การขจัดกำมะถันแบบดูดซับจากน้ำมันดีเซลบนวายซีโอไลต์แลกเปลี่ยนไอออน

จุหาลงกรณ์มหาวิทยาลัย

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีเชื้อเพลิง ภาควิชาเคมีเทคนิค คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2560 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Chulalongkorn University

ADSORPTIVE DESULFURIZATION OF DIESEL OIL OVER ION-EXCHANGED Y ZEOLITES

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Fuel Technology Department of Chemical Technology Faculty of Science Chulalongkorn University Academic Year 2017 Copyright of Chulalongkorn University

Chulalongkorn University

หัวข้อวิทยานิพนธ์	การขจัดกำมะถันแบบดูดซับจากน้ำมันดีเซลบนวายซี
	โอไลต์แลกเปลี่ยนไอออน
โดย	นายอานันท์ ศิลาจันทร์
สาขาวิชา	เทคโนโลยีเชื้อเพลิง
อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก	ศาสตราจารย์ ดร.ภัทรพรรณ ประศาสน์สารกิจ
อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม	ดร.บุญญาวัณย์ อยู่สุข

คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็นส่วนหนึ่ง ของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

		คณบดีคณะวิทยาศาสตร์
	(ศาสตราจารย์ ดร.พลกฤษณ์ แสงวณิช)	
คณะกรระ	มการสอบวิทยานิพนธ์	
	-//222	ประธานกรรมการ
	(รองศาสตราจารย์ ดร.ประเสริฐ เรียบร้อยเจริญ	J)
		อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก
	(ศาสตราจารย์ ดร.ภัทรพรรณ ประศาสน์สารกิจ	0
		อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม
	(ดร.บุญญาวัณย์ อยู่สุข) งกรณ์มหาวิทย	
	Chulalongkorn Univ	_กรรมการ
	(รองศาสตราจารย์ ดร.ชวลิต งามจรัสศรีวิชัย)	
		กรรมการภายนอกมหาวิทยาลัย
	(ดร.นิคม ชวลิตกิจมงคล)	

อานันท์ ศิลาจันทร์ : การขจัดกำมะถันแบบดูดซับจากน้ำมันดีเซลบนวายซีโอไลต์ แลกเปลี่ยนไอออน (ADSORPTIVE DESULFURIZATION OF DIESEL OIL OVER ION-EXCHANGED Y ZEOLITES) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ศ. ดร.ภัทรพรรณ ประศาสน์ สารกิจ, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: ดร.บุญญาวัณย์ อยู่สุข, หน้า.

ปัจจุบัน 95 เปอร์เซ็นต์ ของการขนส่งขึ้นกับเชื้อเพลิงซอสซิลโดยเฉพาะอย่างยิ่งน้ำมันดีเซล ้น้ำมันดีเซลไม่ได้มีส่วนประกอบแค่พาราฟินและโอเลฟินเพียงเท่านั้น ยังมีสารประกอบกำมะถันซึ่งเป็น สาเหตุหนึ่งที่ก่อให้เกิดภาวะฝนกรด การกัดกร่อนอุปกรณ์ที่เกี่ยวข้อง ความเป็นพิษต่อตัวเร่งปฏิกิริยา และก่อให้เกิดปัญหาต่อระบบทางเดินหายใจ เพื่อแก้ไขปัญหาดังกล่าวกระบวนการขจัดกำมะถันโดย การดูดซับถูกนำมาใช้กับน้ำมันดีเซลเพื่อลดปริมาณของกำมะถันในน้ำมันดีเซล อย่างไรก็ตามน้ำมัน ดีเซลยังคงมีส่วนประกอบอื่นๆ เช่น สารประกอบแอโรแมติกและไนโตรเจนอยู่ด้วย ดังนั้น งานวิจัยนี้ เป็นการศึกษาผลของสารประกอบแอโรแมติกและไนโตรเจนต่อการขจัดกำมะถันในรูปของไดเบนโซ ไทโอฟีนและ 4,6-ไดเมทิลไดเบนโซไทโอฟีน ในน้ำมันจำลองที่มีนอร์มัลออกเทนเป็นตัวทำละลายโดย การดูดซับโดยใช้คอลัมน์แบบเบดนิ่งที่บรรจุตัวดูดซับ ตัวดูดซับที่ใช้ในการศึกษามี 6 ชนิด ได้แก่ ซี โอไลต์ Na-Y, Ni-Y, La-Y, Ce-Y, Ni-La-Y และ Ni-Ce-Y ผลการทดลองแสดงในรูปของความจุเบรคท รูและความจุทั้งหมดในการดูดซับสารประกอบกำมะถันซึ่งสามารถคำนวณได้จากเส้นโค้งเบรคทรู พบว่าความจุในการดูดซับไดเบนโซไทโอฟีนและ 4,6-ไดเมทิลไดเบนโซไทโอฟีนในน้ำมันจำลองที่มี สารประกอบแอโรแมติกและในโตรเจนโดยใช้ตัวดูดซับชนิดต่างๆ ลดลงตามลำดับดังนี้ Na-Y ~ Ni-Ce-Y ~ Ni-Y > La-Y > Ce-Y > Ni-La-Y สารประกอบแอโรแมติกและไนโตรเจนส่งผลให้ความจุการ ดูดซับสารประกอบกำมะถันลดลงโดยสารประกอบในโตรเจนส่งผลต่อการลดลงของการดูดซับ สารประกอบกำมะถันมากกว่าสารประกอบแอโรแมติก นอกจากนี้ศึกษาการคืนสภาพตัวดูดซับซี โอไลต์ Na-Y ด้วยการสกัดด้วยตัวทำละลายโดยตัวแปรที่ศึกษา ได้แก่ ชนิดตัวทำละลาย อุณหภูมิและ ้อัตราการไหลของตัวทำละลาย พบว่า การคายสารประกอบที่ดูดซับบ่งบอกประสิทธิภาพของการคืน สภาพจะขึ้นกับสภาพขั้วที่เหมือนกันของตัวทำละลายและสารที่ถูกดูดซับ ตัวทำละลายที่มีอุณหภูมิสูง มักจะช่วยให้สกัดสารถูกดูดซับได้ดีขึ้น และการใช้อัตราการไหลต่ำช่วยให้ตัวทำละลายมีเวลามากใน การสกัดสารถูกดูดซับ

ภาควชา เคมเทคนค ลายม	อชอนสต
สาขาวิชา เทคโนโลยีเชื้อเพลิง ลายมี	อชื่อ อ.ที่ปรึกษาหลัก
ปีการศึกษา 2560 ลายมี	อชื่อ อ.ที่ปรึกษาร่วม

KEYWORDS: ADSORPTIVE DESULFURIZATION / DIESEL OIL / ION-EXCHANGED ZEOLITE / ADSORBENT

ARNAN SILAJAN: ADSORPTIVE DESULFURIZATION OF DIESEL OIL OVER ION-EXCHANGED Y ZEOLITES. ADVISOR: PROF. PATTARAPAN PRASASSARAKICH, Ph.D., CO-ADVISOR: BOONYAWAN YOOSUK, Ph.D., pp.

Nowadays, over 95% of transportation depends on fossil fuel especially diesel oil containing not only parafins, aromatics and olefins but also sulfur compounds that cause acid rain, corrosion in equipments, poisoning in catalyst and respiratory system problem. For solving this problem, adsorptive desulfurization was used to decrease sulfur in diesel oil. However, diesel oil has contained with other component such as aromatic and nitrogen compounds. Therefore, this work focused on the effect of aromatic and nitrogen compounds on adsorptive desulfurization of DBT and 4,6-DMDBT in n-octane as model diesel oil over chosen adsorbents (Na-Y, Ni-Y, La-Y, Ce-Y, Ni-La-Y and Ni-Ce-Y zeolites) in fixed bed column at ambient condition. The effect of these compounds on adsorbent performance was reported in term of sulfur breakthrough and total adsorption capacity, calculated from breakthrough curve. The DBT and 4,6-DMDBT adsorption capacity in the presence of aromatic and nitrogen compounds decrease in the order: Na-Y ~ Ni-Ce-Y ~ Ni-Y > La-Y > Ce-Y > Ni-La-Y. From the results, it showed that aromatic and nitrogen compounds caused the decrease in sulfur adsorption capacity which nitrogen compounds had more pronounced effect on decreasing sulfur adsorption capacity than aromatic compounds. In addition, Studying the regenerate condition effect (solvent type, solvent temperature and solvent flow rate) on spent Na-Y adsorbent regeneration. The results showed the desorption amount (related with regeneration efficiency) depending on polarity of solvent and adsorbate (same polarity was prefered), solvent temperature (high solvent temperature was usually yielded high solvent energy) and solvent flow rate (increased extracton time at slow flow rate).

Department:	Chemical Technology	Student's Signature
Field of Study:	Fuel Technology	Advisor's Signature
Academic Year:	2017	Co-Advisor's Signature

กิตติกรรมประกาศ

ขอกราบขอบพระคุณ ศาสตราจารย์ ดร.ภัทรพรรณ ประศาสน์สารกิจ และ ดร.บุญญา วัณย์ อยู่สุข ที่มอบโอกาสในการทำวิจัย รวมถึงกรุณาคอยให้คำปรึกษาและคำแนะนำในการทำ วิจัย รวมทั้งคณาจารย์ทุกท่านในภาควิชาเคมีเทคนิคที่ให้ข้อคิดในการทำงานวิจัยจนงานวิจัยเรื่อง นี้สำเร็จตามเป้าหมายที่ต้องการ

งานวิจัยเรื่อง "การขจัดกำมะถันแบบดูดซับจากน้ำมันดีเซลบนซีโอไลต์ Ni-Ce-Y และ Ni-La-Y" สามารถสำเร็จลุล่วงได้ด้วยดีจากการได้รับการสนับสนุนจากทุนบัณฑิตวิทยาลัยและ ศูนย์เทคโนโลยีโลหะและวัสดุแห่งชาติที่สนับสนุนค่าเล่าเรียนและทุนวิจัยตลอดการศึกษา

ขอขอบพระคุณ รองศาสตราจารย์ ดร.ประเสริฐ เรียบร้อยเจริญ ประธานกรรมการสอบ วิทยานิพนธ์ รองศาสตราจารย์ ดร.ชวลิต งามจรัสศรีวิชัย กรรมการสอบวิทยานิพนธ์ และ ดร.นิคม ชวลิตกิจมงคล กรรมการจากภายนอกมหาวิทยาลัย ที่สละเวลาเพื่อให้คำแนะนำ ความคิดเห็นและ ข้อเสนอแนะเพื่อให้งานวิจัยเรื่องนี้มีความสมบูรณ์มากยิ่งขึ้น

ขอขอบพระคุณ พี่นักวิจัยและผู้ช่วยนักวิจัยที่กรุณาให้คำแนะนำในการทำการทดลอง และการออกแบบเครื่องปฏิกรณ์ รวมถึงการอำนวยความสะดวกในการใช้ห้องปฏิบัติการและใช้ เครื่องมือต่างๆ ตลอดจนการให้การดูแลตลอดจนงานวิจัยเรื่องนี้เสร็จสิ้น

ขอขอบคุณพี่ เพื่อน และน้องในภาควิชาเคมีเทคนิคและห้องปฏิบัติการพลังงานทดแทน ที่ให้ความช่วยเหลือและเป็นกำลังใจในการทำงานวิจัย ตลอดจนการให้การดูแลในเรื่องของอาหาร การกินต่างๆ และขอขอบคุณตนเองที่อดทนและไม่ย่อท้อต่อความยากลำบากทั้งเรื่องการเดินทาง เวลาทำงานวิจัย และการทำงานคนเดียว

สุดท้ายขอกราบขอบพระคุณบิดา มารดา ที่เป็นกำลังใจและให้การสนับสนุนในเรื่อง ต่างๆตลอดมาจนสำเร็จการศึกษา

