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Abstract

The defect on Fc gamma receptor lIb (FcYRIlb), the only inhibitory FCYR, has been
identified as one of the genetic factors increasing susceptibility to lupus. The prevalence of
Helicobacter pylori (HP) and FcYRIIb dysfunction-polymorphisms are high among Asians, and their
co-existence is possible. Unfortunately, the influence of HP against lupus progression in patients
with lupus is still controversial. In this study, the interactions between these conditions were tested
with HP infection in 24-week-old FcYRIIb—/— mice (symptomatic lupus). HP induced failure to
thrive, increased stomach bacterial burdens and stomach injury (histology and cytokines) in both
wild type and FcYRIIb=—/= mice. While the severity of HP infection, as determined by these
parameters, was not different between both strains, antibodies production (anti-HP, anti-dsDNA and
serum gammaglobulin) were higher in FCYRIIb—/— mice compared to wild type. Accordingly, HP
infection also accelerated the severity of lupus as determined by proteinuria, serum creatinine,
serum cytokines, renal histology, and renal immune complex deposition. Although HP increased
serum cytokines in both wild type and FcYRIIb=/= mice, the levels were higher in FCYRIlb=/=
mice. As such, HP also increased spleen weight and induced several splenic immune cells
responsible for antibody productions (activated B cell, plasma cell and follicular helper T cell) in
FCYRIIb=/= mice, but not in wild type. These data describe the different systemic responses
against localized HP infection from diverse host genetic background. In conclusion, the mutual
interactions between HP and lupus manifestations of FCYRIIb=/—mice were demonstrated in this
study. With the prominent immune responses from the loss of inhibitory signaling in FCYRIIb=/=
mice, HP infection in these mice induced intense chronic inflammation, increased antibody
production, and enhanced lupus severity. Thus, the increased systemic inflammatory responses
due to localized HP inducing gastritis in some patients with lupus may enhance lupus progression.

More studies are needed
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dautlsznauiaidiag
uNUI (Introduction)

Helicobacter pylori (HP), microaerophilic, spiral-shaped gram negative bacteria, are
organisms that can survive in the highly acidic stomach environment, and are known to cause
chronic gastric inflammation and cancer (Mahachai et al., 2016). The infection is very common
among Asians, with a prevalence rate of up to 50-80% in some countries (Thirumurthi and Graham,
2012; Xie and Lu, 2015). Interestingly, eradication of HP in some patients with associated
autoimmune diseases leads to long-term remission of the autoimmune disease (Fujimura et al.,
2005; Kuwana, 2014). Moreover, HP infection down regulates the expression of Fc gamma receptor
llb (FCYRIIb), the only inhibitory FCYR (Bolland and Ravetch, 2000) on circulating monocyte of
patients with autoimmune diseases (Asahi et al., 2008; Wu et al., 2012). As FcY receptors (FCYR) is
the immunoglobulin superfamily that contributes to the protective functions, in part, by inducing
phagocytosis of opsonized microbes, loss of the inhibitory FCYR results in effective organism
control but enhances the risk of autoimmune diseases (Ravetch and Bolland, 2001). Although HP
infection has shown a protective effect on the development of lupus in a case control study,
especially among African-American patients, the relationship of lupus-HP is still intriguing (Sawalha
et al., 2004; Hasni et al., 2011). Inadvertently, FCYRIIb dysfunction polymorphisms are common in

Asia (Chu et al., 2004), partially due to the genetic pressure from malarial infection (Clatworthy et
al., 2007). Although FcYRIlb dysfunction protects against malaria, the insufficient inhibitory
signaling increases the risk of autoimmune activation. Indeed, the association between FcYRIIb
polymorphisms and systemic lupus erythematous (lupus) in patients has been reported (Tsuchiya
and Kyogoku, 2005). Both FcYRIIb dysfunction polymorphisms and HP infection are common in the
Asian population (Smith and Clatworthy, 2010; Hooi et al., 2017). While FcYRIIb loss-of-function is
associated with lupus (Siriboonrit et al., 2003; Tsuchiya and Kyogoku, 2005; Jakes et al., 2012), HP
infection has been associated with other autoimmune diseases such as immune thrombocytopenic

purpura and membranous nephropathy (Hasni et al., 2011). As chronic inflammation accelerates
lupus (Hasni et al., 2011) and the co-existence of FCYRIIb dysfunction polymorphisms with HP

infection are possible, information on the responses of FCcYRIIb=/= mice to of HP infection in



patients with lupus. Thus this study tested HP infection in FCYRIIb™/= condition, in vivo and in

vitro.

