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CHAPTER 1  

INTRODUCTION 
 

1.1 Statement of The Problem  

 Lung cancer is the second most common cancer in men according to the report 

of the global cancer statistics [1] while breast cancer is the most common cancer in 

women. Although lung cancer is the second most common cancer, it is the most 

common cause of cancer death [2]. Each year, lung cancer causes more deaths than 

colon and breast cancers combined. In Thailand, lung cancer is also the second most 

common cancer after liver cancer [3]. Lung cancer is the most common cause of cancer 

death because more than half of lung cancer patients die within a year of being 

diagnosed [4]. Lung cancer survival rates differ based on the stage of the disease at 

the time of diagnosis [5]. Lung cancer rarely causes symptoms in its early stages but 

there will be signs once the cancer has spread. There are many procedures for lung 

cancer screening [6-9], including X-rays, computed tomography (CT), bronchoscopy, 

pulmonary function studies (PFT), positron emission tomography (PET), low-dose 

computed tomography (LDCT), and other procedures. The diagnosis is confirmed by 

biopsy, which is usually performed by bronchoscopy or CT guidance [10].  

A bronchoscopy [9] is a procedure in which a bronchoscope is inserted into the 

patient's nose or mouth by the doctor. The forceps take a sample of tissue from a 

lesion after the bronchoscope has reached the lesion. This is referred to as a biopsy. 

The tissue sample will be sent to a lab for testing to determine whether or not the 

cells are cancerous. CT and fluoroscopy are used to locate the lesion during surgery 

to locate it however, they are very harmful because the patients have to expose to 

radiation. In contrast, recent research discovered that bronchoscopy is guided by 

endobronchial ultrasonography [11] (EBUS) can help physicians diagnose the disease 

with a high percentage of accuracy, which is higher than conventional CT or 

fluoroscopy. The bronchoscope with EBUS can be used to visualize the internal surface 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2 

at a time by transmitting ultrasonic waves through the bronchioles and receiving their 

echoes by sending ultrasonic waves through the bronchioles to create a video of 

textures. EBUS is currently used for lung cancer diagnosis and staging, and it is 

considered a recommended standard in general practice [12] due to its high sensitivity 

and specificity [13]. The texture of a lesion is associated with pathology, in addition to 

the benefits of EBUS from visualizing the texture of a lesion. As a result, this knowledge 

can be applied to the development of a classification framework for diagnosing lesions. 

If the framework is accurate enough, it can reduce the need for biopsies, make the 

framework less reliant on humans, and shorten the time it takes to diagnose lung 

lesions. 

Nowadays, pulmonary lesion classification is still an interesting research topic 

to be explored. The EBUS images have been used to classify pulmonary lesions and 

guide transbronchial needle aspiration. However, the final diagnostic decision depends 

on the pathological evidence. Although a lot of research has been conducted on the 

relationship between the characteristics of EBUS lesions and pathology, only a little 

research on the diagnostic tools for differentiating lesions has been conducted. As a 

result, the purpose of this research is to develop a pulmonary lesion classification 

framework for EBUS images. 

 

1.2 Objectives  

1. To derive new features from medical knowledge for lesion classification to improve 

the performance of classification. 

2. To develop a pulmonary lesion classification framework for endobronchial 

ultrasonography images using machine learning 

 

1.3 Scopes of Study  

In this research, there are constraints as follows: 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3 

1. The input data consists of an EBUS video and patient data such as gender, age, 

smoking history, and lesion size. 

2. It is assumed that when the bronchoscope reaches the lesion, the EBUS capture 

video begins to record. 

3. The type of pulmonary lesion is divided into only two classes: benign and malignant. 

 

1.4 Contributions 

This research has two primary contributions. First, the new features called the 

adaptive weight sum of the lower and the upper GLCM features, which can be used 

to classify pulmonary lesions, are proposed. Second, the pulmonary lesion 

classification framework is proposed. The classification framework together with the 

proposed features for EBUS images can improve the accuracy and reduce time in 

preliminary diagnosis. 

 

1.5 Organization of The Dissertation 

The dissertation is structured as follows: 

Chapter 1 explains briefly the statement of the problem, objectives, scope of study, 

and contributions. 

Chapter 2 describes the related background knowledge and literature review.  

Chapter 3 provides the details of Article 1: “Pulmonary Lesion Classification from 

Endobronchial Ultrasonography Images Using Adaptive Weighted-Sum of the Upper 

and Lower Triangular Gray-Level Co-Occurrence Matrix”. 

Chapter 4 provides the details of Article 2: “Pulmonary Lesion Classification Framework 

using the Weighted Ensemble Classification with Random Forest and CNN Models” 

Chapter 5 discusses and concludes the dissertation. 
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1.6 The Connection between Articles 

The main objective of this dissertation is to determine from EBUS images 

whether pulmonary lesions are benign or malignant. The dissertation includes two 

previously published articles. All the articles are part of the graduation dissertation 

dissemination. Article 1 describes the proposed feature extraction for pulmonary lesion 

classification. The proposed features can be used to measure the heterogeneity of 

patterns of lesions in EBUS images, which is one of the most common characteristics 

of malignant. Article 2 describes the pulmonary lesion classification framework that 

uses the weighted ensemble classification to integrate three models and also the 

proposed features in article 1 to improve classification performance. 

 

1.7 Expected Outcomes 

1. The pulmonary lesion classification framework can be used to classify pulmonary 

lesions from EBUS images with an acceptable accuracy rate using an imbalanced and 

small dataset.  

2. The pulmonary lesion classification framework is expected to assist radiologists in 

planning the preliminary treatment process.  
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CHAPTER 2  

PULMONARY LESION CLASSIFICATION FRAMEWORK 
 

This dissertation is divided into two parts. First, the new features for pulmonary 
lesion classification are proposed. Second, the pulmonary lesion classification 
framework that uses the proposed features in the first part together with other 
standard features is presented. Each part is described briefly below: 
 
Article 1: Pulmonary Lesion Classification from Endobronchial Ultrasonography Images 
Using Adaptive Weighted-Sum of The Upper and Lower Triangular Gray-Level Co-
Occurrence Matrix 

Visual classification of pulmonary lesions from endobronchial ultrasonography 
(EBUS) images is performed by radiologists which may cause the results to be 
subjective. Therefore, two robust features, called the adaptive weighted-sum of the 
upper triangular gray-level co-occurrence matrix (AWSU) and the adaptive weighted-
sum of the lower triangular gray-level co-occurrence matrix (AWSL), were proposed. 
These two features are combined with 22 other standard features and used as initial 
input data to the proposed classification method to assist the radiologists. The 
proposed method integrates the kth percentile of the sum of intensities, genetic 
algorithm (GA), and support vector machine (SVM) to classify a lesion, and then applied 
the kth percentile of the sum of intensities to select the optimal window of interest 
(WOI) where all the features are extracted. After feature extraction, GA is used to select 
only relevant features that are then forwarded to SVM to classify the lesion.  

Efficiency of the proposed features and the proposed method was evaluated 
using a dataset of 89 EBUS images with 10-fold cross-validation. Optimal classification 
results were obtained using 16 selected features from the WOI at the 5th percentile 
with accuracy, sensitivity, specificity, and precision at 86.52%, 87.27%, 85.29%, and 
90.57%, respectively.  Among these 16 selected features, six of them were selected 
from the proposed features. The proposed method was compared with other existing 
methods and the results reveal that the proposed features together with the proposed 
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method can significantly improve the pulmonary lesson classification performance, 
especially for small datasets. Details of article 1 are described in Chapter 3. 
 
Article 2: Pulmonary Lesion Classification Framework using the Weighted Ensemble 
Classification with Random Forest and CNN Models for EBUS Images 

Lung cancer is a deadly disease with a high mortality rate. Endobronchial 
ultrasonography (EBUS) is one of the methods for detecting pulmonary lesions. 
Computer-aided diagnosis of pulmonary lesions from images can help radiologists to 
classify lesions; however, most of the existing methods need a large volume of data 
to give good results. Thus, this paper proposes a novel pulmonary lesion classification 
framework for EBUS images that works well with small datasets. The proposed 
framework integrates the statistical results from three classification models using the 
weighted ensemble classification. The three classification models include the 
radiomics feature and patient data-based model, the single-image-based model, and 
the multi-patch-based model. The radiomics features are combined with the patient 
data to be used as input data for the random forest, whereas the EBUS images are 
used as input data to the other two CNN models.  

The performance of the proposed framework was evaluated on a set of 200 
EBUS images consisting of 124 malignant lesions and 76 benign lesions. The 
experimental results show that the accuracy, sensitivity, specificity, positive predictive 
value, negative predictive value, and area under the curve are 95.00%, 100%, 86.67%, 
92.59%, 100%, and 0.9333, respectively. This framework can significantly improve the 
pulmonary lesion classification. Details of article 2 are described in Chapter 4. 

In general, EBUS images have details such as hospital number, name, age, 
gender, recorded time, position of lesion in lung, the range of frequency and the 
zooming distance as shown in Figure 2.1 The patient details were removed in the 
preprocessing step.  
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 7 

 
Figure 2.1 Sample of an EBUS image. 

 

 
Figure 2.2 Characteristics of EBUS images[14]. 

 
Figure 2.2 depicts sample characteristics of EBUS images that are the most 

important features for classification. These characteristics are size, shape, echogenicity, 
margin, blood vessel, and linear-discrete air bronchogram. Long axis, lobulation, 
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distinct margin but not sharp margin, absence of blood vessel, and absence of linear-
discrete air bronchogram were all found to be good predictors of malignant lesions in 
the study [14]. The echogenicity, size, and shape of EBUS images are also considered 
to be one of the factors that differentiates malignant from benign lesions in this 
dissertation. 

 
Table 2.1 shows the difference between Articles 1 and 2. Article 1 input data 

consists solely of EBUS images, whereas Article 2 input data combines both EBUS 
images and patient data. In Article 1, there are 89 input data: 34 benign and 55 
malignant. In Article 2, there are 200 input data: 76 benign and 124 malignant. Article 
1 uses SVM classifiers, whereas Article 2 uses a weighted ensemble classification of 
three classifiers. Article 1's train-test scheme is 10-fold cross-validation. Article 2's train-
test scheme is an 80/20 train-test split.  
 
