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CHAPTER 1
INTRODUCTION AND PRELIMINARIES

In the first part of this chapter, we give some definitions, notations and the

basic knowledge of this dissertation.

1.1 Basic Knowledge

Since this dissertation is about the Hamiltonian cycle of a graph, we first give

a definition of graphs that we use here.

Definition 1.1. [4] A graph G consists of a finite nonempty set V' of objects
called vertices and a set F of 2-element subsets of V(G) called edges. The sets V

and F are the vertex set and the edge set of G.

Definition 1.2. [4] A subgraph of a graph G is a graph H such that V(H) C V(G)
and E(H) C E(G) and the assignment of endpoints to edges in H is the same as
in G. We then write H C G and say that G contains H.

Definition 1.3. [4] A u — v path in a graph G is a sequence of vertices in G,
beginning with u and ending at v such that consecutive vertices in the sequence
are adjacent and no vertices are repeated. In the case that u = v, it is called a
cycle. A graph G is connected if it has a u — v path whenever u,v € V(G). The

components of a graph GG are its maximal connected subgraphs of G.

Definition 1.4. [4] A path in a graph G that contains every vertex of G is called
a Hamiltonian path. Also, a cycle in G that contains every vertex of G is called

a Hamiltonian cycle.

The fact about the existence of a Hamiltonian cycle and a Hamiltonian path

in a graph G that we use in this dissertation is the following theorem.



Theorem 1.5. [4, 5] Let G = (V, E) be a graph, S be a proper subset of V' and
w(G — 9) is the number of components of G — S.

(a) If w(G —S) > |5], then G does not contain any Hamiltonian cycle.
(b) If w(G — S) > |S| + 1, then G does not contain any Hamiltonian path.

In the second part of this chapter, we give our motivation, literature reviews

and some known results which is useful for this dissertation.

1.2 Motivation of This Dissertation

The mxn chessboard, denoted by, CB(mxn) is the generalization of the regular
CB(8 x 8). It consists of m rows and n arrays of squares. Suppose the squares of
the CB(m x n) are labeled by (4, j) in the matrix fashion. A legal knight’s move
is the result of a moving the knight two squares horizontally or vertically on the
CB(m x n) and then turning and moving one square in a perpendicular direction.
That is, if we start at (i,7), then the knight can move to one of eight squares:
(t+2,7+1)or (i £1,j £ 2) (if exists) as shown in Figure 1.1. Here, we let the
square (7, j) be colored by black if ¢ + j is even. Otherwise, it is colored by white.

Figure 1.1: legal knight’s move

A closed knight’s tour (CKT) is a sequence of legal knight’s moves that visit
every squares on a given chessboard exactly once and return to its start square.
While, an open knight’s tour (OKT) is a sequence of legal knight’s moves that visit

every squares on a given chessboard exactly once and the starting and terminating



squares are different. Both CKT and OKT problems on a 2-dimensional or 3-
dimensional chessboards are one of the interesting mathematical problems as you
can see some of them listed in [3], [6], [8], [10], [13] and [14]. Not only the legal
knight’s move, but some researchers also extended it to be an (a, b)-knight’s move
which is the result of a moving the knight a squares horizontally or vertically
on the CB(m x n) and then turning and moving b squares in a perpendicular
direction. Several mathematical problems along this direction were considered, see
for examples [1], [5], [12] and references therein for details.

In 1991, Schwenk [11] obtained necessary and sufficient conditions for the ex-

istence of a CKT on the CB(m x n) as follows.

Theorem 1.6. [11] A CB(m x n) with m < n admits a CKT unless one or more
of the following conditions holds: (i) mn is odd or (ii) m € {1,2,4} or (iii) m = 3
and n € {4,6,8}. Furthermore, this CKT contains a knight’s move from square

(1I,n — 1) to square (3,n) and square (m,2) to square (m — 1,4).

In 2005, Chia and Ong [5] obtained necessary and sufficient conditions for the

existence of an OKT on the CB(m x n) as follows.

Theorem 1.7. [5] A CB(m x n) with m < n admits an OKT unless one or more
of the following conditions holds: (i) m € {1,2} or (ii) m = 3 and n € {3,5,6} or
(iii) m = 4 and n = 4.

In this dissertation, we first consider one of the variations of the CKT problem
by considering the chessboard that the middle part is missing which is called

(m,n,r)—ringboard or (m,n,r)—annulus board and we denote it by RB(m,n, ).

Definition 1.8. Let m, n and r be integers such that m,n > 2r. An RB(m,n,r)
is defined to be an CB(m x n) with the middle part missing and the rim contains

exactly r rows and r columns.

In 1996, Wiitala [15] showed that the RB(m,m,2) contains no CKT. However,

the characterization of the general RB(m,n,r) has not been given.



Theorem 1.9. [15] The RB(m, m,2) contains no CKT for all m > 5.

Thus, we try to establish the characterization like the one given by Schwenk
[11]. Actually, the CKT problem on the RB(m,n,r) can be converted to a certain
graph problem. If we regard each square of the RB(m,n,r) as a vertex, then the
knight graph G(m,n,r) represented all legal knight’s moves on RB(m,n,r) is a
graph with 2r(m + n — 2r) vertices and two vertices (a,b) and (¢, d) are joined by
an edge whenever the knight can be moved from one square to another by a legal
knight’s move and this edge is denoted by (a, b)— (¢, d). Then, a CKT (respectively,
OKT) on the RB(m,n,r) is a Hamiltonian cycle (respectively, Hamiltonian path)
in G(m,n,r).

The first goal of this dissertation is to prove that for m,n > 2r, the RB(m,n, )
admits a closed knight’s tour if and only if (a) m =n =3 and r =1 or (b) r > 3.
In order to reach our goal, we need to divide our RB(m,n,r) into small pieces
depending on r. If » > 5 is even, then RB(m,n,r) is divided into four smaller
rectangular chessboard and we can use Theorem 1.6 to construct the CKT for
RB(m,n,r) which will be elaborated in the Case 3.1 of Theorem 3.4 in Section
3.2 of Chapter III. However, if r > 5 is odd and RB(m,n,r) is divided into four
smaller rectangular chessboard, then there is a case that Theorem 1.6 cannot be
used (Case 3.2 of Theroem 3.4). Thus, we need to construct our own CKT base on
the existence of an OK'T on some rectangular chessboards which will be constructed
in Theorem 2.3 in Section 2.2 of Chapter II. For small r, namely r € {3,4}, we need
to divide RB(m, n, r) into two parts, namely L-board and 7-board of width 3 or 4
which we denote them by LB(r, ¢, 3), LB(r,¢,4), 7TB(r, ¢,3) and 7B(r, ¢,4) depends
on the numbers of rows r and columns ¢ (see Cases 1 and 2 of Theorem 3.4). For
example, Figure 1.2 illustrates that RB(10, 11, 3) is divided into LB(10,8,3) and
7B(10,8,3) and RB(11,13,4) is divided into LB(11,9,4) and 7B(11,9,4).

Note that the definitions of L-board and 7-board are given as follows

Definition 1.10. Let m, n and r be integers such that m,n > r. An LB(m,n,r)

is defined to be an CB(m x n) with the upper right (lower left) part missing, the



(a) RB(10,11,3) (b) RB(11,13,4)

Figure 1.2: (a) LB(10,8,3) and 7B(10,8,3) and (b) LB(11,9,4) and 7B(11,9,4)

lower leg contains r rows (columns) and the upper leg contains r columns (rows).
A 7B(m,n,r) is defined to be an CB(m x n) with the lower left part missing, the

lower leg contains r columns and the upper leg contains r rows.

Therefore, to construct the CKT on the ringboard for this case, we prove the
existence of some special OKTs on LB(m,n,3) and 7B(m,n,3) and the existence
of a CKT on LB(m,n,4) and 7B(m,n,4) are given in Theorems 2.1 and 3.1 in
section 2.1 of Chapter II and Section 3.1 of Chapter III, respectively. For r = 2,
we prove the extension of Wiitala’s result in [15] which is the non-existence of the
CKT on the RB(m,n,2) in Theorem 3.3 in Section 3.2 of Chapter III.

However, there is another interesting research that we have covered in our
dissertation. In Theorem 1.6, for those CB(m x n) which do not admit a CKT,
one can notice that if we ignore some squares of them, a CK'T can be constructed
on those deficient CB(m x n). In 2009, DeMaio and Hippchen [7] found T'(m,n),
the minimum number of squares removal from CB(m x n), so that a CKT on
the deficient CB(m X n) exists but they did not determine the exact position of
each removal square. In particular, it is stated that (i) for m,n > 3 are odd and
(m,n) # (3,5), T(m,n) =1 and (ii) for n > 3, T'(4,n) = 2.

Consequently, in 2013, Miller and Farnsworth [9] determined the exact position
of the one square to be removed from CB(3 xn) where n # 5 so that a CKT exists.
While, in 2015, Bi et al. [2] determined the exact position of the one square to be

removed from CB(m x n) where m,n > 3 are odd and (m,n) # (3,5) so that a



CKT exists. In [2], they also tried to consider the exact positions of two squares
be removed from CB(4 x n), where n > 3. One useful proposition is stated here
for ease of reference. The first part was proved by [2] and the second part is from
the fact that a knight’s move always moves from black to white or white to black

square.

Proposition 1.11. [2] If two squares in CB(4 x n) are deleted and a CKT exists
for the remaining board, then (i) neither square could come from the middle two

rows and (ii) these two squares have different color.

They also gave the following conjecture.

Conjecture 1 [2] Consider CB(4 x n) with n > 7. For any pair of squares, with
one of each parity of color and neither coming from the middle two rows, there is

a CKT on CB(4 x n) that avoids only these two squares.

Therefore, the second goal of this dissertation is to prove the Conjecture 1 in
Section 3.3.2 of Chapter III and also determine the exact pair of squares removal
from CB(4 x n) for 3 <n < 6 in Section 3.3.1 of Chapter IIL. If A is a set of two
squares of CB(4 xn), then CB(4 x n) — A is the deficient board after deleting these
two squares. In addition, we use G(m x n) — A to represent the knight graph after
deleting these two vertices. Therefore, the existence of a CKT on CB(4 x n) — A
is simply the existence of a Hamiltonian cycle on G(4 x n) — A.

To proof the Conjecture 1 and to determine all possible set A, some special open
knight’s tours (OKTs) on CB(4 x n)—{(i,j)} for n > 5 are required. Actually the
OKT is the Hamiltonian path on G(4 x n) — {(i,7)}. These OKTs are constructed
in Section 2.3 of Chapter II. Finally, conclusion and discussion are given in Chapter

IV.



CHAPTER 11
OPEN KNIGHT’S TOURS ON SOME BOARDS

In this chapter, we give the existence of some special OKTs on some boards

which is divided into three sections as follows.

2.1 Existence of Some Special OKTs on LBs and 7Bs

First, let us construct two OKTs on LB(m,n, 3) and two OKTs on 7B(m,n, 3)

for m,n > 4.
Theorem 2.1. Let m,n > 4.

(a) LB(m,n,3) contains an OKT from (1,2) to (1,3) if and only if m+n is odd
and (m,n) # (4,5).

(b) LB(m,n,3) contains an OKT from (1,3) to (2,2) if and only if m+n is even
and (m,n) & {(4,4),(4,6),(5,5)}.

Proof. Let m,n > 4.
(a) We assume that LB(m, n, 3) contains an OKT from (1, 2) to (1, 3) and let m+n
be even or (m,n) = (4,5).

If m+n is even, then the numbers of white square and black square are not the
same. Thus, the two end-points of this OKT must have the same color. However,
(1,2) and (1,3) are next to each other and have different color, contradiction.

For (m,n) = (4,5), let G be the knight graph of LB(4,5,3). Consider G’ =
G —{(1,2),(1,3)}. Since LB(4,5,3) contains an OKT from (1,2) to (1,3), G’
has a Hamiltonian path. Let S = {(2,3),(3,2),(3,3),(3,4), (4,3)}. Then, w(G" —
S) =7>6 =S|+ 1 as shown in Figure 2.1. By Theorem 1.5(b), we obtain a

contradiction.



Figure 2.1: Components of G' — S

On the other hand, let us assume that m + n is odd and (m,n) # (4,5).

If m + n is odd and m +n < 11, then (m,n) = (5,4). The required OKT on
the LB(5,4,3) from (1,2) to (1,3) that contains an edge (3,3) — (5,4) presented
in Figure 2.2.
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Figure 2.2: Required OKT on the LB(5, 4, 3)

If m+ nis odd and m + n > 11, we construct OKTs from (1,2) to (1,3)
containing the edge (m —2,n — 1) — (m,n) on some small LB(m,n, 3) according

to the remainders of m and n after divided by 4 as the following Figures 2.3 - 2.6.
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Figure 2.3: OKTs on the LB(4,7,3) and LB(7,4, 3)
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Next, for the larger L-boards, denoted by LB, we start by constructing an OK'T
on CB(3 x 4) from (1,1) to (2,1) that contains an edge (1,3) — (3,4) as shown in

Figure 2.7.

NINA

Lo

PRI

Figure 2.7: An OKT on CB(3 x 4)

Then, we construct an OKT on the CB(3 x 4t), where ¢t > 2. Let us connect ¢
CB(3 x 4)’s in Figure 2.7 to the right of each other and do the following.

(i) For1<i<t—1,delete (1,3) — (3,4) from the OKT of the ith CB(3 x 4);

(i) For 1l <i <t—1,join (1,3) and (3,4) of the ith CB(3 x 4) to (2,1) and
(1,1) of the (i + 1)th CB(3 x 4), respectively.

NIl N g N e LN
NCIINCIDNEWBINCIINC DS
PR BRI S  WEPRARA

Figure 2.8: An OKT on CB(3 x 4t)

By rotating Figure 2.8 clockwise for 90 degrees, we also obtain an OKT on
CB(4s x 3) from (1,2) to (1,3) as shown in Figure 2.9.

Now, we are ready to construct an OKT on a larger LB by placing the CB(3 x
4t) to the right and the CB(4s x 3) above each smaller LB in Figures 2.2 - 2.6,
respectively.