	หน้า
บทคัดย่อภาษาไทย	۹
บทคัดย่อภาษาอังกฤษ	ຈ
กิตติกรรมประกาศ	ນີ
สารบัญ	ช
สารบัญตาราง	ຢູ
สารบัญรูป	ณ
บทที่ 1 บทนำ	
1.1 ความเป็นมาและความสำคัญของปัญหา	
1.2 วัตถุประสงค์ของงานวิจัย	2
1.3 ขอบเขตของงานวิจัย	2
1.4 ขั้นตอนวิธีดำเนินงานวิจัย	2
1.5 ประโยชน์ที่คาดว่าจะได้รับ	
บทที่ 2 ทฤษฎีและงานวิจัยที่เกี่ยวข้อง	
2.1 มาตรฐานน้ำมันลุ่มเกลงการณ์แมนกวิทายกลัย	
2.2 องค์ประกอบในน้ำมันดีเซล	6
2.2.1 สารประกอบกำมะถัน	
2.3 การขจัดกำมะถันจากน้ำมันด้วยวิธีการดูดซับ	
2.4 ตัวดูดซับซีโอไลต์	
2.5 กระบวนการคืนสภาพของตัวดูดซับ	
2.6 งานวิจัยที่เกี่ยวข้อง	
บทที่ 3 วิธีดำเนินงานวิจัย	
3.1 สารเคมีที่ใช้ในงานวิจัย	

	หน้า
3.2 ขั้นตอนดำเนินการทดลอง	20
3.2.1 การเตรียมน้ำมันจำลอง	20
3.2.2 การเตรียมตัวดูดซับ	21
3.2.3 การทดลองการดูดซับ	22
3.2.4 การศึกษาการคืนสภาพตัวดูดซับเพื่อนำกลับมาใช้ใหม่	24
3.3 การวิเคราะห์ลักษณะของตัวดูดซับและน้ำมัน	25
3.3.1 การดูดซับ	25
3.3.1.1 ตัวดูดซับก่อนการดูดซับ	25
3.3.1.2 น้ำมันที่ใช้ในการดูดซับ	26
3.3.2 การคายซับ	26
3.3.2.1 ตัวดูดซับหลังการดูดซับ	26
บทที่ 4 ผลการทดลองและวิเคราะห์ผลการทดลอง	27
4.1 การวิเคราะห์สมบัติของตัวดูดซับ	27
4.1.1 เทคนิคการวิเคราะห์ธาตุโดย X-ray fluorescence spectroscopy (XRF)	27
4.1.2 เทคนิคการเลี้ยวเบนของรังสีเอกซ์ (X-ray diffraction, XRD)	28
4.1.3 เทคนิค N ₂ physisorption measurement	29
4.2 การดูดซับสารประกอบกำมะถัน	30
4.2.1 ความสามารถในการขจัดสารประกอบกำมะถันของตัวดูดซับในน้ำมันจำลอง 1	31
4.2.2 ผลของสารประกอบแอโรแมติกในน้ำมันจำลอง 2	34
4.2.3 ผลของการมีสารประกอบไนโตรเจนในน้ำมันจำลอง 3	37
4.2.4 การเปลี่ยนแปลงค่าความจุเบรคทรูของสารประกอบกำมะถันในน้ำมันจำลอง 2	
และ 3	40
4.2.5 ผลของสารประกอบแอโรแมติกและไนโตรเจนในน้ำมันจำลอง 4	44

	หน้า
4.3 การคืนสภาพตัวดูดซับด้วยการสกัดด้วยตัวทำละลาย (Solvent extraction	
regeneration)	49
4.3.1 ผลของชนิดตัวทำละลายในการคืนสภาพตัวดูดซับซีโอไลต์ Na-Y	49
4.3.2 ผลของอุณหภูมิในการคืนสภาพตัวดูดซับซีโอไลต์ Na-Y	51
4.3.3 ผลของอัตราการไหลในการคืนสภาพตัวดูดซับซีโอไลต์ Na-Y	54
4.3.4 ผลการคืนสภาพตัวดูดซับ Ni-Y ซีโอไลต์ด้วยภาวะที่เหมาะสม	54
4.3.5 การวิเคราะห์เอกลักษณ์ของตัวดูดซับซีโอไลต์ Na-Y ที่ผ่านการใช้งาน	57
บทที่ 5 สรุปผลการทดลองและข้อเสนอแนะ	60
5.1 สรุปผลการทดลอง	60
5.1.1 ผลของสารประกอบแอโรแมติกและในโตรเจนต่อการขจัดกำมะถันด้วยการดูดซับ	60
5.1.2 ผลของชนิดตัวทำละลาย อุณหภูมิและอัตราการไหลต่อประสิทธิภาพของการ	
คืนสภาพ	60
5.2 ข้อเสนอแนะ	61
รายการอ้างอิง	63
ภาคผนวก	67
ภาคผนวก ก	68
ก.1 ตัวอย่างการเตรียมตัวดูดซับ Ni-Y ซีโอไลต์ ด้วยการแลกเปลี่ยนไอออน	68
ก.2 การเตรียมน้ำมันจำลอง	68
ก.3 การคำนวณปริมาณธาตุที่วิเคราะห์ด้วยเทคนิค XRF (ข้อมูลการวิเคราะห์อยู่ใน	
ภาคผนวก จ)	72
ภาคผนวก ข การวิเคราะห์สารประกอบแอโรแมติก ไนโตรเจน และกำมะถันในน้ำมันจำลอง	73
ข.1 การคำนวณความจุการดูดซับจากเส้นโค้งเบรคทรู	74
ข.2 การคำนวณการคายซับ	77
ภาคผนวก ค ข้อมูลดิบจากการทดลองดูดซับ	80

	หน้า
ภาคผนวก ง ข้อมูลดิบจากการทดลองการคืนสภาพ	
ภาคผนวก จ	
ประวัติผู้เขียนวิทยานิพนธ์	

Chulalongkorn University

สารบัญตาราง

ตาราง หน้า	۱
ตารางที่ 2.1 มาตรฐานน้ำมันเบนซิน (EN 288) [1])
ตารางที่ 2.2 มาตรฐานน้ำมันดีเซล (EN 590) [1])
ตารางที่ 2.3 ปริมาณอะตอมขององค์ประกอบทั้งหมดในน้ำมันดีเซลชนิดกำมะถันต่ำ (Ultra-low	
sulfur diesel) [3]	Ś
ตารางที่ 2.4 สารประกอบกำมะถันมาตรฐานที่ใช้วิเคราะห์เครื่อง GC x GC-SCD [5])
ตารางที่ 2.5 กลุ่มของสารประกอบกำมะถันในน้ำมันดีเซล	2
ตารางที่ 2.6 ข้อแตกต่างของการดูดซับทางกายภาพและการดูดซับทางเคมี [9]	1
ตารางที่ 3.1 องค์ประกอบของน้ำมันจำลอง21	L
ตารางที่ 4.1 ผลการวิเคราะห์ของตัวดูดซับด้วยเทคนิค XRF	7
ตารางที่ 4.2 พื้นที่ผิว BET และปริมาตรของรูพรุนทั้งหมดของตัวดูดซับชนิดต่างๆ)
ตารางที่ 4.3 ความจุเบรคทรูและความจุทั้งหมดของตัวดูดซับในการดูดซับกำมะถันในน้ำมัน จำลอง 1 ที่อัตราการไหล 1 มิลลิลิตรต่อนาที, อุณหภูมิ 30 องศาเซลเซียส และอัตราการเก็บ	
ตัวอย่าง 2 นาทิต่อครั้ง	3
ตารางที่ 4.4 ความจุเบรคทรูและความจุทั้งหมดของตัวดูดซับในการดูดซับสารประกอบต่างๆ ใน น้ำมันจำลอง 2 ที่อัตราการไหล 1 มิลลิลิตรต่อนาที, อุณหภูมิ 30 องศาเซลเซียส และอัตราการ เก็บตัวอย่าง 2 นาทีต่อครั้ง	5
ตารางที่ 4.5 ความจุเบรคทรูและความจุทั้งหมดของตัวดูดซับในการดูดซับสารประกอบต่างๆ ใน น้ำมันจำลอง 3 ที่อัตราการไหล 1 มิลลิลิตรต่อนาที, อุณหภูมิ 30 องศาเซลเซียส และอัตราการ เก็บตัวอย่าง 2 นาทีต่อครั้ง)
ตารางที่ 4.6 ร้อยละการเปลี่ยนของค่าความจุเบรคทรูของการดูดซับสารประกอบกำมะถัน (DBT และ 4,6-DMDBT) จากน้ำมันจำลอง 2 และ 3 เทียบกับน้ำมันจำลอง 1	Ĺ
ตารางที่ 4.7 ร้อยละการดูดซับทั้งหมดของสารประกอบกำมะถันในน้ำมันจำลอง 4 ของตัวดูดซับ ต่างๆ45	5

ตารางที่ 4.8 ความจุเบรคทรูและความจุทั้งหมดของตัวดูดซับในการดูดซับสารประกอบต่างๆ ใน น้ำมันจำลอง 4	. 47
ตารางที่ 4.9 ความจุเบรคทรูและความจุทั้งหมดของตัวดูดซับในการดูดซับสารประกอบต่างๆ ใน น้ำมันจำลอง 4 (ต่อ)	. 48
ตารางที่ 4.10 ความจุทั้งหมด ปริมาณของสารคายซับ ร้อยละของสารคายซับและประสิทธิภาพ การคืนสภาพจากการคืนสภาพตัวดูดซับซีโอไลต์ Na-Y ที่อุณหภูมิ 30 องศาเซลเซียส และอัตรา การไหลของตัวทำละลาย 1 มิลลิลิตรต่อนาที	. 51
ตารางที่ 4.11 ความจุทั้งหมด ปริมาณของสารคายซับ ร้อยละของสารคายซับและประสิทธิภาพ การคืนสภาพจากการคืนสภาพตัวดูดซับซีโอไลต์ Na-Y ด้วยตัวทำละลายเฮกเซนและโทลูอีนที่ อุณหภูมิ 30, 40 และ 50 องศาเซลเซียส และอัตราการไหล 1 มิลลิลิตรต่อนาที	. 53
ตารางที่ 4.12 ความจุทั้งหมด ร้อยละของสารคายซับและประสิทธิภาพการคืนสภาพจากการคืน สภาพตัวดูดซับซีโอไลต์ Na-Y ด้วยตัวทำละลายเฮกเซนและโทลูอีนที่อัตราการไหลของตัวทำ ละลาย 0.5, 1 และ 1.5 มิลลิลิตรต่อนาที ที่อุณหภูมิ 50 องศาเซลเซียส	. 56
ตารางที่ 4.13 ความจุทั้งหมด ร้อยละของสารคายซับและประสิทธิภาพการคืนสภาพจากการคืน สภาพตัวดูดซับซีโอไลต์ Ni-Y ด้วยตัวทำละลายโทลูอีนที่อัตราการไหลของตัวทำละลาย 0.5 มิลลิลิตรต่อนาที ที่อณหภมิ 50 องศาเซลเซียส	. 57
ตารางที่ 4.14 ปริมาณองค์ประกอบ ได้แก่ คาร์บอน ไฮโดรเจน ไนโตรเจนและกำมะถันบนตัว ดูดซับซีโอไลต์ Na-Y ที่ผ่านการใช้งานแล้วและตัวดูดซับซีโอไลต์ Na-Y ที่ถูกใช้งานและผ่านการ	
คืนสภาพด้วยตัวทำละลายเฮกเซนและโทลูอีน ตารางที่ ข1 ข้อมูลและภาวะของเครื่องแก๊สโครมาโทกราฟรุ่น Shimadzu GC2010	. 59 . 73
ตารางที่ ข2 ข้อมูลและภาวะของเครื่องแก๊สโครมาโทกราฟรุ่น Shimadzu GC2010Q	. 79
ตารางที่ ค1 ข้อมูลการดูดซับน้ำมันจำลองประเภทที่ 1 ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที	. 80
ตารางที่ ค2 ข้อมูลการดูดซับน้ำมันจำลองประเภทที่ 1 ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที	. 81
ตารางที่ ค3 ข้อมูลการดูดซับน้ำมันจำลองประเภทที่ 1 ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที	. 82