Table 2.1 The difference between Article 1 and Article 2. 
 Article 1 Article 2 

Input data EBUS images EBUS images and patient data  
Number of input 
data 

89 
Benign: 34 
Malignant: 55 

200 
Benign: 76 
Malignant: 124 

Recorded time 2015 to 2016 2011 to 2016 

Classifiers SVM Combination of three classifiers 
1. RF 
2. Fine-tuned ResNet169 
3. Proposed CNN 

Train-test scheme 10-fold cross validation 80/20 train-test split 
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ABSTRACT 

Visual classification of pulmonary lesions from endobronchial ultrasonography 
(EBUS) images is performed by radiologists; therefore, results can be subjective. Here, 
two robust features, called the adaptive weighted-sum of the upper triangular gray-
level co-occurrence matrix (AWSU) and the adaptive weighted-sum of the lower 
triangular gray-level co-occurrence matrix (AWSL), were combined with 22 other 
standard features and used as initial input data to assist radiologists. The proposed 
method integrated the kth percentile of the sum of intensities, a genetic algorithm 
(GA), and support vector machine (SVM) to classify a lesion, and then applied the kth 
percentile of the sum of intensities to select the optimal window of interest (WOI) 
where all the features are extracted. After feature extraction, a GA was used to select 
only relevant features that were then forwarded to SVM to classify the lesion. Efficiency 
of the proposed features and the proposed method was evaluated using a dataset of 
89 EBUS images with 10-fold cross-validation. Optimal classification results were 
obtained using 16 selected features from the WOI at the 5th percentile with accuracy, 
sensitivity, specificity, and precision at 86.52%, 87.27%, 85.29%, and 90.57%, 
respectively.  Among the 16 selected features, six were from the proposed features. 
The proposed method was compared with other existing methods. Results revealed 
that the proposed features together with the proposed method significantly improved 
the classification performance of pulmonary lessons, especially for small datasets.  
 
KEYWORDS: Gray-level co-occurrence matrix, genetic algorithms, support vector 
machine, adaptive weighted-sum of the upper triangular gray-level co-occurrence 
matrix, and adaptive weighted-sum of the lower triangular gray-level co-occurrence 
matrix. 

 

3.1 Introduction  

Lung cancer has the highest global mortality [1, 2], with five-year survival rates 
lower than many other leading cancer types [3]. Mortality rate can be reduced if lung 
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cancer is detected at an early stage. In 2012, Fontana et al. found that early detection 
of lung cancer and effective treatment can improve survival rate to at least 5 years [4].  

Many different methods are available to diagnose lung cancer [5-7]. Among 
them, endobronchial ultrasonography is of benefit since the patient is not subjected 
to radiation and biopsy can be easily performed [8, 9]. There are many articles on the 
use of computer-aided diagnosis (CAD) for detecting cancer [10-15]; however, only a 
few are related to the EBUS technique. EBUS can play an important role in diagnosis 
when integrated with CAD to help a radiologist make the first decision faster and 
instigate timeous treatment and clinical practice. 

Several articles [16-18] on peripheral pulmonary lesion classification reveal that 
one of the most prominent characteristics of EBUS that indicates malignancy is a 
heterogeneous pattern. This pattern can be determined using texture analysis on EBUS 
images. Texture analysis measures features that can be used to identify textural 
characteristics such as gray-level co-occurrence matrix, run-length matrix, and first-
order descriptive features. Gray-level co-occurrence matrix (GLCM), first proposed by 
Haralick et al. [19] in 1973 is one of the most widely used methods for texture analysis 
in many fields including medicine [20-22], industry [23-25], and material [26-28].  

Haralick et al. [19] proposed a set of 28 textural features that required 
uncomplicated computation based on GLCM, such as energy, homogeneity, contrast, 
correlation, inverse difference moment, sum average, and entropy. Each feature 
represented a unique characteristic, for example, contrast represented the difference 
in luminance and entropy represented intensity irregularity. Haralick’s features have 
been widely exploited in radiomics studies [29] because radiomics data contain first-
order features, second-order features, and higher-order features. The concept of 
radiomics involves extracting a large number of features from radiographic medical 
images using data-characterization algorithms. In 1980, Conners and Harlow [30] 
analyzed all 28 features proposed by Haralick and stated that only five were sufficient 
for classification. These five standard features of GLCM are now widely used in texture 
analysis as energy, entropy, contrast, homogeneity, and correlation. However, these 
standard features do not work for all types of images because each image is unique. 
The five features are suitable for general typical images but do not work in special 
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cases. Thus, identifying the characteristics and generating the associated features for 
special types of images are important for accurate image classification. 

In 1992, Wu et al. [31] presented a classification of ultrasonic liver images using 
textural features such as spatial gray-level dependence matrices, the Fourier power 
spectrum, gray-level difference statistics, and Laws’ texture energy. Their classification 
was evaluated on a set of 90 samples consisting of 30 samples of normal liver, 30 
samples of hepatoma, and 30 samples of cirrhosis. The Bayes classifier and the 
Hotelling trace criterion were used to calculate the effect of features. Results revealed 
that accuracy was not high, with long time complexity. To resolve these problems, 
they presented the multiresolution fractal feature set as a robust solution to better 
classify ultrasonic liver images.  

In 2002, Gomez et al. [32] presented an analysis of co-occurrence texture 
statistics as a function of gray-level quantization for classifying breast ultrasound. They 
considered 22 features from six different gray-scale quantization levels using the 
minimal-redundancy-maximal-relevance criterion to rank the dependency of the 
features. Their results showed that contrast and correlation features calculated from 
GLCM, with 90-degree orientation and distance of more than five pixels, could be used 
to significantly distinguish breast lesions. 

In 2003, Lee et al. [33] proposed the feasibility of selecting a fractal feature 
vector based on M-band wavelet transform to classify ultrasonic liver images as 
normal, cirrhosis, or hepatoma. Their classification revealed that the fractal feature 
vector based on M-band wavelet transform was trustworthy. In 2013, Yang et al. [34] 
presented a robust texture analysis using multi-resolution gray-scale invariant features 
via ranklet transform for breast sonographic tumor diagnosis, while in 2016, Chong et 
al. [35] proposed the novel Robustness-Driven Feature Selection (RDFS) algorithm that 
preferentially selected features that were robust to variations in computed 
tomography (CT) technical factors. They evaluated RDFS as a CT classification of fibrotic 
interstitial lung disease using 3D textural features. In 2009, Drukker et al. [10] 
demonstrated the feasibility of a computerized auto-assessment method in which a 
computer-aided diagnosis system provided the level of confidence for its probability 
estimation of malignancy for each radiologist-identified lesion. In 2015, Zang et al. 
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presented image segmentation methods for 2D EBUS frames and 3D EBUS sequences 
by adapting the fast-marching level-set process, anisotropic diffusion, and region 
growing [36]. Ortiz et al. [37] used a genetic algorithm to select features of magnetic 
resonance (MR) brain images and applied self-organizing maps (SOM) to evaluate the 
fitness function in each iteration of the GA to minimize the quantization and 
topological errors. Militello et al. [38] proposed a segmentation method based on an 
Unsupervised Possibilistic Fuzzy C-means clustering algorithm to segment tumors and 
calculate lesion volume to improve the performance of brain tumor diagnosis. In our 
previous work, we proposed two features for pulmonary lesion classification called the 
weighted-sum of lower and upper GLCM [39]. These two features were combined with 
22 standard features, and a GA was used to select only the relevant features. Results 
revealed that a combination of the proposed and standard features improved the 
accuracy. Rundo et al. [40] proposed a framework for MR image segmentation by 
enhancing an image using MedGA to improve the threshold selection between the 
underlying subdistributions based on a GA. The MedGA outperformed other state-of-
the-art methods in terms of signal and perceived image quality while preserving input 
mean brightness. 

Recently, deep learning (DL) has become the foundation of medical imaging to 
assist radiologists in clinical diagnosis and support their clinical decisions. For example, 
convolutional neural networks (CNN) were used to detect lung nodules in CT images 
[41, 42], and the dense convolutional binary-tree network for lung nodule classification 
from CT images was proposed by Liu et al. [43]. However, DL is suitable for a large 
volume of data, while its performance declines if the dataset is too small. According 
to the review of Alom et al. [44], traditional machine learning has better performance 
for small volume of data but the performance of DL turns to be better than the 
performance of traditional machine learning when the volume of data increases to 
some certain size.  

Thus, here, we propose a new method with new features that can effectively 
and efficiently classify lesions regardless of the volume of data. Two new features are 
proposed called the adaptive weighted-sum of the upper triangular gray-level co-
occurrence matrix and the adaptive weighted-sum of the lower triangular gray-level 
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co-occurrence matrix to determine heterogeneity, which is one of the most important 
characteristics of malignancy [16, 18, 39]. The proposed method integrates window of 
interest selection, a genetic algorithm and support vector machine to classify a lesion 
using the proposed features with 22 other standard features as input data. 

This paper is organized as follows. Section 2 describes the materials and section 
3 introduces the proposed features and the proposed method. Section 4 presents the 
classification results, while section 5 outlines the conclusions. 

 

3.2 Materials 

EBUS image data were collected from 2015 to 2016 at Phramongkutklao 
Hospital, Bangkok, Thailand. Endobronchial ultrasonography was performed by expert 
radiologists. An endoscopic ultrasound system (EU-ME1; Olympus) and a 20 MHz 
miniature radial probe (UM-S20-17S; Olympus) were used to obtain the EBUS images. 
The probe provided a panoramic ultrasonic view (360 °) of a lesion. EBUS videos were 
recorded and saved in the form of video files (.mod). These were transformed to .mp4 
files at the rate of 30 frames/second. Then, high quality frames that contained lesions 
with diameter 3-12 mm were extracted from each video file and saved as an 8-bit 
grayscale image in .jpg file format with size 776×776 pixels and no metadata (name, 
hospital number, age, gender, etc.) as shown in Figure 3.1 The EBUS image dataset 
contained 89 images of pulmonary lesions; 55 were malignant and 34 were benign. 
 

 
Figure 3.1 Samples of EBUS images: (a) and (b) are malignant, (c) and (d) are benign. 
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3.3 Methods 

The proposed method consisted of five steps as preprocessing, window of 
interest selection, feature extraction, feature selection, and lesion classification. A 
flowchart of the proposed method is shown in Figure 3.2 Each step is explained below, 
followed by a performance evaluation.  

 
Figure 3.2 Flowchart of the proposed method. 
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3.3.1 Preprocessing 

The original images obtained from the video contained regions that were not 
relevant to lesion classification such as metadata, background, air, noise, and the 
probe. These regions were not included in the classification process because they can 
decrease performance. According to Kurimoto et al. [18], the most suitable region for 
lesion diagnosis is the area inside a ring with distance between 3 mm and 5 mm from 
the probe. Thus, the first preprocessing step was to automatically identify this ring 
according to Kurimoto’s definition after each EBUS image was converted from RGB to 
grayscale. However, the shape of a lesion was usually irregular and, therefore, the ring 
might cover regions outside the lesion. Therefore, the lesion boundary was either 
manually defined by a radiologist or automatically defined by the polar sector 
maximum intensity method [45]. After the ring and lesion boundary were defined, the 
region of interest (ROI) containing classification features was defined as the intersection 
between the area inside the boundary of the lesion and the area of the ring, as shown 
in Figure 3.3 The boundary of the lesion is shown in red, whereas the boundary of the 
ring is presented in green. The ROI of each image is located on the bottom row. The 

Figure 3.3 Samples of the intersections between the ring area and the boundary of 
lesions are presented on the top row where the boundary of a lesion of each image 
is presented in red and the boundaries of the ring are presented in green. The ROIs 

are presented on the bottom row. 
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next task involved gamma correction to adjust the image contrast because most of 
the original EBUS images were too dark. The gamma was set to 0.5 ( =0.5) because 
the air inside a lesion is represented as a dark region with very low intensity. These 
regions should be kept dark, while other components should be enhanced brighter to 
visualize the lesion texture. The histograms in Figure 3.4 show  =0.5 as the optimal 
setting because the dark regions remained dark, while the other regions became 
brighter but not too bright. 