Since m + n is odd, m,n > 4 and (m,n) # (4,5), there exist nonnegative
integers s,t such that m = a+4s and n = b+ 4t where (a,b) € {(5,4), (4,7),(7,4),
(6.5),(5,6),(4,9),(8,5),(6,7),(7,6)}. We divided the LB(m,n,3) into subboards,
CB(4s x 3) (Figure 2.9) and LB(a,b,3) (Figures 2.2 - 2.6) if s > 0 and ¢ = 0 and
LB(a,b,3) (Figures 2.2 - 2.6) and CB(3 x 4t) (Figure 2.8) if s = 0 and ¢ > 0.
Otherwise, we divide into three subboards, CB(4s x 3) (Figure 2.9), LB(a,b,3)
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Figure 2.9: An OKT on CB(4s x 3)

(Figures 2.2 - 2.6) and CB(3 x 4t) (Figure 2.8). Then, we construct the required
OKT by the following two steps.

(i) Ifs > 0andt = 0, then delete (4s,1) — (4s — 1,3) of the OKT on the
CB(4s x 3) in Figure 2.9. If s = 0 and ¢ > 0, then delete (a —2,b—1) — (a, b)
of the OKT on the LB(a,b,3) in Figures 2.2 - 2.6. Otherwise, delete both
edges.

(i) If s > 0 and t = 0, then join (4s,1) and (4s — 1,3) of the CB(4s x 3) to
(1,3) and (1,2) of the LB(a, b, 3), respectively. If s =0 and ¢ > 0, then join
(a—2,b—1) and (a, b) of the LB(a,b,3) to (2,1) and (1, 1) of the CB(3 x 4t)

chessboard, respectively. Otherwise, join four pairs of vertices together.

This completes the proof of (a).
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(b) We assume that the LB(m,n,3) contains an OKT from (1, 3) to (2,2) and let
m +n be odd or (m,n) € {(4,4), (4,6), (5,5)}.

If m+n is odd, then the numbers of white square and black square are the same.
Thus, the two end-points of this OKT must have the different color. However,
(1,3) and (2,2) have the same color, contradiction. Next, we consider the cases
that (m,n) = (4,4); or (m,n) = (4,6); or (m,n) = (5,5).

For (m,n) = (4,4), let Gy be the knight graph of the LB(4,4,3). Consider
G, = Gy —{(1,3),(2,2)}. Since the LB(4,4,3) contains an OKT from (1,3) to
(2,2), G} has a Hamiltonian path. Let S = {(2,3),(3,2),(3,3)}. Then, w(G| —
S)=5>4 =S|+ 1 as shown in Figure 2.10. By Theorem 1.5(b), we obtain a

contradiction.

Figure 2.10: Components of G| — S

For (m,n) = (4,6), let G be the knight graph of the LB(4, 6, 3). Consider G, =
Gs—{(1,3),(2,2)}. Since the LB(4,6,3) contains an OKT from (1, 3) to (2,2), G}
has an Hamiltonian path. Let S = {(2,3),(2,4), (3,3), (3,4), (4,3), (4,4)}. Then,
w(Gy—S5) =8>7=|S|+1 as shown in Figure 2.11. By Theorem 1.5(b), we

obtain a contradiction.
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Figure 2.11: Components of G — S

For (m,n) = (5,5), let G5 be the knight graph of the LB(5, 5, 3). Consider G =
Gs—{(1,3),(2,2)}. Since the LB(5,5,3) contains an OKT from (1, 3) to (2,2), G}
has an Hamiltonian path. Let S = {(2,3), (3,2), (3,3), (4,2), (4,3), (5,3)}. Then,
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w(Gy—S) =8 >7=|5|+1 as shown in Figure 2.12. By Theorem 1.5(b), we

obtain a contradiction.

Figure 2.12: Components of G4 — S

On the other hand, let us assume that m + n is even and (m,n) ¢ {(4,4),
(4,6),(5,5)}.

If m + n is even and m + n < 12, then (m,n) = (6,4). Then the required
OKT on the LB(6,4,3) from (1,3) to (2,2) that contains an edge (4,3) — (6,4) is
presented in Figure 2.13.
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Figure 2.13: Required OK
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on the LB(6,4, 3)

If m + n is even and m +n > 12, we construct OKTs from (1,3) to (2,2)
containing the edge (m —2,n—1) — (m, n) on some small LB(m, n, 3) according to

the remainders of m and n after divided by 4 as the following Figures 2.14 - 2.19.
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Figure 2.14: OKTs on the LB(5,7,3) and LB(7,5, 3)
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Figure 2.15: An OKT on the LB(7,7,3)
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Figure 2.16: OKTs on the LB(5,9,3) and LB(9, 5, 3)
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Figure 2.18: OKTs on the LB(8,6,3) and LB(4, 10, 3)
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Next, for the larger LBs, we start by constructing an OKT on CB(4 x 3) from
(1,3) to (4,1) and contains an edge (2,2) — (4, 3) as shown in Figure 2.20.
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NI AT

Figure 2.20: An OKT on CB(4 x 3)

Then, we construct two paths on CB(4s x 3), where s > 2. Let us connect s

CB(4 x 3)’s in Figure 2.20 on the top of each other and do the following.
(i)  For 1< <s, delete (2,2) — (4,3) from the OKT of the ith CB(4 x 3);

(i) For 1l <i < s—1,join (4,1) and (4,3) of the ith CB(4 x 3) to (1,3) and
(2,2) of the (i + 1)th CB(4 x 3), respectively.

We can see from Figure 2.21 that either s is odd or s is even, there is one path
that has (1, 3) as its end-point and another path that has (2,2) as its end-point.
Now, we are ready to construct an OKT on a larger LB by placing the CB(3x4t)
in Figure 2.8 to right and the CB(4s x 3) above each smaller LB in Figures 2.13 -
2.19, respectively.
Since m + n is even, m,n > 4 and (m,n) ¢ {(4,4), (4,6),(5,5)}, there exist

nonnegative integers s,t such that m = a + 4s and n = b + 4t where (a,b) €
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Figure 2.21: Two paths on 45 X 3 chessboard

{(6,4), (5,7),(7,5),(7.7),(5,9), (9,5). (6,6), (8,6), (4,10), (4,8),(8,4)}. We divide
the LB(m,n, 3) into subboards, CB(4s x 3) (Figure 2.21) and LB(a, b, 3) (Figures
2.13-2.19) if s > 0 and t = 0 and LB(a, b, 3) (Figures 2.13 - 2.19) and CB(3 x 4t)
(Figure 2.8) if s = 0 and ¢ > 0. Otherwise, we divide into three subboards,
CB(4s x 3) (Figure 2.21), LB(a, b, 3) (Figures 2.13 - 2.19) and CB(3 x 4t) (Figure
2.8). Then, we construct the required OKT by the followings.

(i) Ifs>0andt >0, then delete (a — 2,0 — 1) — (a,b) of the OKT on the
LB(a,b,3) in Figures 2.13 - 2.19.

(i) If s >0 and t = 0, then join (4s,1) and (4s,3) of the CB(4s x 3) in Figure
2.21 to (1,3) and (2,2) of the LB(a, b, 3), respectively. If s = 0 and ¢ > 0,
then join (a — 2,0 — 1) and (a,b) of the LB(a,b,3) to (2,1) and (1, 1) of the
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CB(3 x 4t) in Figure 2.8, respectively. Otherwise, join four pairs of vertices

together.

This completes the proof. O

Next, we get the following Corollary by flipping vertically and rotating 90

degrees clockwise the LB in the above Theorem.
Corollary 2.2. Let m,n > 4.

(a)  The 7B(m,n,3) contains an OKT from (2,1) to (3,1) if and only if m +n
is odd and (m,n) # (5,4).

(b)  The 7B(m,n,3) contains an OKT from (3,1) to (2,2) if and only if m +n
is even and (m,n) ¢ {(4,4),(5,5),(6,4)}.

We note that Theorem 2.1(b) and Corollary 2.2(b) will be used in Case 1.1 of
Theorem 3.4 in Section 3.2 of Chapter III. While, Theorem 2.1(a) and Corollary
2.2(a) will be used in Case 1.2 of Theorem 3.4 in Section 3.2 of Chapter III.

2.2 Existence of Some Special OKTs on CB(m X n)

The following theorem gives necessary and sufficient conditions on the existence
of some special OKTs on CB(m x n) from (m, 1) to (2,n — 1). This OKT will be
used to prove the existence of a CKT on RB(m,n,r) for r > 5 when r is odd (Case

3.2 of Theorem 3.4 in Section 3.2 of Chapter III).
Theorem 2.3.

(a) Letm <4 andn >m. Then, a CB(m x n) contains an OKT from (m,1) to
(2,n—1) if and only if m =3 andn > 7.

(b) Letn>m >5. Then, a CB(mxn) contains an OKT from (m,1) to (2,n—1)

if and only if m and n are not both even.
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Proof. (a) Let m < 4. We assume that a CB(m x n) contains an OKT from (m, 1)
to (2,n — 1) and let m # 3; or n < 6. Then, we consider four cases as follows.
Case I: m=1landn>1;orm=2andn>2,orm=3andn € {3,5,6}. A
CB(m x n) contains no OKT by using Theorem 1.7, contradiction.

Case 2: m = 3 and n = 4. Let G be the knight graph of the CB(3 x 4). We
assume that G contains a Hamiltonian path from (3, 1) to (2,3). Consider G =
G1—{(2,3)}. By assumption, G has a Hamiltonian path. Let S = {(1,2),(3,2)}.
Then, w(G) — S) =4 > 3 =S| + 1 as shown in Figure 2.22. By Theorem 1.5(b),

we obtain a contradiction.

4

~N

Figure 2.22: Components of G| — S

Case 3: m = 4 and n is odd such that n > 5. Let G5 be the knight graph of
the CB(4 x n). We assume that G5 contains a Hamiltonian path from (m,1) to
(2,n —1). Consider Gy, = Gy — {(2,n— 1)}. Let S = {(2,5),(3,1) | j is even, 2 <
j<n-3lisoddand 1 <1 <n}. Then, w(GH—S)=n+1>n=1S|+1 as

shown in Figure 2.23. By Theorem 1.5(b), we have a contradiction.

Figure 2.23: Components of G — S, where n = 9

Case 4: m = 4 and n is even such that n > 4. Assume that CB(4 X n) contains
an OKT from (4,1) to (2,n — 1). Since CB(4 x n) contains the same numbers
of black and white squares, this OKT must have end-points at two squares with
different colors. However, 44+ 1 =5 and 2+ (n — 1) = n+ 1 are odd. Thus, (m,1)

and (2,n — 1) are two squares of the same color, contradiction.
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On the other hand, let us assume that m = 3 and n > 7.
Let us construct OKTs from (3,1) to (2,n — 1) on some small size CB(3 x n)
where n € {7,8,9,10} as shown in Figure 2.24.
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(c) (d)
Figure 2.24: OKTs from (3,1) to (2,n—1) on the CB(3 xn) where n € {7,8,9,10}

Before we continue further, let us rotate the CB(4 x 3) shown in Figure 2.20 for
90 degrees clockwise and flip it to obtain an OKT from (3,1) to (1,4) on CB(3 x4).
We can place t of these CB(3 x 4) to the right of each other to extend this OKT
into an OKT on CB(3 x 4t) by connecting (1,4) on the ith CB(3 x 4) to (3,1) on
the (¢ + 1)th CB(3 x 4) for all 1 < i <t — 1 as shown in Figure 2.25. Note that
this extended OKT starts from (3,1) to (1,4¢).

WAl AL b
ECIAECIANR 925
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Figure 2.25: An OKT from (3,1) to (1,4¢) on CB(3 x 4t)

Next, let n be a positive integer such that n > 11.

If n = 3 (mod 4) (respectively, n = 0 (mod 4), n = 1 (mod 4), n = 2
(mod 4)), then there is a positive integer t such that n = 7 + 4t (respectively,
n=8+4t,n =9+ 4t,n = 10 + 4t). We divide the CB(3 x n) into subboards,
CB(3 x 4t) (Figure 2.25) and CB(3 x 7) (Figure 2.24(a)) (respectively, CB(3 x 8)
(Figure 2.24(b)), CB(3 x 9) (Figure 2.24(c)), CB(3 x 10) (Figure 2.24(d))). Then,
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we construct the required OKT by connecting (1,4t) of the OKT on the CB(3 x 4t)
in Figure 2.25 to (3, 1) of the OKT on the CB(3x 7) in Figure 2.24(a) (respectively,
CB(3 x 8) in Figure 2.24(b), CB(3 x 9) in Figure 2.24(c), CB(3 x 10) in Figure
2.24(d)).

(b) Let n > m > 5. We assume that a CB(m x n) contains an OKT from (m, 1)
to (2,n — 1) and let m and n are both even. Since CB(m x n) contains the same
numbers of black and white squares, this OK'T must have end-points at two squares
with different colors. However, m + 1 and 2 + (n — 1) = n + 1 are odd. Thus,
(m, 1) and (2,n — 1) are two squares of the same color, contradiction.

On the other hand, let us assume that m and n are not both even such that
n > m > 5. Then, we consider three cases as follows.
Case 1: m and n are both odd such that m,n > 5. Let us construct OKTs
from (m,1) to (2,n — 1) containing the edge (1,n) — (3,n — 1) on some small size

CB(m x n) where m,n € {5,7} as shown in Figure 2.26.
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Figure 2.26: OKTs from (m, 1) to (2,n— 1) on the CB(m x n) where m,n € {5,7}

For the larger CB(m x n), we start by constructing two paths on CB(m x 4).
The first path starts from (1,1) to (2,3) and the second path starts from (2, 2) to
(4,1) containing the edge (1,4) — (3,3) where n € {5,6,7,8} as shown in Figure
2.27.

Next, we construct an OKT from (1,3) to (4, 1) containing the edges (1,n) —
(3,n—1) and (2,n — 1) — (4,n) on the CB(4 x n) where n € {5,6,7,8} as shown
in Figure 2.28.
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Figure 2.27: Two paths on CB(m x 4) where m € {5,6,7,8}
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Figure 2.28: OKTs on CB(4 x n) where n € {5,6,7,8}

Let m,n be odd integers such that m > 5 and n > 9. We consider four cases
according to the remainders after dividing m and n by 4.