ตารางที่ ค4 ข้อมูลการดูดซับน้ำมันจำลองประเภทที่ 2 ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที
ตารางที่ ค5 ข้อมูลการดูดซับน้ำมันจำลองประเภทที่ 2 ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที
ตารางที่ ค6 ข้อมูลการดูดซับน้ำมันจำลองประเภทที่ 2 ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที
ตารางที่ ค7 ข้อมูลการดูดซับน้ำมันจำลองประเภทที่ 3 ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที
ตารางที่ ค8 ข้อมูลการดูดซับน้ำมันจำลองประเภทที่ 3 ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที
ตารางที่ ค9 ข้อมูลการดูดซับน้ำมันจำลองประเภทที่ 3 ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที
ตารางที่ ค10 ข้อมูลการดูดซับน้ำมันจำลองประเภทที่ 4 ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที
ตารางที่ ค11 ข้อมูลการดูดซับน้ำมันจำลองประเภทที่ 4 ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที
ตารางที่ ค12 ข้อมูลการดูดซับน้ำมันจำลองประเภทที่ 4 ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที
ตารางที่ ค13 ข้อมูลการดูดซับน้ำมันจำลองประเภทที่ 4 ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที
ตารางที่ ค14 ข้อมูลการดูดซับน้ำมันจำลองประเภทที่ 4 ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที
ตารางที่ ค15 ข้อมูลการดูดซับน้ำมันจำลองประเภทที่ 4 ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที
ตารางที่ ง1 ข้อมูลการดูดซับน้ำมันจำลอง 5 ด้วยตัวดูดซับซีโอไลต์ Na-Y ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที เพื่อศึกษา การคายซับด้วยเฮกเซนที่อุณหภูมิ 30 องศาเซลเซียส และอัตราการไหล 1.0 มิลลิลิตรต่อนาที 95

ตารางที่ ง2 ข้อมูลการดูดซับน้ำมันจำลอง 5 ด้วยตัวดูดซับซีโอไลต์ Na-Y ปริมาณตัวดูดซับ 0.5 g ้อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที เพื่อศึกษา การคายซับด้วยเฮกเซนที่อุณหภูมิ 40 องศาเซลเซียส และอัตราการไหล 1.0 มิลลิลิตรต่อนาที 96 ตารางที่ ง3 ข้อมูลการดูดซับน้ำมันจำลอง 5 ด้วยตัวดูดซับซีโอไลต์ Na-Y ปริมาณตัวดูดซับ 0.5 g ้อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที เพื่อศึกษา ตารางที่ ง4 ข้อมูลการดูดซับน้ำมันจำลอง 5 ด้วยตัวดูดซับซีโอไลต์ Na-Y ปริมาณตัวดูดซับ 0.5 g ้อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที เพื่อศึกษา ตารางที่ ง5 ข้อมูลการดูดซับน้ำมันจำลอง 5 ด้วยตัวดูดซับซีโอไลต์ Na-Y ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที เพื่อศึกษา ตารางที่ ง6 ข้อมูลการดูดซับน้ำมันจำลอง 5 ด้วยตัวดูดซับซีโอไลต์ Na-Y ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที เพื่อศึกษา การคายซับด้วยเฮกเซนที่อุณหภูมิ 50 องศาเซลเซียส และอัตราการไหล 1.5 mL/min......100 ตารางที่ ง7 ข้อมูลการดูดซับน้ำมันจำลอง 5 ด้วยตัวดูดซับซีโอไลต์ Na-Y ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที เพื่อศึกษา ตารางที่ ง8 ข้อมูลการดูดซับน้ำมันจำลอง 5 ด้วยตัวดูดซับซีโอไลต์ Na-Y ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที เพื่อศึกษา ตารางที่ ง9 ข้อมูลการดูดซับน้ำมันจำลอง 5 ด้วยตัวดูดซับซีโอไลต์ Na-Y ปริมาณตัวดูดซับ 0.5 g ้อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที เพื่อศึกษา ตารางที่ ง10 ข้อมูลการดูดซับน้ำมันจำลอง 5 ด้วยตัวดูดซับซีโอไลต์ Na-Y ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที เพื่อศึกษา

CHULALONGKORN UNIVERSITY

สารบัญรูป

รูป	น้า
รูปที่ 2.1 โครมาโตรแกรมของสารประกอบกำมะถันมาตรฐานที่ได้จากการวิเคราะห์กับเครื่อง GC × GC-SCD [5]	10
รูปที่ 2.2 โครมาโตรแกรมที่ได้จากการวิเคราะห์น้ำมันดีเซลที่ได้จากกระบวนการ FCC [5]	10
รูปที่ 2.3 โครมาโตรแกรมที่ได้จากการวิเคราะห์น้ำมันดีเซลที่ได้จากกระบวนการต่างๆ: (A)	
straight-run diesel oil; (B) FCC; (C) RFCC; (D) delayed coker; (E) visbroker และ (F) hydrofined [5]	11
รูปที่ 2.4 การดูดซับสารประกอบกำมะถัน (ก) การดูดซับโดยตรง (ข) การดูดซับเชิงซ้อนแบบพาย	
(π)	15
รูปที่ 2.5 ตัวอย่างการฟอร์มตัวทางโครงสร้างของซีโอไลต์ [13]	16
รูปที่ 3.1 แผนภาพระบบการดูดซับแบบเบดนิ่ง	24
รูปที่ 4.1 ผลการวิเคราะห์ตัวดูดซับต่างๆ ด้วยเทคนิค XRD	29
รูปที่ 4.2 เส้นโค้งเบรคทรูของตัวดูดซับต่างๆ ที่ได้จากการดูดซับสารประกอบกำมะถันในน้ำมัน จำลอง 1	32
รูปที่ 4.3 เส้นโค้งเบรคทรูของตัวดูดซับต่างๆ ที่ได้จากการดูดซับสารประกอบกำมะถันในน้ำมัน จำลอง 2	35
รูปที่ 4.4 เส้นโค้งเบรคทรูของตัวดูดซับต่างๆ ที่ได้จากการดูดซับสารประกอบแอโรแมติกในน้ำมัน จำลอง 2	35
รูปที่ 4.5 เส้นโค้งเบรคทรูของตัวดูดซับต่างๆ ที่ได้จากการดูดซับสารประกอบกำมะถันในน้ำมัน จำลอง 3	38
รูปที่ 4.6 เส้นโค้งเบรคทรูของตัวดูดซับต่างๆ ที่ได้จากการดูดซับสารประกอบไนโตรเจนในน้ำมัน จำลอง 3	38
รูปที่ 4.7 แนวคิดในการดูดซับสารประกอบต่างๆ ในน้ำมันจำลอง ก) 2 และ ข) 3 ของตัวดูดซับซี โอไลต์ Ni-Y	41

รูปที่ 4.8 โครมาโตรแกรมของ GC-MS ของการวิเคราะห์โทลูอีนใช้คายซับตัวดูดซับทวิโลหะ (Ni- La-Y และ Ni-Ce-Y)	. 44
รูปที่ 4.9 เส้นโค้งเบรคทรูของตัวดูดซับต่างๆ ที่ได้จากการดูดซับสารประกอบกำมะถันในน้ำมัน จำลอง 4	. 46
รูปที่ 4.10 เส้นโค้งเบรคทรูของตัวดูดซับต่างๆ ที่ได้จากการดูดซับสารประกอบแอโรแมติกใน น้ำมันจำลอง 4	. 46
รูปที่ 4.11 เส้นโค้งเบรคทรูของตัวดูดซับต่างๆ ที่ได้จากการดูดซับสารประกอบไนโตรเจนในน้ำมัน จำลอง 4	. 47
รูปที่ 4.12 การคายซับของสารที่ถูกดูดซับเมื่อผ่านการคืนสภาพตัวดูดซับซีโอไลต์ Na-Y ด้วยการ สกัดด้วยเฮกเซนและโทลูอีนที่อุณหภูมิ 30 องศาเซลเซียส และอัตราการไหลตัวทำละลาย 1 มิลลิลิตรต่อนาที โดยใช้อัตราการเก็บตัวอย่างทุก 2 มิลลิลิตร	. 50
รูปที่ 4.13 การคายซับของสารที่ถูกดูดซับเมื่อผ่านการคืนสภาพตัวดูดซับซีโอไลต์ Na-Y ด้วยการ สกัดด้วย ก) เฮกเซนและ ข) โทลูอีน ที่อุณหภูมิ 30, 40 และ 50 องศาเซลเซียส และอัตราการ ไหลของตัวทำละลาย 1 มิลลิลิตรต่อนาทีและอัตราการเก็บตัวอย่างทุก 2 มิลลิตร	. 52
รูปที่ 4.14 การคายซับของสารที่ถูกดูดซับเมื่อผ่านการคืนสภาพตัวดูดซับซีโอไลต์ Na-Y ด้วยการ สกัดด้วย ก) เฮกเซนและ ข) โทลูอีน ที่อัตราการไหลตัวทำละลาย 0.5, 1 และ 1.5 มิลลิลิตรต่อ นาที อุณหภูมิ 50 องศาเซลเซียส และอัตราการเก็บตัวอย่างทุก 2 มิลลิลิตร	. 55
รูปที่ 4.15 การคายซับของสารที่ถูกดูดซับเมื่อผ่านการคืนสภาพตัวดูดซับซีโอไลต์ Ni-Y ด้วยการ สกัดด้วยโทลูอีน ที่อัตราการไหลตัวทำละลาย 0.5 มิลลิลิตรต่อนาที อุณหภูมิ 50 องศาเซลเซียส และอัตราการเก็บตัวอย่างทุก 2 มิลลิลิตร	. 57
รูปที่ 4.16 ภาพของตัวดูดซับซีโอไลต์ Na-Y ที่ยังไม่ผ่านการใช้งาน ผ่านการใช้งานแล้ว และผ่าน การใช้งานและคืนสภาพที่ได้จากการวิเคราะห์ด้วยเครื่อง Scanning electron microscopy (SEM)	. 59
รูปที่ 5.1 แนวคิดการขจัดกำมะถันด้วยการดูดซับอย่างมีประสิทธิภาพ	. 61
รูปที่ ข1 เส้นเทียบมาตรฐานของสารประกอบในน้ำมันจำลอง	. 74
รูปที่ ข2 ตัวอย่างเส้นโค้งเบรคทรูของการดูดซับ (กรณีคิดปริมาณสารที่ถูกดูดซับ)	. 74
รูปที่ ข3 ตัวอย่างเส้นโค้งเบรคทรูของการดูดซับ (กรณีคิดปริมาณสารที่ป้อน)	. 76

~ 100 m A	ດວບບ່ອງ ແມ່ງ ເປັນ ເພື່ອງ ເພ	77
มูบท ฃ4	100 IVFUTFU10 36INI 3004U 136I IO.0.0	1
ข	4)	