\fiadas (Materials and Methods)
Animal and animal model

FCYRIIb=/= mice on C57BL/6 background were kindly provided by Dr. Silvia Bolland
(NIAID, NIH, Maryland, United States). Wild type female C57BL/6 mice were purchased from the
National Laboratory Animal Center in Nakhon Pathom Province, Thailand. The animal protocols, as
per NIH criteria, were approved by the Faculty of Medicine, Chulalongkorn University. Due to lupus
manifestations’ age-dependency, female symptomatic lupus (24-week-old with kidney injury) mice
or age-matched wild-type control groups were used. Serum samples were collected through tail-
vein nicking and through cardiac puncture at sacrifice for time-course analysis. Mice were
sacrificed with cardiac puncture under isoflurane anesthesia and internal organs were collected,
fixed in 10% formalin and embedded in paraffin. Staining in 4-mm sections with haematoxylin and

eosin color (H&E) were used for further evaluation.

Helicobacter pylori Administration Model

HP ATCC 43504 (ATCC, Manassas, VA, United States) was cultured on supplemented
Columbia agar (Oxoid, Hampshire, United Kingdom) under microaerophilic conditions (6-12% 02,
5-8% CO2) at 37°C for 48 h before use. The mouse model for HP infection was modified from a
previous study (Konturek et al., 1999). Briefly, HP at 2 x 109 CFU/ml in 0.5 ml or phosphate buffer
solution (PBS) control were orally administered twice daily for 2 weeks and once daily 3 weeks after.
Mice were sacrificed at 1 week after the last administration of HP. Mouse blood was centrifuged
and serum was kept at —80°C until analysis. Stomach was divided longitudinally through the
greater and lesser curvature into several parts, washed with PBS, weighed and used to test HP
burdens (i) by urease test, polymerase chain reaction (PCR) and direct culture, (i), histopathology

(fixed in 10% formaldehyde) and (iii) cytokine analysis from gastric tissue.



Urease Test, a Semi-Quantitative Analysis of Gastric Helicobacter pylori Burden

The principle of urease test is based on HP’s urease enzyme production (Midolo and
Marshall, 2000). Urease enzyme splits urea metabolites into ammonia and carbon dioxide, and
ammonia alkalinizes the culture media (the media color turns from yellow to pink). The stomach
specimens (one-fourth of the total stomach tissue; 50 mg) were minced and directly put onto urea
agar slant, and incubated at 37°C. The media color was observed at 24 h after incubation. As the
color media alteration starts from the top to the bottom (Figure 3), the ratio of the pink color to the

total depth of the media was used as a semi-quantitative measurement of HP burden.

Polymerase Chain Reaction (PCR), a Quantitative Analysis of Gastric Helicobacter pylori Burden
Quantitative real-time PCR of HP from gastric tissue were performed as previously
described (He et al., 2002). In short, genomic DNA was extracted by High Pure PCR Template
Preparation Kit (Roche, United States), and quantified by spectrophotometry (NanoDropTM,
Thermo Fisher Scientific, United States). The primers of UREC gene-fragment were HPFOR (50-
TTATCGGTAAAGACACCAGAAA -30) and HP-REV (50- ATCACAGCGCATGTCTTC -30). The
amplification product was 132 bp and the genome size of HP ATCC 43504 (also designated HP
CCUG 17874) was 1,615,763 bp (Clancy et al., 2012). Bacterial genome is approximately 1.06 x
109 g/mol and contains 6.02 x 1023 molecules/mol. One bacterium corresponds to 1.8 fg of DNA.
The constructive of standard curve was created by the Light Cycler software using 10-fold serial
dilution (3.6 fg-360 pg) per 5 ml of HP DNA, with bacterial concentrations ranging from of 2 to 2 x
105 bacteria. The profiling standard curve was indicated as a graph of crossing point (Cp) vs.
bacterial number (CFUs). HP quantification was calculated by the standard curve and shown in

bacterial number (CFUSs).