 
Figure 3.4 Histograms of EBUS images obtained from different gamma values. 

 

3.3.2 Window of Interest Selection 

After the ROI was obtained, the next step was to determine the WOI as the largest 
square that could fit within the ROI containing the area for lesion diagnosis. The area 
inside the ROI may contain other components, such as fluid and air that can cause an 
inaccurate diagnosis. Thus, an effective method was proposed to select the WOI as 
follows: 
1. Define a window of size w wn n   to be the largest window that can fit within the 

ROI 
2. Place the window at the upper-left position of the ROI, where the entire window 

is inside the ROI 
3. Compute the sum of intensities of the region inside the window 
4. Shift the window m  pixels to the right where m  can be any constant value, and 

repeat step 3 - step 4 until reaching the boundary of the ROI 
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5. Shift the window down m  pixels and move it to the left of the ROI, then repeat 
step 3 - step 5 until covering the entire ROI 
 

The WOIs of each image are selected from the windows whose sum of intensities are 
5, 50, 95, and 100 percentiles. 
 

5 50 95 100{ , , , }img P P P PWOI w w w w=  (1) 
 
where imgWOI  represents a set of WOIs of each image, PkW  represents a window at 

percentile k , and {5, 50, 95, 100}k = . Examples of WOIs selected from benign and 

malignant lesions are shown in Figure 3.5. 
 

Figure 3.5 Samples of WOIs in (a) malignant lesion and (b) benign lesion, where 
yellow, green, blue, and red squares represent 5 50 95 100, , ,P P Pw w w w , respectively. 

 
 

3.3.3 Feature Extraction 

Features are very useful in pattern recognition since they contain a lot of 
information that is hidden in an image. Features can also be used to represent 
characteristics of an image and they can be extracted from an image in many different 
ways. GLCM is a statistical method that determines the spatial relationship of pixels by 
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counting the occurrences of pairs of pixels with specific intensities in a specified 
orientation. The elements along the diagonal line of GLCM represent pairs of pixels 
with similar intensities that exemplify homogeneity characteristics. On the other hand, 
the elements that are further away from the diagonal line represent pairs of pixels 
with different intensities. The elements further away from the diagonal line have 
increasingly different intensities. Thus, if the elements close to the diagonal line have 
higher values than those further away, this can be interpreted as having a high chance 
of being homogeneous as one of the standard features of GLCM.  

This paper proposes two new robust features that can be used to determine 
the heterogeneity of a lesion called the adaptive weighted-sum of the lower triangular 
GLCM and the adaptive weighted-sum of the upper triangular GLCM. The AWSL and 
AWSU focus on the elements in the lower and upper triangular GLCM because these 
elements contain heterogeneity characteristics. To accentuate the heterogeneity 
characteristics, the elements along the diagonal line with the specified cutoff value are 
not included in the proposed features, while the elements of GLCM are weighted by 
the difference between intensities of two pixels. Moreover, these two features use the 
characteristics of GLCM to help distinguish homogeneity characteristics from 
heterogeneity characteristics in the weight setting. The AWSL and AWSU are defined in 
equations (2)-(4). 
 

1 1

0

( , ) ( , , , )
n i

ij
i j

AWSL d W P i j d



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− − −

= =

=  (2) 

1 1

0 1

( , ) ( , , , )
n n

ij
i j i

AWSU d W P i j d


 
− −

= = + −

=   (3) 

 
where n   is the number of gray-levels,   is the cutoff value which defines the width 
of the diagonal line where the elements of GLCM are not taken into consideration, 

( , , , )P i j d   is the element of GLCM, d  is the shifting distance to the adjacent pixel, 
  is the orientation, and ijW  is the adaptive weight function at row i  and column j  

that is defined as: 
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| |ijW c i j=  −  (4) 

 
where c  is the assigned value by determining the characteristic of GLCM. The 
elements of GLCM along the diagonal line represent pairs of pixels with similar 
intensities; therefore if the sum of elements along the diagonal line is greater than the 
sum of the upper and lower triangular GLCM then there is a high chance of 
homogeneity; thus, c  is set to be less than 1 to weaken the heterogeneity 
characteristics; otherwise, c  is set to be greater than 1 to strengthen the heterogeneity 
characteristics. If the sum of AWSL and AWSU is high, there is a high chance of 
heterogeneity. The sum of AWSL and AWSU is defined as 
 

 

 
Figure 3.6 An example of an 8-bit grayscale image with its GLCM. 

 
Figure 3.6(a) shows an example of an 8-bit grayscale image of a benign lesion, 

while Figure 3.6(b) shows the WOI at the 5th percentile with its GLCM in Figure 3.6(c). 
As shown, the homogeneity characteristics of a lesion are elements with high values 
along the diagonal line. In Figure 3.7, red dots represent the elements of the upper 
triangular GLCM and green dots represent the elements of the lower triangular GLCM 
when   is equal to 2. For the EBUS images,   is set to 2 because most of the 
selected WOIs contain regions with smooth texture and fewer artifacts, thus the 

( , ) ( , ) ( , ).AWS d AWSL d AWSU d  = +  (5) 
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elements that are further away from the diagonal line usually have a value equal to 
0. If the cutoff value is too large, a significant amount of the image information may 
be lost [46].  

 

Figure 3.7 The elements of the upper (red) and the lower (green) triangular GLCM 
when   is set to 2. 

 
 

All preprocessing step and feature extraction operations were implemented 
using MATLAB 2018b. The extracted features were used for feature selection, while 
classification was implemented using Rapid Miner Studio 9.3.001 (Educational edition). 
All experiments were performed on a computer with Intel(R) CPU Core(TM) i7-3770K 
@3.50GHz, GPU NVIDIA GeForce GT630, and 8.00 GB of RAM.  
 

3.3.4 Feature Selection 

Thirteen standard features as standard deviation, skewness, kurtosis, variance, 
entropy, contrast, correlation, energy, homogeneity, mean, AWSL, AWSU, and AWS 
extracted from an image were forwarded to the next step for feature selection. The 
first three were the standard features used by Morikawa et al. [17], the next six were 
the standard features used by Haralick et al. [19], and the last three were the proposed 
features. The first five features including the mean were first-order features, while the 
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rest were second-order features. Among these, the second-order features were 
calculated from the GLCM that contained the distribution of co-occurring gray-level 
values in a specified orientation within a window. In this paper, four orientations were 
used to generate GLCMs for the second-order features at 0-degrees, 45-degrees, 90-
degrees, and 135-degrees to obtain 28 features. These 28 features were combined with 
the first-order features to generate a feature vector of 34 features for each window, as 
shown in Table 3.1. Since the values of these features were in different ranges, all 
features were normalized to be between 0 and 1 before performing the classification. 
However, some of the features had less impact on lesion classification; thus, a genetic 
algorithm [47] was used for feature selection to select only relevant features and 
improve classification accuracy. 

 
Table 3.1 Features that are used for lesion classification. 

No Feature 

1 Mean 
2 Variance 

3 Standard deviation 
4 Skewness 
5 Kurtosis 
6 Entropy 
7 Contrast 0-degree 

8 Contrast 45-degree 
9 Contrast 90-degree 

10 Contrast 135-degree 
11 Correlation 0-degree 
12 Correlation 45-degree 
13 Correlation 90-degree 

14 Correlation 135-degree 
15 Energy 0-degree 
16 Energy 45-degree 

17 Energy 90-degree 
18 Energy 135-degree 

19 Homogeneity 0-degree 
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20 Homogeneity 45-degree 

21 Homogeneity 90-degree 
22 Homogeneity 135-degree 

23 Adaptive weighted-sum of lower GLCM 0-degree 
24 Adaptive weighted-sum of lower GLCM 45-degree 
25 Adaptive weighted-sum of lower GLCM 90-degree 
26 Adaptive weighted-sum of lower GLCM 135-degree 
27 Adaptive weighted-sum of upper GLCM 0-degree 
28 Adaptive weighted-sum of upper GLCM 45-degree 
29 Adaptive weighted-sum of upper GLCM 90-degree 

30 Adaptive weighted-sum of upper GLCM 135-degree 
31 Adaptive weighted-sum of lower and upper GLCM 0-degree 

32 Adaptive weighted-sum of lower and upper GLCM 45-degree 
33 Adaptive weighted-sum of lower and upper GLCM 90-degree 
34 Adaptive weighted-sum of lower and upper GLCM 135-degree 

 
Genetic algorithms are used in artificial intelligence to search for optimized 

solutions by imitating the theory of natural selection and evolution [48]. GAs have the 
advantage of tolerating errors in finding solutions from complex and difficult data using 
mathematical equations.  

The main components of a GA are chromosome encoding, population 
initialization, fitness function, selection, crossover, mutation, and replacement. Binary 
coding was used in the chromosome encoding step to represent the features of an 
EBUS image. Each chromosome was a string containing 34 bits of 0s or 1s and each bit 
or gene represented one of the 34 features. In the next step, the initial population 
consisting of chromosomes was selected by random initialization, with population size 
greater than or equal to the number of genes [49]. In this paper, population size was 
set to 34, following [49] which indicated that a GA should perform better with less 
time complexity for moderate population size. The fitness function was used to select 
a pair of chromosomes for reproduction based on accuracy maximization. A trained 
classifier was used as a fitness function. The GA iteration stopped when the fitness 
function no longer improved or when the maximum number of generations was 
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reached. The maximum number of generations was set to 500 because from trial and 
error no significant improvement occurred beyond this number. A tournament 
selection scheme was used to select the parents with tournament size equal to 0.25. 
The crossover was implemented through a uniform distribution with probability of 0.5 
and the mutation operator also used uniform distribution with probability of 1/number 
of features [50]. Table 3.2 shows the details of parameter settings for the GA used in 
this paper. 

 
Table 3.2 Genetic algorithm parameters. 

GA parameter Value 

Encoding type Binary vector 
Population size 34 

Crossover probability 0.5 
Mutation probability 1 / number of features 

Selection scheme Tournament (tournament size = 0.25) 
Crossover type Uniform distribution 
Mutation type Uniform distribution 

 

3.3.5 Lesion Classification 

Next, the selected features were entered into four classifiers as k-nearest 
neighbors (KNN) [51], linear discriminant analysis (LDA) [52], SVM [53], and DL [54]. These 
four classifiers are widely used in medical image classification. For the KNN classifier, k  
was set equal to 2 using Euclidean distance to measure the similarity. For the SVM 
classifier, choosing an appropriate kernel function is important to obtain the optimal 
solution. The sigmoid kernel function is commonly used in support vector machines 
and proved to be an effective choice for comparing the performance with other kernel 
functions. Hence, we used the sigmoid function as a kernel function in SVM to find the 
optimal solution.  