Chulalongkorn University

บทที่ 1 บทนำ

1.1 ความเป็นมาและความสำคัญของปัญหา

. ปัจจุบันได้มีการออกกฎหมายและมาตรฐานเพื่อควบคุมปริมาณกำมะถันในน้ำมันเชื้อเพลิง เช่น น้ำมันดีเซล และน้ำมันเบนซิน ให้มีปริมาณต่ำกว่า 10 ส่วนในล้านส่วนโดยน้ำหนัก (ppm) การ เผาไหม้น้ำมันเชื้อเพลิงดังกล่าวนั้นก่อให้เกิดสารประกอบกำมะถันในรูปออกไซด์ของกำมะถัน (SO_x) และเป็นสาเหตุหนึ่งที่ก่อให้เกิดภาวะฝนกรด นำมาสู่การกัดกร่อนของอุปกรณ์ต่างๆ ที่เกี่ยวข้องกับ กระบวนการนั้นๆ นอกจากนั้นแล้วยังก่อให้เกิดมลพิษทางอากาศที่ก่อให้เกิดปัญหาต่อระบบหายใจ จากกฎหมายและมาตรฐานดังกล่าว ทำให้เกิดการคิดค้นหากระบวนการเพื่อลดปริมาณของกำมะถัน ในน้ำมันเชื้อเพลิง และปัจจุบันนิยมใช้กระบวนการไฮโดรดีซัลเฟอไรเซชัน (Hydrodesulfurization process) แต่กระนั้นแล้วกระบวนการดังกล่าวมีข้อจำกัดในการขจัดสารประกอบกำมะถันประเภท อนุพันธ์ของไทโอฟีนที่มีอยู่มากในน้ำมันดีเซล เนื่องจากต้องใช้ปริมาณของไฮโดรเจนจำนวนมาก และ ใช้ภาวะในกระบวนการที่รุนแรง ทำให้เกิดการคิดค้นหากระบวนการใหม่ ที่สามารถแก้ไขข้อจำกัด ้ดังกล่าวได้ โดยกระบวนที่ทำการศึกษากันอย่างมากในปัจจุบัน คือ กระบวนการดูดซับกำมะถัน เนื่องจากใช้ภาวะในกระบวนการที่ไม่รุนแรง ไม่มีการใช้ไฮโดรเจนในกระบวนการ และมีประสิทธิภาพ ในการขจัดสารประกอบกำมะถันในรูปของอนุพันธ์ไทโอฟีนที่สูง เนื่องจากในน้ำมันเชื้อเพลิงยังคงมี ้องค์ประกอบอื่นๆ เช่น สารประกอบในโตรเจนและแอโรแมติก ซึ่งองค์ประกอบดังกล่าวส่งผลให้ ประสิทธิภาพของกระบวนการดูดซับกำมะถันลดลง เนื่องจากสารประกอบไนโตรเจนและแอโรแมติก จะแข่งขันกับสารประกอบกำมะถันในการดูดซับบนตัวดูดซับ นอกจากนั้นเมื่อพิจารณาในด้านของ ความคุ้มค่าทางเศรษฐศาสตร์ การนำตัวดูดซับที่ใช้งานแล้วกลับมาใช้งานใหม่ จัดว่าเป็นสิ่งที่ทำให้ กระบวนการดังกล่าวเกิดความคุ้มค่าทางเศรษฐศาสตร์ที่มากขึ้น ดังนั้น งานวิจัยนี้จึงมุ่งเน้นไปที่การ พัฒนาตัวดูดซับซีโอไลต์ Ni-Y ให้มีความเลือกสรรต่อสารประกอบกำมะถันที่เพิ่มขึ้น เพื่อทำให้ กระบวนการดูดซับกำมะถันมีประสิทธิภาพในการขจัดกำมะถันที่สูงขึ้นเมื่อนำไปใช้งานกับน้ำมัน เชื้อเพลิงจริง และการคืนสภาพตัวดูดซับที่ใช้งานแล้วให้กลับมาใช้งานใหม่ด้วยวิธีการสกัดด้วยตัวทำ ้ละลายโดยที่ยังคงมีประสิทธิภาพในการขจัดกำมะถันใกล้เคียงกับตัวดูดซับที่ยังไม่ผ่านการใช้งานมาก ที่สุด เพื่อทำให้กระบวนการมีความคุ้มค่าทางเศรษฐศาสตร์มากที่สุดก่อนที่จะพัฒนากระบวนการ ดังกล่าวสู่กระบวนการในระดับที่ใหญ่ขึ้น

1.2 วัตถุประสงค์ของงานวิจัย

- ศึกษาการขจัดสารประกอบกำมะถันในน้ำมันดีเซลด้วยตัวดูดซับวายซีโอไลต์ที่แลกเปลี่ยน ไอออน
- ศึกษาผลของสารประกอบในโตรเจนและแอโรแมติกต่อการขจัดสารประกอบกำมะถันใน น้ำมันดีเซล และการนำตัวดูดซับกลับมาใช้ใหม่ด้วยวิธีการคืนสภาพโดยการสกัดด้วยตัวทำ ละลาย

1.3 ขอบเขตของงานวิจัย

- ศึกษาการขจัดสารประกอบกำมะถันในน้ำมันเชื้อเพลิงโดยการดูดซับด้วยระบบดูดซับแบบเบ ดนิ่ง (Fixed-bed adsorption) ที่อุณหภูมิห้องและความดันบรรยากาศ โดยใช้อัตราการไหล น้ำมัน 1 มิลลิลิตรต่อนาที และเปรียบเทียบผลจากการใช้ตัวดูดซับวายซีโอไลต์ที่แลกเปลี่ยน ไอออน
- ศึกษาการนำตัวดูดซับกลับมาใช้งานใหม่ด้วยวิธีการสกัดด้วยตัวทำละลายที่ความดัน บรรยากาศ เพื่อศึกษาหาชนิดสารละลาย และภาวะที่เหมาะสมในการนำตัวดูดซับกลับมาใช้ งานใหม่

1.4 ขั้นตอนวิธีดำเนินงานวิจัย

- 1. ศึกษาเอกสารและงานวิจัยที่เกี่ยวข้องกับการดูดซับ
- 2. จัดเตรียมเครื่องมืออุปกรณ์การทดลองและสารเคมี
- เตรียมตัวดูดซับซีโอไลต์ Ni-Y, Ce-Y และ La-Y ด้วยวีธีการแลกเปลี่ยนไอออน (Ion exchanging) โดยนำซีโอไลต์ Na-Y ที่ผ่านการเผาที่อุณหภูมิ 450 องศาเซลเซียส มา แลกเปลี่ยนไอออนในสารละลาย Ni(NO₃)₂, Ce(NO₃)₃ และ La(NO₃)₃ ด้วยความเข้มข้น 0.1 โมลาร์
- เตรียมตัวดูดซับซีโอไลต์ Ni-Ce-Y และ Ni-La-Y ด้วยวีธีการแลกเปลี่ยนไอออน (Ion exchanging) โดยนำซีโอไลต์ Ce-Y หรือ La-Y มาแลกเปลี่ยนไอออนในสารละลาย Ni(NO₃)₂ ด้วยความเข้มข้น 0.1 โมลาร์ ตัวดูดซับซีโอไลต์ Ni-Ce-Y และ Ni-La-Y ไปเผาที่อุณหภูมิ 450 องศาเซลเซียส กระตุ้นที่อุณหภูมิ 550 องศาเซลเซียส
- วิเคราะห์ลักษณะของตัวดูดซับด้วยเทคนิค N₂ physisorption measurement, X-ray diffraction spectroscopy (XRD), X-ray fluorescence spectroscopy (XRF), Scaning

electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX), Carbon, hydrogen, nitrogen analyzer (CHN analyzer) และ Sulfur analyzer (S analyzer)

- ศึกษาการดูดซับสารประกอบกำมะถันDBT และ 4,6 ไดเมทิลDBT ด้วยตัวดูดซับซีโอไลต์ Na-Y, Ni-Y, Ce-Y, La-Y, Ni-Ce-Y และ Ni-La-Y ในระบบเบดนิ่ง และศึกษาผลของ สารประกอบในโตรเจน ได้แก่ ควิโนลีน และอินโดว และสารประกอบแอโรแมติก ได้แก่ แนฟ-ทาลีน ต่อการดูดซับสารประกอบกำมะถัน
- วิเคราะห์หาปริมาณของสารประกอบกำมะถัน ไนโตรเจน และแอโรแมติก ที่ถูกดูดซับด้วยตัว รองรับชนิดต่างๆ ด้วยเทคนิคแก๊สโครมาโทรกราฟี (GC) และคำนวณความจุเบรกทรูและ ความจุอิ่มตัว
- ศึกษาผลของอัตราการไหลของน้ำมัน (0.5 ถึง 1.5 มิลลิลิตรต่อนาที), อุณหภูมิ (30 ถึง 50 องศา-เซลเซียส) และชนิดของตัวทำละลาย (โทลูอีนและเฮกเซน) ต่อการคืนสภาพตัวดูดซับที่ ผ่านการใช้งานแล้วด้วยวิธีการสกัดด้วยตัวทำละลาย
- ศึกษาการขจัดกำมะถั่นจากน้ำมันดีเซลจริง และการนำตัวดูดซับกลับมาใช้งานใหม่ด้วยการ คืน-สภาพตัวดูดซับด้วยวิธีการสกัดด้วยตัวทำละลายโดยใช้ภาวะที่เหมาะสมจากข้อที่ 8 โดย ใช้ตัวดูด-ซับที่ให้ค่าความจุของการดูดซับที่มากที่สุดจากข้อที่ 6
- 10. วิเคราะห์ผล สรุปผล และเขียนวิทยานิพนธ์

1.5 ประโยชน์ที่คาดว่าจะได้รับ

ได้ตัวดูดซับที่มีประสิทธิภาพในการขจัดสารประกอบกำมะถันจากน้ำมันเชื้อเพลิง และภาวะ ที่เหมาะสมในการคืนสภาพตัวดูดซับโดยใช้เทคนิคการสกัดด้วยตัวทำละลายเพื่อนำตัวดูดซับกลับมาใช้ ใหม่

บทที่ 2 ทฤษฎีและงานวิจัยที่เกี่ยวข้อง

2.1 มาตรฐานน้ำมัน

. ปัจจุบันน้ำมันเชื้อเพลิงยังคงเป็นแหล่งพลังงานที่ถูกนำมาใช้อย่างมากโดยเฉพาะอย่างยิ่งใน การขนส่งและคมนาคม แต่กระนั้นแล้วการที่น้ำมันเชื้อเพลิงมีองค์ประกอบจำพวกสารประกอบ ้กำมะถัน ทำให้เมื่อน้ำมันเชื้อเพลิงเกิดการเผาไหม้จะมีการปลดปล่อยสารประกอบจำพวกซัลเฟอร์ ้ออกไซด์ (SO,) ออกมา ซึ่งสารประกอบดังกล่าวเป็นสาเหตุหนึ่งที่ก่อให้เกิดภาวะฝนกรด การกัดกร่อน กระบวนการหรืออาคารต่างๆ ความเป็นพิษต่อตัวเร่งปฏิกิริยาในท่อไอเสียรถยนต์ และยังส่งผล กระทบต่อระบบทางเดินภายใจ นำไปสู่การเกิดมลภาวะของสิ่งแวดล้อม จากการตระหนักถึงปัญหา ้ดังกล่าวทำให้ในหลายประเทศมีการออกกฎหมายเพื่อควบคุมองค์ประกอบที่มีอยู่ในน้ำมันเชื้อเพลิง โดยเฉพาะอย่างยิ่งองค์ประกอบของกำมะถันที่สัมพันธ์กับมาตรฐานน้ำมันที่มีการควบคุมองค์ประกอบ ้ต่างๆ ที่อยู่ในน้ำมันให้เป็นไปในแนวทางเดียวกัน โดยมาตรฐานที่นิยมนำมาใช้กันมากคือมาตรฐานยูโร โดยคำว่ายูโรมาจากคำว่ายุโรป ซึ่งในที่นี้หมายถึงกลุ่มของประเทศในทวีปยุโรปที่ได้ร่วมกันวาง กฎระเบียบต่างๆ ที่เกี่ยวข้องกับการป้องกันและแก้ไขปัญหาด้านสิ่งแวดล้อมสำหรับด้านการใช้ เชื้อเพลิงใน ภาคการขนส่ง ซึ่งเป็นส่วนหนึ่งที่มีการปล่อยมลพิษให้กับสิ่งแวดล้อม ได้เริ่มมีการควบคุม การปล่อยมลพิษจากยานพาหนะอย่างเป็นระบบตั้งแต่ปี ค.ศ. 1992 (พ.ศ. 2535) โดยมีการกำหนด มาตรฐานไอเสียสำหรับยานพาหนะ ควบคู่กับมาตรฐานเชื้อเพลิง เพื่อให้ยานพาหนะที่ผลิตจำหน่าย ้ออกมาปลดปล่อยไอเสียได้ไม่เกินเกณฑ์มาตรฐานที่กำหนด ผลจากการกำหนดมาตรฐานดังกล่าว ก่อให้เกิดการพัฒนาปรับปรุงเปลี่ยนแปลงทั้งด้านเทคโนโลยียานพาหนะเพื่อให้สามารถควบคุมการ ปลดปล่อยมลพิษให้ไม่เกินเกณฑ์มาตรฐาน และด้านน้ำมันเชื้อเพลิง ได้แก่ น้ำมันเบนซินและดีเซลมี การพัฒนาเทคโนโลยีการผลิตเพื่อลดองค์ประกอบที่ก่อให้เกิดมลพิษให้น้อยลงไปด้วยมาตรฐานไอเสีย และมาตรฐานน้ำมันเชื้อเพลิงที่ได้กำหนดไว้นั้น มีการพัฒนาให้มีความเข้มงวดมากขึ้นเป็นระยะๆ เพื่อให้สอดคล้องกับสภาพสิ่งแวดล้อม และปริมาณมลพิษปลดปล่อยออกมาตามปริมาณการใช้ เชื้อเพลิง ในด้านน้ำมันเชื้อเพลิงมีการกำหนดมาตรฐานคุณภาพที่เข้มงวดควบคู่กับมาตรฐานไอเสีย โดยน้ำมันเบนซินจะเป็นไปตามมาตรฐาน EN 228 และน้ำมันดีเซลจะเป็นไปตามมาตรฐาน EN 590 ้โดยจะมีการปรับปรุงข้อกำหนดที่เกี่ยวข้องกับสิ่งแวดล้อมมาเป็นระยะๆ โดยในที่นี้จะขอกล่าวเฉพาะ ข้อกำหนดเรื่องปริมาณกำมะถันที่ได้รับการปรับปรุง ดังนี้ [1]