Direct Culture, a Quantitative Analysis of Gastric Helicobacter pylori Burden
As an additional method, burdens of HP from gastric tissue were performed in a selective
media (Skene et al., 2007). In brief, gastric samples were weighed, homogenized in 1 ml PBS and

serially plated onto the supplemented Columbia agar (Oxoid, Hampshire, United Kingdom) with 10
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mg/l vancomycin, 5 mg/l amphotericin B under microaerophilic conditions at 37°C for 48 h before

bacterial enumeration.

Stomach Histology and Anti-Helicobacter pylori Antibody

Inflammatory response in stomach was scored by 2 blinded observers according to the
Sydney Scoring System at 200 x magnification in 10 randomly selected fields of each sample
(Dixon et al., 1996). The scoring system was determined by leukocyte mucosal infiltration with the
following criteria; Score 0, normal; Score 1, mild; Score 2, moderate; Score 3 marked
histopathological changes. In addition, serum anti-H. pylori IgG antibody (anti-HP) was measured

by ELISA (My BioSource Inc, SanDiego, CA, United States).

Cytokines Measurements in Gastric Tissues and Serum

Cytokine in gastric tissue was measured using the same method as in a previous
publication (Ferrero et al., 2008). Briefly, gastric tissues were homogenized (Ultra-Turrax
homergenizer, IKA, Staufen, Germany) in 500 ml of PBS containing protease inhibitor, centrifuged
at 12,000 x g for 10 min at 4°C. The supernatant was collected and stored at —80°C until analyzed.
Quantikine ELISA (ReproTech, NJ, United States) was used to measure CXC chemokines (MIP-2

and KC) and proinflammatory cytokines (IL-1b and TNF-a) in the supernatant and the serum.

Lupus Characteristics (Anti-dsDNA, Proteinuria, Serum Creatinine, and Renal Histology)

Lupus characteristics were analyzed as per the protocol in previous publication (Surawut et
al., 2017). In brief, serum anti-dsDNA measurement was based on the ELISA assay of calf DNA
(Invitrogen, Carlsbad, CA, United States) coated on 96-well plates (Surawut et al., 2017). Urine
protein creatinine index (UPCI), a representative of 24 h proteinuria, was determined by the
equation; spot urine protein/spot urine creatinine (Leelahavanichkul et al., 2010). Urine protein was
measured by Bradford protein assay. Urine and serum creatinine levels were detected by
QuantiChrom Creatinine Assay (DICT-500, BioAssay, and Hayward, CA, United States). For renal
histology, kidneys were fixed in 10% formalin, paraffin embedded, and samples at 4 mm thickness

were stained with Periodic acid-Schiff (PAS) reagent (Sigma-Aldrich) for the modified
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semiqualitative assessment (Leelahavanichkul et al., 2010). Percentage of severe glomerular
damage as determined by mesangial expansion > 60% of glomerular area or glomeruli with
crescent formation was estimated at 400 x magnification to represent the severity of glomerular
injury. Renal interstitial injury was estimated at 200 x magnification on 10 randomly selected fields
for each kidney by the observation of the area of cellular infiltration in each field with the following
semi-quantitative criteria: 0, area < 5%; 1, areas 5-15%; 2, area 15-30%; 3, area > 30-60%; 4, area
> 60%. In addition, the immune complex deposition in renal tissue was detected by
immunofluorescence following a standard protocol. In brief, the frozen section was fixed with
acetone for 10 min and blocked with 1% bovine serum albumin (BSA) in PBS for 1 h at room
temperature. The section was then stained with anti-Fc 1gG for 1 h followed by IgG-Alexa-488

(secondary antibody). Then 300 nm of DAPI was added and incubated for 5 min in the dark.

An Analysis of Serum Gamma Globulin

For the evaluation of antibody responses, mouse serum was analyzed for total
immunoglobulin by capillary protein electrophoresis (MINICAP-2 Sebia, Evry Cedex, France). The
percentage of protein in the gamma zone of protein electrophoresis was converted into total
immunoglobulin level by multiplying the ratio of protein at the gamma zone by serum total protein.

Serum total protein and urine protein were measured by Bradford protein assay.