Case 1.1: m,n =1 (mod 4). There are integers s and ¢ such that 0 < s <,
t#0, m=>5+4sand n =5+ 4t. If s =0, then we divide the CB(5 x n) into
subboards, CB(5 x 5) (Figure 2.26(a)) and ¢ CB(5 x 4)’s (Figure 2.27(a)). Then,
we construct the required OKT by the followings.

(i)  Wedelete (1,5)—(3,4) of the OKT on the CB(5 % 5) and connect (2,4), (1,5)
and (3,4) of the CB(5 x 5) to (1,1),(2,2) and (4, 1) of the 1st CB(5 x 4),

respectively.

(ii))  We delete (1,4) — (3,3) of the second path of the ith CB(5 x 4) for all
1 <i<t—1. Then, we connect (2,3),(1,4) and (3,3) of the ith CB(5 x 4)
to (1,1),(2,2) and (4, 1) of the (i + 1)th CB(5 x 4).

If s > 0, then we divide the CB(m x n) into subboards, CB(5 x n) (Figure
2.29) and s CB(4 x n)’s from the top to the bottom. We start by constructing two
paths P, (dash line) and P, (solid line) on the CB(4 x 4) as shown in Figures 2.30.
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Figure 2.29: An OKT on CB(5 x n) in Case 1.1
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Figure 2.30: Two paths P, and P, on the CB(4 x 4)

Then, we construct two paths P| and Pj on the CB(4 x 4t) where ¢ > 2. Let us
connect t CB(4x4)’s in Figure 2.30 to the right of each other and do the followings.

(a)  For1l<i<t-—1,delete (2,3) — (4,4) from P, and (1,4) — (3, 3) from P, of
the ith CB(4 x 4).

(b) For1l <i<t—1,join (2,3) and (4,4) of the ith CB(4 x 4) to (1,1) and
(2,1) of the (i + 1)th CB(4 x 4), respectively

(¢) Forl <i<t—1,join (1,4) and (3,3) of the ith CB(4 x 4) to (3,1) and
(4,1) of the (i + 1)th CB(4 x 4), respectively.

Thus, we have two paths Pj and P} on the CB(4 x 4¢) as shown in Figure 2.31,

where t > 2.
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Figure 2.31: Two paths P and P; on the CB(4 x 4t)

Next, we construct the required OKT on CB(m x n) as follows.

(") For each 1 < i < s, we divide the ith CB(4 x n) into subboards, CB(4 x 5)
(Figure 2.28(a)) and CB(4 x 4t) (Figure 2.31). Delete (1,5) — (3,4) and
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(2,4) — (4,5) of the OKT on CB(4 x 5). Then, join (2,4), (4,5),(1,5) and
(3,4) of the CB(4 x 5) to (1,1),(2,1),(3,1) and (4,1) of the CB(4 x 4¢),

respectively, to obtain an OKT on the CB(4 x n) as shown in Figure 2.32.

VAL AALN I AL A AL
b faiie A Lo va W Loie vy
LB QS IATTIUCTY

O| o [ el v ¥ e oo d N [~

N

- Sa

A

i ¥

A

WAL T

o

/_&ﬂ
y2

)

A

%

9

AR/
Q./‘J\
~e o

9
1%

)
P

o e

Figure 2.32: An OKT on CB(4 x n) in Case 1.1

(ii") Join (5, 1) of the OKT on CB(5xn) (Figure 2.29) to (1,3) of the 1st CB(4xn)

(Figure 2

32).

(iii") For each 1 < i < s — 1, we join (4,1) of the OKT on the ith CB(4 x n)
(Figure 2.32) to (1,3) of the OKT on the (i + 1)th CB(4 x n) (Figure 2.32).

Case 1.2: m =1 (mod 4) and n = 3 (mod 4). There are integers s and ¢ such

that 0 < s <t,t#0,m=5+4sand n =7+ 4t. If s = 0, then we divide the

CB(5 x n) into subboards, CB(5 x 7) (Figure 2.26(b)) and ¢t CB(5 x 4)’s (Figure

2.27(a)).

replace CB(5 x 5) by CB(5 x 7) (Figure 2.26(b)) and (1,5), (3,4) and (2,4) by

(1,7), (3,6) and (2,6), respectively.
If s > 0, then we divide the CB(m x n) into subboards, CB(5 xn) (Figure 2.33)

Then, we construct the required OKT by (i) and (ii) in Case 1.1 but

and s CB(4 x n)’s (Figure 2.34) from the top to the bottom. Then, we construct
the required OKT by (i), (ii’) and (iii’) in Case 1.1 but in (i) replace CB(4 x 5)
by CB(4 x 7) (Figure 2.28(c)) and (1,5), (3,4), (2,4) and (4,5) by (1,7), (3,6),
(2,6) and (4,7), respectively.
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Figure 2.33: An OKT on CB(5 x n) in Case 1.2
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Figure 2.34: An OKT on CB(4 x n) in Case 1.2

Case 1.3: m = 3 (mod 4) and n = 1 (mod 4). There are integers s and ¢
such that 0 < s <t, m =7+ 4s and n = 5+ 4t. If s = 0, then we divide the
CB(7 x n) into subboards, CB(7 x 5) (Figure 2.26(c)) and ¢ CB(7 x 4)’s (Figure
2.27(c)). Then, we construct the required OKT by (i) and (ii) in Case 1.1 but
replace CB(5 x 5) and CB(5 x 4) by CB(7 x 5) (Figure 2.26(c)) and CB(7 x 4)
(Figure 2.27(c)), respectively.

If s > 0, then we divide the CB(m x n) into subboards, CB(7 xn) (Figure 2.35)
and s CB(4 x n) (Figure 2.32) from the top to the bottom. Then, we construct
the required OKT by (i), (ii’) and (iii") in Case 1.1 but in (ii’) replace CB(5 x n)
by CB(7 x n) (Figure 2.35) and (5,1) by (7,1).

AN INER | S AR | A A 12 AR | P AR | A P
@ | e @ | <fo @t % b Scabans
S Ll [ [ [0 [ E AENIEE
DDA D AEA DI SIS O (IE) O B RN
T [ [0 [ 4 [ A ADIEE
A Letate [ L [ QL [
O oo e e | & ol | ¢ ele o d u | & o4 e

—

Figure 2.35: An OKT on CB(7 x n) in Case 1.3

Case 1.4: m = 3 (mod 4) and n = 3 (mod 4). There are integers s and ¢ such
that 0 < s <t,t #0, m =7+4s and n =7+ 4t. If s = 0, then we divide the
CB(7 x n) into subboards, CB(7 x 7) (Figure 2.26(d)) and ¢t CB(7 x 4)’s (Figure
2.27(c)). Then, we construct the required OKT by (i) and (ii) in Case 1.1 but
replace CB(5 x 5) and CB(5 x 4) by CB(7 x 7) (Figure 2.26(d)) and CB(7 x 4)
(Figure 2.27(c)) and (1,5), (3,4) and (2,4) by (1,7), (3,6) and (2, 6), respectively.

If s > 0, then we divide the CB(m x n) into subboards, CB(7 xn) (Figure 2.36)
and s CB(4 x n)’s (Figure 2.34) from the top to the bottom. Then, we construct
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the required OKT by ('), (ii’) and (iii’) in Case 1.1 but in (i') and (ii’) replace
CB(4 x 5) and CB(5 x n) by CB(4 x 7) (Figure 2.28(c)) and CB(7 x n) (Figure
2.36) and replace (1,5), (3,4), (2,4), (4,5) and (5,1) by (1,7), (3,6), (2,6), (4,7)
and (7, 1), respectively.
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Figure 2.36: An OKT on CB(7 x n) in Case 1.4

Case 2: m is odd such that m > 5 and n is even such that n > 6. Let us construct
OKTs from (m, 1) to (2,n— 1) containing the edge (1,7)—(3,n—1) on some small
size CB(m x n) where m € {5,7} and n € {6,8} as shown in Figure 2.37.
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Figure 2.37: OKTs from (m, 1) to (2,n — 1) on the CB(m x n) where m € {5,7}
and n € {6, 8}
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Let m be an odd integer such that m > 5 and let n be an even integer such
that n > 10. We consider four cases according to the remainders after dividing m
and n by 4.

Case 2.1: m =1 (mod 4) and n = 0 (mod 4). There are integers s and ¢ such
that 0 < s <t,t #0, m =5+4s and n = 8 + 4t. If s = 0, then we divide the
CB(5 x n) into subboards, CB(5 x 8) (Figure 2.37(b)) and ¢t CB(5 x 4)’s (Figure
2.27(a)). Then, we construct the required OKT by (i) and (ii) in Case 1.1 but
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replace CB(5 x 5) by CB(5 x 8) (Figure 2.37(b)) and (1,5), (3,4) and (2,4) by
(1,8), (3,7) and (2,7), respectively.

If s > 0, then we divide the CB(m x n) into subboards, CB(5 xn) (Figure 2.38)
and s CB(4 x n)’s (Figure 2.39) from the top to the bottom. Then, we construct
the required OKT by (i), (ii’) and (iii’) in Case 1.1 but in (i’) replace CB(4 x 5)
by CB(4 x 8) (Figure 2.28(d)) and (1,5), (3,4), (2,4) and (4,5) by (1,8), (3,7),
(2,7) and (4, 8), respectively.
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Figure 2.38: An OKT on CB(5 x n) in Case 2.1
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Figure 2.39: An OKT on CB(4 x n) in Case 2.1

Case 2.2: m =1 (mod 4) and n = 2 (mod 4). There are integers s and ¢ such
that 0 < s <t, t#0, m=5+4sand n = 6+ 4t. If s = 0, then we divide the
CB(5 x n) into subboards, CB(5 x 6) (Figure 2.37(a)) and ¢t CB(5 x 4)’s (Figure
2.27(a)). Then, we construct the required OKT by (i) and (ii) in Case 1.1 but
replace CB(5 x 5) by CB(5 x 6) (Figure 2.37(a)) and (1,5), (3,4) and (2,4) by
(1,6), (3,5) and (2,5), respectively.
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Figure 2.40: An OKT on CB(5 x n) in Case 2.2
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If s > 0, then we divide the CB(m x n) into subboards, CB(5 x n) (Figure 2.40)
and s CB(4 x n)’s (Figure 2.41) from the top to the bottom. Then, we construct
the required OKT by (i'), (ii’) and (iii’) in Case 1.1 but in (i’) replace CB(4 x 5)
by CB(4 x 6) (Figure 2.28(b)) and (1,5), (3,4), (2,4) and (4,5) by (1,6), (3,5),
(2,5) and (4,6), respectively.
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Figure 2.41: An OKT on CB(4 x n) in Case 2.2

Case 2.3 m =3 (mod 4) and n = 0 (mod 4). There are integers s and ¢ such
that 0 < s < t, t 20, m =T+ 4sand n = 8 + 4t. If s = 0, then we divide
CB(7 x n) into subboards, CB(7 x 8) (Figure 2.37(d)) and ¢t CB(7 x 4)’s (Figure
2.27(c)). Then, we construct the required OKT by (i) and (ii) in Case 1.1 but
replace CB(5 x 5) and CB(5 x 4) by CB(7 x 8) (Figure 2.37(d)) and CB(7 x 4)
(Figure 2.27(c)) and (1,5), (3,4) and (2,4) by (1,8), (3,7) and (2, 7), respectively.

If s > 0, then we divide the CB(m x n) into subboards, CB(7 x n) (Figure
2.42) and s CB(4 x n)’s (Figure 2.39) from the top to the bottom. Then, we
construct the required OKT by (i'), (ii’) and (iii’) in Case 1.1 but in (i) and (ii")
replace CB(4 x 5) and CB(5 x n) by CB(4 x 8) (Figure 2.28(d)) and CB(7 x n)
(Figure 2.42) and (1,5), (3,4), (2,4) and (4,5) by (L,8), (3,7), (2,7) and (4,8)

respectively.
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Figure 2.42: An OKT on CB(7 x n) in Case 2.3
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Case 2.4: m = 3 (mod 4) and n = 2 (mod 4). There are integers s and ¢
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such that 0 < s <t, m =7+ 4s and n = 6 + 4t. If s = 0, then we divide the
CB(7 x n) into subboards, CB(7 x 6) (Figure 2.37(c)) and ¢t CB(7 x 4)’s (Figure
2.27(c)). Then, we construct the required OKT by (i) and (ii) in Case 1.1. but
replace CB(5 x 5) and CB(5 x 4) by CB(7 x 6) (Figure 2.37(c)) and CB(7 x 4)
(Figure 2.27(c)) and (1,5), (3,4) and (2,4) by (1,6), (3,5) and (2, 5), respectively.

If s > 0, then we divide the CB(m x n) into subboards, CB(7 xn) (Figure 2.43)
and s CB(4 x n)’s (Figure 2.41) from the top to the bottom. Then, we construct
the required OKT by (i'), (ii’) and (iii’) in Case 1.1. but in (') and (ii") replace
CB(4 x 5) and CB(5 x n) by CB(4 x 6) (Figure 2.28(b)) and CB(7 x n) (Figure
2.43) and (1,5), (3,4), (2,4), (4,5) and (5,1) by (1,6), (3,5), (2,5), (4,6) and
(7,1), respectively.
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Figure 2.43: An OKTs on CB(7 x n) in Case 2.4

Case 3: m is even such that m > 6 and n is odd such that n > 5. Let us construct
OKTs from (m, 1) to (2,n— 1) containing the edge (1,7)—(3,n—1) on some small
size CB(m x n) where m € {6,8} and n € {5,7} as shown in Figure 2.44.
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Figure 2.44: OKTs from (m,
and n € {5, 7}

) to (2,n — 1) on the CB(m x n) where m € {6,8}
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Let m be an even integer such that m > 6 and let n be an odd integer such
that n > 9. We consider four cases according to the remainders after dividing m
and n by 4.

