknown noises in open quantum systems is via Lindblad master

equation, which describes the Mean Path (MP) of noisy quantum trajectories. However,

the mean path does not always faithfully represent the ensemble of trajectories, especially

when the trajectory distribution is multimodal. The most likely path of quantum trajec-

tories is extracted from stochastic path integral formulation, constructed from the joint

probability of quantum state trajectories and the noises. We study a quantum control

problem of a single-qubit state preparation, controlling the qubit from an arbitrary initial

state to the desired target state in the presence of a dephasing noise, where the control is

the Rabi oscillation. This approach yields the analytical solution for the optimal control

protocol for the Rabi drive, which is not possible using the standard MP approach. We

also investigate the benefits of optimal Rabi drive by looking at the distribution of final

states in the Bloch sphere; we find that the distribution of final state is concentrated

around the desired target state and does not spread out over the qubit.

Keywords: Controlling open quantum systems, Most likely path, Stochastic path inte-

grals
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Chapter 1

Introduction

The theory of open quantum systems is at the core of nearly all modern research in

quantum mechanics and its applications [1, 2, 3]. Perfectly unitary quantum dynamics is

rarely achievable in experiments, since the experimental system must be isolated perfectly

from the environment. In reality, every experimental system is open, meaning that it is

coupled to some degree to an environment. One challenge in the field of open quantum

systems, where the noisy environment can destroy desirable quantum coherence, is to

e↵ectively control and manipulate a quantum system in the presence of uncontrollable

environmental noise.

Controlling open quantum systems has become a central task in the development of

quantum technologies, and quantum control has witnessed rapid progress in the last two

decades [4, 5]. For example, e↵ectively manipulating quantum states of Nitrogen Vacancy

(NV) centers in diamonds and of superconducting qubits are important stepping stones for

constructing useful quantum computing hardware [6]. The general goal of quantum con-

trol is to actively control the dynamics of quantum systems to achieve desired objectives;

e.g., high fidelity and fast control. The two main fundamental problems in quantum con-

trol include controllability of quantum systems and designing control protocols to achieve

expected systems performance.

The traditional method for investigating the dynamics of an open quantum system is

1



via a Markovian master equation in Lindblad form, which contains both unitary dynamics

and non-unitary dynamics as a result of interacting with the environment. Optimal

controls are typically obtained from numerically searching for optimal parameters that

maximize the fidelity between the controlled final state and the target state. This can

be done by direct evaluation of the extremum condition or by building in monotonic

convergence a priori using Krotov’s method (e.g. GRAPE algorithm see [7]).

As opposed to the standard Lindblad approach whose optimal control can only be

found via numerical search, this project proposes an alternative way that allows for a

more systematic optimization scheme that is also analytically tractable. The approach is

based on a stochastic path integral formalism of noisy quantum dynamics, which allows

one to find a faithful representative path of noisy trajectories ensemble via the Most Likely

Path (MLP), or the path most taken [8]. Such approach is proven useful in analyzing

representative dynamics of experimental superconducting qubits [9]. In this project, we

will construct the stochastic path integral for open quantum systems, and propose the

new control scheme whose optimal control parameters are analytically solvable and depend

explicitly on the initial state and the desired target state.

This project is organised as follows. Chapter 2, we introduce the background knowl-

edge necessary to understand the control problems in open quantum systems. We begin

with the description of open quantum systems in two approaches: the measurement prob-

lem, and stochastic Liouville theory. We review the main tool that describes the evolution

of a quantum state (two-level system) and also show how environmental noise a↵ects the

system dynamics in the Bloch sphere representation. We then explain the standard Lind-

blad master equation and its consequences for a two-level system with environmental

(dephasing) noise. Moreover, we also review the relationship between open quantum dy-

namics and stochastic process, deriving the evolution of open quantum system in the

Bloch sphere coordinate. At the end of this chapter, we review the controlling of open

quantum systems using the traditional method, the Lindblad master equation, and end up

2



with the distance measure for measuring the success of control in open quantum system.

In Chapter 3, The Stochastic Path Integral (SPI) formulation for open quantum dy-

namics is first discussed.. We then discuss how to adopt SPI for controlling the quantum

state from the initial state to the desired target state, referred to as qubit state prepara-

tion. We then apply SPI to the two open systems examples: (i) qubit state preparation

without Rabi oscillation, where we derive the analytic solution of the most likely path

and (ii) qubit state preparation with the Rabi oscillation, where we verify the analytical

results with numerical simulation showing excellent agreement. SPI allows one to obtain

the analytic solution for both the optimal Rabi drive and the total control time. Such

a solution corresponds to the most likely path connecting the initial state to the desired

target state. We demonstrate the success of this MLP control protocol with its high con-

trol state fidelity, and also discuss the advantage of the MLP approach. In Chapter 4,

we elucidate the advantage of the MLP approach by showing the result of the situation

when the MLP and the standard Lindblad mean path give significantly di↵erent optimal

Rabi drive. Finally, we conclude in Chapter 5 with topics for further investigations.
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Chapter 2

Background on Open Quantum Systems

Textbook theory of quantum mechanics consists of studying idealized closed quantum

systems. A closed quantum system is assumed to be isolated from the rest of the Universe,

and can be totally described by its Hamiltonian, H. In practice, experimental quantum

systems cannot be completely isolated; they are open and must be coupled with their

environments to some degree. This chapter provides the necessary background of the

open quantum systems theory [10, 11], which plays a crucial role in the development of

optimal control experimental quantum systems.

2.1 Open quantum systems

The most general approach to model open quantum systems is to consider the “mea-

sured system” [12]. The measured system consists of the principal system of interest,

denoted by ⇢s, coupled to a second system, commonly referred to as the environment

or a measurement device, denoted by ⇢e. We assume, however, that the combined sys-

tem is a closed system and changes over time t by a unitary transformation Ût where

Ût = T exp
⇣
�i
R
t

0 dt
0
Ĥ(t0)

⌘
, and T is the usual time-ordering operator. At any point in

time, the dynamics of the combined system are given by %t = Ût(⇢s,0⌦ |e0ihe0|)Û
†
t . Let us

denote |eki to be an orthonormal basis for state space of the environment, and the initial

state is ⇢e = |e0ihe0|. By tracing out the environment’s degree of freedom, the reduced

4



dynamics of the principal system can be obtained. This leads to a dynamical selection of a

distinct set of pure states of the open system and counteracts the superposition principle

in the Hilbert space of the open system:

Tre(%t) =
X

k

hek|Ût(⇢s,0 ⌦ |e0ihe0|)Û
†
t |eki, (2.1)

where Tre is a trace over the environment’s degree of freedom. It is worth noting that, for

most of the system-environment coupling, after tracing out the environment, the purity

(see 2.1.1) is always lower than the original state. This e↵ect is called decoherence, or a

dynamical destruction of quantum coherence [13].

In specific regimes, the e↵ects of environment on the principal system can be described

simply as a noisy unitary dynamics on ⇢s. We can then use stochastic Liouville theory for

this case. This can also be understand as that the principal quantum system is perturbed

by classical noise and has a deterministic and stochastic Hamiltonian at any given time.

It has the form in the simplest case.