Flow Cytometry Analysis of Spleen

Flow cytometric analysis was performed following a standard protocol. In brief, spleens
were minced in supplemented RPMI-1640 (Roswell Park Memorial Institute media), and the cells
were centrifuged at 300 g for 5 min at 4°C. Red blood cells were removed using lysis buffer (ACK
buffer: NH4CI, KHCO3 and EDTA) and the splenocytes were washed twice in supplemented RPMI-
1640. Subsequently, the splenocytes were resuspended in staining buffer (0.5% BSA and 10% FBS
in PBS), and then were stained with fluorochrome-conjugated antibodies against different mouse
immune cells including; CD19, CD80, CD138, CD3, CD4, CXCR5, B220, CD19, GL-7 and F4/80
(BioLegend). All stained cells were analysed by flow cytometer using BD LSR-Il (BD Biosciences)

and data analysis by FlowJo software (version 10).
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Macrophages Phagocytosis and Macrophage Killing Activity

Macrophages were derived from the bone marrow (BM) (Ondee et al.,, 2017) and
phagocytosis assay was performed following an established protocol (Chmiela et al., 1997;
Miliukene et al., 2007). In short, 1 x 109 cell/ml heat-killed HP (60°C for 30 min) was incubated with
100 mg/ml fluorescein isothiocyanate (FITC) (Sigma, United States) in PBS at 35°C for 30 min for
FITC labeling. This was then mixed with activated macrophages at multiplicity of infection (MOI)
500:1 (HP-FITC: macrophage) in DMEM complete media with 5% mouse normal serum (as opsonin)
in 96-well polystyrene tissue culture plates. Of note, the high MOI was necessary for the adequate
fluorescent intensity for the detection of phagocytosis activity. The incubation with 10 ng/ml IFN-g
(Biolegend, United States) for 17 h followed by 100 ng/ml of lipopolysaccharide (LPS; Sigma,
United States) for 24 h was performed for macrophage activation. Supernatant IL- 12p70 was
measured by ELISA (eBioscience, United States) to support the activated-state of macrophage.

Macrophages and HP were allowed for phagocytosis for 0.5, 1, and 2 h. At each time point,
all media was removed and 100 mi/well of 0.2% trypan blue in PBS was added to quench
extracellular FITC labeled-bacteria. Phagocytosis activity was determined by the detection of
intracellular bacteria with fluorescent intensity read at 492 nm excitation and 518 nm emission
wavelengths. On the other hand, the killing assay was performed as previously published (Keep et
al., 2010). In brief, live HP to macrophage at MOl 500:1, as described above, was allowed for
phagocytosis for 0.5 h. Then, the media and extracellular bacteria were removed, 100 mg/mi
gentamycin was added for 1 h at 37°C, 5% CO2 to eliminate the remaining extracellular bacteria.
Cells were washed with PBS 5 times, the final wash was plated in Columbia agar (Oxoid, United
Kingdom) to ensure that no extracellular bacteria remained after washing. Then the remaining HP-
phagocytized cells were used to determine the intracellular bacteria at 0.5 h phagocytosis, while
some of the wells with HP-phagocytized cells were further incubated for 2 and 6 h after extracellular
bacteria removal process before bacterial determination. For intracellular bacterial determination,
200 mi/well of 0.1% saponin was added for 15 min at 37°C, 5% CO2 to release intracellular
bacteria, serially diluted and plated on Columbia agar (Oxoid, United Kingdom) incubated under

microaerophilic conditions at 37°C up to 5 days for colony enumeration. The macrophage killing
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activity was determined by intracellular proliferation rate at each time-point by the ratio of colony
forming unit (CFU) of bacteria at the specific time-point divided by CFU at 0.5 h phagocytosis.
Since immune complex (IC) can affect phagocytosis and killing activity of macrophage, the
functions with and without IC treated conditions were tests. The ICs were generated as described
previously (Ding et al., 2015). Briefly, mouse IgG1 anti-ovalbumin (anti-OVA,; Sigma-Aldrich) was
mixed with ovalbumin (OVA; Sigma-Aldrich) followed by incubation at room temperature for 30 min
to allow IC formation. Then the ICs were challenged with macrophages for 24 h before performing
phagocytosis and killing assay. Macrophages without ICs activation was used as a control
condition. In addition, to test if serum of symptomatic FCYRIlb=/= mice influenced macrophage
functions, 10% mouse serum (in DMEM) from FcYRIIb=/= (symptomatic lupus) or wild type
(control) was incubated with macrophage for 24 h before performing phagocytosis and killing

activity assay.