Case 3.1: m =0 (mod 4) and n = 1 (mod 4). There are integers s and ¢
such that 0 < s <t, m =8+ 4s and n = 5+ 4t. If s = 0, then we divide the
CB(8 x n) into subboards, CB(8 x 5) (Figure 2.44(c)) and ¢t CB(8 x 4) (Figure
2.27(d)). Then, we construct the required OKT by (i) and (ii) in Case 1.1 replace
CB(5 x 5) and CB(5 x 4) by CB(8 x 5) (Figure 2.44(c)) and CB(8 x 4) (Figure
2.27(d)), respectively.

If s > 0, then we divide the CB(m x n) into subboards, CB(8 x n) (Figure 2.45)
and s CB(4 x n)’s (Figure 2.32) from the top to the bottom. Then, we construct
the required OKT by (i), (ii") and (iii’) in Case 1.1 but in (ii’) replace CB(5 x n)
by CB(8 x n) (Figure 2.45) and (5,1) by (8,1).
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Figure 2.45: An OKTs on CB(8 x n) in Case 3.1

Case 3.2: m =0 (mod 4) and n = 3 (mod 4). There are integers s and ¢ such
that 0 < s <t,t #0, m=8+4sand n =7+ 4t. If s = 0, then we divide the
CB(8 x n) into subboards, CB(8 x 7) (Figure 2.44(d)) and ¢t CB(8 x 4)’s (Figure
2.27(d)). Then, we construct the required OKT by (i) and (ii) in Case 1.1 but
replace CB(5 x 5) and CB(5 x 4) by CB(8 x 7) (Figure 2.44(d)) and CB(8 x 4)
(Figure 2.27(d)) and (1,5), (3,4) and (2,4) by (1,7), (3,6) and (2, 6), respectively.

If s > 0, then we divide the CB(m x n) into subboards, CB(8 x n) (Figure 2.46)
and s CB(4 x n)’s (Figure 2.34) from the top to the bottom. Then, we construct
the required OKT by ('), (ii’) and (iii’) in Case 1.1 but in (i’) and (ii’) replace
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CB(4 x 5) and CB(5 x n) by CB(4 x 7) (Figure 2.28(c)) and CB(8 x n) (Figure
(8, 1), respectively.

drlekelelalalalslalala] sl e lslalslals
YT TR | Yofeke | XoTers % | <feTo)e
AR AN RGN RG] o [ VRS
O [l plfp ol ote LTl o Ls e ool oo b
LY D 2AE vl BN C A B Cp b R b
QT Al [ ot | oka > | a2
Clafels Lol Wiie [ ool d)oe | X d)n DA
SRRV TR TSN RN TERSRAN

Figure 2.46: An OKT on CB(8 x n) in Case 3.2

Case 3.3: m =2 (mod 4) and n = 1 (mod 4). There are integers s and ¢ such
that 0 < s <t,t #0, m =6+4s and n = 5+ 4t. If s = 0, then we divide the
CB(6 x n) into subboards, CB(6 x 5) (Figure 2.44(a)) and ¢t CB(6 x 4) (Figure
2.27(b)). Then, we construct the required OKT by (i) and (ii) in Case 1.1 but
replace CB(5 x 5) and CB(5 x 4) by CB(6 x 5) (Figure 2.44(a)) and CB(6 x 4)
(Figure 2.27(b)), respectively.

If s > 0, then we divide the CB(m xn) into subboards, CB(6 x n) (Figure 2.47)
and s CB(4 x n)’s (Figure 2.32) from the top to the bottom. Then, we construct
the required OKT by (i), (ii’) and (iii") in Case 1.1 but in (ii") replace CB(5 x n)
by CB(6 x n) (Figure 2.47) and (5,1) by (6,1).
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Figure 2.47: An OKT on CB(6 x n) in Case 3.3

Case 3.4: m =2 (mod 4) and n = 3 (mod 4). There are integers s and ¢ such
that 0 < s <t,t #0, m =6+4s and n = 7+ 4t. If s = 0, then we divide the
CB(6 x n) into subboards, CB(6 x 7) (Figure 2.44(b)) and ¢ CB(6 x 4) (Figure
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2.27(b)). Then, we construct the required OKT by (i) and (ii) in Case 1.1 but
replace CB(5 x 5) and CB(5 x 4) by CB(6 x 7) (Figure 2.44(b)) and CB(6 x 4)
(Figure 2.27(b)) and (1,5), (3,4) and (2,4) by (1,7), (3,6) and (2, 6), respectively.

If s > 0, then we divide the CB(m x n) into subboards, CB(6 x n) (Figure 2.48)
and s CB(4 x n)’s (Figure 2.34) from the top to the bottom. Then, we construct
the required OKT by (i'), (ii’) and (iii’) in Case 1.1 but in (') and (ii’) replace
CB(4 x 5) and CB(5 x n) by CB(4 x 7) (Figure 2.28(c)) and CB(6 x n) (Figure
2.48) and (1,5), (3,4), (2,4), (4,5) and (5,1) by (1,7), (3,6), (2,6), (4,7) and
(6, 1), respectively.
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Figure 2.48: An OKT on CB(6 x n) in Case 3.4
This completes the proof. O

2.3 Existence of Some Special OKTs on CB(m X n) —
{(5,9)}

The following lemmas give necessary and sufficient conditions on the existence
of some special OKTs on CB(4 x n) — {(4,j)} where n > 5 and (4, ) is a square
on CB(4 x n). These OKTs will be used to prove the existence of a CKT on
CB(m x n) — {(4,5)} in Section 3.3 of Chapter III. First, we consider the case

where n > 5 and n is odd.
Lemma 2.4. Letn > 5 and n is odd. Then,

(a) CB(4 x n)—A{(i,j)} contains an OKT from (2,n) to (4,n) if and only if
(i=1andi+jis even) or (i=4 and i+ j is even).



32

(b) CB(4 xn)—{(i,7)} contains an OKT from (1,n) to (3,n) if and only if
(i=1andi+jisodd) or (i=4 and i+ j is odd).

(¢) CB(4xn)—{(i,7)} contains an OKT from (1,1) to (3,1) if and only if (i =1
and i+ j is odd) or (i =4 and i+ j is odd).

(d) CB(4xn)—{(i,j)} contains an OKT from (2,1) to (4,1) if and only if (i =1

and i+ j is even) or (i =4 and i+ j is even).

Proof. Let n > 5 and n is odd. We consider CB(4 x n) — {(4,7)} where (i,7) is a
square on CB(4 x n).

(a) Assume that (i = 1 and i+ j is even) or (i = 4 and ¢ + j is even). Let
n = a+ 4k where k € NU {0} and a € {5,7}. We prove by the mathematical
induction on &.

First, for k = 0, we construct the required OKTs from (2, a) to (4, a) on CB(4 x
a)—{(4,4)} as shown in Figures 2.49 and 2.50. Note that four CB(4 x 5) —{(7,7)}
in Figure 2.49 contain edges (1,1) — (3,2) and (2,2) — (4,1). In addition, four
CB(4 x 7) —{(i,7)} in Figure 2.50 contain edges (1,1) — (3,2) and (2,2) — (4,1).
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Figure 2.49: The required OKTs on CB(4 x 5) — {(4,7)} where (i = 1 and i + j is
even) or (i =4 and i + j is even)

Next, let £ > 0 be an integer. Assume that CB(4 x (a+4k)) —{(4,j)} contains
an OKT from (2,a + 4k) to (4,a + 4k). Consider two cases of CB(4 x (a + 4(k +

1)) = {65}
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Figure 2.50: The required OKTs on CB(4 x 7) — {(i,j)} where (i =1 and i + j is
even) or (i =4 and ¢ + j is even)

Case 1: 1 < j < a+ 4k. We separate CB(4 x (a +4(k+1))) — {(7,4)} into two
sub-boards, CB(4 x (a+4k)) —{(4,j)} and CB(4 x 4) as shown in Figure 2.51 with
(i,5) = (1,1).

a+ 4k 4

Figure 2.51: CB(4 x (a +4(k+1))) — {(1,1)} with two sub-boards

By the induction hypothesis, the sub-board CB(4 x (a+4k)) —{(,j)} contains
an OKT from (2, a+4k) to (4, a+4k). For the sub-board CB(4 x 4), we construct
two paths P; from (2,1) to (4,4) and P from (4,1) to (2,4) as shown in Figure
2.52.
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Figure 2.52: Two paths P; and P, on CB(4 x 4)



34

Then, we construct the required OKT on CB(4 x (a +4(k+1))) — {(4,5)} by
joining (2, a +4k) and (4, a+ 4k) of the OKT on the sub-board CB(4 x (a+4k)) —
{(4,7)} to (4,1) of P, and (2,1) of P, on the sub-board CB(4 x 4), respectively, as
shown in Figure 2.53 with (7, 7) = (1,1).
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Figure 2.53: The required OKT from (2,a + 4(k + 1)) to (4,a + 4(k + 1)) on
CB(4 x (a+4(k+1))) —{(1,1)}

Case 2: a+4k+1 < j <a+4(k+1). We separate CB(4 x (a+4(k+1)))—{(i,7)}
into two sub-boards, CB(4 x 4) and CB(4 x (a+4k)) — {(¢,7)} as shown in Figure
2.54 with (i,7) = (1,a + 4(k + 1)).

4 a+ 4k

Figure 2.54: CB(4 x (a+4(k+1))) — {(1,a+4(k + 1))} with two sub-boards

For the sub-board CB(4 x 4), we construct two paths P| from (1,4) to (2,4)
and P, from (3,4) to (4,4) as shown in Figure 2.55.
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Figure 2.55: Two paths P and Pj on CB(4 x 4)

By the induction hypothesis, the sub-board CB(4 x (a+4k)) —{(,j)} contains
an OKT from (2,a + 4k) to (4,a + 4k). Since (1,1) and (4, 1) have degree 2 in
G4 x (a+4k)) — {(,5)}, (1,1) — (3,2) and (2,2) — (4,1) are two edges of the
OKT.
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Then, we construct the required OKT by the following two steps:

(i) delete (1,1) —(3,2) and (2,2) — (4,1) of the OKT on the sub-board CB(4 x
(a +4k)) —{(i5)};

(ii) join (1,4) and (2,4) of P| to (2,2) and (4, 1) of the OKT on the sub-board
CB(4 x (a + 4k)) — {(i,7)}, respectively and join (3,4) and (4,4) of Pj to
(1,1) and (3,2) of the OKT on the sub-board CB(4 x (a + 4k)) — {(4,J)},
respectively.

The required OKT is shown in Figure 2.56 with (7, 7) = (1,a + 4(k + 1)).
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Figure 2.56: The required OKT on CB(4 x (a +4(k+1))) —{(1,4(k+ 1))}

Hence, by the mathematical induction, if (i = 1 and ¢ + j is even) or (i = 4
and 7 + j is even), then there exist an OKT on CB(4 x n) — {(4,j)} from (2,n) to
(4,n).

Conversely, assume that (i # 1 or ¢ + j is odd) and (i # 4 or i + j is odd) and
CB(4 xn) —{(4,4)} contains an OKT from (2,n) to (4,n). Note that (i, 7) is the
black square when i + j is even and the white square when 7 + 7 is odd.

If (i,7) = (2,n) or (i,7) = (4,n), then it contradicts with our assumption about
the existence of the OKT from (2,n) to (4,n).

If i + 7 is odd and (7,j) ¢ {(2,n),(4,n)}, then the number of black squares is
greater than the number of white squares on CB(4 x n) — {(i,7)}. Since CB(4 x
n)—{(i,7)} contains an OKT from (2,n) to (4,n), (2,n) and (4, n) must be black.
However, 2+ n and 4+ n are odd, then (2,7n) and (4, n) are white, a contradiction.

For (i =2 and ¢ + j is even) or (i =3 and ¢ + j is even), let G; = G(4 x n) —
{(4,7)}. Consider G} = G; — {(2,n)}. Let S ={(2,s),(3,t) | s iseven, 2 < s <
n—1,tisodd and 1 <t <n}—{(i,5)}. Then, w(G;—S)=n+1>n=|5]+1,
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see Figure 2.57 for the case (i,7) = (3,1) and n = 9. By Theorem 1.5(b), we have

a contradiction.

VTN TN | .

Figure 2.57: Components of G} — S where (i,7) = (3,1) and n =9

(b) The required OKT can be obtained by horizontally flipping the OKT of
CB(4 xn)—{(i,7)} in (a).

(¢) The required OKT can be obtained by rotating 180 degrees of the OKT of
CB(4 xn)—{(i,7)} in (a).

(d) The required OKT can be obtained by rotating 180 degrees of the OKT of
CB(4 xn)—{(i,7)} in (b). ]

Next, we give the existence of some special OKTs on CB(4 x n) — {(i,7)} for

n > 6 and n is even.
Lemma 2.5. Let n > 6 and n is even. Then,

(a) CB(4 xn)—{(i,j)} contains an OKT from (2,n) to (4,n) if and only if
(i=1andi+jisodd) or (i =4 and i+ j is odd).

(b) CB(4 xn)—{(i,7)} contains an OKT from (1,n) to (3,n) if and only if
(i=1i4j is even) or (i =4 and i + j is even).

Proof. Let n > 6 and n is even. We consider CB(4 x n) — {(,7)} where (i, ) is a
square on CB(4 x n).

(a) Assume that (i = 1 and i + j is odd) or (i = 4 and i + j is odd). Let
n = a + 4k where k € NU {0} and a € {6,8}. We prove by the mathematical
induction on k.