The robustness of the proposed features and the proposed method was 
demonstrated by comparing the classification results with those obtained from using 
DL for two sets of features.  The architecture of the fine-tuned DL model for the 
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experiments consisted of two hidden layers with hyperbolic tangent function. The 
number of neurons in each hidden layer was set to 

1
2

number of features number of classes+
+ [50].  

 

3.3.6 Performance Evaluation 

To compare the results with those obtained from existing methods in the 
medical field, sensitivity (Sen) and specificity (Spec), together with accuracy (Acc) and 
precision (Prec) were used to evaluate performance [55, 56]. Sensitivity was used to 
measure the ability of the proposed method to correctly identify the lesion as 
malignant and was calculated by 

 
TP

Sen=
TP + FN

 (6) 

 
where TP  and FN  represent the number of true positive and false negative values. 
Specificity was used to measure the ability of the proposed method to correctly 
identify a lesion as benign and was calculated by 
 

TN
Spec=

TN + FP
 (7) 

 
where TN  and FP  represent the number of true negative and false positive values. 
Accuracy was used to measure the true number of classifications and was calculated 
by 
 

TP + TN
Acc=

TP + TN + FN + FP
 (8) 
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Precision was used to determine how precisely the proposed method could classify 
malignancy and was calculated by 
 

TP
Prec=

TP + FP
 (9) 

 

3.4 Experimental Results 

The experiments were performed on a dataset of 89 images. Four different 
WOIs as P5, P50, P95, and P100, were selected from each image for feature extraction. 
The experiments were divided into three phases using four classifiers: KNN, LDA, SVM, 
and DL with 10-fold cross-validation and stratified sampling was used as the sampling 
method. The classification performance was measured by comparing the results 
obtained from the proposed method with those obtained from other methods. The 
first phase verified whether the proposed features were better than the features 
extracted from symmetric GLCM. The classification results using standard features, and 
proposed features were compared to those using only standard features, and results 
from using standard features and AWS that represented features from symmetric GLCM. 
In the first phase, the classifications were performed on three different sets of features 
using four classifiers with the GA. Table 3.3 shows the classification results using only 
22 standard features, while Table 3.4 shows the classification results using 22 features 
with AWS and classification results using 22 features with AWSU and AWSL. The 
accuracy rate using the proposed method with 22 features, AWSU, and AWSL was 
83.15% and better than the other methods.  

The second and third phases compared the performance of the proposed 
method with other methods using all 34 features from four WOIs. To show that the GA 
improved the classification performance, experiments in the second phase were 
performed using the four classifiers without the GA, and experiments in the third phase 
were performed using the four classifiers with the GA. Results in Table 3.5 show that 
most of the methods recorded accuracy rates lower than 60% when the GA was not 
applied to select the features. However, after applying the GA for feature selection, 
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accuracy rates significantly improved, and results obtained from the proposed method 
using WOI at the 5th percentile outperformed the other methods. The accuracy rate 
obtained from the proposed method together with the proposed features was high at 
86.52%. Table 3.6 shows the 16 features selected by the GA, including six of the 
proposed features, indicating that they were relevant to the characteristics of cancer.  

Table 3.7 shows the classification results from a dataset of 89 EBUS images. 
Seven out of 55 malignant lesions were misclassified as benign, whereas only five out 
of 34 benign lesions were misclassified as malignant using the proposed features with 
the proposed method. Results in Table 3.7 yielded classification with 87.27% 
sensitivity, 85.29% specificity, and 90.57% precision. Moreover, accuracy rates in Table 
3.8 verified that 0.5 was the optimal value for gamma. Figure 3.8(a) shows a malignant 
lesion that was misclassified as benign, while Figure 3.8(b) shows a benign lesion that 
was misclassified as malignant. Figure 3.9(a) shows a benign lesion that looked similar 
to a malignant lesion because it contained hyperechoic dots and linear arcs but it was 
correctly classified as benign. Figure 3.9(b) shows a malignant lesion that looked similar 
to a benign lesion because it had a homogeneous pattern, but it was correctly 
classified as malignant by the proposed method. On the other hand, the lesions in 
Figure 3.9 were misclassified when the GA was not used to select only the relevant 
features before performing the classification. 

 
Table 3.3 Classification results obtained from four classifiers with GA using 22 
features. 

 
Standard features 

KNN LDA SVM DL 
P5 76.40% 70.79% 80.90% 71.91% 

P50 68.54% 69.66% 73.03% 58.43% 
P95 70.79% 69.66% 75.28% 65.17% 

P100 71.91% 70.79% 79.78% 68.54% 
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Table 3.4 Classification results obtained from four classifiers with GA using standard 
features + AWS and standard features + AWSU+AWSL. 

 
Standard features + AWS Standard features + AWSU+AWSL 

KNN LDA SVM DL KNN LDA SVM DL 
P5 77.53% 74.16% 77.53% 68.54% 75.28% 75.28% 83.15% 70.79% 
P50 73.03% 69.66% 79.78% 61.80% 71.91% 66.29% 78.65% 65.17% 
P95 70.79% 73.03% 77.53% 59.55% 73.03% 67.42% 79.78% 64.04% 
P100 76.40% 69.66% 79.78% 64.04% 76.40% 73.03% 79.78% 65.17% 

 
Table 3.5 Classification results obtained from four classifiers with GA using 34 
features. 

 
Without GA With GA 

KNN LDA SVM DL KNN LDA SVM DL 
P5 53.93% 49.44% 50.56% 61.80% 77.53% 75.28% 86.52% 70.79% 
P50 56.18% 51.69% 42.70% 57.30% 73.03% 66.29% 78.65% 71.91% 
P95 56.18% 47.19% 51.69% 55.06% 74.16% 69.66% 78.65% 59.55% 

P100 61.80% 53.93% 43.82% 58.43% 78.65% 71.91% 76.40% 65.17% 

 
Table 3.6 The selected features from P5 for SVM classifier. 

The selected features for SVM with P5 

Mean 
Variance 

Skewness 

Contrast 0-degree 
Contrast 45-degree 

Correlation 45-degree 

Energy 0-degree 
Energy 135-degree 

Homogeneity 0-degree 
Homogeneity 90-degree 

Adaptive Weighted-sum of lower GLCM 0-degree 
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Adaptive Weighted-sum of upper GLCM 0-degree 

Adaptive Weighted-sum of lower and upper GLCM 0-degree 
Adaptive Weighted-sum of lower GLCM 45-degree 

Adaptive Weighted-sum of upper GLCM 45-degree 

Adaptive Weighted-sum of upper GLCM 135-degree 
 
Table 3.7 Confusion matrix of using GA and SVM with features from P5. 

GA + SVM 

Classified as: 
True: 

Malignant Benign 
Malignant 48 5 

Benign 7 29 

 
Table 3.8 Comparison of accuracy obtained from different gamma values. 

Gamma Acc 
0.1 79.78% 

0.2 77.53% 

0.3 82.02% 
0.4 82.02% 

0.5 86.52% 
0.6 80.90% 

0.7 79.78% 

0.8 75.28% 
0.9 83.15% 

1.0 78.65% 

3.5 Conclusions 

This paper proposes two new features called AWSL and AWSU, together with 
a method for pulmonary lesion classification using a GA with SVM. From our previous 
work [39], WOI selection was improved by considering windows whose sum of 
intensities were at different percentiles. Two new features called the adaptive 
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weighted-sum of the lower triangular GLCM and the adaptive weighted-sum of the 
upper triangular GLCM were proposed. The first phase of the experiments showed that 
the proposed features were suitable for representing heterogeneity characteristics 
because they determined the differences between intensities by discarding the 
similarities of the elements along the diagonal line of GLCM. Combining the proposed 
features with standard features improved the performance of all classifiers. 
Furthermore, the second and the third phases of the experiments revealed that the 
performance of the classifiers could be improved further by applying the GA to select 
only features relevant to pulmonary lesion classification. Classification results showed 
that using more features did not guarantee better performance, while it was important 
to use only the right features. Results in Table 3.3 to Table 3.5 showed that the highest 
accuracy rate was obtained by using the proposed method to classify pulmonary 
lesions from a combination of standard features and proposed features. Moreover, the 
proposed method outperformed DL when the dataset was small. As a consequence, 
the proposed method was robust for pulmonary lesion classification, especially for 
small datasets.  

Figure 3.8(a) shows a malignant lesion that was misclassified because its texture 
was homogeneous and the edges were very clear, very similar to the characteristics of 
a benign lesion. On the other hand, the benign lesion in Figure 3.8(b) was misclassified 
because its texture was not homogeneous. Even trained radiologists cannot be certain 
of their diagnoses for the images in Figures 3.8(a) and (b). They need to confirm their 
diagnoses by performing histopathology. Thus, pulmonary lesion classification can be 
significantly improved using the proposed features with the GA and SVM, giving an 
accuracy rate as high as 86.52%. Moreover, in terms of a quantitative comparison with 
our previous work, the accuracy rate of this proposed method improved from 84.27% 
to 86.52% and sensitivity improved from 82.53% to 87.27%. For future research, we 
aim to further improve the accuracy rate of the classification by developing new 
features and modifying the architecture of DL to make it more suitable for EBUS images. 
Moreover, segmentation of pulmonary lesions might be addressed by unsupervised 
approaches due to the small sample size of the analyzed dataset. 
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Figure 3.8 (a) A sample of malignant lesion that was misclassified as benign. (b) A 

sample of benign lesion that was misclassified as malignant. 
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ABSTRACT 

Lung cancer is a deadly disease with a high mortality rate. Endobronchial 
ultrasonography (EBUS) is one of the methods for detecting pulmonary lesions. 
Computer-aided diagnosis of pulmonary lesions from images can help radiologists to 
classify lesions; however, most of the existing methods need a large volume of data 
to give good results. Thus, this paper proposes a novel pulmonary lesion classification 
framework for EBUS images that works well with small datasets. The proposed 
framework integrates the statistical results from three classification models using the 
weighted ensemble classification. The three classification models include the 
radiomics feature and patient data-based model, the single-image-based model, and 
the multi-patch-based model. The radiomics features are combined with the patient 
data to be used as input data for the random forest, whereas the EBUS images are 
used as input data to the other two CNN models. The performance of the proposed 
framework was evaluated on a set of 200 EBUS images consisting of 124 malignant 
lesions and 76 benign lesions. The experimental results show that the accuracy, 
sensitivity, specificity, positive predictive value, negative predictive value, and area 
under the curve are 95.00%, 100%, 86.67%, 92.59%, 100%, and 93.33%, respectively. 
This framework can significantly improve the pulmonary lesion classification. 