Statistical Analysis

Mean + standard error (SE) was used for data presentation. Unpaired Student’s t-test or
one-way analysis of variance (ANOVA) with Tukey’s comparison test was used for the analysis of
experiments with groups 2 and 3, respectively, the repeated measures ANOVA with Bonferroni post
hoc analysis was used for the analysis of data with several time-points. P-values < 0.05 were
considered statistically significant. SPSS 11.5 software (SPSS Inc., Chicago, IL, United States) was

used for all statistical analysis.

Result (HAaN1TNAARY)
The Prominent Anti-Helicobacter pylori, With Similar Disease Severity to Wild Type, in Helicobacter
pylori Infection of Symptomatic Lupus FcYRIIb Deficient-Mice

Characteristics as determined by serum creatinine proteinuria, and anti-dsDNA in
FCYRIlb=/— mice after 24-week-old is previously described (Ondee et al., 2017; Surawut et al.,
2017). Hence, HP administration in 24-week-old mice represents HP infection in patients with

symptomatic lupus. Indeed, HP infection caused significant weight loss in both wild type and

FcYRIIb=/= mice (Figures 1A,B) and the wild type demonstrated a little bit more prominent weight
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loss. In addition, similar disease severity between both strains were demonstrated with (i) bacterial
burdens in stomach with semi-quantitative assay (urease test) (Figures 1C, 2A) and quantitative
methods (real-time PCR and direct culture from stomach tissue) (Figures 1D,E), (ii) histological
inflammation in stomach (Figures 1F, 2B-D) and (iii) macrophage inflammatory protein-2 (MIP-2)
and keratinocyte-derived cytokine (KC), the important chemokine of HP pathogenesis (Sgouras et
al., 2005; De Filippo et al., 2008), in gastric-tissue (Figures 1G,H). Despite the similar severity of HP
infection between both strains, FCYRIIb=/= mice had the higher serum anti-HP IgG than wild type
(Figure 11).
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Figure 1 Severity of H. pylori (HP) infection in symptomatic lupus (24-week-old) (FcYRIIb=/=) and wild type
(FC)RIIb +/+) mice

Severity of H. pylori (HP) infection in symptomatic lupus (24-week-old) (FcyRIIb—/~) and wild type (Fc}RIlb
+/+) mice as determined by body weight (A), body weight alteration (B), stomach bacterial burdens by the
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semi-quantitative scoring of urease test, polymerase chain reaction (PCR) and the direct culture on selective
media (direct culture) (C-E), gastric inflammatory score (F), gastric cytokines (MIP-2 and KC) (G,H), and serum
anti-HP IgG antibody (I) (n = 5-7/group) were demonstrated. MIP-2; Macrophage Inflammatory Protein-2, KC;

Keratinocyte Chemoattractant; *p < 0.05.
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Figure 2 Representative figures of urease test from gastric tissue of mice with H. pylori (HP) infection in the wild

type (FcyRIlb +/+) and lupus (FcYRIIb=/=) mice

Representative figures of urease test from gastric tissue of mice with H. pylori (HP) infection in the wild type
(FC)Rllb +/+) and lupus (Fc)RIIb—/—) mice (A) were demonstrated. Gastric histopathology in wild type and

Fc)YRIlb—/— mice with HP infection (B,C) and wild-type with phosphate buffer solution (PBS) gavage (D) are



17

shown. (Of note, gastric histology of FcYRIIb—/— mice with PBS was not demonstrated due to the non-

difference from wild type with PBS.)

Helicobacter pylori Infection Enhanced Anti-dsDNA Levels and Clinical Characteristics of Lupus in