For k = 0, we construct the required OKTs from (2, a) to (4,a) on CB(4 x a) —
{(7,7)} as shown in Figures 2.58 and 2.59. Note that four CB(4 x 6) — {(i,7)}
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in Figure 2.58 contain edges (1,1) — (3,2) and (2,2) — (4,1). In addition, four
CB(4 x 8) — {(¢,7)} in Figure 2.59 contain edges (1,1) — (3,2) and (2,2) — (4,1).
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Figure 2.58: The required OKTs on CB(4
odd) or (i =4 and ¢ + j is odd)
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Figure 2.59: The required OKTs on CB(4 x 8) — {(i, )} where (i =1 and i + j is
odd) or (i =4 and ¢ + j is odd)

Next, let & > 0 be an integer. Assume that CB(4 x (a+4k)) —{(, )} contains
an OKT from (2,a + 4k) to (4,a + 4k). Consider two cases of CB(4 x (a + 4(k +
1)) —{@ )}
Case 1: 1 < j < a+ 4k. We separate CB(4 x (a + 4(k +1))) — {(4,7)} into two
sub-boards, CB(4 x (a+4k)) —{(4,j)} and CB(4 x 4) as shown in Figure 2.60 with

(¢,7) = (1,2).
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a+ 4k 4

Figure 2.60: CB(4 x (a+4(k+1))) — {(1,2)} with two sub-boards

By the induction hypothesis, the sub-board CB(4 x (a+4k)) —{(4,j)} contains
an OKT from (2,a + 4k) to (4,a + 4k). Then, as shown in Figure 2.61 for (i,j) =
(1,2), we construct the required OKT by joining (2, a + 4k) and (4, a + 4k) of the
OKT on the sub-board CB(4 x (a + 4k)) — {(i,7)} to (4,1) of P, and (2,1) of P,
on the sub-board CB(4 x 4) (Figure 2.52), respectively.
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Figure 2.61: The required OKT from (2,a + 4(k + 1)) to (4,a + 4(k + 1)) on
CB4 x (a+4(k+1))) —{(1,2)}

Case 2: a+4k+1 < j <a+4(k+1). We separate CB(4 x (a+4(k+1)))—{(i,7)}
into two sub-boards, CB(4 x 4) and CB(4 x (a+4k)) — {(¢,7)} as shown in Figure
2.62 with (i,7) = (1,a +4(k + 1)).

4 a—+ 4k

Figure 2.62: CB(4 x (a+4(k+1))) — {(1,a + 4(k + 1))} with two sub-boards

By the induction hypothesis, the sub-board CB(4 x (a+4k)) —{(i,7)} contains
an OKT from (2,a + 4k) to (4,a + 4k). Since (1,1) and (4,1) have degree 2 in
G4 x (a+4k)) —{(:,7)}, (1,1) — (3,2) and (2,2) — (4,1) are two edges of the
OKT.
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Then, we construct the required OKT by the following two steps:

(i)  delete (1,1) — (3,2) and (2,2) — (4, 1) of the OKT on the sub-board CB(4 x
(a+4k)) = (i,5);

(ii)) by using P| and P, on CB(4 x 4) shown in Figure 2.55, we join (1,4) and
(2,4) of P on the sub-board CB(4 x 4) to (2,2) and (4, 1) of the sub-board
CB(4 x (a + 4k)) — {(i,7)}, respectively and join (3,4) and (4,4) of Pj on
the sub-board CB(4 x 4) to (1,1) and (3,2) of the sub-board CB(4 x (a +
4k)) — {(7,7)}, respectively.

The required OK'T is shown in Figure 2.63.
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Figure 2.63: The required OKT on CB(4 x (a +4(k+1))) — {(1,4(k + 1))}

Hence, by the mathematical induction, if (i = 1 and i + j is odd) or (i = 4 and
i+ 7 is odd), then there exist an OKT on CB(4 xn) —{(7, 5)} from (2,n) to (4,n).

Conversely, assume that (i # 1 or i+ j is even) and (i # 4 or i+ j is even) and
CB(4 xn) —{(4,4)} contains an OKT from (2,n) to (4,n). Note that (i, 7) is the
black square when i + j is even and the white square when 7 + 7 is odd.

If (i,7) = (2,n) or (i,7) = (4,n), then it contradicts with our assumption about
the existence of the OKT from (2,n) to (4,n).

If i + 7 is even and (7,j5) ¢ {(2,n),(4,n)}, then the number of black squares
is less than the number of white squares on CB(4 x n) — {(7,75)}. Since CB(4 X
n)—{(4,7)} contains an OKT from (2,n) to (4,n), (2,n) and (4, n) must be white.
Since 2 +n and 4 4 n are even, (2,n) and (4,n) are black, a contradiction.

For (i = 2and i+j is odd) or (i = 3 and i+j isodd), let G; = G(4xn)—{(i,7)}.
Consider G| = G; —{(2,n)}. Let S = {(2,5),(3,t) | s isodd, 1 < s < n —
I,tiseven and 2 <t <n} —{(i,7)}. Then, w(Gy —S)=n+1>n=|S|+1, see
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Figure 2.64 for the case (i,5) = (2,1) and n = 10. By Theorem 1.5(b), we have a

contradiction.
H oA NN |

Figure 2.64: Components of G} — S where (i,j) = (2,1) and n = 10

(b) The required OKT can be obtained by horizontally flipping the OKT of
CB(4 xn)—{(i,j)} in (a). O



CHAPTER I11
CLOSED KNIGHT’S TOURS ON SOME BOARDS

In this chapter, we give the existence of CK'Ts on some boards which is divided

into 3 sections. Sections 3.2 and 3.3 are two main results of our dissertation.

3.1 CKTs on some LB(m,n,r)

First, let us construct the CKT on LB(m,n,4), where m,n > 5.

Theorem 3.1. An LB(m,n,4) has a CKT containing an edge (1,4) — (3,3) for

allm,n > 5.

Proof. First, let us construct CKTs on some small size LBs of the same and dif-
ferent parity of m and n as in the following Figures 3.1 - 3.3. Note that Figure
3.1(a) is a result of this Theorem, while Figure 3.1(b) is constructed for extension

to larger LBs.

N N
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(a) (b) () (d) ()

Figure 3.1: CKTs for LB(5,5,4), LB(7,5,4), LB(5,7,4) and LB(7,7, 4)

In addition, from Figures 3.1(b) - 3.1(e), 3.2 and 3.3, each CKT of the LB(a, b, 4)
contains edges (1,1) —(2,3), (1,4) — (2,2), (a—3,b) —(a—1,b—1) and (a —2,b—
1) — (a,b). Furthermore, from Figures 3.1(a), 3.1(c) - 3.1(e), 3.2 and 3.3, each
CKT of the LB(a, b,4) contains the edge (1,4) — (3, 3).
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Figure 3.2: CKTs for LB(6,6,4), LB(8,6,4), LB(6,8,4) and LB(8,8,4)
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Figure 3.3: CKTs for LB(6,5,4), LB(5,6,4), LB(7,6,4), LB(6,7,4), LB(8,5,4),
LB(5,8,4), LB(8,7,4) and LB(7,8,4)
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Next, for the larger LBs, we already have two paths P| and Pj on the CB(4 x 4t)
as shown in Figure 2.31, where ¢ > 1.

Notice that (1,1), (2,1), (3,1) and (4,1) are four end-points of two paths of
the CB(4 x 4t) for t > 1. By rotating Figure 2.31 anti-clockwise for 90 degrees,
we also obtain two paths P/’ and Py on the CB(4s x 4) where s > 1 as shown in
Figure 3.4. Also, notice that (4s, 1), (4s,2), (4s,3) and (4s,4) are four end-points
of two paths and the edge (1,4) — (3,3) contained in one path of the CB(4s x 4)
for s > 1.

Now, we are ready to construct a CKT on a larger LB by placing the CB(4 x 4t)
(Figure 2.31) to the right and the CB(4s x 4) (Figure 3.4) above each smaller LB
in Figures 3.1 - 3.3, respectively. WLOG, let m > n > 5.



43

L[ plalalelplsls
VYRR AV Ry vs

'Fv:o N‘\t@b /V‘\t ‘(/\)
Y NOZ G OF Ve SV, NB2 SOF Vo NN

X

I e V& e
o v VI N w {Y TT o

SIAAALI N AR
Wikeieva VY Keieva VIR

Figure 3.4: Two paths P/ and Py on the CB(4s x 4)

e If m and n are odd integers, then m = 1 or 3 (mod 4) and n =1 or 3 (mod

1),

o If m and n are even integers, then m =0 or 2 (mod 4) and n = 0 or 2 (mod

1),

o If m and n are different parity, then m = 1 or 3 (mod 4) and n = 0 or 2

(mod 4); and m = 0 or 2 (mod 4) and n =1 or 3 (mod 4).

Recall that the LB(a,b,4) has a CKT for all a,b € {5,6,7,8}. Thus, it is
enough to show that the LB(a + 4s,b + 4t,4) has a CKT for any nonnegative s, ¢
and a,b € {5,6,7,8} such that s > ¢ and s # 0. First, if £ = 0, then let us divide
the LB(a + 4s,b,4) into two subboards, CB(4s x 4) and LB(a,b,4). Otherwise,
we divide into three subboards, CB(4s x 4), LB(a, b,4) and CB(4 x 4¢). Then, we
construct the required CK'T by the followings.

(i) if t = 0, then delete (1,1) — (2,3) and (1,4) — (2,2) from the CKT of the

LB(a,b,4). If t > 0, then further delete (¢ — 3,b) — (a — 1,b — 1) and
(a—2,b—1) — (a,b) from the CKT of the LB(a,b,4).
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(ii) If t = 0, then join (4s,1), (4s,2), (4s,3) and (4s,4) which are four end-
points of two paths of the CB(4s x 4) to (2,2), (1,4), (1,1) and (2, 3) of the
LB(a,b,4), respectively. If ¢ > 0, then further join (1,1), (2,1), (3,1) and
(4,1) which are four end-points of two paths of the CB(4 x4t) to (a—2,b—1),
(a,b), (a —3,b) and (a — 1,b — 1) of the LB(a, b,4), respectively.
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Figure 3.5: A CKT on the LB(a + 4s,b + 4t,4)
Figure 3.5 illustrates the constructed CKT on the LB(a + 4s,b + 4t,4). This

completes the proof. O

By properly rotating counter-clockwise 90 degrees and then flipping vertically

the LB(m,n,4), where m,n > 5, we obtain the following result immediately.

Corollary 3.2. A 7B(m,n,4) has a CKT containing an edge (4,1) — (2,2) for all

m,n > 5.

We note that Theorem 3.1 and Corollary 3.2 will be used in Case 2 of Theorem
3.4 in Section 3.2 of Chapter III.
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3.2 CKTs on RB(m,n,r)

To characterize the RB(m,n,r) according to the existence of its CKT, let us
first consider the case when r = 2. It is known from Theorem 1.9 that RB(m,m, 2)
admits no CKTs. The following theorem can be regarded as an extended result of

Theorem 1.9. Recall that G(m,n,r) is the knight graph of the RB(m,n, r).
Theorem 3.3. There are no CKT on RB(m,n,2) for alln >m > 5.

Proof. Let m and n be integers such that n > m > 5. In the case that m = n,
the result is obtained by Theorem 1.9. Assume that n > m. Then, there exist
positive integers k and [ and r,q € {1,2,3,4} such that m = 4k +r and n = 4l +q.
Assume that there exists a CKT H on RB(m,n,2) which is a Hamiltonian cycle
on G(m,n,2). We separate our consideration into 16 cases according to the values
of r and q.

Case 1: k < land r = ¢ = 1. Since all vertices in {(1,4i+1), (m,4i+1)|0 < i <[}
and {(47 + 1,1),(4i + 1,n)|0 < i < k} have only 2 incident edges which must be
in H and we collect all incident edges from these two sets, it happens to form a
cycle (1,1), (2,3), (1,5), (2,7),.., (2,n—2), (1,n), (3,n— 1), (5,n), (7,n —1),..,
(m—2,n-—1), (m,n), (m—1,n-—2), (mn—4), (m—1,n—6),.., (m—1,3),
(m,1), (m—2,2), (m—4,1), (m—6,2),..., (3,2), (1,1), see Figure 3.6 for a cycle on
(G(13,17,2). This is a contradiction since this cycle does not contain all vertices

of G(m,n,2).

i
i
i

[Jef [ [ Jel ]
ML [ 1
N T T

[T [ [Tt |

AT T T[T T[T
Figure 3.6: A cycle on G(13,17,2)

Case 2: k <l and r = g = 2. We obtain a contradiction similar to Case 1 by

considering {(1,4i+1),(m—1,4i+1)|0 <i <[} and {(4i+1,1),(4i+1,n—1)[0 <
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i < k} instead, see Figure 3.7(a) for a cycle on G(14, 18, 2).

Case 3: k <l and r = ¢ = 3. We obtain a contradiction similar to Case 1 by
considering {(1,4i +4), (m,4i +4)|0 <i <1 —1} and {(4i +4,1),(4i +4,n)|0 <
i <k — 1} instead, see Figure 3.7(b) for a cycle on G(15,19,2).

Case 4: k <l and r = ¢ = 4. We obtain a contradiction similar to Case 1 by
considering {(1,4i+1), (m,4i+4)|0 <i <[} and {(4i+1,1), (4i+4,n)|0 <i <k}
instead, see Figure 3.7(c) for a cycle on G(16, 20, 2).

Case 5: k£ <[, r =1 and ¢ = 2. We obtain a contradiction similar to Case 1 by
considering {(1,4i 4+ 1), (m,4i + 1)|0 <i <l} and {(4i +1,1),(4i + 1,n — 1)|0 <
i < k} instead, see Figure 3.7(d) for a cycle on G(13,14,2).

Case 6: k£ <[, r =1 and ¢ = 3. We obtain a contradiction similar to Case 1 by
considering {(1,4i + 2), (m,4i +2)|0 < i <} and {(4i +1,2),(4i + 1,n — 1)|0 <
i < k} instead, see Figure 3.7(e) for a cycle on G(13,15,2).

R T N T
S =5 &H u
< < i
i b i 2
an mae=re N
NNt N NN

Sl [l T[Tl [ [ Jol T T Tol
PIT T T I T T I™T TTN
7 7 I R
g oSS H O &
as K(m —ig —Z K w3
re mafEis O 4
:lu&ll,lALH,l&ll)r«fi sy/'~L||,Jr‘~L||,|/\l\ 2 ?‘_,IALIUAUUAL_ST
Tl [T T [T T [ [T [ [T AT T[T [ 11 [T [ [T [[T¢
(¢) A cycle on G(16,20,2) (d) A cycle on (¢) A cycle on
G(13,14,2) G(13,15,2)

Figure 3.7: Cycles on G(14,18,2), G(15,19,2), G(16,20,2), G(13,14,2) and
G(13,15,2), respectively.

Case 7: k<Il,r=1and g =4.