Htot(t) = Hdet + ⌘(t)HN , (2.2)

whereHdet is the deterministic Hamiltonian, and the stochastic time dependence described

by the noise ⌘(t) multiplying the noise generator HN , modeling the stochastic interaction

with the environment [14]. In this work, we consider the simple model of open quantum

system setup: a single qubit (a two-level system) that evolves unitarily with the pure

dephasing noise that drives the qubit’s energy fluctuations. The qubit has the energy gap

✏0+ ✏1⌘(t), where ⌘(t) is the Gaussian dephasing noise. The controllable Rabi’s frequency

(drive) is denoted by � along the �x. The Hamiltonian of the system is then

H =
1

2
(✏0 + ✏1⌘(t))�z �

1

2
��x. (2.3)

5



Figure 2.1: Bloch sphere representation. Each component of a Bloch vector q is calculated by

expectation of pauli matrix, such as x = Tr(⇢�x). The magenta point represents the initial

state qI = (0, 0,�1), and the magenta cross represents the final state qF = (0.7, 0.39, 0.6).

2.1.1 Bloch sphere representation

The Bloch sphere (Bloch ball 1) is a geometrical representation of pure single-qubit states

(see Fig. 2.1); i.e., such a pure state can be represented as a point on the unit sphere, and

a mixed state can be represented as a point inside the unit sphere. Operations on single

qubits can also be represented as Bloch sphere state operations. The orthonormal basis

states containing the excited state and ground state correspond to the north and south

poles of the Bloch sphere. A point on the unit sphere represents an arbitrary single-qubit

state up to the global phase. This Bloch sphere picture is elegant and powerful for the

single qubit. It helps in the visualization of quantum state evolution from initial to final

states, as well as the investigation of the e↵ects of noise on qubit evolution. For a qubit

state, the general form in the Bloch sphere representation is given by the density matrix.

⇢ ⌘
1

2
(I+ q · �) =

1

2

0

B@
1 + z x� iy

x+ iy 1� z

1

CA (2.4)

1
Physicists are always messing up the di↵erence between a sphere and ball and mathematicians are

always making this discussion.

6



where q = (x, y, z) is a Bloch vector and � = (�x, �y, �z) are the Pauli matrices: x, y, z

are Bloch sphere components defined by x = Tr(⇢�x), y = Tr(⇢�y) and z = Tr(⇢�z). The

size of the Bloch vector can also inform us about the purity of a quantum state which is

defined as P = Tr[⇢2]. One can show that, for a qubit state, P = 1
2(1+kqk2). Therefore,

when kqk2 = 1, it is referred to as a pure state, and when kqk2
< 1, it is referred to as a

mixed state. To summarise, pure states are represented on the surface of the unit sphere,

while mixed states are represented on the interior.

2.1.2 Noise and decoherence

Uncontrollable physical processes in the qubit control, measurement equipment, and the

environment surrounding the quantum processor are sources of noise that lead to the

decoherence and the reduction of the fidelity of the qubits [15].

In a closed quantum system, the dynamical evolution of a quantum state is determin-

istic. Meaning that, if we know the initial state and its Hamiltonian, then we can make

a prediction of the state of the qubit at any time in the future with certainty. However,

the situation changes in the theory of the open quantum system. The quantum system

now interacts with uncontrolled degrees of freedom in its environment, which we refer to

as noise. We can thus at best aim to predict the probability of finding certain quantum

states in the future. We now discuss di↵erent roles of noise in our qubit system, i.e.,

transverse noise and longitudinal noise (see Fig. 2.2).

In Figure 2.2 (a) T1 Longitudinal relaxation: the energy exchange between the

qubit and its environment, then transverse noise that couples to the qubit in the xy plane

and drives transitions from excited state to ground state. The excited state emits energy

to the environment and relaxes to ground state at a rate �1# (Yellow). Similarly, a qubit

in the ground state absorbs energy from the environment, exciting it to an excited state

at a rate �1" (Blue). In practice, the �1" is suppressed, resulting in �1 = �1# as the total

decay rate. It is clear that the appropriate Lindblad operator must e↵ect the transition

7



(a) (b)

Figure 2.2: Transverse and longitudinal noise represented on the Bloch sphere. (a) Longitudi-

nal relaxation results from energy exchange between the qubit and its environment. (b) Pure

dephasing results from fluctuation of qubit energy. See [15] for more details.

|1i ! |0i, this suggests L̂ =
p
�1|0ih1| =

p
�1��.

In Figure 2.2 (b) Pure dephasing: the transverse plane arises from longitudinal

noise along the z-axis that fluctuates the qubit frequency. Due to stochastic frequency

fluctuations, a Bloch vector along the x-axis will di↵usely rotate along the z-axis, depo-

larizing the azimuthal phase with a rate �' (red). It induces decay of the o↵-diagonal

elements. The appropriate Lindblad operator in this case is L̂ =
p
�'/2�z. Decoherence

is the leakage of information from a system into the environment, and it occurs at a rate

�2 = �1/2+�' as a result of a combination of energy relaxation and pure dephasing. We

also note that in our model the strength of noise ✏1 is ✏1 = 2
p
�'/2.

2.2 Lindblad master equation

We are interested in dynamics of open quantum system with a strong Markov assumption

[16]. The dynamics of open quantum systems Eq. (2.1), after tracing out the interacting

environment’s degree of freedom, was found to be described by a master equation. In this

case, the most general quantum dynamics is generated by the Lindblad equation. It was

8



shown by Lindblad in 1976.

d⇢

dt
= �i[Ĥ, ⇢] +

KX

k=1

D[L̂k](⇢), (2.5)

for Ĥ Hermitian and {L̂k} arbitrary operators. The superoperator D is defined by

D[L̂k](⇢t) = L̂k⇢L̂
†
k
� (L̂†

k
L̂k⇢t + ⇢tL̂

†
k
L̂k)/2. This form is known as the Lindblad form,

and the operators {L̂k} is called Lindblad operators describing the system-environment

couplings. To obtain dynamics of this type, it is generally assumed that the system is

weakly coupled to the environment (Born approximation) and the environment is very

large, allowing the system to e↵ectively interact with di↵erent parts of the environment

at di↵erent times (Markov approximation). As an example, we consider a two-level atom

weakly coupled to an infinite number of electromagnetic field modes and the system con-

trol is done via the Rabi oscillation that drives the quantum state. We can derive the

Lindblad master equation for the two-level system with the Rabi oscillation in the pres-

ence of a dephasing noise strength ✏1. This leads to the unitary dynamics with an e↵ective

Hamiltonian, H = ✏0�z/2 � ��x/2, and Lindblad operater L̂ = ✏1�z/2 in the Lindblad

form given by,
d⇢

dt
= �

i

2
[✏0�z, ⇢] +

i

2
[��x, ⇢] +

✏
2
1

4
D[�z](⇢). (2.6)

We can write this equation in terms of the Bloch sphere coordinates

dx

dt
= �y✏0 �

x✏
2
1

2
, (2.7a)

dy

dt
= (x✏0 + z�)�

y✏
2
1

2
, (2.7b)

dz

dt
= �y�. (2.7c)

2.3 Open Quantum System Dynamics and

Stochastic Processes

The stochastic methods, popular in a variety of fields, ranging from physics to economics

and mathematics. In many cases, in the investigation of natural processes, all systems

9



are open, then stochasticity arises every time one considers the dynamics of a system in

the environment. The stochastic process which can be described by stochastic di↵erential

equation (SDE) [17, 18].
dx

dt
= ↵(x, t) + �(x, t)⌘(t). (2.8)

where ↵(x, t) and �(x, t) are determinstic function and ⌘(t) is the indeterministic function

referred to noise or fluctuation in the system. Here, we consider the model Eq. (2.3).