ตารางที่	21	าเกตรสาบน้ำบับแบบเติบ	(FN	288)	[1]
111016119	Ζ.Ι	ม เดเวจิ เหต เทตเกตอด	(EIN	200)	ΓT]

มาตรฐาน	เริ่มบังคับใช้	แอโรแมติก	โอเลฟิน	เบนซีน	กำมะถัน
น้ำมันเบนซิน	(ค.ศ.)	(% vol)	(% vol)	(% vol)	(ppm)
Euro 1	1990	ไม่กำหนด	ไม่กำหนด	ไม่กำหนด	N/A
Euro 2	1996	ไม่กำหนด	ไม่กำหนด	5.0	500
Euro 3	2001	42	18	1.0	150
Euro 4	2006	35	18	1.0	50
Euro 5 (อนาคต)	2009	35	18	1.0	10
Euro 6 (อนาคต)	2015	ยังไม่กำหนด	ยังไม่กำหนด	ยังไม่กำหนด	ยังไม่กำหนด

ตารางที่ 2.2 มาตรฐานน้ำมันดีเซล (EN 590) [1]

มาตรฐาน น้ำมันดีเซล	เริ่มบังคับใช้ (ค.ศ.)	โพลีไซคลิก แอโรแมติก ไฮโดรคาร์บอน PAH (% น้ำหนัก)	กำมะถัน (ppm)
Euro 1	1990	ไม่กำหนด	N/A
Euro 2	1996	ไม่กำหนด	500
Euro 3	2001		350
Euro 4	2006	NIVERSITY 11	50
Euro 5 (อนาคต)	2009	11	10
Euro 6 อนาคต)	2015	ยังไม่กำหนด	ยังไม่กำหนด

2.2 องค์ประกอบในน้ำมันดีเซล

น้ำมันดีเซลเป็นน้ำมันที่ประกอบด้วยสารประกอบไฮโดรคาร์บอนที่ต่างกันมากกว่า 1000 ชนิด ซึ่งส่วนใหญ่มีอะตอมคาร์บอนในโมเลกุลตั้งแต่ 10 ถึง 22 อะตอม โดยเมื่อพิจารณาถึงประเภท ของสารประกอบไฮโดรคาร์บอน พบว่า ส่วนใหญ่สารประกอบไฮโดรคาร์บอนในน้ำมันดีเซลประกอบ ไปด้วยพาราฟิน, แนฟทีน และแอโรแมติก แต่ในความเป็นจริงแล้วเมื่อนำมาวิเคราะห์ชนิดของอะตอม ที่เป็นองค์ประกอบภายในน้ำมันดีเซล พบว่า น้ำมันดีเซลไม่ได้ประกอบด้วยคาร์บอนและไฮโดรเจน ที่มาจากสารประกอบไฮโดรคาร์บอนเพียงอย่างเดียวเท่านั้น แต่ยังมีองค์ประกอบอื่น เช่น ในโตรเจน และกำมะถันอยู่ ดังแสดงในตารางที่ 2.3 โดยสารประกอบไฮโดรคาร์บอนในน้ำมันดีเซลที่มี องค์ประกอบดังกล่าว (ในโตรเจนและกำมะถัน) หรือที่มักถูกเรียกว่าเฮเทอโรอะตอม เช่น คาร์บาโซล (มีในโตรเจนเป็นเฮเทอโรอะตอม) และไดเบนโซไทโอฟีน (มีกำมะถันเป็นเฮเทอโรอะตอม) ซึ่งแม้ว่า สารประกอบไฮโดรคาร์บอนที่มีเฮเทอโรอะตอมจะมีปริมาณน้อย แต่องค์ประกอบดังกล่าวกลับส่งผล อย่างมากต่อสมบัติของน้ำมันดีเซล นอกจากนั้นแล้วสัดส่วนขององค์ประกอบที่ต่างกันออกไปในน้ำมัน ดีเซลจะส่งผลต่อสมบัติของน้ำมันดีเซลและประสิทธิภาพของเครื่องยนต์ดีเซลที่ต่างกันออกไป[2]

ตารางที่ 2.3 ปริมาณอะตอมขององค์ประกอบทั้งหมดในน้ำมันดีเซลชนิดกำมะถันต่ำ (Ultra-low sulfur diesel) [3]

องค์ประกอบ	ปริมาณ
คาร์บอน (เปอร์เซ็นต์โดยน้ำหนัก)	86.8
ไฮโดรเจน (เปอร์เซ็นต์โดยน้ำหนัก)	าวิทยาลัย 12.9
ไนโตรเจน (ส่วนในล้านส่วนโดยน้ำหนัก)	UNIVERSITY 12
กำมะถัน (ส่วนในล้านส่วนโดยน้ำหนัก)	14.5

สมบัติพื้นฐานของน้ำมันดีเซลโดยทั่วไปมีดังนี้ [4]

 การติดไฟ (Ignition Quality) สมบัติในการติดไฟของน้ำมันดีเซลสามารถในการติด เครื่องยนต์ที่อุณหภูมิต่ำ การป้องกันการน๊อคในเครื่องยนต์ระหว่างการเผาไหม้เชื้อเพลิง ภายในกระบอกสูบ การเผาไหม้อย่างรวดเร็วมีประสิทธิภาพการเผาไหม้สูง สมบัติต่างๆ เหล่านี้อาจแสดงออกมาเป็นดัชนีซีเทน (Cetane number) ถ้าน้ำมันมีค่าซีเทนที่สูงเกินไป อาจทำให้เกิดการเผาไหม้ที่ไม่สมบูรณ์ และเกิดควันที่ท่อไอเสียด้วย โดยทั่วไปน้ำมันดีเซลใน ท้องตลาดมีค่าซีเทนไม่ต่ำกว่า 47 ส่วนน้ำมันที่มีค่าซีเทนต่ำแสดงว่าน้ำมันมีระยะเวลาล่าช้า ในการจุดระเบิดยาว ทำให้เครื่องยนต์มีโอกาสสะดุดได้ง่าย

- ความสะอาด (Cleanliness) เป็นสมบัติที่สำคัญอย่างหนึ่ง น้ำมันดีเซลต้องมีตะกอนน้ำ กาก-ถ่านหรือเขม่าน้อยที่สุด เนื่องจากระบบเครื่องยนต์ดีเซลต้องใช้ปั้มและฉีดน้ำมันเชื้อเพลิงเพื่อ ช่วยในการเผาไหม้
- การกระจายตัวเป็นฝอย (Fluidity-atomization) ต้องมีความหนิดที่พอเหมาะทำให้การ กระจายเป็นฝอยได้ดี ความหนืดของน้ำมันดีเซลยังมีผลต่อระบบการปั้มน้ำมัน เพราะในขณะ ที่ปั้มน้ำมันเชื้อเพลิงเข้าสู่ห้องเผาไม้ตัวน้ำมันทำหน้าที่หล่อลื่นลูกสูบปั๊มไปในตัว
- ความหนาแน่นและความข้นใส ความข้นใสจะมีอิทธิพลต่อรูปร่างของละอองน้ำมันที่ฉีดออก จากหัวฉีด ถ้าน้ำมันมีความข้นใสสูง ทำให้การฉีดเป็นฝอยละอองไม่ดีเท่าที่ควร เพราะละออง น้ำมันมีขนาดใหญ่และพุ่งเป็นสายไปไกล แทนที่จะกระจายพุ่งเป็นแบบฝอยเล็กๆ ทำให้ น้ำมันรวมตัวกับอากาศไม่ดี การเผาไหม้จึงไม่สมบูรณ์และประสิทธิภาพของเครื่องยนต์ลด น้อยลง แต่ถ้าน้ำมันดีเซลมีความเข้มข้นใสต่ำเกินไปจะทำให้การฉีดฝอยน้ำมันละเอียดแต่ไม่ พุ่งไปไกลเท่าที่ควร การเผาไหม้จะไม่ดีและอาจทำให้เกิดมีการรั่วกลับในตัวปั้มหัวฉีด ซึ่งจาก สาเหตุดังกล่าวน้ำมันดีเซลหมุนเร็วโดยทั่วไป ทำให้กำหนดค่าความข้นใสอยู่ระหว่าง 1.8-4.1 เซนติสโตก ที่อุณหภูมิ 40 องศาเซลเซียส
- การระเหยตัว (Volatility) ความสามารถในการระเหยตัวของน้ำมันมีผลต่อจุดเดือด (Boiling Point) จุดวาบไฟ (Flash Point) และจุดติดไฟ (Fire Point) ของน้ำมันดีเซล ช่วงจุดเดือด ของน้ำมันดีเซลทั่วไปมีค่าประมาณ 150-350 องศาเซลเซียส
- 6. สีของน้ำมันดีเซล โดยปกติน้ำมันดีเซลมีสีชาอ่อน แต่บางครั้งสีอาจเปลี่ยนไปเนื่องจากใน กระบวนการกลั่นน้ำมันอาจใช้น้ำมันดิบจากแหล่งต่างกัน แต่สมบัติในการเผาไหม้ยังคง เหมือนเดิม ทั้งนี้สีไม่ได้เป็นตัวสำคัญที่กำหนดคุณภาพน้ำมัน โดยผู้ประกอบการได้กำหนด มาตรฐานสีที่มีค่าไม่เกิน 3 ซึ่งเป็นสีคล้ายสีชา สีของน้ำมันดีเซลอาจเข้มขึ้นหากเก็บไว้นาน แต่ในกรณีที่สีเปลี่ยนแปลงไปมาก เช่น เป็นสีเขียว หรือสีดำคล้ำ ควรตั้งข้อสังเกตว่าอาจจะมี การปลอมปนของน้ำมันก๊าด น้ำมันเตา หรือน้ำมันเครื่องที่ใช้แล้ว
- 7. ปริมาณกำมะถัน (Sulphur content) กำมะถันในน้ำมันดีเซลเมื่อเผาไหม้กับอากาศจะ กลายเป็นก๊าซซัลเฟอร์ไดออกไซด์ (SO₂) และซัลเฟอร์ไตรออกไซด์ (SO₃) ซึ่งจะทำปฏิกิริยา กับน้ำหรือความชื้นกลายเป็นกรดกำมะถัน ทำให้เกิดการกัดกร่อนชิ้นส่วนต่างๆของ เครื่องยนต์ การกัดกร่อนของกำมะถันในน้ำมันมีด้วยกัน 2 ลักษณะ ลักษณะแรกเกิดจากการ กัดกร่อนภายหลังการเผาไหม้ เมื่อถูกเผาไหม้ก็จะเกิดก๊าซซัลเฟอร์ออกไซด์ ซึ่งเมื่อรวมกับน้ำ

จะกลายเป็นสารละลายที่มีฤทธิ์เป็นกรด และจะทำการกัดกร่อนชิ้นส่วนต่าง ๆ ของ เครื่องยนต์ได้ ลักษณะที่สอง เกิดจากกำมะถันในน้ำมันเชื้อเพลิง โดยตรง คือเมื่อน้ำมันจะกัด กร่อนชิ้นส่วนต่างๆ ของระบบหัวฉีดเครื่องยนต์ดีเซล กำมะถันในน้ำมันดีเซลจะมีมากหรือ น้อยนั้นขึ้นอยู่กับชนิดของน้ำมันดิบและกระบวนการกลั่นที่ใช้ สารประกอบกำมะถันที่มี คุณสมบัติ กัดกร่อนจะอยู่ในรูปแบบต่างๆ เช่น เมอร์แคปแทน ไดซัลไฟด์ หรือสารประกอบ เฮเทอโรไซคลิก เช่น ไทโอฟีน (Thiophene) ฉะนั้นจึงต้องมีไส้กรองน้ำมันดีเซลที่สะอาดเพื่อ กรองสิ่งสกปรกต่างๆ ออกไป