If £ =1, then there are some vertices (i.e., (2,n —4) and (4,n — 4) which are
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indicated by "+” in Figure 3.8) that have degree more than the degree of the same
vertices in the case when k > 2.

Case 7.1: k = 1. Since (1,n) and (5,n) have only 2 incident edges on the
G(5,n,2), (1,n) —(3,n—1) and (3,n—1) — (5,n) must be in H and it forces that
(I,n—2)—(3,n—1) and (3,n — 1) — (5,n — 2) must not be in H. Then, it also
forces that (2,n —4) — (1,n —2), (I,n —2) — (2,n), (4,n —4) — (5,n — 2) and
(5,n—2)—(4,n) must be in H. Next, since all vertice in {(1,4i+1), (5,4i+1)|0 <
i <1}, {(1,4i+2),(5,4i+2)|0 <i <l—1} and {(2,n), (4,n)} have only 2 incident
edges. Collect (2,n —4) — (1,n —2), (1,n —2) — (2,n), (4,n —4) — (5,n — 2)
and (5,n — 2) — (4,n) which must be in H together with all incident edges from
these three sets, it happen to form a cycle (1, 1), (2,3), (1,5), (2,7),.., (1,n — 3),
(2,n—1), (4,n), (5,n—2), (4,n—4), (5,n—06),.., (4,4), (5,2), (3,1), (1,2), (2,4),
(1,6),.., (1,n—06), (2,n—4), (1,n—2), (2,n), (4,n—1), (5,n—3),.., (5,5), (4,3),
(5,1), (3,2), (1,1), see Figure 3.8 for a cycle on G(5,12,2). This is a contradiction

).

since this cycle does not contain all vertices of G(5,n, 2

P GECARSCARDE

()

A T orer TTorer T

Figure 3.8: A cycle on G(5,12,2)

Case 7.2: k > 2. We obtain a contradiction similar to Case 1 by considering
{(1,4i+1), (1,4i+2), (m, 4i+1), (m,4i+2)|0 < i < 1—-1}, {(1,n—3), (2,n—4), (m—
1,n—4),(m,n—3)} and {(4i+1,1), (40+1,2), (4i+2,n), (4i+4,n)[0 <i < k—1}
instead, see Figure 3.9 for a cycle on G(13, 16, 2).

alel [ Jelel T Jelo] T lele]
A [T [ T |

N T T T T 1Y

Pl [ Tefed T Iele] ]
oo [ Tofel | Tefel | Tei+]

Figure 3.9: A cycle on G(13,16,2)
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Case 8: k <[, r=2and g = 1. We obtain a contradiction similar to Case 1 by
considering {(1,4i 4+ 1), (m — 1,4i + 1)|0 < i <} and {(4i + 1,1),(4i + 1,n)|0 <
i < k} instead, see Figure 3.10(a) for a cycle on G(14,17,2).
Case 9: k£ <[, r =2 and ¢ = 3. We obtain a contradiction similar to Case 1 by
considering {(1,4i+2),(m—1,4i+2)|0 <i <[} and {(4i+1,2),(4i+1,n—1)[0 <
i < k} instead, see Figure 3.10(b) for a cycle on G(14,15,2).

SRR
i 6 +
i Rapp=: 2
5 4 5
4 A i
m KER b
AT Il Tl T LT > o [TI{TTI{ TS
M T T [T AT AT
(a) A cycle on G(14,17,2) (b) A cycle on G(14,15,2)

Figure 3.10: Cycles on G(14,17,2) and G(14, 15, 2), respectively.

Case 10: £ <[, r =2 and q = 4.

If k=1 and [ =1, then it is similar to Case 7.1. We can see that (m — 1,5)
(indicated by "+” in Figure 3.11) has degree 3 which is more than the degree of
the same vertex in the case when k¥ > 2 and [ > 2.

Case 10.1: k=1 and [ = 1. Since (2,8) and (6,8) have only 2 incident edges
on the G(6,8,2), (2,8) — (4,7) and (4,7) — (6,8) must be in H and it forces that
(5,5) — (4, 7) must not be in H. Then, it also forces that (6,3) —(5,5) and (5,5) —
(6,7) must be in H. Next, since all vertice in {(1,1),(1,5),(2,7),(6,7), (5,1)} have
only 2 incident edges. Collect (6,3) — (5,5) and (5,5) — (6, 7) which must be in H
and together with all incident edges from the set {(1,1),(1,5),(2,7),(6,7),(5,1)},
it happens to form a cycle (1,1), (2,3), (1,5), (2,7), (4,8), (6,7), (5,5), (6,3),
(5,1), (3,2), (1,1), see Figure 3.11. This is a contradiction since this cycle does
not contain all vertices of G(6, 8, 2).

Case 10.2: £k > 1 and [ > 2. We obtain a contradiction similar to Case 1

by considering {(1,4i + 1)|0 < ¢ < I}, {(4i +2,n —1),(4i + 1,1)|0 < i < k},
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d] L+
I~ N

Figure 3.11: A cycle on G(6,8,2)

{(m —1,5)} and {(m,4i + 3)|1 < i < [} instead, see Figure 3.12 for a cycle on
G(14,16,2).

i
'
2

:
i
:

AT T T[T
[l T [ Jof ]
M T T

AT [l T T Il ]

MEERCEERCENRE
Figure 3.12: A cycle on G(14, 16, 2)

Case 11: k<[, r =3 and ¢ = 1. We obtain a contradiction similar to Case 1 by
considering {(2,4i 4+ 1),(m — 1,41+ 1)|0 <@ <} and {(4i +2,1),(4i +2,n)|0 <
i < k} instead, see Figure 3.13(a) for a cycle on G(15,17,2).
Case 12: k <[, r =3 and ¢ = 2. We obtain a contradiction similar to Case 1 by
considering {(2,4i+1),(m—1,4i+1)|0 <4 <} and {(4i+2,1), (4i+2,n—1)|0 <
i < k} instead, see Figure 3.13(b) for a cycle on G(15,18,2).

NUEPNUEPNNEPN
[Tt [ [T [ et |

[[ Tl [ [Tl [T I

AUEPOUEDD RPN
T I T I

o [ [T [ [T [ [T
Ml [ Il ][4
™I T T

/
i
i

|
A
Figure 3.13: Cycles on G(15,17,2) and G(15, 18, 2), respectively.

Case 13: £ <Il,r =3 and ¢ = 4.
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Ifk=1and! =1or k=1 and [ > 2, then it is similar to Case 7.1. For
k =1 and [ = 1, there are some vertices (i.e., (2,4), (3,1), (5,1) and (6,4) which
are indicated by "+” in Figure 3.14) that have degree more than the degree of the
same vertices in the case when k > 2. For k = 1 and [ > 2, there are some vertices
(i.e., (3,1) and (5,1) which are indicated by "+ in Figure 3.15) that have degree
more than the degree of the same vertices in the case when k > 2.

Case 13.1: k=1 and [ = 1. Since (1,1), (1,5), (7,1) and (7,5) have only
2 incident edges on G(7,8,2), (1,1) — (2,3), (2,3) — (1,5), (7,1) — (6,3) and
(6,3) — (7,5) must be in H and it forces that (3,1) —(2,3) and (5,1) — (6, 3) must
not be in H. Then, it also forces that (1,2)—(3,1), (3,1)—(5,2), (3,2)—(5,1) and
(5,1) — (7,2) must be in H. Thus, (3,2) and (5,2) already have 2 incident edges
on H and it forces again that (3,2) — (2,4) and (5,2) — (6,4) must not be in H.
Next, since all vertice in {(1,1),(1,2),(1,5),(2,8),(4,8),(6,8),(7,5),(7,2),(7,1)}
have only 2 incident edges. Collect (2,4) — (1,6), (3,1) — (5,2), (3,2) — (5,1)
and (6,4) — (7,6) which must be in H together with all incident edges from
{(1,1),(1,2),(1,5),(2,8),(4,8),(6,8),(7,5),(7,2),(7,1)}, it happens to form a cy-
cle (1,1), (2,3), (1,5), (2,7), (4,8), (6,7), (7,5), (6,3), (7,1), (5,2), (3,1), (1,2),
(2,4), (1,6), (2,8), (4,7), (6,8), (7,6), (6,4), (7,2), (5,1), (3,2), (1,1), see Fig-
ure 3.14. This is a contradiction since this cycle does not contain all vertices of

G(7,8,2).

a
{
£

Casak

LN
.

y
{

y
e

Figure 3.14: A cycle on G(7,8,2)

Case 13.2: k=1 and [ > 2. Since (1,1), (1,5), (7,1) and (7,5) have only
2 incident edges on G(7,n,2), (1,1) — (2,3), (2,3) — (1,5), (7,1) — (6,3) and
(6,3) — (7,5) must be in H and it forces that (3,1) —(2,3) and (5,1) — (6, 3) must
not be in H. Then, it also forces that (1,2)—(3,1), (3,1)—(5,2), (3,2)—(5,1) and
(5,1) —(7,2) must be in H. Next, since all vertice in {(1,4i+1), (7,4i+1)|0 <i <
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1},{(1,4i42),(7,4i+2)|0 < i < l—1} and {(2,n—4), (6,n—4),(2,n), (4,n), (6,n)}
have only 2 incident edges. Collect (3,1) — (5,2) and (3,2) — (5, 1) which must be
in H together with all incident edges from these two sets, it happen to form a cycle
(1,1), (2,3), (1,5).., (2,mn—5), (1,n—=13), (2,n—1), (4,n), (6,n—1), (7,n —3),...,
(7,5), (6,3), (7,1), (5,2), (3,1), (1,2), (2,4),.., (L,n —6), (2,n —4), (1,n — 2),
(2,n), (4,n—1), (6,n), (7,n—2), (6,n—4), (7,n—6),.., (6,4), (7,2), (5,1), (3,2),
(1,1), see Figure 3.15 for a cycle on G(7,16,2). This is a contradiction since this
cycle does not contain all vertices of G (7,4l + 4,2).

L] e *6& *//5(‘\\\\?
{p

Lol [ Jelel | ekl [ Ao

o L I+ Tp

3
)
G

Figure 3.15: A cycle on G(7,16,2)

Case 13.3: k& > 2. We obtain a contradiction similar to Case 1 by considering
{(1,4i +1),(m,4i+ 1)|0 <0 <1}, {(1,4i+2),(m,4i+2)[0 <i<1—1}, {(2,n —
4),(m —1,n—4)}, {4i+2,n)]0 < i <k}, {4 +4,n)|0 <i<k-—1}, {(4+
1,1),(40+1,2)|0 < < k—2} and {(4i + 3,1), (49 + 3,2)|1 < i < k} instead, see
Figure 3.16 for a cycle on G(15, 16, 2).

%“F\.x./%\x«a A~.><efax\\~,,
e {»
<[> A
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Ak \ﬂ[@}x\v vo&\e)@/ >

Figure 3.16: A cycle on G(15,16,2)

Case 14: k <l,r=4and ¢ = 1.
If & =1, then it is similar to Case 7.1. There are some vertices (i.e., (4,2) and

(4,n — 1) which are indicated by "+” in Figure 3.17) that have degree more than

the degree of the same vertices in the case when k > 2.
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Case 14.1: k= 1. Since (1,1), (1,5), (1,n—4) and (1,n) have only 2 incident
edges on G(8,41 + 1,2), (1,1) — (2,3), (2,3) — (1,5), (I,n —4) — (2,n — 2) and
(2,n—2)—(1,n) must be in H and it forces that (4,2)—(2,3) and (4,n—1)—(2,n—2)
must not be in H. Then, it also forces that (4,2) —(6,1) and (4,n—1)—(6,n) must
be in H. Next, since all vertice in {(1,4i+1),(2,4i+1)|0 < <}, {(5,1),(5,n)}
and {(8,47 + 2),(8,4i + 4)|0 < ¢ < [ — 1} have only 2 incident edges. Collect
(4,2) — (6,1) and (4,n — 1) — (6,n) which must be in H together with all incident
edges from these three sets, it happens to form a cycle (1,1), (2,3), (1,5),..,
(IL,n—4), (2,n—2), (1,n), (3,n—1), (5,n), (7,n—1), (8, n —3),.., (7,4), (8,2),
(6,1), (4,2), (2,1), (1,3), (2,5),, (2,n—4), (1,n —2), (2,n), (4,n — 1), (6,n),
(8,n—1), (7,n—3),.., (8,4), (7,2), (5,1), (3,2), (1,1), see Figure 3.17 for a cycle
on (G(8,13,2). This is a contradiction since this cycle does not contain all vertices

of G(8,41+1,2).

L Jol Il Jol [
T el ™ Tef T

a] Lp
< 7
L JL T de]

[ Tof Tof TeT TeT ]
Figure 3.17: A cycle on G(8,13,2)
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Case 14.2: k > 2. We obtain a contradiction similar to Case 1 by considering
{(1,4i41),(2,4i+1)[0 <7 <1}, {(4i+1,1),(4i+1,n)|0 < i < k}, {(4i+2,1), (4i+
2n)0<i<k—1}{(m—4,2),(m—4,n—1)} and {(m,4i + 2), (m,4i +4)|0 <
i <1 —1} instead, see Figure 3.18 for a cycle on G(16,17,2).

[ Jol To] Jol T-] Jof Ta]
T ol T Tof D Tof 1+

[ofol [ Tefol | Telo] [ lalp
e o I i i A I

M T Jelal T Tele] T Tele
[el” | Tofef | Tofef [ TTe

L L Tl T el Tl Ja] |
[ TeT tof Tof Tof Tof TeT |

Figure 3.18: A cycle on G(16,17,2)
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Case 15: k<[, r=4and q = 2.

If Kk =1and ! > 2, then it is similar to Case 7.1. The vertex (3,n) (indicated
by "+” in Figure 3.19) has degree 3 which is more than the degree of the same
vertex in the case when & > 2 and [ > 2.