Which can be written as di↵erence equations,

xk+1 = xk � yk✏0�t�
xk✏

2
1�t

2
, (2.9a)

yk+1 = yk + (xk✏0 + zk�)�t�
yk✏

2
1�t

2
, (2.9b)

zk+1 = zk � yk��t. (2.9c)

Adopting the Stratonovich’s SDE, which can be obtained by expanding ⇢k+1 = e
�iĤ(t)�t

⇢ke
iĤ(t)�t

to first order in �t ! dt and using Stratonovich’s prescription, we obtain the Lindblad

equation
d⇢

dt
=

i

2
[��̂x, ⇢]�

i

2
[(✏0 + ✏1⌘(t))�̂z, ⇢]. (2.10)

In the Bloch vector coordinate, we obtain the updated state equation qk+1 = E [qk, ⌘k],

where E [qk, ⌘k] is defined as a function that determines the qubit state at the next in-

finitesimal time,

xk+1 = xk � (✏0yk + ✏1⌘kyk)�t, (2.11a)

yk+1 = yk + (✏0xk + ✏1⌘kxk +�zk)�t, (2.11b)

zk+1 = zk ��yk�t. (2.11c)

These stochastic di↵erential equations describe the evolution of our qubit in the presence

of dephasing noise. The stochastic component ⌘k arises from interaction with the envi-

ronment. As a result of di↵erent quantum dynamics pathways given by each of the noise

realizations, we can collect an ensemble of noisy quantum trajectories.

10



We also note that, one can interpret this stochastic evolution according to Itö’s SDE.

By expanding ⇢k+1 = e
�iĤ(t)�t

⇢ke
iĤ(t)�t, using the Itö’s prescription ⌘

2(t)�t2 ⇡ �t. Then,

averaging over noise realizations and taking the time-continuum limit, �t ! dt, we obtain

the Lindblad master equation Eq. (2.6) and Eqs. (2.7). This means that the Lindblad

master equation produces the Mean Path (MP) of quantum trajectories. (see appendix

A.1)

2.4 Measures for state preparation controls

State preparation control refers to the ability to accurately steer a dynamical system

from an initial to a final state; optimal control does so with the least amount of e↵ort and

resources [19].

Quantum control’s main objective is to actively manipulate and control the dynamics

of quantum systems in order to obtain desired outcomes. The distance between the final

state and the target state is one metric for quantum control performance. The projection

between the two states can be used as a proxy for fidelity. This is given in terms of the

Hilbert Schmidt product of the state of the system at the final state (⇢F) and the target

state (⇢T):

F (⇢F, ⇢T) = [Tr(
q

⇢
1/2
F ⇢T⇢

1/2
F )]2. (2.12)

Another measure is the trace distance, which is widely used in quantum computation and

the quantum information community, defined by the equation

D(⇢F, ⇢T) =
1

2
Tr|⇢F � ⇢T|. (2.13)

The fidelity and trace distance can be neatly represented in the Bloch sphere representa-

tion (see Appendix B for more details). The traditional approach for solving the optimal

control problem of an open quantum system is to consider the dynamics of a density ma-

trix ⇢ represented by a master equation. For the dynamics of a Markovian open quantum

system, ⇢ follows the master equation in the Lindblad form (2.5). Typically, this control

11



problem is complicated and can not be solved in a closed form. One then needs to re-

sort to numerical optimization; optimization algorithms [20] are obtained by, for instance,

seeking an extremum of the fidelity in Eq. (2.12) or the trace distance in Eq. (2.13).
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Chapter 3

Optimal Control for State Preparation via

the Most Likely Path

We have shown in Chapter 2 that one can study the e↵ect of unknown environmental

noises in an open quantum systems via Lindblad master equation, which describes a

Mean Path (MP) of ensemble quantum trajectories. From a statistics point of view, the

mean path may not faithfully represent the ensemble of paths (see Fig. 3.1). We thus

needs a new method to control a quantum state from an initial state to the desired target

state. One such method investigated in this project is via the Most Likely Path (MLP)

method.

Stochastic path integral formalism for continuous quantum measurement [8, 21] is an

excellent approach that allows one to represent more faithfully these quantum trajectories

via the most likely path a system takes between the two states [9]. In this chapter, we

adapt the stochastic path integral approach for optimal control of open quantum systems.

We can compute the most likely path of the quantum state from an initial state to the

desired target state by constructing the stochastic path integral of SDEs.
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3.1 Stochastic Path Integral for Open Quantum

Systems

3.1.1 Theoretical Formulation of the Stochastic Path Integral

We now construct the probability distribution of quantum trajectories in an open quantum

system. A quantum state trajectory is the dynamic of a quantum state. Let us discretize

the noise into n time steps and denote {⌘k}
n�1
k=0 as a noise realization. Each ⌘k is obtained

between time tk and tk+1 = tk+�t, and is assumed to depend only on a quantum state right

before (Markov assumption). We denote a time series of quantum states as {qk}
n

k=0. For

a two-level quantum system (qubit), q = (x, y, z) is a vector in Bloch sphere coordinates.

The quantum state trajectory can be computed with an updated state equations, as in

SDEs Eq. (2.11).

From the SDEs, write the joint probability density function (PDF) of time-discretized

state trajectories given an initial state q0 and a set of other constraints ↵ as

P ({qk}
n

k=1, {⌘k}
n�1
0 |q0,↵) = B↵

n�1Y

k=0

P (qk+1|qk, ⌘k)P (⌘k). (3.1)

The function B↵ accounts for constraints on the initial and final states. Eq. (3.1) is

the product of the deterministic conditional probability distribution and the probabil-

ity distribution of Gaussian white noise at every time step. The deterministic condi-

tional probability distribution after evolving under Gaussian white noise P (qk+1|qk, ⌘k) ⌘

�
d(qk+1�E [qk, ⌘k]), E [qk, ⌘k] is the right side of Eqs. (2.11). The probability distribution

of Gaussian white noise with zero mean and variance �t�1 is P (⌘k) =
p
�t/(2⇡) exp(

�⌘
2
k�t

2 ).