 
KEYWORDS: pulmonary lesion, endobronchial ultrasonography images (EBUS), 
convolutional neural network (CNN), radiomics features, random forest, gray-level co-
occurrence matrix (GLCM), weighted ensemble 
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4.1 Introduction 

Cancer has been regarded as the leading cause of death among the world’s 
population from past to present, and its prevalence is expected to rise steadily. Among 
many types of common cancers, lung cancer is the leading cause of death, followed 
by colorectal, liver, stomach, and female breast cancers. According to the International 
Agency for Re-search on Cancer, there were 2.2 million new cases of lung cancer 
diagnosed and 1.8 mil-lion deaths globally in 2020 [1]. The majority of lung cancer 
patients do not show symptoms until the disease has advanced, but some early lung 
cancer patients may show the symptoms; therefore, early diagnosis can lower the 
mortality rate significantly [2]. Furthermore, lung cancer can be cured, and treatment 
is more effective if it is detected early [3,4]. In general, there are many techniques for 
diagnosis and staging of lung cancer such as computed tomography (CT), positron 
emission tomography—computed tomography (PET–CT), magnetic resonance imaging 
(MRI), and EBUS [5–7]. EBUS has become popular in recent years since this technique 
utilizes no radiation and scans in real time. It is the most recent screening technology 
for obtaining small wounds with minimal pain [8]. Although EBUS is a good way to 
detect lung cancer early, its performance is limited by tissue superposition, which can 
result in false-negative diagnoses [9]. 

In clinical research, many researchers attempt to find criteria to distinguish 
pulmonary lesions in EBUS images by using both retrospective and prospective 
methods [10–13]. According to previous research [14], the characteristics of malignant 
lesions in EBUS images have a heterogeneous pattern, a short axis, presence of 
coagulation necrosis sign, round shape, distinct margin, and absence of central hilar 
structure, while the characteristics of benign lesions in EBUS images show the presence 
of calcification, nodal conglomeration, and echo intensity. As a result, in visual tasks, 
precise and reliable EBUS interpretation and lung cancer diagnosis are extremely 
challenging and also depend on the skills and experiences of radiologists. Therefore, 
several computer-aided diagnosis (CAD) methods have been proposed to address this 
problem. 

Morikawa et al. [15] studied 30 malignant and 22 benign EBUS images from 60 
patients who were subjected to a bronchoscopy using histogram-based quantitative 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 40 

evaluation of EBUS images. The regions of interest (ROIs) inside EBUS images were 
suitably selected by experimenting with a phantom model submerged in water to 
extract six histogram features. The extracted features of EBUS images were 
distinguished by using Mann–Whitney U tests. 

Alici et al. [16] processed 1051 lymph nodes from 532 patients by using the 
sonographic features such as grayscale, echogenicity, shape, size, margin, presence of 
necrosis, presence of calcification, and absence of central hilar structure via EBUS 
images. Decision tree analysis was applied to discriminate lymph nodes between 
benign and malignant. 

Khomkham and Lipikorn [17] proposed two robust features that were extended 
from a gray-level co-occurrence matrix (GLCM) as well as a technique for lung cancer 
classification utilizing a genetic algorithm and support vector machines (SVM). The 
classification performance with accuracy, sensitivity, specificity, and precision is 86.52%, 
87.27%, 85.29%, and 90.57%, respectively. 

Gómez et al. [18] studied the performance of 22 co-occurrence statistics in 
conjunction with six gray-scale quantization levels to identify breast lesions on 
ultrasound (BUS) images. The 436 BUS images were utilized in this study; the number 
of carcinoma lesions was 217 and the number of benign lesions was 219. The best 
area under the curve obtained from using 32 gray levels and 109 features was 0.81. 

Radiomics analysis is also widely used in cancer diagnosis [15–18]. The concept 
of radiomics analysis is to extract a massive number of quantitative features from 
medical images by using shape features, first order features, second order features, or 
higher order features. In recent years, deep learning (DL) methods have been used 
tremendously in computer vision aided by advances in computation and very large 
amounts of data. In comparison to traditional machine learning, deep learning can 
accurately detect appropriate features for particular classification tasks and possibly 
clarify feature selection problems without the need for complicated image processing 
pipelines and pattern recognition procedures. As a superb method in DL technology, 
convolutional neural network (CNN) has been significantly improved in image 
classification and object detection, including medical imaging and it is now one of the 
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dominant methods. CNN has been applied to medical images to solve many different 
problems. 

Jia et al. [19] presented a novel framework for properly classifying cervical cells 
based on the strong feature CNN–support vector machine (SVM) model. The technique 
was developed for merging the strong features recovered by GLCM and Gabor with 
abstract features acquired from CNN’s hidden layers. Their method outperformed 
state-of-the-art models with 99.3 percent of accuracy. 

Tan et al. [20] proposed a modified CNN-based 3D-GLCM to classify polyps in 
colonography. This model could handle a small number of datasets by using the 
advantage of GLCM features. The experimental results show that CNN learning from 
GLCMs out-performs CNN on raw CT images in terms of classification performance. The 
model achieves up to 91 percent accuracy by using two-fold cross-validation. 

Islam et al. [21] created a deep learning approach consisting of the combination 
of CNN and long short-term memory (LSTM) to autonomously diagnose COVID-19 via 
X-ray images. The CNN was utilized for deep feature extraction, while LSTM was used 
for standard feature extraction and COVID-19 diagnosis. The experimental results reveal 
that the suggested method obtained an accuracy of 99.4 percent. 

Li et al. [22] used chest X-ray (CXR) images to assess the predictive performance 
of DL models in the recognition and classification of pneumonia. In the pooling step, 
they utilized bivariate linear mixed models. The results demonstrate that DL 
performed well in differentiating bacterial from viral pneumonia and in categorizing 
pneumonia from nor-mal CXR radiographs. 

Zhang et al. [23] developed a ResNet model for medical picture classification 
in smart medicine by replacing global average pooling with adaptive dropout. The 
results of the experiments on a GPU cluster indicate that the provided model delivered 
excellent recognition performance without a significant loss in efficiency. 

Cai et al. [24] developed a mask region–convolutional neural network (Mask R–
CNN) and ray-casting volume rendering algorithm-based detection and segmentation 
techniques for lung nodule 3D visualization diagnosis. Mask R–CNN of weighted loss 
achieved sensitivities of 88.1 percent and 88.7 percent, respectively. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 42 

Wang et al. [25] presented a new multiscale rotation-invariant convolutional 
neural network (MRCNN) model for identifying different kinds of lung tissue using high-
resolution computed tomography. The suggested technique outperformed the most 
recent findings on a public interstitial lung disease database. 

Anthimopoulos et al. [26] proposed to use a deep CNN to categorize patch-
based CT image into seven groups, containing six distinct interstitial lung disease 
patterns and healthy tissue. A new network architecture was created to capture the 
low-level textural characteristics of lung tissue. According to the experiments, the 
categorization performance was around 85.5 percent. 

In 2019, Chen et al. [27] proposed the CAD system for differentiating lung 
lesions via EBUS images using CNN. Because the dataset was small, data augmentation 
was per-formed by flipping and rotating images. Then the fine-tuned CaffeNet–SVM 
was used to differentiate lung lesions. The experimental results revealed that the 
proposed system to achieve up to 85.4 percent accuracy. 

In 2021, Lei et al. [28] proposed a low-dose CT image denoising method for 
improved performance of lung nodule classification. Because scans have substantial 
noise, they have significant influence on lung nodule classification. The proposed 
method enables cooperative training of image denoising and lung nodule classification 
by utilizing self-supervised loss and cross-entropy loss. According to the experiments, 
the simultaneous training of image denoising and lung nodule classification increases 
the performance significantly. 

Lei et al. [29] proposed a novel method for analyzing shape nodule with a CNN 
using soft activation mapping. Soft activation mapping captures more fine-grained and 
discrete attention regions to locate the low-grade malignant nodule. The results of the 
experiments on the LIDC–IDRI dataset revealed that the proposed method 
outperformed state-of-the-art models in terms of false positive rate. 

Ensemble methods are techniques for developing multiple models and then 
combining them to produce better results. Moreover, when compared to a single 
model, ensemble approaches often produce more accurate results. Recently, an 
ensemble method has been reported in a variety of fields. The ensemble method has 
been applied to medical images to solve many different problems. Guo et al. [30] 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 43 

proposed an ensemble learning method for COVID-19 diagnosis via CT obtained by 
using ordinal regression. This model could enhance classification accuracy by learning 
both intraclass and interclass links between phases. The experimental results revealed 
that as modified ResNet-18 was utilized as the backbone; accuracy rose by 22% when 
compared to standard approaches. 

However, most of the existing techniques need large datasets to yield 
satisfactory results. Thus, this paper proposes a novel pulmonary lesion classification 
framework that does not need a large training dataset by combining radiomics features 
and patient data with standard features that are extracted from EBUS images as input 
data, then using random forest, CNN, and weighted ensemble to classify pulmonary 
lesions. 

The structure of this paper is as follows: Section 4.2 describes the details of 
the materials; Section 4.3 explains the proposed framework; the results and discussion 
are summarized in Section 4.4; and Section 4.5 provides the conclusion. 
 

4.2 Materials 

The data used for evaluation of the proposed framework consist of both EBUS 
images and patient data. The EBUS images were obtained by skilled radiologists from 
Phramongkutklao Hospital, Bangkok, Thailand, between November 2011 and May 2016. 
The EBUS images were obtained using an endoscopic ultrasound system (EU-ME1; 
Olympus) and a 20 MHz miniature radial probe (UM-S20-17S; Olympus). The probe 
provides a 360-degree panoramic ultrasonic view of the lesion. The radiologists 
collected 200 EBUS images from 200 patients. There are 124 malignant lesions and 76 
benign lesions. The image format is an 8-bit RGB image. The size of each image was 
cropped to 776 × 776 pixels. Examples of different pulmonary lesion patterns in EBUS 
images are shown in Figure 4.1. 

For patient data, both numerical and categorical data that were used consist 
of gender (male, female), smoking history (smoker, no smoker, and ex-smoker), age 
(between 17 and 86), and lesion size (less than 3 cm, more than or equal to 3 cm) as 
shown in Table 4.1. 
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(a) (b) 
Figure 4.1 Examples of different pulmonary lesion patterns in EBUS images: (a) benign 
lesion; (b) malignant lesion (benign and malignant lesions were confirmed after core 

needle biopsy). 
 
Table 4.1 Clinical details of the patients. 

 Malignant Benign 
Number of patients 124 (74 male,50 female) 76 (29 male, 47 female) 

Age (Mean±SD) 64.32± 13.21 57.63 ±15.51 

Lesion size ≥3cm (75), 
<3cm (49) 

≥3cm (38),  
<3cm (38) 

Smoking History non-smoking (52), smoking 
(35),  
ex-smoking (37) 

non-smoking (29), smoking 
(27),  
ex-smoking (20) 

 

4.3 Methods 

The proposed pulmonary lesion classification framework is shown in Figure 4.2. 
The framework is based on the integration of three modified machine learning models 
and the weighted ensemble classification. The three modified machine learning 
models are the radiomics feature and patient data-based model, the single image-
based model, and the multi-patch-based model. 
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Figure 4.2 The framework of the proposed pulmonary lesion classification system. 