Case 15.1: k=1 and [ > 2. Since (1,n —4) and (1,n) have only 2 incident
edges on G(8,41 +2,2), (1,n —4) — (2,n —2) and (2,n — 2) — (1,n) must be in
H and it forces that (2,7 —2) — (3,n) must not be in H. Then, it also forces that
(I,n—1) = (3,n) and (3,n) — (5,n — 1) must be in H. Next, since all vertice in
{(1,4i +1),(7,41 +2)|0 < i <} and {(5,1)} have only 2 incident edges. Collect
(I,n—1) — (3,n) and (3,n) — (5,n — 1) which must be in H together with all
incident edges from these two sets, it happens to form a cycle (1,1), (2,3), (1,5),
vy (LLm=5),(2,n=3), (1,n—1), (3,n), (5,n—=1), (7,n), (8,n—2), (7,n —4),..,
(8,4), (7,2), (5,1), (3,2), (1,1), see Figure 3.19 for a cycle on G(8,14,2). This is

a contradiction since this cycle does not contain all vertices of G(8, 4l + 2, 2).

b [Jel [ [ Jel 1[I

4

K

SRS
o [ [T+

Figure 3.19: A cycle on G(8, 14, 2)

Case 15.2: k£ > 2. We obtain a contradiction similar to Case 1 by considering
{(1,4i+1),(m = 1,40+ 2)|0 < <1}, {(4i+1,1)|0 <i <k}, {(m—5,n)} and
{(4i+1,n—1)|1 <i <k — 1} instead, see Figure 3.20 for a cycle on G(16,18,2).

Y Jel [Tl [ [ Jel ][ Ie

I T Tl [ T 1ol ]
o [ [T [T [+

Jol [ [ el T [ el ]
ATTTTT T AT [+

Figure 3.20: A cycle on G(16,18,2)
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Case 16: k < [, r = 4 and ¢ = 3. We obtain a contradiction similar to Case
1 by considering {(1,47 + 1), (2,4i + 1)[0 < ¢ <1 -1}, {(1,n —4),(2,n — 4)},
{(4i+1,1),(4i+1,n)|0 <i <k}, {(4i+2,1),(4i+2,n)|0 <i < k—1}, {(m—
4,2),(m —4,n— 1)}, {(m,4i+2)|0 <i <[} and {(m,4i)|1 <i <[} instead, see
Figure 3.21 for a cycle on G(16,19,2).

(L Jol ol Jal o] Tl Jol Joi
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T L L L AL L]
Tt Tor Yol ToT ot Tot T

Figure 3.21: A cycle on G(16,19,2)

This completes the proof. [

Now, we are ready to prove our main theorem about the existence of a CKT

on RB(m,n,r).

Theorem 3.4. An RB(m,n,r) with m,n > 2r has a CKT if and only if (a)

m=n=3andr=1or (b)r>3.

Proof. First, for m,n >3, r = 1 and (m,n,r) # (3,3, 1), the degree of four conner
vertices of G(m,n,1) is at most one. Thus, RB(m,n,1) cannot have CKT. For
m,n > 5 and r = 2, by Theorem 3.3, an RB(m, n,2) has no CKT.

Conversely, for m = n = 3 and r = 1, it is well-known that an RB(3,3, 1) has
a CKT. Next, we assume that » > 3 and m,n > 2r.

Case 1: r = 3.

Case 1.1: m is odd and n is even, or m is even and n is odd. We partition
the RB(m,n,3) into LB(m,n — 3,3) and 7B(m,n — 3,3), see Figure 3.22(a) for
RB(10,11,3). Since m + n — 3 is even with m > 6 and n — 3 > 3, by Theorem
2.1(b), the LB(m,n — 3, 3) contains an OKT from (1, 3) to (2,2) and by Corollary
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2.2(b), the 7TB(m,n — 3,3) contains an OKT from (3, 1) to (2,2). By joining (1, 3)
and (2,2) of LB(m,n —3,3) to (2,2) and (3, 1) of 7B(m,n — 3, 3), respectively, we
obtain a CKT on RB(m,n,3) as shown in Figure 3.22(b) for the RB(10, 11, 3).

b AN NS
A I e Wz | ST T
% QRIS Ay
ATy Wal)
N X
R AY: AL
R <\z
W INA AN vads [ <k
A I < [ VR
ZRSRAT SRR TS
(a) (b)

Figure 3.22: Two parts of RB(10,11,3) and a CKT on RB(10, 11, 3)

Case 1.2: m and n are odd or even. We partition the RB(m,n,3) into
LB(m,n — 3,3) and 7B(m,n — 3,3), see Figure 3.23(a) for RB(11,13,3). Since
m—+n—3is odd with m > 6 and n—3 > 3, by Theorem 2.1(a), the LB(m,n—3,3)
contains an OKT from (1,2) to (1,3) and by Corollary 2.2(a), the TB(m,n — 3, 3)
contains an OKT from (2,1) to (3,1). By joining (1,2) and (1, 3) of LB(m,n—3,3)
to (2,1) and (3, 1) of 7B(m,n—3,3), respectively, we obtain a CKT on RB(m, n, 3)
as shown in Figure 3.23(b) for the RB(11, 13, 3).
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Figure 3.23: Two parts of RB(11,13,3) and a CKT on RB(11, 13, 3)

~

Case 2: r = 4. We partition the RB(m,n,4) into LB(m,n — 4,4) and 7B(m,n —
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4,4), see Figure 3.24(a) for RB(11, 13,4). By Theorem 3.1 and Corollary 3.2, the
LB(m,n—4,4) has a CKT that contains an edge (1,4) —(3,3) and 7B(m,n —4,4)
has a CKT that contains an edge (4,1) — (2,2). By deleting (1,4) — (3,3) of
LB(m,n —4,4) and (4,1) — (2,2) of 7B(m,n — 4,4) and joining (1,4) and (3, 3)
of LB(m,n —4,4) to (2,2) and (4, 1) of TB(m,n — 4,4), respectively, we obtain a
CKT on RB(m,n,4), as show in Figure 3.24(b) for RB(11, 13, 4).
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Figure 3.24: Two parts of RB(11,13,3) and a CKT on RB(11, 13, 3)
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Case 3 r > 5.

Case 3.1: r is even. We partition the RB(m,n,r) into two CB(r x (n —r))
and two CB((m — r) x r), see Figure 3.25(a) for RB(13,14,6). There are three
steps to obtain a CKT having some edges on each partitioned board. First, we
consider a CB(r x (m —r)). By Theorem 1.6, it contains a CKT having edges
(I,m—r—1)—(3,m—r) and (r,2) — (r—1,4). Rotate CB(r x (m—r)) 90 degrees
clockwise, we obtain a CKT on CB((m—r) x7) of the upper right-hand side having
edges (m—r—1,r)—(m—r,r—2) and (2,1) — (4, 2). Next, rotate CB(r x (m—r))
90 degrees counterclockwise, we obtain a CKT on CB((m — r) x r) of the lower
left-hand side having edge (m —r — 3,7 — 1) — (m —r — 1,7). Finally, we consider
a CB(r x (n—1)) on the upper left-hand side. By Theorem 1.6, it contains a CKT
having edges (1,n—r—1)—(3,n—7) and (r,2) — (r—1,4). Rotate CB(r x (n—r))
180 degrees clockwise, we obtain a CKT on CB(r x (n—7)) of the lower right-hand
side having edges (r —2,1) — (r,2) and (1,n —r—1) — (3,n —r — 3).
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Thus, if we use the position on the RB(m,n,r), there are 4 CKT on each
partition having six edges, namely (1,n—r—1)—(3,n—7), (2,n—r+1)—(4,n—
r+2),m—-r—1n)—(m-rmn—-2),m—r+1ln—-1)—(m—r+2n—3),
(m,r+2)—(m—2,r+1)and (m—1,r) — (m —3,r —1).

Next, to construct a CKT on RB(m,n,r), we delete these six edges and join
these six edges: (1,n—r—1)—2,n—r+1), B,n—r)—4,n—r+2), (m—1r—
L,n)—(m—r+1,n—1), (m—r,n—2)—(m—r+2,n—3), (m—1,r)—(m,r+2) and
(m—3,r—1)—(m—2,r+1) instead, as shown in Figure 3.25(b) for RB(13, 14, 6).
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Figure 3.25: Four parts of RB(13,14,6) and a CKT on RB(13, 14, 6)

Case 3.2: r is odd. We partition the RB(m,n,r) into two CB(r x (n — r))
and two CB((m — r) x r), see Figure 3.26(a) for RB(12,13,5). There are three
steps to obtain an OKT having two end-points on each partitioned board. First,
we consider a CB(r x (m —r)). By Theorem 2.3, it contains an OKT from (r, 1)
to (2,m —r — 1). Rotate CB(r x (m — r)) 90 degrees clockwise, we obtain an
OKT from (1,1) to (m —r—1,7—1) on CB((m —r) x r) of the upper right-hand
side. Next, rotate CB(r x (m—r)) 90 degrees counterclockwise, we obtain an OKT
from (m —r,7) to (2,2) on CB((m — r) x r) of the lower left-hand side. Finally,
we consider a CB(r x (n — r)) on the upper left-hand side. By Theorem 2.3, it
contains an OKT from (r,1) to (2,n —r —1). Rotate CB(r x (n —r)) 180 degrees
clockwise, we obtain an OKT from (1,n —r) and (r — 1,2) on CB(r x (n —r)) of
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the lower right-hand side.

Thus, if we use the position on the RB(m,n,r), there are four OKTs on each
partition having eight end vertices, namely (r,1), (2,n —r — 1), (I,n —r + 1),
(m—r—1n—-1),(m—r+1,n), (m—1,r+2), (m,r) and (r + 2,2).

Next, to construct a CKT on the RB(m,n,r), we join four edges: (2,n —r —
D-=On—r+1),m—r—1n—-1)—(m-—r+1,n), (m—1,7r+2)—(m,r) and
(r,1) — (r +2,2), as shown in Figure 3.26(b) for RB(12,13,5).
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Figure 3.26: Four parts of RB(12,13,5) and a CKT on RB(12,13,5)

This completes the proof. O
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3.3 CKTsonCB(4xn)— A

In this section, we consider the existence of CKTs on CB(4 x n) — A where

n > 3.

3.3.1 CKTson CB(4xn)— A where3<n<6

For small n such that 3 < n < 6, we can only remove some pairs of different

colors in the first and the fourth rows.
Lemma 3.5. There exists a CKT on CB(4x3)—A if and only if A = {(1,2), (4,2)}.

Proof. A CKT on CB(4 x 3) — {(1,2),(4,2)} is shown in Figure 3.27.

A
VN

A LA
AVIVIN

Figure 3.27: A CKT on CB(4 x 3) — {(1,2), (4,2)}

Conversely, there are 4 cases, namely (1) A € {{(1,1), (4,1)},{(1,3),(4,3)}} (ii)
Ae {{(1,1),(4,3)},{(1,3), (4, 1)}} (iii) A € {{(1,1),(1,2)},{(1,2), (1,3)}, {(4, 1),
(4,2)},{(4,2),(4,3)}} and (iv) A # {(1,2),(4,2)} and is not in cases (i) - (iii).
Figure 3.28 from left to right represents each case (i) - (iii) scenario according to
their symmetry and also shows components of (G(4 x3)— A)— S, where the shaded

squares are elements in A and the crossed squares are elements in S.

|/ A/ /
AV/\VA "N M/
AN 7\ Y.
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Figure 3.28: Components of (G(4 x 3) — A) — S in cases (i) - (iii)

It is clear from Theorem 1.5(a) that the CKT does not exist on CB(4 x 3) — A,

where A is in cases (i) - (iii) and Proposition 1.11 also implies that if A is in case
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(iv), then the CKT does not exist on CB(4 x 3) — A. O

Lemma 3.6. There exists a CKT on CB(4x4)—A if and only if A € {{(1,1),(1,4)},
{(1L1), (4,1}, {(1,4),(4,4)}, {(4,1), (4,4)}}.

Proof. According to the symmetry, a CKT on CB(4 x 4) — {(1,1), (1,4)} is shown
in Figure 3.20. If A is not in {{(1,1), (1.4)}, {(L 1), (4, )}, {(1,4), (4,9}, {(4,1),

7
A7
L e
75

<IN

Figure 3.29: A CKT on CB(4 x 4) — {(1,1),(1,4)}

(4,4)}}, then Proposition 1.11 can be apply to conclude the nonexistence of CKTs
on CB(4 x 4) — A.

One of A from the first row and one of A from the fourth row which are the
same parity color. The Proposition 1.11 can be apply immediately.

One of A is in either the second or the third column. The rotation make this

square is on the middle two rows. Then the Proposition 1.11 can be apply. [

Lemma 3.7. There ezxists a CKT on CB(4x5)—Aifand only if A € {{(1,1), (1,2)},
{(1,4),(1,5)}, {(4, 1), (4,2)}, {(4,4), (4,5)}, {(1, 1), (4, 1)}, {(1,5), (4,9)}, {(L,1),
(4,9)}, {(1,5), (4, 1)}}.
Proof. First, we consider 3 cases, namely (i) A € {{(1,1),(1,2)}, {(1,4),(1,5)},
(41, (42)h {49, (451 () A € ({(L1), (4D}, {(L,5),(4,5)}} and (i)
A e {{(1,1), (4,5}, {(1,5),(41)}}. A CKT on CB(4 x 5) — A, where A €
{{(1,1),(1,2)}, {(1,1),(4,1)}, {(1,1),(4,5)}}, is shown in Figure 3.30. By its
symmetry of each of Figure 3.30, A CKT on CB(4 x 5) — A is obtained for each
remaining A of each case, respectively.