2.2.1 สารประกอบกำมะถัน

เนื่องจากกำมะถันที่มีอยู่ในน้ำมันดีเซล มีอยู่ด้วยกันหลายรูปแบบส่งผลให้การขจัดกำมะถัน เชิงลึกของน้ำมันดีเซลยังคงเป็นปัญหาหลักของกระบวนการกลั่นอยู่ อย่างไรก็ตามการที่ทราบถึง ลักษณะและข้อมูลของสารประกอบกำมะถันที่อยู่ในน้ำมันดีเซลเป็นแนวทางที่สามารถนำไปพัฒนา กระบวนการขจัดกำมะถันได้ ซึ่งจากการพัฒนาของเทคโนโลยีจึงทำให้ในปัจจุบันสามารถสร้าง เทคโนโลยีเพื่อนำมาใช้ในการตอบปัญหาดังกล่าว เช่น เครื่องแก้สโครมาโตรกราฟีแบบ 2 มิติ (twodimensional gas chromatography, GC × GC) โดยตารางที่ 2.4 คือ ชนิดของสารมาตรฐานที่ใช้ใน การวิเคราะห์เครื่อง GC × GC-SCD จากรูปที่ 2.1 คือ โครมาโตรแกรมของสารมาตรฐานที่วิเคราะห์ ด้วยเครื่อง GC × GC-SCD จากรูปที่ 2.1 คือ โครมาโตรแกรมของสารมาตรฐานที่วิเคราะห์ ด้วยเครื่อง GC × GC-SCD จากนั้นจึงนำน้ำมันดีเซลของกระบวนการ FCC และน้ำมันดีเซลที่ได้จาก กระบวนการต่างๆ มาทำการวิเคราะห์ดังแสดงผลการวิเคราะห์ในรูปที่ 2.1 และ 2.2 ซึ่งพบว่าสามารถ แยกชนิดของสารประกอบกำมะถันได้อย่างชัดเจนและพบว่าน้ำมันดีเซลดีเซลของแต่ละกระบวนการ จะมีปริมาณสารประกอบกำมะถันในแต่ละชนิดที่ไม่เท่ากันแต่จะสามารถแบ่งสารประกอบกำมะถันที่ มีในน้ำมันดีเซลออกได้เป็น 4 ประเภทด้วยกัน [5] ดังตาราง 2.5

CHULALONGKORN UNIVERSITY

Number	Compound	Number	Compound	Number	Compound
1	2-Propanethiol	11	3- Chlorothiophene	21	5-Methyl benzothiophene
2	Thiophene	12	2-Ethyl thiophene	22	3-Methyl benzothiophene
3	Diethyl sulfide	13	2,5-Dimethyl thiophene	23	3,5-Dimethyl benzothiophene
4	n-Butanethiol	14	n-Propyl sulfide	24	C7-Sulfide
5	Dimethyl disulfide	15	2- Bromothiophene	25	Dibenzothiophene
6	2-Methyl	16	Diethyl disulfide	26	4-Methyl benzothiophene
7	3-Methyl thiophene	17	Cyclohexane thiol	27	C16-Mercaptan
8	iso-Propyl sulfide	18	n-Butyl sulfide	28	4,6-Dimethyl dibenzothiophene
9	Tetra-hydro thiophene	19	Di-n-propyl disulfide	29	C10-Sulfide
10	n-Amyl thiol	20	Bezothiophene	30	Benzo[b]naphtho[2,1- d]thiophene

ตารางที่ 2.4 สารประกอบกำมะถันมาตรฐานที่ใช้วิเคราะห์เครื่อง GC x GC-SCD [5]

CHULALONGKORN UNIVERSITY

รูปที่ 2.1 โครมาโตรแกรมของสารประกอบกำมะถันมาตรฐานที่ได้จากการวิเคราะห์กับเครื่อง GC × GC-SCD [5]

รูปที่ 2.2 โครมาโตรแกรมที่ได้จากการวิเคราะห์น้ำมันดีเซลที่ได้จากกระบวนการ FCC [5]

รูปที่ 2.3 โครมาโตรแกรมที่ได้จากการวิเคราะห์น้ำมันดีเซลที่ได้จากกระบวนการต่างๆ: (A) straightrun diesel oil; (B) FCC; (C) RFCC; (D) delayed coker; (E) visbroker และ (F) hydrofined [5]

Group	Compound	Structure
	Thiols	R-S-H
	Sulfides	R-S-R'
1	Disulfides	R-S-S-R'
	Thiophenes, TPs	∠_) s
2	Benzothiophenes, BTs	s
3	Dibenzothiophenes, DBTs	S
4	Benzonaphthothiophenes, BNTs	S S
	Q)

ตารางที่ 2.5 กลุ่มของสารประกอบกำมะถันในน้ำมันดีเซล

อย่างไรก็ตามในน้ำมันดีเซลที่ใช้งานจริงยังคงประกอบไปด้วยอนุพันธ์ของเบนโซไทโอฟีนและ ไดเบนโซไทโอฟีนเป็นส่วนใหญ่ [6] ซึ่งเป็นสารประกอบกำมะถันที่ยากต่อการขจัดออกจากน้ำมันดีเซล จึงทำให้สารประกอบดังกล่าวยังคงอยู่ในน้ำมันดีเซลแม้จะผ่านกระบวนไฮโดรดีซัลเฟอไรเซชันแล้ว

2.3 การขจัดกำมะถันจากน้ำมันด้วยวิธีการดูดซับ

จากมาตรฐานน้ำมันที่ได้มีการกำหนดขึ้น การที่จะควบคุมปริมาณกำมะถันในน้ำมันให้อยู่ ภายใต้มาตรฐานน้ำมันจำเป็นที่จะต้องมีกระบวนการที่นำมาใช้ในการลดปริมาณกำมะถันในน้ำมันให้ เป็นไปตามมาตรฐานที่กำหนดซึ่งในปัจจุบันกระบวนการที่นิยมนำมาใช้กันมาก คือ กระบวนการขจัด กำมะถันด้วยไฮโดรเจนหรือกระบวนการไฮโดรดีซัลเฟอไรเซชัน (Hydrodesulfurization process) ซึ่งเป็นกระบวนการที่กำจัดสารประกอบกำมะถันด้วยไฮโดรเจน และสารเร่งปฏิกิริยาที่เหมาะสม โดย ้กำมะถันถูกเปลี่ยนเป็นก๊าซไฮโดรเจนซัลไฟด์ (H₂S) [7] แต่อย่างไรก็ตามจากการที่กระบวนการ ด้งกล่าวมีความสามารถในการขจัดสารประกอบกำมะถันประเภทอนุพันธ์ของไทโอฟันที่มีอยู่มากใน ้น้ำมันดีเซลที่ต่ำ [8] ทำให้ในปัจจุบันได้มีการคิดค้นหากระบวนการใหม่เพื่อแก้ปัญหาของกระบวนการ ดังกล่าว ซึ่งกระบวนการขจัดกำมะถันด้วยการดูดซับ (Adsorptive desulfurization process) เป็น กระบวนการหนึ่งที่ถูกศึกษากันอย่างมาก เนื่องจากไม่มีการใช้ไฮโดรเจนในกระบวนการ และใช้สภาวะ มาตรฐานในการขจัดกำมะถัน โดยกระบวนการดูดซับ (Adsorption Process) [9] เป็นกระบวนการที่ ้เกี่ยวข้องกับการสะสมตัวของสาร หรือความเข้มข้นของสารที่บริเวณพื้นผิวหรือระหว่างผิวหน้า (Interface) กระบวนการนี้สามารถเกิดที่บริเวณผิวสัมผัสระหว่าง 2 สถานะใด ๆ เช่น ของเหลวกับ ของเหลว แก๊สกับของเหลว แก๊สกับของแข็ง หรือของเหลวกับของแข็ง โดยโมเลกุลหรือคอลลอยด์ (Colloid) ที่ถูกดูดจับเรียกว่า ตัวถูกดูดซับ (Adsorbate) ส่วนสารที่ทำหน้าที่ดูดซับเรียกว่า ตัวดูดซับ (Adsorbent) โดยในที่นี้จะพิจารณาถึงเฉพาะแบบ ของเหลว-ของแข็ง (Liquid-solid interface) ใน การดูดติดผิวโมเลกุลของสารละลายหรือสารแขวนลอยถูกกำจัดออกจากน้ำและไปเกาะติดอยู่บนตัว ดูดซับ โมเลกุลของสารส่วนใหญ่จะเกาะจับอยู่กับผิวภายในโพรงของตัวดูดซับและมีเพียงส่วนน้อย เท่านั้นที่เกาะอยู่ที่ผิวภายนอก การถ่ายโอนโมเลกุลจากน้ำไปหาตัวดูดซับเกิดขึ้นได้จนถึงสมดุลจึงหยุด ณ จุดสมดุล ความเข้มข้นของโมเลกุลในน้ำจะเหลือน้อยเพราะโมเลกุลส่วนใหญ่เคลื่อนที่ไปเกาะจับอยู่ กับตัวดูดซับ โดยในการเกาะติดมี Driving Force อยู่ 2 แบบ คือ การดูดซับทางกายภาพ และการดูด ซับทางเคมี

<u>ประเภทของการดูดซับ</u>

 การดูดซับทางกายภาพ (Physical adsorption) [10] คือ การที่โมเลกุลของแก๊สถูกดึงดูดให้ เข้ามาเกาะติดกันพื้นผิวของตัวดูดซับที่เป็นของแข็งด้วยแรงอย่างอ่อน หรือแรงแวนเดอร์ วาลส์ (Van der waals) ซึ่งมีระยะห่างระหว่างตัวดูดซับและตัวถูกดูดซับเท่ากับรัศมีแวน เดอร์วาลส์ของตัวดูดซับและตัวถูกดูดซับ ไม่จำเพาะกับโมเลกุลของแก๊ส และเกิดการดูดซับที่ อุณหภูมิต่ำ และมีค่าความร้อนของการดูดซับ (Heat of adsorption) น้อยกว่า 15-20 กิโล จูลต่อโมล โดยการดูดซับทางกายภาพสามารถเกิดการผันกลับของกระบวนการได้ง่าย ซึ่งเป็น ข้อดี เพราะสามารถฟื้นฟูสภาพของตัวดูดซับได้ง่ายด้วย ตัวถูกดูดซับสามารถเกาะอยู่รอบๆ ผิวของตัวดูดซับได้หลายชั้น (Multilayer) หรือในแต่ละชั้นของโมเลกุลตัวถูกดูดซับจะติดอยู่ กับชั้นของโมเลกุลของตัวถูกดูดซับในชั้นก่อนหน้านี้ โดยจำนวนชั้นเป็นสัดส่วนกับความ เข้มข้นของตัวถูกดูดซับ และเพิ่มมากขึ้นตามความเข้มข้นที่สูงขึ้นของตัวถูกละลาย [9]

 การดูดซับทางเคมี (Chemical adsorption หรือ Chemisorption) [10] เป็นกระบวนการ ดูดซับที่มีความจำเพาะในการเลือกเกิด และมีพันธะเคมีเกิดขึ้นระหว่างตัวดูดซับและตัวถูก ดูดซับ ทำให้มีความแข็งแรงมากกว่าการดูดซับเชิงกายภาพ โดยการดูดซับเชิงเคมีจะเกิดขึ้นที่ อุณหภูมิสูงกว่าการดูดซับเชิงกายภาพ และมีความร้อนของการเกิดการดูดซับเชิงเคมี 50-400 กิโลจูลต่อโมล ซึ่งการเกิดพันธะเคมีหมายความว่าการกำจัดตัวถูกดูดซับออกจากผิวตัว ดูดซับจะทำได้ยาก คือ ไม่สามารถเกิดปฏิกิริยาผันกลับได้ (Irreversible) และการดูดซับ ประเภทนี้จะเป็นการดูดซับแบบชั้นเดียว (Monolayer) เท่านั้น ซึ่งการดูดซับทางกายภาพ และทางเคมีมีข้อแตกต่างกันหลายอย่างดังตารางที่ 1 [9]