The path integral representation of the joint PDF in Eq. (3.1) can be attained by

writing the delta functions for the updated state equation in Fourier integral form, i.e.,

�(q) = 1/(2⇡i)
R
exp(�pq)dp integrating along contours with end-points at ±1 where p

is referred to as conjugate variable. Also, by rewriting the P (⌘k) in exponential form; i.e.,

exp[lnP (⌘k)].
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As a result, the PDF with a fixed initial state q0 = qI and final state qn = qF

leads to the constraint B↵ = �
d(q0 � qI)�d(qn � qF) in Eq. (3.1). Then, PqI,qF ⌘

P ({qk}
n

k=1, {⌘k}
n�1
0 , qF|qI) in the path integral form is

PqI ,qF = N

Z
· · ·

Z  nY

j=�1

d
d
pj

!
exp(�p�1 · (q0 � qI)� pn · (qn � qF )+

n�1X

k=0

[�pk · (qk+1 � E [qk, ⌘k])�
⌘
2
k
�t

2
]),

(3.2)

where the constants are absorbed in N . Thus, the integrals can be written concisely in

the form.

PqI,qF = N

Z
d{pk}

n

�1 exp(S), (3.3)

with the action

S = �p�1 · (q0 � qI)� pn · (qn � qF) +
n�1X

k=0

[�pk · (qk+1 � E [qk, ⌘k])�
⌘
2
k
�t

2
] (3.4)

3.1.2 The Most Likely Path for Qubit State Preparation

We can extract the most likely path from the ensemble of quantum trajectories specified

by Eq. (3.2) by solving for its action’s extrema. Taking the variation of the action over all

the variables and setting it to zero, we obtain a set of di↵erential equations, extremizing

this action over all variables (k = 0, ..., n� 1).

@S

@pk

= 0,
@S

@qk

= 0, and
@S

@⌘k
= 0. (3.5)

3.1.3 The Most Likely Path for Qubit State Preparation

without Rabi Oscillation (� = 0)

Pure dephasing arises from longitudinal noise that couples to the qubit via the z-axis.

Such longitudinal noise causes the qubit energy ✏0 (qubit frequency) to fluctuate without

the external Rabi drive. In this case, the Hamiltonain becomes

H = (✏0 + ✏1⌘(t))
�z

2
. (3.6)
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By following section 2.3, we can obtain a set of SDEs for time-discretized state evolution.

To get updated state equations, expand ⇢t+�t = e
�iĤ(t)�t

⇢te
iĤ(t)�t to first order in �t and

express it in Bloch sphere coordinates:

xk+1 = xk � (✏0 + ✏1⌘k)yk�t, (3.7a)

yk+1 = yk + (✏0 + ✏1⌘k)xk�t. (3.7b)

These equations of motion in two dimensions rotate the state around z-axis of Bloch

sphere coordinate with frequency (✏0 + ✏1⌘). Substitute the updated state equations into

the action of qubit state preparation Eq. (3.4). The explicit form of action for the qubit

state preparation without Rabi oscillation (� = 0) yields

S =� p
x

�1(x0 � xI)� p
x

n
(xn � xF)� p

y

�1(y0 � yI)� p
y

n
(yn � yF)

� p
z

�1(z0 � zI)� p
z

n
(zn � zF) +

n�1X

k=0

⇢
� p

x

k
(xk+1 � xk + (✏0 + ✏1⌘k)yk�t)

� p
y

k
(yk+1 � yk � (✏0 + ✏1⌘k)xk�t)�

⌘
2
k
�t

2

�
.

(3.8)

Extremizing this action over all variables (k = 0, ..., n� 1)

@S

@pk

= 0,
@S

@qk

= 0,
@S

@⌘k
= 0 (3.9)

The following 4 di↵erence equations and 1 constraint,

xk+1 = xk � (✏0 + ✏1⌘k)yk�t, (3.10a)

yk+1 = yk + (✏0 + ✏1⌘k)xk�t, (3.10b)

p
x

k
= p

x

k�1 � (✏0 + ✏1⌘k)p
y

k
�t, (3.10c)

p
y

k
= p

y

k�1 + (✏0 + ✏1⌘k)p
x

k
�t, (3.10d)

⌘k = �p
x

k
yk✏1 + p

y

k
xk✏1. (3.10e)
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In time-continuum limit, we obtain the set of the ordinary di↵erential equation and con-

straint describing the most likely path for qubit with pure dephasing as

ẋ = �✏0y � ✏1⌘y, (3.11a)

ẏ = +✏0x+ ✏1⌘x, (3.11b)

ṗ
x = �✏0p

y
� ✏1⌘p

y
, (3.11c)

ṗ
y = +✏0p

x + ✏1⌘p
x
, (3.11d)

⌘ = �✏1p
x
y + ✏1p

y
x. (3.11e)

Here, we consider the most likely path for qubit state preparation, which can be

computed from the ODEs in Eqs. (3.11). We can solve the ODEs analytically (see

Appendix A.2 for more details). By explicit calculation, Eqs. (3.11) indicate that ⌘̇

vanishes. In this case, we conclude that its solution ⌘ is constant, and denote ⌘(t) = ⌘
⇤.

The most likely path from Eqs. (3.11) can then be solved. From boundary conditions

qI(t = 0) = (xI, yI) and qF(t = T) = (xF, yF), we obtain

x(t) = �yI sin(✏0t+ ✏1⌘
⇤
t) + xI cos(✏0t+ ✏1⌘

⇤
t), (3.12a)

y(t) = +yI cos(✏0t+ ✏1⌘
⇤
t) + xI sin(✏0t+ ✏1⌘

⇤
t), (3.12b)

⌘
⇤ =


arccos

✓
xIxF + yIyF

x
2
I
+ y

2
I

◆
� ✏0T

�
/✏1T . (3.12c)

3.1.4 The Most Likely Path for Qubit State Preparation with

Rabi Oscillation (� 6= 0)

Here, we extend the analysis to the qubit with an external Rabi drive in x-axis, whereas

pure dephasing is caused by longitudinal noise that couples to the qubit via the z-axis.

The qubit unitary evolution is described by the Hamiltonian Eq. (2.3)

Expanding ⇢t+�t = e
�iĤ(t)�t

⇢te
iĤ(t)�t to first order in �t, and expressing it in Bloch
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sphere coordinates, we get the updated state equations:

xk+1 = xk � (✏0yk + ✏1⌘kyk)�t, (3.13a)

yk+1 = yk + (✏0xk + ✏1⌘kxk +�zk)�t, (3.13b)

zk+1 = zk ��yk�t. (3.13c)

These equations of motion in three dimensions, rotate a state around z-axis of Bloch

sphere coordinate with frequency ✏0 + ✏1⌘, and rotate around x-axis with frequency �.

Substitute the updated state equations into the action of qubit state preparation Eq.

(3.4). The explicit form of action for the qubit state preparation with Rabi drive (� 6= 0)

is

S =� p
x

�1(x0 � xI)� p
x

n
(xn � xF)� p

y

�1(y0 � yI)� p
y

n
(yn � yF)� p

z

�1(z0 � zI)

� p
z

n
(zn � zF) +

n�1X

k=0

⇢
� p

x

k
(xk+1 � xk + (✏0yk + ✏1⌘kyk)�t)� p

y

k
(yk+1

� yk � (✏0xk + ✏1⌘kxk +�zk)�t)� p
z

k
(zk+1 � zk +�yk�t)�

⌘
2
k
�t

2

�
.