 

4.3.1 Preprocessing 

The preprocessing step consists of class balancing, mask generation, feature 
extraction, and window of interest (WOI) selection. The class balancing was performed 
to generate more data and balance the amount of training data for the models since 
our dataset contains only 200 EBUS images. Then the EBUS images were converted to 
grayscale images to be used in mask generation and the radiomics feature and patient 
data-based model, while the original RGB EBUS images were used in the single image-
based model and the multi-patch-based model. Mask generation was performed to 
define the region of lesion for the single image-based model and the multi-patch-
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based model. The window of interest selection was performed to divide the region of 
lesion into small patches which were used for the multi-patch-based model. 

 

4.3.1.1 Class Balancing 

Because the dataset is too small and there are more malignant images than 
benign images, image augmentation, which is an effective way to increase the amount 
of data without having to obtain new images, was performed to balance the data. The 
augmentation methods used in this paper are rotation, vertical flipping, and horizontal 
flipping to preserve the main characteristics of the images. The images were rotated 
by 90 and 180 degrees, and they were also flipped vertically and horizontally, as shown 
in Figure 4.3. 

 

 
Figure 4.3 Data augmentation for malignant and benign images. 

 

Data augmentation combines both malignant strategy and benign strategy [26] 
to balance data in both training classes; therefore, the images in malignant class were 
rotated but were not flipped because there were more malignant images than benign 
images. From 200 EBUS images, 160 images (80% of the dataset) were used as training 
data and 40 images (20% of the dataset) were used as test data. After augmentation, 
the total number of training data for both classes increased from 160 to 602. The 
number of augmented malignant and benign images is shown in Table 4.2. 
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Table 4.2 Distribution of EBUS images after class balancing. 

 Malignant Benign All 
Original EBUS image data 99 61 160 

Augmented image data 198 244 442 

Total of training image data 297 305 602 
 

4.3.1.2 Mask Generation 

In this step, the mask that was used to represent the region of lesion within 
the boundary in each EBUS image was generated. The mask generation consists of two 
main parts: image enhancement and boundary detection. In the medical field, many 
techniques have been introduced to enhance image quality [31,32]. Contrast stretching 
(CS) [33] is one of the enhancement techniques that is used to deal with adjusting 
contrast and improving image quality in the region of interest. By using CS, the bright 
components can be made brighter, while the dark background can be made darker. 
CS operation on an image is shown in Equation (1): 
 

_

0, ( , )

( , ) ( , ) , ( , ) ,

1, ( , )

I x y L

I x y I x y L I x y H

I x y H



 


=  
 


 (1) 

 

where ( , )I x y  is the original image, ( , )x y  are the coordinates of a pixel, 
_
( , )I x y  is the 

enhanced image, L  is the low threshold intensity, H  is the high threshold intensity, 
and  is a constant value.  

After enhancing the images, the next step is boundary detection. There are 
many boundary detection techniques [34–37] that can be applied, and the technique 
called ray tracing is the technique that was used to detect the lesion boundary in this 
paper [37]. Once the boundary was detected, the mask of the original image was 
generated by as-signing 1 to the area inside the boundary and 0 to the area outside 
the boundary. Figure 4.4(b) shows the mask of the original image in Figure 4.4a. Figure 
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4.4(c) shows the region of lesion that can be obtained by performing AND operation 
between Figure 4.4(a), (b). 
 

 
(a) (b) (c) (d) 

Figure 4.4 Results from the preprocessing step: (a) Original images; (b) mask images; 
(c) regions of interest; (d) WOIs in the intersection area of the region of interest and 

the ring 
 

4.3.1.3 Feature Extraction 

There are several other important features that can be extracted from EBUS 
images and can be utilized for lesion classification and texture analysis. Feature 
extraction is per-formed to improve the performance of the classifier by searching for 
the most condensed and informative set of features. Radiomics features are widely 
used in many fields of pat-tern recognition, computer vision, and image classification. 
In this paper, the radiomics features were extracted from the area of lesion inside the 
boundary, as shown in Figure 4.4(c). The radiomics features, which consist of six classes: 
shape-based 2D (9 features), GLCM (24 features), gray-level dependence matrix (GLDM) 
(14 features), gray-level run length matrix (GLRLM) (16 features), gray level size zone 
matrix (GLSZM) (16 features), and neighboring gray tone difference matrix (NGTDM) (5 
features), were extracted using the pyradiomics package [38]. Another GLCM feature 
known as the adaptive weighted-sum of the upper and lower triangular GLCM or AWS 
is also included in the radiomics features [17]. This feature is effective at determining 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 49 

heterogeneity, which is one of the most important characteristics of malignancy. 
Besides radiomics features, four features were extracted from patient data: gender, 
smoking history, age, and lesion size. The total number of features is 89 features. All 
features used in this paper and their correlations are shown using the correlation heat 
map [39] in Figure 4.5. 
 

 
Figure 4.5 Heat map of Pearson correlation coefficient matrix for all features. 
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4.3.1.4 WOI Selection 

The last step of preprocessing is WOI selection which prepares the input data 
for the multi-patch-based model. The WOI selection divides a lesion into small patches 
or windows. The study by Morikawa et al. [15] found that the most suitable region of 
lesion is the ring between 2 mm to 5 mm from the probe, thus the patches were 
selected from this ring. The size of the patch was derived from the size of the biggest 
square window that can fit within the ring which is 32 × 32 pixels. The patches in each 
ring are all the windows that can be tiled inside the ring area as shown in Figure 4.4 
(d). 
 

4.3.2 The Proposed Framework 

The proposed framework consists of three machine learning models that were 
used to calculate the probability of being benign or malignant. The first model is based 
on radiomics features and patient data, the second model is based on the original 
EBUS images, and the third model is based on multiple patches of lesion. 

 

4.3.2.1 Radiomics Feature and Patient Data-Based Model 

The first model consists of feature selection and classification as shown in 
Figure 4.6. Feature selection was performed to reduce the number of features that are 
redundant and irrelevant. Mutual information (MI) criterion [40] which is one of the 
feature selection techniques was used to select relevant features from radiomics 
features and patient data. MI between feature and target class is a non-negative value 
that measures dependency. It is equal to zero if and only if two variables are 
independent; higher value means higher dependency. 

 

 
Figure 4.6 Block diagram of the radiomics feature and patient data-based model. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 51 

A subset of selected features that were obtained after applying mutual 
information criterion were used as input to the random forest classifier (RF) [41]. RF is 
a supervised machine learning classifier that is composed of as many decision trees on 
different samples as possible and combines the output from all the trees. RF can 
decrease overfitting problems in decision trees, as well as variation, and hence improve 
accuracy. RF is also one of a few classifiers that can handle both categorical and 
numerical features. RF is trained on a subset of selected features that contains both 
patient data and radiomics features. The output is the probability of being benign or 
malignant, 1P . 
 

4.3.2.2 Single Image-Based Model 

The second model uses the original EBUS images as input data for the fine-
tuned dense convolutional network 169 (DenseNet) [42]. DenseNet feature extractor 
was used to extract both local and global characteristics from an image. These local 
characteristics focus on the patterns of texture; i.e., homogeneity, heterogeneity, 
hyperechoic dot, hyperechoic arc, anechoic area, and linear air bronchogram while 
global characteristics focus on shape, size, and patterns of the texture of the whole 
lesion. DenseNet 169 architecture connects all layers densely. Each layer receives input 
from the preceding layers and forwards its output to the subsequent layers via its 
feature map. Its goal is to remove the redundant layer. Each layer inherits collective 
knowledge from the layers before it. Consequently, the classification layer receives 
data from all of the preceding layers as input data. DenseNet169 can produce excellent 
results, but fine-tuning their hyper parameters requires expert knowledge, a large 
dataset, and a significant amount of time, thus transfer learning [43] is used to solve 
such problems. DenseNet 169 can reuse the previously trained model. The idea behind 
transfer learning is to use a complicated and effectively pre-trained model, such as 
ImageNet, and then apply the learned knowledge to a new problem with a small 
dataset (EBUS images for this paper). DenseNet 169 is trained from ImageNet [44] and 
the weights from the first convolutional layer in block 1 to the last convolutional layer 
in block 8 are frozen. The classification layer was trained by EBUS images, separately. 
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The output layer of the fine-tuned DenseNet 169 for the single image-based model 
returned the probability of being benign or malignant, 2P . The architecture of the fine-
tuned DenseNet 169 for the single image-based model is shown in Figure 4.7 and the 
hyper-parameters of the model are shown in Table 4.3. 

 

 
Figure 4.7 The architecture of the fine-tuned DenseNet 169 for the single image-

based model. 
 
Table 4.3 The hyper-parameters of DenseNet 169 architecture. 

Hyper-parameter Value 

Optimizer Stochastic Gradient Descent 

Learning rate 0.0001 
Loss function Cross-entropy 

Batch size 32 

 

4.3.2.3 Multi-Patch-Based Model 

The third model is called the multi-patch-based model because it uses all 
patches of size 32 × 32 pixels from each image as input to the proposed CNN. Since 
the input of this model was the patch, the CNN feature extractor was used to extract 
only local characteristics. The proposed CNN architecture for multi-patch images is 
shown in Figure 4.8. 
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Figure 4.8 The architecture of the multi-patch-based model. 
 

The architecture of the proposed CNN is shown in Figure 4.9. The input is 
convolved by a series of four convolutional layers. The size of kernels of these 
convolutional layers is set to 3×3. The numbers of kernels of four convolutional layers 
are 8, 16, 32, and 64, respectively, as shown in Table 4.4. Every convolutional layer is 
followed by ReLU activation and Max pooling. The kernel size of Max pooling layers is 
set to 2×2 with no padding. 
 

 
Figure 4.9 The architecture of the proposed CNN in the multi-patch-based model. 
 
 
 
 
 

Feature Extraction Classification

Input Image
32×32×3 Conv1

32×32×8

kernel size 3×3
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Table 4.4 The configuration of CNN for the multi-patch-based model. 

Layer Type Kernel size Stride Output size 
Data Input   3×32×32 

Conv1 Convolution 3×3 1 8×32×32 

Conv2 Convolution 3×3 1 16×31×31 
Conv3 Convolution 3×3 1 32×30×30 

Conv4 Convolution 3×3 1 64×29×29 
FC5 Fully connected   256×1×1 

FC6 Fully connected   2×1×1 
Every convolutional layer is followed by pooling layer. The ReLU activation function is not shown for brevity. 

 
The batch size which defines the number of samples that are propagated 

through the network is set to 128. Dropout and batch normalization are also applied 
to prevent overfit-ting problems. The two-dimensional output is flattened and SoftMax 
activation is used to calculate the categorical probability distribution. The hyper-
parameters of CNN architecture are shown in Table 4.5. 
 
Table 4.5 The hyper-parameters of CNN architecture for the multi-patch-based 
model. 

Hyper-parameter Value 

Optimizer Adam 

Learning rate 0.001 
Loss function Cross-entropy 

Batch size 128 
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Figure 4.10 Weights learned by the first convolutional layer. 