ตัวแปรการดูดซับทางกายภาพ	การดูดซับทางกายภาพ	การดูดซับทางเคมี	
1. ค่าความร้อนของการดูดซับ	น้อยกว่า 20 กิโลจูลต่อโมล	50-400 กิโลจูลต่อโมล	
2. อุณหภูมิการดูดซับ	ต่ำ	ଟ୍ସଏ	
3. แรงดึงดูดระหว่างโมเลกุล	แรงแวนเดอร์วาวส์	พันธะเคมี	
4. การผันกลับของปฏิกิริยา	ผันกลับได้	ส่วนใหญ่ไม่ผันกลับ	
5. การดูดซับบนแก๊ส-ของแข็ง	ได้เกือบทุกชนิด	เกิดเฉพาะระบบ	
6. พลังงานก่อกัมมันต์ในกระบวนการเกิด	ไม่เกี่ยวข้อง	เกี่ยวข้อง	
7. รูปแบบชั้นของการดูดซับ	Monolayer และ Multilayer	Monolayer	

ตารางที่ 2.6 ข้อแตกต่างของการดูดซับทางกายภาพและการดูดซับทางเคมี [9]

<u>การดูดซับสารประกอบกำมะถันของตัวดูดซับ</u> [11]

การดูดซับสารประกอบกำมะถันที่มีโครงสร้างโมเลกุลประกอบด้วยวงแหวนฟีนิลในน้ำมัน เชื้อเพลิงมีอยู่ด้วยกัน 2 แบบ ได้แก่ การดูดซับโดยตรง (Direct adsorption) หรือการดูดซับแบบ ไฮโดรดีซัลเฟอไรเซชัน (Hydrodesulfurization adsorption) ซึ่งเกิดจากอันตรกิริยาระหว่าง กำมะถันอะตอมในสารประกอบกำมะถันกับไอออนโลหะบนตัวดูดซับ และการดูดซับเชิงซ้อนแบบ พาย (**π**- complexation adsorption) หรือพันธะคู่ในวงแหวนของสารประกอบกำมะถันกับไอออน โลหะบนตัวดูดซับ ดังรูปที่ 2.4

รูปที่ 2.4 การดูดซับสารประกอบกำมะถัน (ก) การดูดซับโดยตรง (ข) การดูดซับเชิงซ้อนแบบพาย (**π**)

2.4 ตัวดูดซับซีโอไลต์

ซีโอไลต์คือสารประกอบอะลูมิโนซิลิเกต (crystalline aluminosilicates) [12] ที่สามารถ ดูดซับน้ำได้ดี โดยสูตรทั่วไปของโครงสร้างซีโอไลต์ คือ M_x/n(AlO₂)_x(SiO₂)_y

เมื่อ n คือ ประจุของไอออนบวก M

x+y คือ จำนวนหน่วยเททระฮีดรอลต่อหน่วยเซลล์

y/x คือ อัตราส่วน Si/Al แปลผันได้จาก 1 ถึง ∞

โดยหน่วยย่อยที่ประกอบด้วยอะตอมของซิลิกอน (หรืออะลูมิเนียม) หนึ่งอะตอม และ ออกซิเจนสี่อะตอม ([SiO₄]⁴⁻ หรือ [AlO₄]⁵⁻) จะสร้างพันธะกันเป็นรูปสามเหลี่ยมสี่หน้า (tetrahedron) โดยอะตอมของซิลิกอน (หรืออะลูมิเนียม) อยู่ตรงกลาง ล้อมรอบด้วยอะตอมของออกซิเจนที่มุมทั้งสี่ ซึ่งโครงสร้างสามเหลี่ยมสี่หน้านี้จะเชื่อมต่อกันที่มุม (ใช้ออกซิเจนร่วมกัน) ก่อให้เกิดเป็นโครงสร้างที่ ใหญ่ขึ้นและเกิดเป็นช่องว่างระหว่างโมเลกุล ทำให้ซีโอไลต์เป็นผลึกแข็ง เป็นรูพรุนและช่องว่างหรือ โพรงที่ต่อเชื่อมกันอย่างเป็นระเบียบในสามมิติ ขนาดตั้งแต่ 2-10 อังสตรอม (1 อังสตรอมเท่ากับ 1×10⁻¹⁰ เมตร)

เนื่องจากโครงสร้างของซีโอไลต์ที่เป็นแบบเปิดซึ่งประกอบด้วยช่องว่าง และมีการเชื่อมต่อ ระหว่างโมเลกุลจำนวนมาก จึงมีสมบัติ Ion exchange ซึ่งนำไปใช้ในกระบวนการ Water softening และ Water treament อีกทั้งยังมีความเป็น Resersible dehydration ซึ่งเป็น Molecular sieve ที่ ทำให้มีคุณสมบัติต่างจากการดูดซับอื่น และยังแสดงคุณสมบัติเป็นสารดูดซับที่ดีสามารถแยกแก๊สและ ไอของผสม เช่น แอมโมเนีย ออกซิเจน ไฮโดรเจน ในโตรเจน คาร์บอนไดออกไซด์และซัลเฟอร์ได ออกไซด์ได้ด้วย แต่เนื่องจากโครงสร้างโมเลกุลที่แตกต่างกัน ดั้งนั้นจึงมีคุณสมบัติทางเคมีและกายภาพ แตกต่างกันตามชนิดของซีโอไลต์ โดยซีโอไลต์นั้นมีมากกว่า 600 ชนิด แต่สามารถแบ่งกลุ่มตามชนิด ของโครงสร้างได้ประมาณ 40 ชนิด ซึ่งความแตกต่างในโครงสร้างนี่มีผลต่อสมบัติต่างๆ ของซีโอไลต์ เช่น โครงสร้างผลึก ความหนาแน่น ขนาดของโพรง ความแข็งแรงของพันธะ เป็นต้น การจำแนกชนิด ของซีโอไลต์นั้นอาศัยขนาดและรูปร่างของโพรงซีโอไลต์เป็นหลัก ซึ่งจะทำให้นำซีโอไลต์ไปใช้ประโยชน์ ในงานที่แตกต่างกันไป โดยซีโอไลต์นิยมแบ่งออกเป็น 2 ประเภท คือ ซีโอไลต์ที่เกิดขึ้นเองตาม ธรรมชาติ (Mineral zeolites or Naturally occurring zeolites) และซีโอไลต์ที่เกิดจากการ สังเคราะห์ทางเคมี (Synthetic zeolite)

2.5 กระบวนการคืนสภาพของตัวดูดซับ

กระบวนการคืนสภาพของตัวดูดซับเป็นกระบวนการที่นำตัวดูดซับที่ผ่านการดูดซับแล้วมาคืน สภาพให้ตัวดูดซับสามารถกลับมาดูดซับได้ดังเดิม โดยในปัจจุบันกระบวนการดังกล่าวมักนิยมทำอยู่ ด้วยกัน 3 กระบวนการ

- กระบวนการคืนสภาพด้วยความร้อน เป็นกระบวนการที่ให้ความร้อนกับตัวดูดซับเพื่อคืน สภาพของตัวดูดซับที่ผ่านการดูดซับแล้ว โดยกระบวนการนี้ทำให้เกิดการสะสมของคาร์บอน ที่ผิวของตัวดูดซับจำนวนมาก ส่งผลให้ตัวดูดซับที่ผ่านการคืนสภาพด้วยกระบวนการนี้แล้วจะ สามารถดูดซับได้ในปริมาณที่น้อยลง [14]
- กระบวนการคืนสภาพด้วยอัลตราซาวน์ เป็นกระบวนที่ใช้คลื่นอัลตราโซนิคของตัวทำละลาย ในการทำให้ตัวดูดซับเกิดการคายซับออกมา โดยกระบวนการนี้แม้ว่าทำให้เกิดการคายซับ ของสารที่ถูกดูดซับ แต่กระบวนการนี้ก่อให้เกิดการติดค้างอยู่ของตัวทำละลายในตัวดูดซับ
ส่งผลให้ตัวดูดซับที่ผ่านการคืนสภาพด้วยกระบวนการนี้แล้วจะสามารถดูดซับได้ในปริมาณที่ น้อยลง [15]

 กระบวนการคืนสภาพด้วยการสกัดด้วยตัวทำละลาย เป็นกระบวนการที่ใช้ตัวทำละลายใน การสกัดสารที่ถูกดูดซับออกจากตัวดูดซับ แต่กระบวนการนี้ก่อให้เกิดการติดค้างของสารที่ ดูดซับในตัวดูดซับ ส่งผลให้ตัวดูดซับที่ผ่านการคืนสภาพด้วยกระบวนการนี้แล้วจะสามารถดูด ซับได้ในปริมาณที่น้อยลง [16]

โดยจากเมื่อเปรียบเทียบความสามารถในการคืนสภาพตัวดูดซับด้วยกระบวนต่างๆ พบว่า ตัว ดูดซับที่ผ่านการคืนสภาพด้วยกระบวนการคืนสภาพด้วยการสกัดด้วยตัวทำละลายจะทำให้ตัวดูดซับที่ ผ่านการคืนสภาพสามารถดูดซับได้ในปริมาณที่มากที่สุดเมื่อเทียบกับกระบวนการอื่นๆ แสดงให้เห็น ถึงประสิทธิภาพของกระบวนการคืนสภาพด้วยการสกัดด้วยตัวทำละลายที่มากกว่ากระบนการอื่นๆ [15]

2.6 งานวิจัยที่เกี่ยวข้อง

Bhandari และคณะ [17] ศึกษาการขจัดสารประกอบกำมะถัน ได้แก่ เบนโซไทโอฟีน, ใดเบนโซไทโอฟีน และ 4,6-ไดเบนโซไทโอฟีน ในน้ำมันจำลอง และน้ำมันดีเซล ด้วยกระบวนการดูด ซับโดยใช้ตัวดูดซับซีโอไลต์ Ni-Y และ Cu-Y พบว่า ตัวดูดซับซีโอไลต์ Ni-Y และ Cu-Y มีความจุเบรกท รูในการดูดซับสารประกอบกำมะถันเท่ากับ 42 และ 31 มิลลิลิตรต่อกรัม ตามลำดับ เมื่อทำการขจัด สารประกอบกำมะถันในน้ำมันจำลอง นอกจากนั้นแล้วยังได้ศึกษาผลของแอโรแมติกต่อการขจัด สารประกอบกำมะถันในน้ำมันจำลอง นอกจากนั้นแล้วยังได้ศึกษาผลของแอโรแมติกต่อการขจัด สารประกอบกำมะถันของตัวดูดซับ พบว่าการเพิ่มปริมาณของเบนซีนในน้ำมันจำลองส่งผลให้ตัวดูด ซับมีความสามารถในการขจัดสารประกอบกำมะถันลดลง เนื่องจากการแข่งขันกันดูดซับระหว่าง สารประกอบกำมะถันกับแอโรแมติกผ่านอันตรกิริยาแบบพาย