(3.14)

Extremizing this action over all variables (k = 0, ..., n� 1)

@S

@pk

= 0,
@S

@qk

= 0,
@S

@⌘k
= 0 (3.15)

and taking the time-continuum limit, we obtain the set of the ordinary di↵erential equation

and constraint for the most likely path,

ẋ = �✏0y � ✏1⌘y, (3.16a)

ẏ = +✏0x+ ✏1⌘x+�z, (3.16b)

ż = ��y, (3.16c)

ṗ
x = �✏0p

y
� ✏1⌘p

y
, (3.16d)

ṗ
y = +✏0p

x + ✏1⌘p
x
, (3.16e)

ṗ
z = ��p

y
��p

z
, (3.16f)

⌘ = �✏1p
x
y + ✏1p

y
x. (3.16g)

18



The most likely path of qubit state preparation with Rabi drive can be solved numercially

(see Fig. (3.1)). To verify the most likely path, we numerically simulate qubit state

trajectories using odeint (Scipy, Python library). Starting with an initial state qI =

(xI, yI, zI), a random outcome ⌘0 is drawn from a distribution of Gaussian white noise,

and the next state q1 is computed from the update state equation Eq. (3.13). Repeating

this computation from t0 = 0 to tn = T with time step �t produces a single stochastic

trajectory for q.

Figure 3.1: The most likely paths (Magenta lines) from solving Eq. (3.16) numerically, the

simulated quantum trajectories (Gray lines), the post-selected mean path (Red line). Here, we

set the qubit energy ✏0 = 0.1, the strength of the dephasing noise ✏1 = 2.5, the initial state

qI = (0, 0,�1), the desired target state qF = (0.01, 0.1,�0.9), �t = 0.01, and the total time

duration T = 1.2.

3.2 Optimal Rabi Drive for Qubit State Preparation

The ability to extract the most likely path from noisy quantum trajectories o↵ers a new

approach to controlling open quantum systems. In this work, we propose an optimal-

control scheme for qubit preparation based on the most-likely path (MLP) approach [8].

Using the MLP approach, which concerns the representative path most likely to occur,

we study a quantum control problem of a single-qubit state preparation in the presence

of a dephasing noise, where the control is the Rabi drive.
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By extremizing the action of qubit state preparation in Eq. (3.5) reproduces the

Lagrange multiplier method, an optimization strategy that accommodates constraints.

Therefore, the optimized function is the last term of action Eq. (3.4 ) that is
P

n�1
k=0 [�

⌘
2
k�t

2 ]

where the other terms are constraints. The most likely path is a path that optimizes the

log-likelihood of quantum trajectory. The Rabi drive is the ability to control the laser

pulse that induces the Rabi oscillation in an experiment. Now, let us constrain the Rabi

drive at all time steps in order to find the Rabi drive that produces the Most Likely Path.

The updated state equations are,

xk+1 = xk � (✏0yk + ✏1⌘kyk)�kt, (3.17a)

yk+1 = yk + (✏0xk + ✏1⌘kxk +�kzk)�kt, (3.17b)

zk+1 = zk ��kyk�t. (3.17c)

Now, the situation changes. The Rabi oscillation (�) plays significant role as the param-

eter in the action,

S =� p
x

�1(x0 � xI)� p
x

n
(xn � xF )� p

y

�1(y0 � yI)� p
y

n
(yn � yF )� p

z

�1(z0 � zI)

� p
z

n
(zn � zF ) +

n�1X

k=0

⇢
� p

x

k
(xk+1 � xk + (✏0yk + ✏1⌘kyk)�t)� p

y

k
(yk+1

� yk � (✏0xk + ✏1⌘kxk +�kzk)�t)� p
z

k
(zk+1 � zk +�kyk�t)�

⌘
2
k
�t

2

�
.

(3.18)

Extremizing this action over all variables at all time steps (k = 0, ..., n� 1),

@S

@pk

= 0,
@S

@qk

= 0,
@S

@⌘k
= 0, and

@S

@�k

= 0 (3.19)

In the time-continuum limit, we obtain the 6 ordinary di↵erential equations and 2 con-
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straints for describing the most likely path,

ẋ = �✏0y � ✏1⌘y, (3.20a)

ẏ = +✏0x+ ✏1⌘x+�z, (3.20b)

ż = ��y, (3.20c)

ṗ
x = �✏0p

y
� ✏1⌘p

y
, (3.20d)

ṗ
y = +✏0p

x + ✏1⌘p
x +�p

z
, (3.20e)

ṗ
z = ��p

y
, (3.20f)

⌘ = �✏1p
x
y + ✏1p

y
x, (3.20g)

p
y
z = p

z
y. (3.20h)

Consider the second derivative of Eq. (3.20h). Such consideration results in the canonical

relation between conjugated variables and components of the Bloch sphere vector, i.e,

p
y
z = p

z
y, pxz = p

z
x and p

x
y = p

y
x. It means the optimal Rabi drive for qubit state

preparation is the path with zero noise realization, ⌘ = 0. This reduces the number of 6

ODEs and 2 constraints to only 3 ODEs. The Rabi drive and the total time duration in

analytical forms in terms of the initial state qI and desired target state qF (see appendix

A.3 for more details).

Optimal rabi drive

� MLP
op = sgn [xFy F]

✓
zI � zF

xF

◆
✏0, (3.21a)

Optimal total time duration

T
MLP

op = arccos


1�

x
2
F(1 + (�/✏0)2)

(z2I � z Iz F)

�
/

q
�2 + ✏

2
0. (3.21b)
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Chapter 4

Evaluation, Analysis and Comparisons

In this chapter, we will analyse the performance of the optimal control from the MLP

approach in Eq. (3.21a) and (3.21b). We also compare the distribution of the final states

with arbitrary controls and optimal controls from the MP approach. The success of control

from MLP approach is shown in Fig. (4.1). In Fig. (4.1a), the optimal Rabi drive and

(a) (b)

Figure 4.1: An example where we control qubit state by the optimal Rabi drive �
MLP
op =

�2.29 and optimal total duration time T
MLP
op = 1.08. (a) Bloch sphere representation of

the desired target state (Magenta cross), the initial state (Magenta point), the quantum tra-

jectories (Gray lines), and the average path (Multi colored line) which color determines the

purity of quantum state, (b) the quantum trajectories (Gray lines) in x component of Bloch

sphere with the distribution of final states, the mean path (Magenta line), and the most likely

path (Cyan line). Here, we set the qubit energy ✏0 = �1, the strength of the dephasing noise

✏1 = 0.40 initial state qI = (0, 0,�1), and the desired target state qF = (0.7, 0.39, 0.6). We

obtain the high average fidelity F ⇡ 0.97.
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the optimal total time duration yield the high fidelity (F ⇠ 0.97) connecting the initial

state to the desired target state, and the final state distribution concentrates around the

desired target state in Fig. (4.1b). We also note that the time scale for controlling qubit

state preparation around microseconds (T ⇠ µs). In Fig. (4.2), we show that the success

of control qubit state with high fidelity by using the optimal Rabi drive and optimal

total time duration. The gray line represents noisy quantum state trajectories, while the

average path (Multi colored line) represents the purity of the quantum state. The figure

shows that the optimal Rabi drive and optimal total time duration produce higher final

state purity (P ⇠ 0.95) and fidelity (F ⇠ 0.96) than arbitrary controls, i.e., the final state

purity (P < 0.93) and the fidelity (F < 0.96).