 
Figure 4.10 depicts how we visualize the learned features. Although there are 

no discernible structures, they are useful for classifying the texture of pulmonary 
lesions. Since each image contains the classification results of multiple patches, the 
classification result for each image can be obtained by using the decision threshold. 
The decision threshold is used to classify whether a lesion in an image is benign or 
malignant by calculating the probability of being malignant from the ratio of the 
patches that are classified as malignant to the total number of patches of an image as 
defined by Equation (2).  

 

3 ( ) M

B M

n
P I

n n
=

+
 (2) 

 
where Mn  is the number of malignant patches, Bn  is the number of benign patches. If 
the probability is less than the decision threshold value, T , then a lesion is classified 
as benign; otherwise, malignant as defined by Equation (3). 
 

31 if ( )
( ) ,

0 otherwise

P I T
Class I


= 


 (3) 

 
where 3 ( )P I  is the probability of being malignant I . Class 0 represents benign, and class 
1 represents malignant. 
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4.3.3 Weighted Ensemble Classification 

The last step of the framework is to finally classify a lesion using the weighted 
ensemble classification [45] with the probability distributions from the three models 
as de-fined by Equation (4): 

1 1 2 2 3 3( ) ( ) ( ) ( ),P I w P I w P I w P I= + +  (4) 

1 2 3 1,w w w+ + =  (5) 
 
where ( )P I is the probability of being malignant, 1w , 2w , and 3w are the weight of 
each model with the sum of these three weights equal to 1. 1P  is the probability from 
the radiomics feature and patient data-based RF, 2P  is the probability from the single 
image-based CNN, and 3P  is the probability from the multi-patch-based CNN. If ( )P I is 
less than the cutoff value then a lesion is benign; otherwise, malignant. The optimal 
cutoff value is defined by the value that yields the highest accuracy during the training. 
 

4.3.4 Performance Evaluation 

The proposed pulmonary lesion classification framework is evaluated on the 
dataset that is randomly partitioned into two sets of 80:20. The training set consists of 
80% of the data, while the test set consists of the remaining 20% of the data. 

The performance is measured using six statistical indicators: accuracy (Acc) 
sensitivity (Sen), specificity (Spec), positive predictive value (PPV), negative predictive 

value (NPV), and area under the curve (AUC) as defined by Equations (6)–(10). 
 

correctly detected cases
Acc=

total cases
 (6) 

correctly detected malignant cases
Sen=

total malignant cases
 (7) 

correctly detected benign cases
Spec=

total benign cases
 (8) 
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correctly detected malignant cases
PPV=

detected malignant cases
 (9) 

correctly detected benign cases
NPV=

detected benign cases
 (10) 

 

4.4 Experimental Results and Discussion 

This section presents the experimental setup and the experimental results with 
discussion. 
 

4.4.1 Experimental Setup 

All the experiments were performed on a workstation (Intel (R) Core (TM) 3.00 
GHz processor with 16 GB of RAM) and a NVIDIA GeForce GTX1650GPU. For 
preprocessing, the experiments were performed using MATLAB R2020b. For the 
classification, the experiments were implemented by python programming language 
with python libraries such as Keras, pandas, Scikit-learn, and NumPy. 
 

4.4.2 Experimental Results 

The results of EBUS image enhancement, feature selection for the radiomics 
feature and patient data-based model, and the classification results of the proposed 
framework are described in this section. 
 

4.4.2.1 EBUS Image Enhancement 

To improve the quality of all EBUS images, the parameter setting for CS includes 
L  and H  which were determined by sorting the intensity values of an image. From 
our dataset, the optimal values for L and H were at 1 percentile and 99 percentiles of 
intensity values. The enhanced images and their histograms are shown in Figure 4.11. 
After EBUS image enhancement was performed, more details of lesion components 
can be clearly seen. Figure 4.11(a) depicts the original image, while Figure 4.11(c) 
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depicts the enhanced image. The histograms of these two images show that the range 
of intensity values was widened after using CS. 
 

 

 

(a) (b) 

  
 

(c) (d) 
Figure 4.11 (a) The original EBUS image; (b) the histogram of (a); (c) the enhanced 

EBUS image; (d) the histogram of (c). 
 

4.4.2.2 Feature Selection 

Mutual information was performed on radiomics features and patient data to 
select only relevant features that are necessary for radiomics features and patient 
data-based model, and the most effective number of selected features was 57 out of 
89 features. Figure 4.12 shows 57 features that were selected from both radiomics 
features and patient data with MI scores greater than zero. 
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Figure 4.12 Feature selection of radiomics feature and patient data-based model. 

 

4.4.2.3 Classification Performance 

The performance of each model and the proposed classification framework 
were evaluated. For the radiomics feature and patient data-based model, the most 
suitable learning parameters were determined through the training using data from 200 
patients who have both EBUS images and patient data. The RF classifier was performed 
on 57 features that were selected by MI. The forest’s tree number was set to 1000, 
the Gini index was used as the split quality measure, and the minimum number of 
samples required to divide an internal node was set to two. Table 4.6 displays the RF 
performance. It can be seen that the RF performance can achieve up to 85% of 
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accuracy. The subset of relevant features consisting of three patient data and 54 out 
of 85 radiomics features were chosen. This indicates that radiomics features and patient 
data are important in the analysis of pulmonary lesions. 

Figure 4.13(a) shows the confusion matrix of radiomics feature and patient data-
based model. From the test set of 40 EBUS images, two lesions out of 25 malignant 
lesions were misclassified as benign, while four lesions out of 15 benign lesions were 
misclassified as malignant. 
 
Table 4.6 The classification performance of different classification models. 
 Acc Sen Spec PPV NPV AUC 

Radiomics feature and patient data-based 
model  

85.00 92.00 73.33 85.19 84.62 0.8267 

Single image-based model  75.00 88.00 53.33 75.86 72.72 0.7067 
Multi-patch-based model  87.50 88.00 86.67 91.67 81.25 0.8733 
Proposed framework  95.00 100.00 86.67 92.59 100.00 0.9333 
The values in bold font indicate the best index values. 
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Figure 4.13 Confusion matrices:(a) the radiomics feature and patient data-based 

model; (b) the single image-based model; (c) the multi-patch-based model, and (d) 
the proposed framework. 

 
Figure 4.14 depicts the misclassification results from the radiomics feature and 

patient data-based model. Figure 4.14(a) shows a malignant lesion that was 
misclassified as benign because the texture of the lesion is homogeneous with no 
echoic arc and echoic dot, whereas a benign lesion in Figure 4.14(b) was misclassified 
as malignant because its texture is heterogeneous, which is a common characteristic 
of malignant lesions, thus making it difficult to classify correctly. 
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(a) (b) 
Figure 4.14 Misclassification of the radiomics feature and patient data-based model: 

(a) malignant lesion was misclassified as benign; (b) benign lesion was misclassified as 
malignant. 

 
For the single image-based model, the original EBUS images of 200 patients 

were augmented to obtain 602 images (305 images in the benign class and 297 images 
in the malignant class). Figure 4.13(b) depicts the confusion matrix of the single image-
based model where three malignant lesions were misclassified as benign, and seven 
benign lesions were misclassified as malignant. 

Figure 4.15 depicts the misclassification of the single image-based model. Figure 
4.15(a) shows a malignant lesion that was misclassified as benign because the texture 
of the lesion was quite smooth, which is a common feature of benign lesion. Figure 
4.15(b) shows a benign lesion that was misclassified as malignant because its texture 
is heterogeneous. 
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(a) (b) 
Figure 4.15 Misclassification of the single image-based model: (a) malignant lesion 

was misclassified as benign; (b) benign lesion was misclassified as malignant. 
 

Next, the multi-patch-based model used the same image data of 200 patients 
that were used for the single image-based model, but each image was divided into 
patches. Depending on the region of lesion, the number of patches in each EBUS image 
can be from one to fourteen. After augmentation and WOI selection, 6,795 patches 
were obtained with 3,335 benign patches and 3,460 malignant patches. After the 
model was trained by 6,369 patches, each patch extracted from the test image was 
classified independently. The classification result of each image was determined from 
the results of all patches using the decision threshold. In this experiment, T was set to 
0.63. It means that if the ratio of the number of malignant patches to the total number 
of patches is greater than 0.63, this EBUS image is classified as malignant; otherwise, it 
is classified as benign. The confusion matrix of the multi-patch-based model is 
depicted in Figure 4.13(c), which indicates that three malignant lesions were 
misclassified as benign, while two benign lesions were misclassified as malignant. 

Figure 4.16 depicts the misclassification results of the multi-patch-based model. 
Figure 4.16(a) depicts a malignant lesion that was misclassified as benign, while Figure 
4.16(b) depicts a benign lesion that was misclassified as malignant. The main reason 
for misclassification of Figure 4.16(a) is because the lesion region is too small, which 
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allows only a few patches to be used for classification; whereas the misclassification 
of Figure 4.16(b) is because the texture of the lesion is heterogeneous. 
 

 
 

(a) (b) 
Figure 4.16 Misclassification of the multi-patch-based model: (a) malignant lesion was 

misclassified as benign; (b) benign lesion was misclassified as malignant. 
 

From the statistical results in Table 4.6, it can be seen that the radiomics 
feature and patient data-based model and the multi-patch-based model yield high 
accuracy regardless of the number of image data; whereas the single image-based 
model yields the lowest accuracy. The main problem of the single image-based model 
is that CNN needs a very large dataset to obtain good results. However, the texture of 
the boundary and the surrounding areas of a lesion are also important features, thus 
this paper proposes to integrate the statistical results of the three models to perform 
the final classification using the weighted ensemble classification to assign the weight 
to each model based on the classification performance. In this paper, 1w , 2w , and 3w  
were set to 0.41, 0.08, and 0.51, based on the performance of the models. The optimal 
cutoff was set to 0.53, which is defined by the value that yields the highest accuracy 
during the training. The lesions were divided into two classes: benign when ( ) 0.53P I   
and malignant when ( ) 0.53P I  . The proposed framework’s confusion matrix is 
depicted in Figure 4.13(d), which indicates that all malignant lesions were correctly 
classified, while only two benign lesions were misclassified as malignant. 
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Figure 4.17 depicts the effectiveness of the proposed framework. Figure 4.17(a) 
shows the correct classification result of the proposed framework while two out of 
three classification results from three models are incorrect; i.e., the radiomics feature 
and patient data-based model and the single image-based model misclassified benign 
lesion as malignant. Figure 4.17(b) shows the correct classification result of the 
proposed framework, while two out of three classification results from three models 
are incorrect; i.e., the single image-based model and the multi-patch-based model 
misclassified the malignant lesion as benign. 
 

 

 

(a) (b) 
Figure 4.17 Two out of three models misclassified a lesion, but the proposed 

framework can classify correctly. (a) benign lesion was misclassified as malignant in 
radiomics feature and patient data-based model and multi-patch-based model. (b) 

benign lesion was misclassified as malignant in single image-based model and multi-
patch-based model. 

 
Table 4.6 displays the classification performance of all classification models. 