24-Week-0Old Fc'YRIIb Deficient-mice

HP infection has been shown to enhance auto-antibodies (Yamanishi et al., 2006; Hasni et
al., 2011), thus this study specifically looked at anti-dsDNA levels, a specific auto-antibody of lupus,
which also helps determine disease severity. Indeed, HP induced anti-dsDNA in wild-types and
accelerated anti-dsDNA level in FcYRIlb—/— (Figure 3A). Although HP induced anti-dsDNA in both
mouse strains, anti-dsDNA levels were more prominent in FCYRIlIb=/= group (Figure 3A), implying
the autoimmune inducibility of FCYRIIb=/= mice. As most of the serum protein in gamma zone of
serum protein electrophoresis analysis is immunoglobulin, serum gamma globulin is measured as a
representative of total immunoglobulin. Interestingly, HP infection enhanced immunoglobulin
production in both strains but more predominantly in FcYRIIb=/— mice (Figure 3B and
Supplementary Figure S1). This is in concordance with the higher level of serum anti-HP and anti-
dsDNA in FcYRIIb=/= mice (Figures 11, 3A). In addition, there was prominent immunoglobulin
deposition in the glomeruli of FcYRIlb—/— mice (Figure 4) with the enhanced severity of lupus
nephritis as demonstrated with serum creatinine, urine protein (urine protein creatinine index;
UPCI), renal histology and serum cytokines (IL-6, MIP-2 and KC; the representatives of systemic
inflammatory responses) (Figures 3C—H, 5). HP induced chemokine responses both locally (gastric
tissue) (Figures 1H,1) and systemically (Figures 3H,l). With HP infection, gastric cytokines were not
different between wild type and FCYRIIb=/= mice but serum cytokines were more prominent in the

FCYRIlb=/= group.
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Figure 3 Severity of lupus in FcYRIIb=/= mice and wild type (Fc}¥RIIb +/+) with and without H. pylori (HP) infection

Severity of lupus in FcyRIIb—/— mice and wild type (FcyRIlb +/+) with and without H. pylori (HP) infection as

determined by anti-dsDNA (A); serum gammaglobulin (B); serum creatinine (C); urine protein creatinine index

(UPCI) (D); renal injury score of glomerular and tubular lesion (E,F); and serum cytokines (IL-6, MIP-2 and KC)

(G-I) were demonstrated (n = 5-7/ time-point and 5-7/group). MIP-2; Macrophage Inflammatory Protein-2, KC;

Keratinocyte Chemoattractant; * p < 0.05.
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Figure 4 The Representative immunofluorescence images from glomeruli of wild type (FC)YRIIb +/+) with H. pylori

(HP), FcRIIb=/= mice with control phosphate buffer solution (PBS) gavage, and Fc}RIIb=/= mice with H. pylori

administration

The Representative immunofluorescence images from glomeruli of wild type (FCYRIIb +/+) with H. pylori (HP)
(A-C), FcyRIlb—/= mice with control phosphate buffer solution (PBS) gavage (D-F), and FcYRIIb—/= mice with
H. pylori administration (G-I) were demonstrated. Original magnification 600x; goat anti-mouse IgG with
Fluorescein isothiocyanate (FITC) (green) and DAPI (blue) were used for the identification of Fc portion of the
immune complex deposition and nucleus, respectively, (Of note, the glomerulus of wild-type mice with PBS was

not demonstrated due to the non-difference from wild type with HP.)
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Figure 5 Representative figures of renal histology of wild type (Fc)yRIIb +/+) and Fc)YRIIb=/= mice with phosphate
buffer solution (PBS) gavage (A,B) and H. pylori administration

Representative figures of renal histology of wild type (FcyRIlb +/+) and Fc yRIlb—/= mice with phosphate buffer
solution (PBS) gavage (A,B) and H. pylori administration (C,D) were demonstrated. Original magnification 400 x.

Enhanced Immune Cells in the Spleen of FcYRIlb Deficient-Mice with Helicobacter pylori Infection
Due to the prominent immunoglobulin production in FCYRIIb=/= mice with HP infection,
lymphoid organs in these mice were examined. It is surprising that there was non-difference in
gastric weight and mucosal associated lymphoid tissue morphology between wild type and
FCYRIIb=/= mice with or without HP infection (data not shown). Spleen weight among these mice
was different. Spleen weight without HP infection of FCYRIlb=/= mice was higher than wild type
and the infection enhanced FcYRIlb=—/= spleen weight but not wild type spleen (Figure 6A). Thus,

we examined splenocyte by flow cytometry analysis (Figures 6B-G, 7). Without HP, plasma cell
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(CD138 C) was the only cell population that was different between wild type and FCYRIIb=/= mice
(Figure 6B). In FcYRIIb—/— mice with HP infection, there was an increase in plasma cells, activated
B cells (CD19 C and CD80 C) and follicular helper T cells (CD3 C, CD4 C and CXCR5 C) but not
follicular B cells (CXCR5 C and B220 C), germinal center B cells (CD19 C and GC C) and
macrophages (F4/80 C) in comparison with FcYRIlb=/= without HP or wild type with HP (Figures
6B-G). Only follicular helper T cells were increased in wild type with HP compared to wild type
without HP infection (Figure 6F). This data supports the hyper-immune response of FcYRIlb=/=

against HP compared with wild type.