Figure 4.2: The comparison of quantum trajectories and the fidelity between using arbitrary

controls and optimal control form the most likely path in Bloch sphere representation of the

desired target state (Magenta cross), the initial state (Magenta point), the quantum trajecto-

ries (Gray lines) and the average path (Multi colored line) which colour determines the purity

of quantum state. In the figure on the left, we set the arbitrary control Rabi drive � = 1, the

total time duration T = 2, then we obtain the bad fidelity F = 0.37. In the figure on the

center, we set the arbitrary control Rabi drive � = 2, the total time duration T = 1, then

we obtain the bad fidelity F = 0.52. In the figure on the right, we set the optimal control

Rabi drive from the most likely path � = �2.37, the total time duration T = 1.22, then we

obtain the good fidelity F = 0.96. Here, we set the qubit energy ✏0 = �0.5, the strength of

the dephasing noise ✏1 = 0.5, the initial state qI = (0, 0,�1), and the desired target state

qF = (0.4, 0.17, 0.9).
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Using the arbitrary control and optimal MLP control in spherical coordinate as shown

in Fig. (4.3), we compare the distribution of the final state around the desired target state.

We also show that the optimal Rabi drive and total time duration from the most likely

path result in a final state distribution that is concentrated on the desired target state.

This feature is to be contrasted with the spread out of final quantum states generated

from an arbitrary control.

Figure 4.3: The comparison of final state distribution between using arbitrary controls and

optimal control from the most likely path in spherical coordinate, the desired target state

(Magenta cross), each final state (Black points). In the figure on the left, we set the arbitrary

control Rabi drive � = 1, the total duration time T = 6, then we obtain the spread out of

final states and do not concentrate around the target state. In the figure on the center, we

set the arbitrary control Rabi drive � = 8, the total time duration T = 5, then we obtain

the spread out of final states and away from the target state. In the figure on the right, we

set the optimal control Rabi drive from the most likely path � = �1.11, the total time dura-

tion T = 1.68, then we obtain the final states concentrate around the target state. Here, we

set the qubit energy ✏0 = �1, the strength of the dephasing noise ✏1 = 0.3, the initial state

(�, ✓)I = (0,⇡), and the desired target state (�, ✓)F = (0.14⇡, 0.5⇡).
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Figure 4.4: An example of the prediction of the Rabi drive from the most likely path, i.e.,

�
MLP
op = 0.67 (Cyan), that does not coincide with the optimal Rabi drive from the mean

path �
MP
op = 1.1 (Magenta). We use a numerical search with the Lindblad master equation

Eq. (2.7) to find the optimal Rabi drive from the mean path by minimizing the trace distance

(Red). Here, we set the qubit energy ✏0 = 1, the strength of the dephasing noise ✏1 = 2, the

initial state qI = (0, 0,�1), and the desired target state qF = (0.3,�0.52,�0.8).

Since the final state distribution as seen in Fig. (4.5 b) does not concentrate around

the target state, it is possible that the most likely path approach is a better method to

represent the ensemble of quantum trajectories than the traditional mean path (Lindblad)

approach. In Fig. (4.4), we use the Lindblad master equation Eq. (2.7) to find the Rabi

drive that minimizes the trace distance Eq. (2.13). We obtain a distribution of final

states that do not cluster around the target state, as seen in Fig. (4.5 a) and Fig. (4.5 b),

generated with the optimal Rabi drive from the mean path approach. However, as shown

in Fig. (4.5 c) and Fig. (4.5 d), the Rabi drive from the most likely path approach leads

to the distribution of the final states that better concentrates around the target state.

25



(a) (b)

(c) (d)

Figure 4.5: The trajectory results (x-component of the qubit) using the optimal Rabi drive

from the mean path (numerical search for the minimized trace distance using the Lindblad

master equation) and the most likely path (Analytic solution). (a) The quantum trajecto-

ries generated with the optimal Rabi drive from the mean path (Gray lines), the target state

(Magenta cross), and the mean path (Magenta line). (b) The distribution of the final states

of (a), which does not concentrate around the target state (Black line) or the final state of

the mean path (Magenta line). (c) The quantum trajectories generated with the optimal Rabi

drive from the most likely path (Gray lines), the most likely path (Cyan), the target state

(Magenta cross), and the mean path (Magenta line). (d) The distribution of the final state of

(c) perfectly concentrated around the target state (Black line). Here, we set the qubit energy

✏0 = 1.00, the strength of the dephasing noise is ✏1 = 2, the initial state qI = (0, 0,�1), the

desired target state qF = (0.3,�0.52,�0.8), and the total time duration T = 1.

It is interesting to note that when the qubit has rotational symmetry around the z-

axis, the most likely path and mean path approaches yield completely di↵erent optimal

Rabi drives. There are more than one the Rabi drive that can provide the maximum

fidelity. In Fig. (4.6), a numerical search for the optimal Rabi drive using the mean path
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approach yields the optimal Rabi drive to be � MP
op = 3.04, whereas the optimal Rabi drive

from the most likely path approach is � MLP
op = �1.4. The average fidelity of the final

state from the most likely path approach is F ⇠ 0.974, while the average fidelity from

the mean path approach is F ⇠ 0.975. The average fidelity of the mean path approach

is slightly higher. However, when we look at the actual distribution of the final state in

Fig. (4.7), both in the Bloch sphere and spherical coordinates, we find that the mean

path control leads to the final states that do not concentrate around the target state as

shown in Fig. (4.7 b,d). This means that the higher average fidelity does not mean high

success in reaching the target state. As shown in Fig. (4.7 a,c), the most likely path is

more suitable to represent the quantum trajectories and also o↵er better control.

Figure 4.6: An example of the prediction of the optimal Rabi drive from the most likely path,

�
MLP
op = �1.4 (Cyan line), that does not coincide with the optimal Rabi drive from the mean

path. We perform a numerical search by using the Lindblad master equation Eq. (2.7) and

maximizes the fidelity (Black line), giving the optimal Rabi drive from the mean path �
MP
op =

3.04 (Magenta line). The average fidelity of the most likely path approach is F ⇠ 0.974, while
the average fidelity of the mean path approach is F ⇠ 0.975. Here, we set the qubit energy

✏0 = �0.1, the strength of the dephasing noise ✏1 = 0.35, the initial state qI = (0, 0,�1), and

the desired target state qF = (0.1, 0.9, 0.4).
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(a) (b)

(c) (d)

Figure 4.7: The results of distribution of final states in the spherical coordinate, controlled by

the optimal Rabi drive from the most likely path and the mean path approaches. The optimal

Rabi drive from the most likely path is �
MLP
op = �1.40 with the optimal total time duration

T
MLP
op = 1.40, while the optimal Rabi drive from the mean path is �

MP
op = 3.04. (a) and

(b) show the quantum trajectories (Gray lines), the most likely path (Magenta line), and the

mean path (Cyan line), where the distribution of the final states are attached on the right side

of the figure. The optimal Rabi drive from the most likely path is used in (a), while the opti-

mal Rabi drive from the mean path is used in (b). (c) and (d) show the distribution of final

states of (a) and (b) in the spherical coordinate respectively. Here, we set the qubit energy

✏0 = �0.1, the strength of the dephasing noise ✏1 = 0.35, the initial state qI = (0, 0,�1), and

the desired target state qF = (0.1, 0.9, 0.4).
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We finally show some results where the most likely path the mean path approaches

give similar optimal Rabi drives. In Fig. (4.8), we show that the two approaches are only

slightly di↵erent. In Fig. (4.8 a), we set ✏0 > ✏1 and in Fig. (4.8 b), we consider in the

situation of high noise strength ✏1 > ✏0. In both cases, the optimal Rabi drive from both

approaches lead to averaged high fidelity to the target state.