Conversely, there are 7 cases, namely (i) A € {{(1,2),(1,3)}, {(1,3),(1,4)},
{(4,2),(4,3)}, {(4,3),(4,4)}} (i) A = {(1,3),(4,3)} (iii) A € {{(1,1),(1,4)},
{(1,2),(15)}, {(41),(44)}, {(4,2),45)}1} (iv) A4 € {{(1,2),(44)}, {(L4),

Y
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Figure 3.30: CKTs on CB(4 x 5) — A

4N () A € {1,430} {(13), (4D}, {(1L3), &5} {(1,5),43)})
(vi) A € {{(1,2),(4,2)}, {(1,4),(4,4)}} and (vii) A is not in {{(1,1),(1,2)},
{(1,4), (1,5)}, {(4, 1), (4,2)}, {(4,4), (4,5)}, {(1, 1), (4, D}, {(1,5), (4,5)}, {(1, 1),
(4,5)}, {(1,5),(4,1)}} and is not in cases (i) - (vi). Figure 3.31 from left to right
of the first and the second rows represents each case (i) - (vi) scenario according
to their symmetry and also shows components of (G(4 x 5) — A) — S, where the
shaded squares are elements in A and the crossed squares are elements in S. It is
clear from Theorem 1.5(a) that the CKT does not exist on CB(4 x 5) — A, where

A is in cases (i) - (vi).
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Figure 3.31: Components of (G(4 x 5) — A) — S in cases (i) - (vi)

In the case (vii), either one of A is from the middle two rows or the two squares

of A are the same parity color. Then, Proposition 1.11 also implies the nonexistence

of CKTs on CB(4 x 5) — A. O

Lemma 3.8. There exists a CKT on CB(4x6)—A if and only if A € {{(1,1),(4,1)},
{(1,6),(4,6)}, {(1,1), (1,2)}, {(1,5), (1,6)}, {(4,1), (4,2)}, {(4,5), (4,6)}, {(1,2),
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(4,2)}, {(1,5), (4,5)}, {(1,1), (1,6)}, {(4, 1), (4,6)}, {(1,2), (1,5)}, {(4,2), (4,5)},
{(1,1),(4,5)}, {(1,2),(4,6)}, {(1,5), (4, 1)}, {(1,6), (4,2)}}.

Proof. First, we consider 6 cases, namely (i) A € {{(1,1),(4,1)}, {(1,6),(4,6)}}
(i) A € {{(11), (L2}, {(1,5),(L6)}, {(4,1), (4.2)}, {(4,5),(4,6)}} (i) A €
{{(1,2),(4,2)}, {(1,5),(4,5)}} (iv) A € {{(1,1),(1,6)}, {(4,1),(4,6)}} (v) A

{{(1,2),(1,5)},{(4,2),(4,5)} } and (vi) A € {{(1,1), (4,5)}, {(1,2), (4,6)}, {(L,5),
4,1)}, {(1,6),(4,2)}}. A CKT on CB(4 x 6) — A, where A € {{(1,1),(4,1)},
(LD, (1L2)) {12, (42} {10,(L6)}, {(1,2), 1,5}, {(1L1),(45)}H, is
shown in Figure 3.32. By its symmetry of each of Figure 3.32, A CKT on CB(4 x

6) — A is obtained for each remaining A of each case, respectively.
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Figure 3.32: CKTs on CB(4 x 6) — A

Conversely, there are 7 cases, namely (i) A € {{(1,1),(4,3)}, {(1,3),(4,1)},
{(1,4),(4,6)},{(1,6), (4,4)}} (ii) A € {{(1,2), (4,4)}, {(1,3), (4,5)}, {(1,4), (4,2)},
{(1,5),(4,3)}} (i) A e {{(1,1),(1,4)}, {(1,3),(1,6)}, {(4,1),(4,4)}, {(4,3),
(4,6)1} (iv) A € {{(1,3),(4,3)}, {(1,4),(4,4)}} (v) A € {{(1,2),(1,3)}, {(1,4),
(1,5)}, {(4,2),(4,3)}, {(4,4),(4,5)}} (vi) A € {{(1,3),(1,4)}, {(4,3),(4,4)}}
and (vii) A is not in {{(1,1),(4,1)}, {(1,6),(4,6)}, {(1,1),(1,2)}, {(1,5),(1,6)},
{(4,1),(4,2)}, {(4,5), (4,6)}, {(1,2), (4,2)}, {(1,5), (4,5)}, {(1,1),(1,6)}, {(4,1),
(4,6)}, {(1,2),(1,5)}, {(4,2),(4,5)}, {(1,1), (4,5)}, {(1,2), (4,6)}, {(1,5), (4, 1)},
{(1,6),(4,2)}} and is not in cases (i) - (vi). Figure 3.33 from left to right of the

first and the second rows represents each case (i) - (vi) scenario according to their
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symmetry and also shows components of (G(4 x 6) — A) — S, where the shaded
squares are elements in A and the crossed squares are elements in S. It is clear
from Theorem 1.5(a) that the CKT does not exist on CB(4 x 6) — A, where A is

in cases (i) - (vi).
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Figure 3.33: Components of (G(4 x 6) — A) — S in cases (i) - (vi)

In the case (vii), either one of A is from the middle two rows or the two squares
of A are the same parity color. Then, Proposition 1.11 also implies the nonexistence

of CKTs on CB(4 x 6) — A. O

3.3.2 CKTson CB(4 Xxn) — A wheren > 7

By mainly using the mathematical induction and using special OKTs con-
structed in Section 2.3 Chapter II in some cases, we can prove our main result

which is the Conjecture 1 as follows.

Theorem 3.9. Consider CB(4 x n) with n > 7. For any pair of squares, with
one of each parity of color and neither coming from the middle two rows, there is

a CKT on the board that avoids only these two squares.

Proof. Let n > 7 and
Sn = {(,y), (zw)} [ (2,2 € {1,4},1 <y,w <n, (z,y) # (2,0)) and
((x +yis odd and z + w is even) or (x + y is even and z + w is odd))}.
Now, we consider CB(4 xn) — A withn > 7and A € S,,.. Let n = a+ 3k where
a €{7,8,9} and k € NU{0}. We prove by the mathematical induction on k.
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First, for k£ = 0, we construct the CKTs on CB(4 x a) — A for some A € S, as
shown in Figures 3.34, 3.35 and 3.36. Note that actually the CKTs on CB(4xa)—A

for all A € S, can be obtained from the diagrams represented in Figures 3.34, 3.35

and 3.36 according to its symmetry. Note that some CB(4 x a) — A in Figures

3.34, 3.35, 3.36 contain edges (1,a) — (3,a — 1) and (2,a — 1) — (4,a).
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Figure 3.34: CKTs on CB(4 x 7) — A for some A € S;
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Figure 3.35: CKTs on CB(4 x 8) — A for some A € S
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Figure 3.36: CKTs on CB(4 x 9) — A for some A € Sy
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Next, let k& > 0 be an integer. Assume that CB(4 x (a + 3k)) — B contains a
CKT for all B € Sgqsc. Let A= {(z,y), (2,w)} € Sat3(k+1)-
Case 1: 1 <y,w < a+ 3k — 2.

We separate CB(4 x (a+3(k+1)))— A into two sub-boards, CB(4 x (a+3k))—A
and CB(4 x 3) as shown in Figure 3.37 with A = {(1,1), (4,1)}.

a+ 3k 3

Figure 3.37: CB(4 x (a+3(k+1))) — {(1,1),(4,1)} with two sub-boards

Since A € S, 3k, by the induction hypothesis, the sub-board CB(4x (a+3k))—A
contains a CKT. For the sub-board CB(4 x 3), we construct two cycles C; and Cy

as shown in Figure 3.38.
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Figure 3.38: Two cycles C; and Cy on CB(4 x 3)

Since (1,a + 3k) and (4, a + 3k) have degree 2 in G(4 x (a + 3k)) — A, (1,a +
3k)—(3,a+3k—1) and (2,a+ 3k — 1) — (4,a + 3k) are two edges of the CKT on
the sub-board CB(4 x (a + 3k)) — A.

Then, we construct the required CKT by

(i) delete (1,a + 3k) — (3,a+ 3k — 1) and (2,a + 3k — 1) — (4,a + 3k) of the
CKT on the sub-board CB(4 x (a + 3k)) — A and delete (1,1) — (3,2) and
(2,2) — (4,1) of Cy and C5 on the sub-board CB(4 x 3), respectively;

(ii) join (1,a+ 3k) and (3,a+ 3k — 1) of the CKT on the sub-board CB(4 x (a+
3k))—Ato (2,2) and (4, 1) of Cy on the sub-board CB(4 x 3), respectively and
join (2,a+ 3k —1) and (4, a+ 3k) of the CKT on the sub-board CB(4 x (a+
3k)) — A to (1,1) and (3,2) of C; on the sub-board CB(4 x 3), respectively.
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The constructed CKT is shown in Figure 3.39 with A = {(1,1), (4,1)}.
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Figure 3.39: A CKT on CB(4 x (a +3(k+1))) —{(1,1),(4,1)}

Case 2: a+3k—1<y,w<a+3(k+1).
The required CKT can be obtained by rotating 180 degrees of the suitable CKT
on CB(4 x (a4 3(k+1))) — A in Case 1.
Case 3: x+yisodd, z+wiseven, 1l <y <banda+3k—1<w<a+3(k+1).
We separate CB(4 x (a + 3(k + 1)) — {(x,y), (z,w)} into two sub-boards,
CB(4 x (a+3k—2)) — (z,y) and CB(4 x 5) — (z,w) as shown in Figure 3.40 with
(z,y) = (1,2) and (z,w) = (4,a+ 3(k + 1)).

a+3k—2 b}

Figure 3.40: CB(4 x (a+3(k+1))) —{(1,2), (4,a+3(k+ 1))} with two sub-boards

Case 3.1: (k is even and a € {7,9}) or (k is odd and a = 8).

In this case, we have a+3k—2 > 5is odd. Since z+y is odd, by Lemma 2.4(b),
the sub-board CB(4 x (a4 3k —2)) — {(x,y)} contains an OKT from (1,a+ 3k —2)
to (3,a+ 3k — 2).

If we regard (z,w) as the square of CB(4 x (a +3(k+1))), then z +w is even.
However, if we regard (z,w) as the square of the sub-board CB(4 x 5), then z + w
is odd. By Lemma 2.4(c), the sub-board CB(4 x 5) — {(z,w)} contains an OKT
from (1,1) to (3,1).

Then, as shown in Figure 3.41 with (z,y) = (1,2) and (z,w) = (4,a+3(k+1)),
we construct the required CKT on CB(4x (a+3(k+1)))—{(z,y), (2, w)} by joining
(1,a+ 3k —2) and (3,a + 3k — 2) of the OKT on the sub-board CB(4 x (a + 3k —
2))—{(x,y)} to (3,1) and (1,1) of the OKT on the sub-board CB(4 x5)—{(z,w)},

respectively.
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Figure 3.41: The required CKT on CB(4 x (a+3(k

+

1)) —{(1,2), (4,a+3(k+1))}

Case 3.2: (k is odd and a € {7,9}) or (k is even and a = 8).

In this case, we have a+3k—2 > 6 is even. Since x+y is odd, by Lemma 2.5(a),
the sub-board CB(4 x (a+ 3k —2)) —{(z, y)} contains an OKT from (2, a+ 3k —2)
to (4,a + 3k — 2).

If we regard (z,w) as the square of CB(4 x (a+ 3(k+1))), then z + w is even.
Similarly, if we regard (z,w) as the square of the sub-board CB(4 x 5), then z + w
is even. By Lemma 2.4(d), the sub-board CB(4 x 5) — {(z,w)} contains an OKT
from (2,1) to (4,1).

Then, as shown in Figure 3.42 with (z,y) = (1,2) and (z,w) = (1,a+3(k+1)),
we construct the required CKT on CB(4x (a+3(k+1)))—{(z,y), (2, w)} by joining
(2,a+ 3k —2) and (4,a + 3k — 2) of the OKT on the sub-board CB(4 x (a + 3k —
2))—{(x,y)} to (4,1) and (2, 1) of the OKT on the sub-board CB(4 x5)—{(z,w)},

respectively.

a+3k—2

L}
\

\?
N

[~

S
<kl
L9 S e

7
¢

Figure 3.42: The required CKT on CB(4 x (a+3(k+1)))—{(1,2),(1,a+3(k+1))}

Case 4: x+yiseven, z+wisodd, 1 <y <banda+3k—1<w<a+3(k+1).

The required CKT can be obtained by horizontally or vertically flipping of the
suitable CKT on CB(4 x (a + 3(k +1))) — A in Case 3.

Hence, in every cases, CB(4 x (a + 3(k + 1))) — A contains a CKT for all

A € Saysike1). Thus, by the mathematical induction, we obtain the CKT on
CB(4 x n) — A for all A € S,,. This completes the proof.

O



CHAPTER IV
CONCLUSION AND DISCUSSION

There are two main results of this dissertation. First, we obtain the necessary
and sufficient conditions for the existence of a CKT on the RB(m,n,r). Next, we
find all positions of two squares on CB(4 x n) so that after deleting these squares,
then there exists a CKT on the deficient board. This result proves Conjecture 1.

In addition, this dissertation also includes some results related to the existence
of OKTs and CKTs on some boards as follows.

The existence of some special OKTs on LB(m,n,3), 7B(m,n,3), CB(m x n)
and CB(m x n) —{(i, )} are given. Next, the existence of a CKT on LB(m,n,4),
CB(4x3)— A, CB(4x4)— A, CB(4 x5)— A and CB(4 x 6) — A for some set
A containing two squares of CB(4 x n), n € {3,4,5,6}, are given. After that,
we prove the extended result of Theorem 1.9 stating that there is no CKT on
RB(m,n,2).

u columns

m Tows|

! rows

n columns

Figure 4.1: LB(m,n,u,[)
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In the future, an interesting study is to find necessary and sufficient conditions
for the existence of a CKT for the general L-board, namely LB(m,n, [, u), which is
the L-board consisting of m rows n with the lower leg of width [ and the upper leg
of width u, see Figure 4.1. However, there is another interesting study as follows.

We note that the CKT of this dissertation is constructed using the legal knight’s
move. In 2005, Chia and Ong [5] defined the generalized knight’s move or (a,b)-
knight’s move for which the knight moves a squares vertically or horizontally and
then b squares at 90 degrees angle. Especially, they gave the existence of a CKT
using the (2,3)-knight’s move on some CB(m x n). After that, there are some
researchers [12] studied the nonexistence of CKTs using the (a, b)-knight’s move
on some CB(mxn). Therefore, as a future research, if we consider some CB(m xn)
for which a CKT from the generalized knight’s move does not exist, then we can
investigate the minimum numbers of square to be removed and a CKT from the
generalized knight’s move exists on the deficient board as well as the exact positions

of these squares to be removed.
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