The Hyper-Responsiveness of FCYRIIb=/= Macrophages to Helicobacter pylori Activation and the
Loss of Response with Immune Complex Treatment

We examined macrophage functions, in vitro, as a pilot experiment because (i) the
influence of macrophage against HP in lupus and wild type might be different, (ii) the possible
effect of high circulating immune complex against macrophage functions (Bolland and Ravetch,
2000; Clatworthy et al., 2007; Surawut et al., 2017) and (i) the lack of data on FcYRIlb=/=
macrophage against HP. Interestingly, FcYRIlb=/— macrophage showed more prominent
phagocytosis than wild type after
0.5 h of incubation, however, this was not the case after 1 or 2 h of incubation (Figures 8A,C). In
addition, the IC incubation reduced phagocytosis at 0.5 h in both groups of macrophage and at 1 h
in FCYRIIb=/= group (Figure 8A). Further, FCYRIlb=/=— macrophage showed prominent killing
activity over wild type at both time-points (lower intracellular bacteria) (Figures 8B, D). After IC-
incubation, the killing activity worsened in both strains of macrophage, but predominantly in the wild
type cells (Figure 8B). Interestingly, pre-treatment macrophage with serum from FcYRIIb=/= mice,
but not wild type serum, reduced macrophage killing activity without the influence on phagocytosis
activity (Figures 8C, D). This implies that there are some macrophage-neutralizing factors in serum

of symptomatic lupus mice.
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Figure 6 Spleen demonstration

Spleen weight (n = 5/group) (A) and the quantitative flow-cytometric analysis of splenocytes from wild type
(FcYRIlb +/+) and FcYRIIb—/— mice with phosphate buffer solution (PBS) gavage or H. pylori administration in
the spleen plasma cell (CD138 +) (B), spleen activated B cell (CD19 + and CD80 +) (C), spleen germinal
center B cell (CD19 + GC +) (D), spleen follicular B cell (CXCR5 + and B220 +) (E), spleen follicular helper T
cell (CD3 + and CD4 + and CXCR5 +) (F) and spleen macrophage (F4/80 +) (G) were demonstrated. (n = 5-
8/group); *p < 0.05
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Figure 7 The representatives of flow-cytometric analysis

The representatives of flow-cytometric analysis were demonstrated; spleen plasma cell (A) and spleen follicular

helper T cell (B).
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Figure 8 Phagocytosis and killing activity of macrophage from wild type (FCYRIIb +/+) and FcYRIIb=/= mice in

response against H. pylori

Phagocytosis and killing activity of macrophage from wild type (FC)RIlb +/+) and Fc)RIIb—/— mice in
response against H. pylori and these functions after incubation with immune complex incubation (A, B) or
mouse serum from wild type and FcyRIIb—/— mice (C, D) were demonstrated (experiments were performed in

triplicate). *p < 0.05; #p < 0.05 vs. untreated or treated with serum from FcyRIIb—/— mice.

adilsia / 3150 (Discussion)
Although a previous case-control study demonstrates low prevalence of HP infection in
patients with lupus (Sawalha et al., 2004), there has been no other studies exploring the lupus-HP

relationship. Despite the case-control study in that report, it is still unclear if the immune response of
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patients with lupus prone genes is effective against HP or HP infection is protective for lupus.

Hence, we explored lupus-HP relationship in FCYRIIb=/= lupus mice in this study.