(a) (b)

Figure 4.8: The comparison between the most likely path and the mean path approaches in

maximizing the average fidelity to the target state. The distance measures are trace distance

(Red) and the average fidelity (Black). The smooth line is the average distance measure of

final states, and the dot-dashed line is obtained from the mean path. The vertical dashed

lines show the optimal Rabi drive from the most likely path (Cyan dot-dashed line) and the

mean path (Magenta dot-dashed line). (a) The optimal Rabi drive from the most likely path

is �
MLP
op = 1.20, whereas the optimal Rabi drive from the mean path is �

MP
op = 0.94, set-

ting the qubit energy ✏0 = 3, the strength of the dephasing noise ✏1 = 2, the initial state

qI = (0, 0,�1), and the desired target state qF = (0.5,�0.33,�0.8). (b) The optimal Rabi

drive from the most likely path is �
MLP
op = �1.11, whereas the optimal Rabi drive from the

mean path is �
MP
op = �1.32, setting the qubit energy ✏0 = �1, the strength of the dephasing

noise ✏1 = 3, the initial state qI = (0, 0,�1), and the desired target state qF = (0.9, 0.44, 0).
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Chapter 5

Conclusions

We study the ability to control a quantum state in the presence of environmental noises.

In some situations, the standard method for describing the open quantum system is the

Lindblad master equation; however, the mean path approach can not always faithfully

represent the path of the ensemble of quantum trajectories. The distribution of the final

states from the mean path approach may not concentrate around the desired target state,

leading us to investigate an alternative means via the most likely path to represent the

dynamics of an open quantum system. The other disadvantage of the mean path approach

is that to obtain the optimal control by Lindblad master equation (Chapter 2), we can

only at best numerically search for optimal control that yields the maximum average

fidelity. No analytic methods exist.

We have presented an alternative approach to compute optimal dynamics to control

open quantum system via the most likely path, focusing on the qubit state preparation in

the presence of dephasing noise problem (In chapter 3). Namely, we study MLP-approach

to control the two-level system under noise influenced to evolve the initial state to desired

target state with high fidelity. We have modified the stochastic path integral technique for

qubit state preparation, given fixed initial and final states. We obtained the most likely

path of the quantum trajectories by extremizing the action in stochastic path integral.

The advantage of an approach is that we can obtain analytic solutions for qubit state
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preparation without Rabi drive (� = 0). We have also derived a set of ordinary di↵erential

equations that describes the most likely path in qubit state preparation without Rabi drive

(� 6= 0). In the last of Chapter 3, we derived the analytic solution for optimal Rabi drive

and time duration control. In particular, we can control the qubit state preparation by

using the optimal Rabi drive and time duration, which yields the most likely path to the

desired target state. We have also shown the advantage of our approach by comparing

the fidelity of optimal Rabi drive and arbitrary control schemes.

In Chapter 4, we show the prime example of the optimal Rabi drive from the tradi-

tional method, Lindblad master equation, searching for the optimal Rabi drive to control

is totally di↵erent from the optimal Rabi drive from the most likely path analytical solu-

tion. The Rabi drive from the most likely path generates the quantum trajectories that

concentrate around the target state and also show the distribution of the final state in

the spherical coordinate. The final states from the most likely path approach less spread

out than the mean path approach. Moreover, the open quantum system can be extended

to more complicated and realistic systems which we hope to explore in the future, such

as multiple qubits, ine�cient measurement and coloured noise.
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Appendix A

Derivation

A.1 Ito Stochastic di↵erential equations to Lindblad

master equation

Recall the Hamiltonian

H = (✏0 + ✏1⌘)�z/2���x/2. (A.1)

The dynamic of density matrix is

⇢t+dt = U⇢tU
†
. (A.2)

By making use the unitary operater U = exp(�iH�t) and the Bloch sphere components

qi = Tr(⇢�i)

exp(i✓v̂ · ~�) = cos(✓)I+ i sin(✓)(v̂ · ~�). (A.3)

Let ✏ = ✏0 + ✏1⌘, ✓ = (��t)(
p
(�2/4 + ✏2/4)), vx = ��/2

(
p

(�2/4+✏2/4)
, and vz = (✏0+✏1⌘)/2p

(�2/4+✏2/4)
.

Eq. (A.2) can be rewritten as

⇢t+�t = ⇢t + i sin(✓) cos(✓)(vx[�x, ⇢t] + vz[�z, ⇢t])

+ sin2(✓){vxvz(�z⇢t�x + �x⇢t�z) + v
2
x
�x⇢t�x + v

2
z
�z⇢t�z � ⇢t}.

(A.4)
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In Bloch sphere coordinates,

xt+�t = xt +
yt✏ sin ✓ cos ✓p
(�2/4 + ✏2/4)

+
sin2

✓

�2/4 + ✏2/4
{�

zt�✏

2
�

xt✏
2

2
}, (A.5a)

yt+�t = yt �
(xt✏+ zt�) sin ✓ cos ✓p

(�2/4 + ✏2/4)
+

sin2
✓

�2/4 + ✏2/4
{�

yt�2

2
�

yt✏
2

2
}, (A.5b)

zt+�t = zt +
yt� sin ✓ cos ✓p
(�2/4 + ✏2/4)

+
sin2

✓

�2/4 + ✏2/4
{�

xt�✏

2
�

zt�2

2
}. (A.5c)

The Lindblad master equation (2.7) is obtained by applying the Ito rule, ⌘2�t2 ⇠ �t,

�t
2 = 0, and averaging over noise realization h⌘i = 0.

A.2 The analytical solution of the most likely path

in state preparation without without Rabi

oscillation (� = 0)

Firstly, take derivative respect to time Eq. (3.11e).

⌘̇ = �✏1(ṗ
x
y + ẏp

x
� ṗ

y
x� ẋp

y),

⌘̇ = �✏1(�✏0p
y
y � ✏1⌘p

y
y + ✏0p

x
x+ ✏1⌘xp

x
� ✏0p

x
x

� ✏1⌘p
x
x+ ✏0yp

y + ✏1⌘yp
y).

(A.6)

Thus, we get

⌘̇ = 0, (A.7)

Then, we can solve the most likely path analytically. For convenient let ✏ = ✏0 + ✏1⌘.