The proposed framework yields accuracy, sensitivity, specificity, positive predictive 
value, and a negative predictive value of 95.00, 100, 86.67, 92.59, and 100, respectively. 
Furthermore, by comparing the ROC curves and AUC values of all classification models 
in Figure 4.18, the AUC value obtained by using the proposed framework is 0.9333, 
which is higher than those of the other three models. 
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The proposed framework performs well, but it still has some limitations. First, 
there is no evidence that the proposed framework works well with other types of 
medical images. Second, the number of patches depends on the region of lesion in 
each image, thus a lesion with only a few patches can be easily misclassified in a multi-
patch-based model. 

 

 
Figure 4.18 ROC curves and AUC values of the classification models. 

 
 

4.5 Conclusions 

In this paper, a novel pulmonary lesion classification framework for EBUS 
images was proposed by integrating three classification models with the weighted 
ensemble classification. The proposed framework works well with imbalanced data 
and small datasets. The radiomics feature and patient data-based model is suitable 
for any size of the dataset because it classifies a lesion based on both radiomics 
features and patient data that contain substantial amounts of relevant information, 
such as texture, shape, size, age, and gender. It also works well for an imbalanced 
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dataset. The single image-based model uses the global characteristics of a lesion from 
the entire EBUS images to train the model. Thus, the model can learn and extract the 
dominant features from an image by the model itself. However, the disadvantage of 
this model is that it needs a large volume of data to obtain good results. On the other 
hand, the multi-patch-based model uses local characteristics of a lesion from each 
patch. By integrating these three models with the weighted ensemble classification, 
the proposed framework can improve the classification results by using both local and 
global characteristics of a lesion. The proposed framework achieves promising 
pulmonary lesion classification results and outperforms individual models. Due to 
ethics concerns, data insufficiency is a common problem in medical applications, and 
the proposed framework can tackle this problem. In the future, the proposed 
framework will be tested on different sets of medical images. 
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CHAPTER 5  

DISCUSSIONS AND CONCLUSIONS  
 

This chapter concludes and discusses the dissertation. The first section 
summarizes the main research findings and the contributions of this dissertation, 
followed by a discussion on the limitations and potential future research related to 
this dissertation. 
 

5.1 Discussions and Conclusions 

From the experimental results on the proposed features in Article 1 called 
AWSL and AWSU, together with a method for pulmonary lesion classification using a 
GA with SVM. The proposed features are suitable for representing heterogeneity 
characteristics because they determine the differences between intensities by 
discarding the similarities of the elements along the diagonal line of GLCM. By 
combining the proposed features with standard features, the performance of all 
classifiers can be improved. Furthermore, by using GA to select only features relevant 
to pulmonary lesion classification, the performance of the classifiers could be 
improved even further. The classification results show that using more features does 
not guarantee better performance; instead, it is critical to use only the relevant 
features. As a result, the proposed method for pulmonary lesion classification is robust, 
especially for small datasets. 

From the experimental results for the proposed model in Article 2, a novel 
pulmonary lesion classification framework for EBUS images is proposed by integrating 
three classification models with the weighted ensemble classification. The proposed 
framework works well with imbalanced data and small datasets. The radiomics feature 
and patient data-based model are suitable for any size of the dataset because it 
classifies a lesion based on both radiomics features and patient data that contain lots 
of relevant information, such as texture, shape, size, age, and gender. It also works well 
for an imbalanced dataset. The single image-based model uses the global 
characteristics of a lesion from the entire EBUS images to train the model. Thus, the 
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model can learn and extract the dominant features from an image by the model itself. 
However, the disadvantage of this model is that it needs a large volume of data to 
obtain good results. On the contrary, the multi-patch-based model uses local 
characteristics of a lesion from each patch. These local characteristics focus on the 
patterns of texture. By integrating these three models with the weighted ensemble 
classification, the proposed framework can improve the classification results by using 
both local and global characteristics of a lesion. The proposed framework achieves 
promising pulmonary lesion classification results and outperforms individual models. 

Comparing the performance of Article 1 and 2, the performance of the 
proposed features in Article 1 achieves 86.52 percent accuracy, 87.27 percent 
sensitivity, 85.29 percent specificity, 90.57 percent positive predictive value, 80.56 
percent negative predictive value, and 0.8628 area under the curve. The proposed 
model in Article 2 achieves 95.00 percent accuracy, 100.00 percent sensitivity, 86.67 
percent specificity, 92.59 percent positive predictive value, 100.00 percent negative 
predictive value, and 0.9333 percent area under the curve. Article 1 input data consists 
only of EBUS images, whereas Article 2 input data combines both EBUS images and 
patient data. Although extracting features from EBUS images using the handcrafted 
features relevant to medical knowledge in Article 1 achieves acceptable accuracy, 
classification performance can be improved further by combining these features with 
the pulmonary lesion classification framework in Article 2. 

In the radiomics feature and patient data-based model of the proposed 
framework, 57 out of 89 features are selected with the criteria that use MI scores 
greater than zero. The performance of the radiomics feature and patient data-based 
model for various MI scores is shown in Figure 5.1. From the comparison, the optimal 
threshold value that yields the highest accuracy for this dataset is zero. 
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Figure 5.1 Comparison graph of MI scores for the radiomics feature and patient data-
based model. 

 
For performance evaluation, other augmentations, such as adding noise and 

blurring, were applied to the test set. The test EBUS images were augmented by adding 
speckle noise, gaussian noise, salt and paper noise, and motion blur to generate other 
160 test data as shown in Table 5.1. Examples of augmented test EBUS images are 
shown in Figure 5.2.  
 
Table 5.1 Distribution of test EBUS image data after applying augmentation. 

 Malignant Benign All 
Original EBUS image data 25 15 40 

Augmented image data 100 60 160 
Total of test image data 125 75 200 
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Figure 5.2 Examples of augmented test EBUS image data. 

 
After executing the proposed framework with augmented test image data, the 

statistical results are shown in Table 5.2. The performance of the proposed framework 
achieves 78.5 percent accuracy, 97.6 percent sensitivity, 46.67 percent specificity, 75.30 
percent positive predictive value, and 92.10 percent negative predictive value. The 
statistical results reveal that the proposed framework outperforms individual models. 
The confusion matrices obtained after executing the proposed framework with 
augmented test image data are shown in Figure 5.3.  
 
Table 5.2 The classification performance of different classification models. 
 Acc Sen Spec PPV NPV 
Radiomics feature and patient data-based 
model  

71.50 84.80 49.33 73.61 66.07 

Single image-based model  68.00 91.20 29.33 68.26 66.67 

Multi-patch-based model  73.00 95.20 36.00 71.26 81.82 
Proposed framework  78.50 97.60 46.67 75.31 92.11 
The values in bold font indicate the best index values. 
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Figure 5.3 The confusion matrices of the proposed framework with augmented test 
data:(a) the radiomics feature and patient data-based model; (b) the single image-
based model; (c) the multi-patch-based model, and (d) the proposed framework. 

 

5.2 Limitations of Work 

The proposed framework still has some limitations. There is no evidence that 
the proposed framework works well with other types of medical images, and the 
number of patches for each EBUS image depends on the region of a lesion; therefore, 
a lesion with only a few patches can be easily misclassified in a multi-patch-based 
model. The accuracy of the single image-based model is the lowest because the 
number of input data is small, thus the model does not have enough information to 
learn all patterns to yield high classification performance. 
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5.3 Suggestions and Future Works 

For future work, the classification accuracy can be improved further by 
developing new features which can capture other important characteristics of 
malignancy such as continuous margin, hyperechoic dot or arc, luminant area, and 
anechoic area, and modifying the DL architecture to make it more suitable for EBUS 
images. Moreover, the segmentation of pulmonary lesions might be addressed by 
unsupervised approaches due to the small sample size of the analyzed dataset. The 
proposed framework will be tested on different sets of medical images. Furthermore, 
the time complexity of the proposed framework will be considered in the subsequent 
work. 
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APPENDIX 
The algorithm for calculating the parameters of the weighted ensemble 

classification 

The parameters of the weighted ensemble classification used in this 

dissertation were obtained from the algorithm below. The input parameters consist of 

the statistical results of radiomics feature and patient data-based model; 1P , the single 

image-based model; 2P , the multi-patch-based model; 3P , and the actual values, Tar. 

The purpose of the algorithm is to find the weights of the models and the cutoff value 

that yield the highest accuracy during the training phase. These parameters were then 

applied in the test phase. In the first step of the algorithm, the initial cutoff value and 

the accuracy were set to zero, and the weights of the models were set to the values 

from zero to one which yielded the weight sums of the models equal to one. In the 

second step, the prediction value of the weighted ensemble classification; P  was 

calculated by summation of the multiplication of the statistical results of the models 

and their weights. In the final step, the algorithm searched for the parameters with the 

highest accuracy. The algorithm returns the accuracy; Acc , the cutoff value; c , the 

weight of the radiomics feature and patient data-based model; 1w , the weight of the 

single image-based model; 2w , and the weight of the multi-patch-based model; 3w . 
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 Input: The list of statistical results of each Model, 1 2 3, ,P P P ; list of actual values, Tar 

Output: Accuracy, Acc; the weight of each model, 1 2 3, ,w w w ; cutoff value, c 

Initialize indices 

c = 0; Acc = 0; list of weight 1w , 1Lw = [0,0.01,0.02, …,1]; list of weight 2w , 2Lw  = 

[0,0.01,0.02, …,1] 

for i in 1Lw  then 

 for j in 2Lw then 

  1k i j= − −  

  1 2 3P i P j P k P=  +  +   

  Temp_acc, Temp_c = find_weight_acc_max(P, Tar) 

  if Acc< Temp_acc then 

   Acc = Temp_acc; c = Temp_c; 

   1 2 3; ; ;w i w j w k= = =  

  endif 

 endfor 

 Remove j from 2Lw  

endfor 

return Acc, 1 2 3, , ,w w w c  
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Algorithm: find_weight_acc_max 

Input: list of prediction values, P; list of actual values, Tar 

Output: Accuracy, Acc, Threshold value, T 

Initialize indices 

T = 0; Acc = 0; W = list(); 

for i in 0 to 1 increase by 0.01 then 

 L = cutoff(I,P) 

 temp = measure_performance(L,Tar) 

 Append temp to W 

 if Acc< temp then 

  Acc = temp; T = i; 

 endif 

endfor 

return Acc, T 
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Algorithm: cutoff 

Input: list of prediction values, P; cutoff value, c 

Output: list of labeled class values, L 

Initialize indices 

L = list(); 

for j in P then 

 if  j > c then 

  l = 1 

 else 

  l = 0 

 endif 

 Append l to L 

endfor 

return L 
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Algorithm: measure_performance 

Input: list of prediction values, P; list of actual values, Tar 

Output: Accuracy, Acc 

Initialize indices 

nCtr = 0; Acc = 0 

for i in range(len(P)) then 

if P[i]=Tar[i] then 

nCtr = nCtr+1 

endif 

endfor 

Acc = nCtr*100/ len(P) 

return Acc 
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