There was enhanced antibody production and lupus acceleration in FCYRIIb=/= mice with
HP gastritis, a localized infection. There was not only the increase in anti-HP, a specific antibody
against HP, but also anti-dsDNA and serum gamma immunoglobulin in FcYRIIb=/= mice with HP.
Interestingly, it seems that the spleen, but not the gastric lymphoid tissue, was responsible for the
prominent antibody production in FcYRIIb=/= with HP because of the increased weight of the
spleen, not the stomach. HP infection induced several immune cells that associated with the
antibody production process in the spleen, including activated B cell, plasma cell and follicular
helper T-cell. In the wild type with HP, anti-HP increased without spleen activation and serum
immunoglobulin. Indeed, HP infection activated only gastric lymphoid organ and lymphocyte but
not the spleen in the wild type mice (Bussiere et al., 2006; Floch et al., 2015). The systemic
response against HP (serum cytokines) was found only in FcYRIIb=/= mice but not wild type
supporting the hyper-inflammatory responses of FcYRIIb=/= mice. It is interesting to note that
increased serum cytokines after HP infection is demonstrated in most of the studies on mouse
model (Kodama et al., 2005) and juvenile patients (Khaiboullina et al., 2016) but not in other group
of patients (Bayraktaroglu et al. N , 2004). Although there is no data on the influence of increased
systemic cytokines in patients with HP, our study implicated the importance of increased systemic
cytokines in lupus with HP infection.

It is well known that chronic infection and inflammation initiates and accelerates lupus
(Munoz et al., 2010; Esposito et al., 2014; Podolska et al., 2015; Rigante and Esposito, 2015) and
the hyper-inflammatory responses in FcYRIIb=/=— mice due to the inhibitory signaling defect
(Clatworthy et al., 2007) might enhance this effect. Thus, increased antibody production in
FCYRIIb=/= mice with HP might be due to the prominent systemic responses against HP infection.
Perhaps, the persistent gastric inflammation from HP infection induces epitope spreading and/or
bystander activation in FCYRIIb™/= mice resulting in the increased auto-antibody. As such, HP

enhanced anti-dsDNA levels in both strains, but more predominantly in FCYRIlb=/=, supports the
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well-known HP-induced autoimmunity hypothesis (Hasni et al., 2011). In addition, the increased
anti-dsDNA in FcYRIIb=/= mice also enhanced lupus severity, supporting its role in lupus
pathogenesis (Giles and Boackle, 2013)

Regarding the increased anti-HP antibody (Figure 11) and the prominent macrophage
functions (Bolland and Ravetch, 2000; Clatworthy et al., 2007; Surawut et al., 2017) in FCYRIIb=/=
mice, the lower bacterial burdens and the more severe gastritis were expected in these mice
compared with wild type. This is due to the attenuation property of anti-HP and the macrophage
enhanced gastritis in macrophage depleted wild type mice (Kaparakis et al., 2008). Surprisingly,
bacterial burdens and gastritis severity were not different between the 2 groups. This suggests
different influence of immune responses or different neutralizing factor of antibody between wild
type and lupus mice. Moreover, infection susceptibility and high circulating immune complex (CIC)
in symptomatic lupus is well-known, thus the negative influence of CIC in lupus against infection is

possible. Indeed, we demonstrated the inhibitory effect of IC and lupus mouse serum against
macrophage phagocytosis and Kkilling activity, in vitro, in both wild type and FcYRIlb=/=
macrophage which, at least in part, explained the infection susceptibility of lupus. Despite several
macrophage-neutralizing factors (e.g., uremic toxins) in FcYRIIb—=/— mouse serum, CIC might
contribute some influences. More studies on this subject are necessary.

Several limitations of translation research should be considered before applying any clinical
translation such as; (i) mouse is not the natural host of HP and repeated gavage of HP is different
from the disease’s natural course, (i) there are some different properties and expressions of
FCYRIIb receptor between human and mouse (Bruhns, 2012; Hussain et al., 2015), (iii) unmeasured

factors might also affect the model due to other FcYRIlb—/— characteristics, and (iv) the opsonin

used for macrophage activity assays, in vitro, might not resemble the in vivo physiology.
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Prominence of anti-HP, anti-dsDNA and increased serum immunoglobulin despite the

similar disease severity of HP infection in FCYRIIb=™/= mice compared with wild type were
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demonstrated. HP infection in FcYRIIb™/~ mice enhanced systemic inflammation, induced
antibody-producing immune cells in the spleen and enhanced lupus disease severity. Thus, the
localized HP gastrits may induce the systemic inflammatory responses and enhance lupus
progression in some patients with lupus. Thus patients with dyspepsia or increased systemic
cytokine of unknown causes should be further investigated for HP-induced chronic gastritis. Clinical
studies to confirm these findings in humans are necessary, which may change our current

approach to clinical management of lupus.
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