Solving the ODEs for the trajectory solution

d

dt

0

B@
x

y

1

CA =

0

B@
0 �✏

+✏ 0

1

CA

0

B@
x

y

1

CA , (A.8)

The trial solution is (x, y) = (A,B)e�t

�

0

B@
A

B

1

CA =

0

B@
0 �✏

+✏ 0

1

CA

0

B@
A

B

1

CA , (A.9)
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So the eigenvalue problem is


�

0

B@
1 0

0 1

1

CA�

0

B@
0 �✏

+✏ 0

1

CA
�
0

B@
A

B

1

CA = 0, (A.10)

�������

� ✏

�✏ �

�������
= 0, (A.11)

� = ±i✏, (A.12)

When � = i✏, 0

B@
i✏ ✏

�✏ i✏

1

CA

0

B@
A

B

1

CA = 0, (A.13)

0

B@
A

B

1

CA = c1

0

B@
�1

i

1

CA , (A.14)

When � = �i✏, 0

B@
�i✏ ✏

�✏ �i✏

1

CA

0

B@
A

B

1

CA = 0, (A.15)

0

B@
A

B

1

CA = c2

0

B@
i

�1

1

CA , (A.16)

The general solution is
0

B@
x

y

1

CA = c1

0

B@
�1

i

1

CA e
i✏t + c2

0

B@
1

i

1

CA e
�i✏t

. (A.17)

By introducing c3 = i(c1 + c2), and c4 = c1 � c2, we obtian the general solution

0

B@
x

y

1

CA = c3

0

B@
� sin(✏t)

cos(✏t)

1

CA+ c4

0

B@
� cos(✏t)

� sin(✏t)

1

CA . (A.18)
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A.3 Rabi drive and total time duration control

Consider derivative of Eq. (3.20h) and let ✏ ⌘ ✏0 + ✏1⌘.

ṗ
y
z + żp

y = ṗ
z
y + ẏp

z
, (A.19a)

(✏px +�p
z)z +��yp

y = ��p
y
y + (✏x+�z)pz, (A.19b)

p
x
z = p

z
x. (A.19c)

Again, consider derivative of Eq. (A.19c)

ṗ
x
z + żp

x = ṗ
z
x+ ẋp

z
, (A.20a)

(�✏p
y)z +��yp

x = ��p
y
x+ (�✏y)pz, (A.20b)

p
x
y = p

y
x. (A.20c)

Substitute Eq. (A.20c) into Eq. (3.20g) we obtain

⌘ = 0. (A.21)

Lead to

ẋ = �✏0y, (A.22a)

ẏ = +✏0x+�z, (A.22b)

ż = ��y. (A.22c)

We obtain the general solution

x = c4
✏0

�
cos(!t) + c5

✏0

�
sin(!t)� c1

�

✏0
, (A.23a)

y = �c5
!

�
cos(!t) + c4

!

�
sin(!t), (A.23b)

z = c4 cos(!t) + c5 sin(!t) + c1, (A.23c)

! =
q

�2 + ✏
2
0, (A.23d)
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where c1 = (✏20zI � ✏0�xI)/!2, c4 = (�2
zI + ✏0�xI)/!2, c5 = �yI(�)/!. Apply the initial

condition (xI, yI, zI) = (0, 0,�1), we obtain

x =
�✏o�

!2
cos(!t) +

✏o�

!2
, (A.24a)

y = �
�

!
sin(!t), (A.24b)

z = �
�2

!2
cos(!t)�

✏
2
0

!2
, (A.24c)

! =
q

�2 + ✏
2
0. (A.24d)

Let consider in the final time of controlled state (xF , yF , zF ). Let multiply xF by � and

multiply zF by ✏0. We then obtain the Rabi drive,

� = ✏0
zF + 1

xF
. (A.25)

And we obtain the total time duration from xF ,

T =
1

!
arccos(1�

xF!
2

✏0�
). (A.26)

Assume that we can choose the sign of ✏0. From the arccos is a periodic function then we

can select the shortest time by changing the sign of ✏0. Sign of ✏0 depend on the octant in

three dimensions. If we desire the final state in octant (+,�,±) and (�,+,±). Then, we

use the positive sign of ✏0. In contrast, the final state in octant (+,+,±) and (�,�,±).

Then, we use the minus sign of ✏0. Lead to

✏0 ! �
xFyF

|xFyF|
✏0, (A.27a)

✏0 = �sgn[xFyF ]. (A.27b)

We should also mention that the Rabi drive and total time duration, in general, will write

in any initial conditions,

� = sgn[xFyF ]
zI � zF

xF � xI
, (A.28a)

T =
1

!
arccos(

�!xFc4 ��✏0yFc5 + c1c4�2
!/✏0

✏0!(c24 + c
2
5)

). (A.28b)
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Appendix B

Distance measure

Distance measures must be considered when comparing the similarities of the post-selected

and controlled states. The trace distance and fidelity are measurements of how close two

quantum states are to each other. The trace distance for a qubit is half of the Eucildean

distance, 0  D  1 which mean the best possible is D = 0 when the final and target

state are the same position on Bloch sphere. The fidelity is the projection of the final

state onto the target state, 0  F  1 which mean the best possible is F = 1 when

the final and target state are the same state in Hilbert space. We can write them in the

form of Bloch sphere coordinates, the target state r = (x1, y1, z1) and the controlled state

s = (x2, y2, z2).

B.1 Trace distance

The trace distance between the quantum states ⇢ and � is given by

D(⇢, �) =
1

2
Tr|⇢� �|, (B.1)

For Geometric view (Bloch’s sphere) Let ⇢ = I+r·�
2 and � = I+s·�

2 . We obtain

D(⇢, �) =
1

2
Tr|⇢� �| =

1

4
Tr|(r � s) · �|. (B.2)

40



The matrix |(r � s) · �| has eigenvalues ±|(r � s)| so that

D(⇢, �) =
1

2
|r � s|. (B.3)

Note that the distance between points in Eucildean space, Rn, is d(r, s) =
pP

n

i=1 |ri � si|
2 =

|r � s|. Thus, the trace distance for qubits is half of the Eucildean distance in R3.

D(⇢, �) =
1

2

p
(x1 � x2)2 + (y1 � y2)2 + (z1 � z2)2. (B.4)

B.2 Fidelity

The fidelity of state ⇢ and � is defined as

F (⇢, �) = [Tr(
p
⇢1/2�⇢1/2)]2. (B.5)

It is possible to obtain simpler formulae for F . These was given by Hubner. Consider M

be Hermitian matrix with positive eigenvalues �1,�2.

Tr(
p

M) =
p
�1 +

p
�2. (B.6)

(Tr(
p

M))2 = �1 + �2 + 2
p

�1

p
�2 = Tr(M) + 2

p

detM. (B.7)

Taking,

M = ⇢
1/2

�⇢
1/2

. (B.8)

We get,

Tr(M) = Tr(⇢�), detM = det ⇢ det �. (B.9)

Then,

F (⇢, �) = Tr(⇢�) + 2 det ⇢ det �. (B.10)

We get the following the result, if at least one of them is pure state (the determinant of

pure state is zero),

F (⇢, �) = Tr(⇢�). (B.11)
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For Geometric view (Bloch sphere). Let ⇢ = I+r·�
2 and � = I+s·�

2 . We obtain,

F (⇢, �) =
1

2
(1 + x1x2 + y1y2 + z1z2). (B.12)
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