Liu และคณะ [18] ศึกษารูปแบบในการดูดซับที่เป็นไปได้ในการขจัดสารประกอบกำมะถัน ได้แก่ อนุพันธ์ของเบนโซไทโอฟีน และอนุพันธ์ของไดเบนโซไทโอฟีน ด้วยตัวดูดซับซีโอไลต์ Cu-Y โดย ใช้โมเดลจำลอง และคำนวณด้วยเทคนิค DFT พบว่า สารประกอบกำมะถันมีการดูดซับบนซีโอไลต์ Cu-Y อยู่ด้วยกัน 3 รูปแบบ โดยในแต่ละรูปแบบมีลักษณะของการดูดซับมากกว่า 1 แบบ ซึ่งการดูด ซับแต่ละแบบจะมีพลังงานของการดูดซับที่ต่างกัน แม้ว่ามีการดูดซับในรูปแบบเดียวกัน โดยเบนโซไท โอฟีนเสถียรที่สุดเมื่อดูดซับผ่านวงแหวนไทโอฟีนิก ขณะที่ไดเบนโซไทโอฟีนเสถียรที่สุดเมื่อดูดซับผ่าน อันตรกิริยาระหว่าง Cu กับอะตอมของกำมะถัน ดังนั้น การดูดซับของไดเบนโซไทโอฟีนจะมีการ แข่งขันในการดูดซับกับสารประกอบแอโรแมติกที่น้อยกว่าเมื่อเทียบกับการแข่งขันในการดูดซับของ เบนโซไทโอฟีนกับสารประกอบแอโรแมติก Liu และคณะ [19] ศึกษารูปแบบการดูดซับสารประกอบไนโตรเจน 2 ประเภท ได้แก่ สารประกอบไนโตรเจนที่มีฤทธิ์เป็นเบส เช่น ควิโนลีน และอะครีดีน กับสารประกอบไนโตรเจนที่มี ฤทธิ์เป็นกลาง เช่น อินโดว และคาร์บาโซล เมื่อใช้ตัวดูดซับ คือ ซีโอไลต์ Cu-Y โดยใช้โมเดลจำลอง และคำนวณด้วยเทคนิค DFT พบว่า สารประกอบไนโตรเจนที่มีฤทธิ์เป็นเบสเสถียรเมื่อดูดซับผ่าน อันตรกิริยาระหว่าง Cu กับอะตอมของไนโตรเจน ขณะที่สารประกอบไนโตรเจนที่มีฤทธิ์เป็นกลาง เสถียรเมื่อดูดซับผ่านอันตรกิริยาระหว่าง Cu กับพันธะคู่ที่อยู่ภายในวงแหวนฟินิล หรือวงแหวนพิริดีน หรือวงแหวนไพโรล์ ดังนั้น สารประกอบไนโตรเจนที่มีฤทธิ์เป็นกลางเกิดการแข่งขันในการดูดซับกับ สารประกอบแอโรแมติกที่มากกว่าเมื่อเปรียบเทียบกับสารประกอบไนโตรเจนที่มีฤทธิ์เป็นเบส โดยเมื่อ เปรียบเทียบพลังงานที่ใช้ในการดูดซับของสารประกอบชนิดต่างๆ ที่อยู่ในน้ำมัน สามารถเรียงลำดับ ความเสถียรในการดูดซับได้ดังนี้ สารประกอบไนโตรเจนที่มีฤทธิ์เป็นเบส > สารประกอบไนโตรเจนที่มี ฤทธิ์เป็นกลาง > สารประกอบไทโอฟินิก ทำให้การมีสารประกอบไนโตรเจนส่งผลให้สามารถขจัด สารประกอบกำมะถันได้ลดลง

Xiao และคณะ [20] ศึกษาผลของสารประกอบแอโรแมติก, สารเติมแต่งของน้ำมันดีเซล, สารประกอบไนโตรเจน และความชื้น ต่อการขจัดสารประกอบกำมะถันของน้ำมันดีเซลแบบดูดซับ ด้วยถ่านกัมมันต์ พบว่า สารประกอบกำมะถันส่วนใหญ่ดูดซับบนถ่านกัมมันต์ผ่านทางคาร์บอนอะตอม ที่มีปริมาณของพายอิเล็กตรอนที่มาก โดยพบว่าสารประกอบกำมะถันที่มีหมู่เมทิล เช่น 4,6-DMDBT เกิดอันตรกิริยาที่แข็งแรงกว่ากับพื้นผิวคาร์บอนของตัวดูดซับถ่านกัมมันต์เมื่อเทียบกับสารประกอบ กำมะถันที่ไม่มีหมู่เมทิล เช่น DBT โดยเมื่อเพิ่มปริมาณของมอนอแอโรแมติกไฮโดรคาร์บอน เช่น เทอ เทียรี่-บิวทิลเบนซีน (tert-Butylbenzene) ในน้ำมันจำลองจาก 0 ถึง 10 เปอร์เซ็นต์โดยน้ำหนัก ทำ ให้การดูดซับสารประกอบกำมะถันมีปริมาณที่ลดลงเล็กน้อย ขณะที่เมื่อเพิ่มปริมาณของพอลิแอโร แมติกไฮโดรคาร์บอน โดยเฉพาะอย่างยิ่งฟีแนนทรีนเพียงเล็กน้อย (น้อยกว่า 1 เปอร์เซ็นต์โดยน้ำหนัก) ทำให้การดูดซับสารประกอบกำมะถันลดลงอย่างเห็นได้ชัด นอกจากนั้นแล้ว การดูดซับสารประกอบ กำมะถันลดลง เมื่อเพิ่มปริมาณของสารเติมแต่งของน้ำมันดีเซล เช่น เอทิลเฮกซิลไนเตรต ความชื้น และสารประกอบไนโตรเจน โดยเฉพาะอย่างยิ่งควิโนลีน

Shan และคณะ [21] ศึกษาการขจัดสารประกอบไทโอฟีนชนิดต่างๆ ในน้ำมันเชื้อเพลิง จำลอง คือ ไอโซออกเทนเป็นตัวทำละลายด้วยเทคนิคการดูดซับแบบเลือกเกิด โดยใช้ตัวดูดซับ ได้แก่ ซีโอไลต์ Cu-Y, Ce-Y และ Cu-Ce-Y และการนำตัวดูดซับซีโอไลต์ Cu-Ce-Y กลับมาใช้งานใหม่ พบว่า ตัวดูดซับซีโอไลต์ Cu-Ce-Y แสดงปริมาณการดูดซับสารประกอบไทโอฟีนมากที่สุด โดยตัว ดูดซับซีโอไลต์ Cu-Ce-Y แสดงปริมาณการดูดซับที่ใกล้เคียงกับตัวดูดซับซีโอไลต์ Cu-Y เนื่องจากการ ที่มี Cu⁺ อยู่บนตัวดูดซับ ทำให้เกิดอันตรกิริยาแบบพาย ขณะที่ตัวดูดซับซีโอไลต์ Ce-Y เกิด อันตร กิริยาแบบอะตอมของกำมะถันกับ Ce เป็นเหตุให้ปริมาณการดูดซับมีค่าที่ต่ำจากผลของความเกะกะ ของโมเลกุลที่ถูกดูดซับ เมื่อเพิ่มโทลูอีนในน้ำมันจำลองเชื้อเพลิงทำให้ปริมาณของการดูดซับกำมะถัน ลดลง โดยเฉพาะอย่างยิ่งในตัวดูดซับซีโอไลต์ Cu-Y จากการแข่งขันในการดูดซับกันระหว่างโทลูอีน และสารประกอบไทโอฟีน ขณะที่การนำตัวดูดซับซีโอไลต์ Cu-Ce-Y ที่ผ่านการดูดซับแล้ว กลับมาใช้ งานใหม่ด้วยการนำไปปั่นกวนในสารละลายโทลูอีนที่ผสมกับไอโซออกเทน ก่อนนำไปกระตุ้นอีก-ครั้ง ก่อนที่จะนำไปใช้งานใหม่ พบว่า ปริมาณการดูดซับสารประกอบไทโอฟีนของตัวดูดซับซีโอไลต์ Cu-Ce-Y ลดลงเหลือ 90 เปอร์เซ็นต์ของปริมาณของการดูดซับของตัวดูดซับซีโอไลต์ Cu-Ce-Y ที่ยัง ไม่ผ่านการใช้งาน

Shi และคณะ [22] ศึกษาผลของไซโคลเฮกซีนต่อการดูดซับไทโอฟีน โดยใช้ตัวดูดซับ คือ ซีโอไลต์ Na-Y และ La-Na-Y พบว่า เมื่อเพิ่มปริมาณของไซโคลเฮกซีนในน้ำมันทำให้ความสามารถ ขจัดไทโอฟีนของตัวดูดซับลดลง เนื่องจากแข่งขันในการดูดซับลงบนตัวดูดซับผ่านอันตรกิริยาระหว่าง พายอิเล็กตรอนของไทโอฟีนหรือไซโคลเฮกซีนกับหมู่ไฮดรอกซิลที่ไม่มีฤทธิ์เป็นกรดที่อยู่บนพื้นผิวของ ซีโอไลต์ Na-Y ขณะที่เมื่อใช้ตัวดูดซับซีโอไลต์ La-Na-Y พบว่า เมื่อเพิ่มปริมาณของไซโคลเฮกซีนใน น้ำมัน จาก 0 ถึง 0.315 เปอร์เซ็นต์โดยปริมาตร ทำให้สามารถขจัดไทโอฟีนได้เพิ่มขึ้น เนื่องจาก สามารถเกิดอันตรกิริยาระหว่าง La³⁺ กับอะตอมของกำมะถันได้มาก แต่หลังจากนั้น (ปริมาณของไซ โคลเฮกซีนมากกว่า 0.315 เปอร์เซ็นต์โดยปริมาตร) ความสามารถขจัดไทโอฟีนลดลง เนื่องจากการ เกิดไดอัลคีเลตไทโอฟีน ซึ่งมีขนาดโมเลกุลใหญ่ ทำให้เกิดความเกะกะของโมเลกุลที่ถูกดูดซับบนตัวดูด ซับ และจากการที่มีขนาดโมเลกุลใหญ่ อาจทำให้เกิดการอุดตันรูพรุนของตัวดูดซับ จึงทำให้ตัวดูดซับ สามารถขจัดสารประกอบกำมะถันได้ลดน้อยลง

Li และคณะ [23] ศึกษาการขจัดสารประกอบกำมะถันชนิดต่างๆ ในน้ำมันดีเซล โดยการดูด ซับด้วยตัวดูดซับถ่านกัมมันต์ และการนำตัวดูดซับกลับมาใช้ใหม่ด้วยการคืนสภาพด้วยตัวทำละลาย ได้แก่ นอมัลออกเทน เอทานอล และไซโคลเฮกเซน พบว่า จุดเบรกทรูของตัวดูดซับ เท่ากับ 0.36 มิลลิกรัมของกำมะถันต่อกรัมของตัวดูดซับ โดยค่าความจุของการดูดซับสารประกอบกำมะถันชนิด C3-DBT มีค่ามากที่สุด ขณะที่เมื่อนำตัวดูดซับกลับมาใช้ใหม่ด้วยการคืนสภาพด้วยตัวทำละลาย พบว่า การใช้ตัวทำละลายนอมัลออกเทนไม่ปรากฏซัลไฟด์เมื่อเวลาในการคืนสภาพด้วยตัวทำละลาย ขนะที่ตัวทำละลายเอทานอลและไซโคลเฮกเซนยังคงปรากฏซัลไฟด์เมื่อเวลาในการคืนสภาพผ่านไป 40 นาที ขณะที่ตัวทำละลายเอทานอลและไซโคลเฮกเซนยังคงปรากฏซัลไฟด์ในปริมาณ 0.87 และ 0.21 ppmw เมื่อเวลาในการคืนสภาพผ่านไป 81 นาที นอกจากนั้นจำนวนของซัลไฟด์จะคายซับจากตัว ดูดซับมากที่สุด เมื่อใช้ตัวทำละลายนอมัลออกเทนในการคืนสภาพ เนื่องจากความสามารถในการ ละลายของนอมอลออกเทนมีลักษณะคล้ายกับน้ำมันดีเซลที่ใช้ในการทดลอง ทำให้สามารถละลาย สารประกอบกำมะถันที่ถูกดูดซับบนตัวดูดซับได้ดีกว่าเมื่อเทียบกับตัวทำละลายชนิดอื่น

บทที่ 3 วิธีดำเนินงานวิจัย

การทดลองนี้เป็นการศึกษาผลของสารประกอบแอโรแมติกและไนโตรเจน ต่อการขจัด สารประกอบกำมะถันในน้ำมันจำลองด้วยเทคนิคการดูดซับแบบเบดนิ่งที่อุณหภูมิ 30 องศาเซลเซียส ความดันบรรยากาศ และอัตราการไหลของน้ำมันจำลอง 1 มิลลิลิตรต่อนาที โดยจะศึกษาผลของชนิด ของตัวดูดซับ และสารประกอบแอโรแมติกและไนโตรเจน รวมถึงการนำตัวดูดซับที่ใช้งานแล้วกลับมา ใช้งานใหม่ด้วยวิธีการสกัดด้วยสารละลายต่างๆ ที่สภาวะต่างๆ

3.1 สารเคมีที่ใช้ในงานวิจัย

- 1. ซีโอไลต์โซเดียมวาย (Na-Y zeolite) (Sigma Aldrich)
- 2. นิกเกิลไนเตรต (Ni(NO₃)₂·6H₂O) (A.R. Grade, Ajax Finechem)
- 3. ซีเรียมในเตรต (Ce(NO₃)₃.6H₂O) (A.R. Grade, Aldrich chemistry)
- 4. แลนทานัมในเตรต (La(NO₃)₃.6H₂O) (A.R. Grade, Aldrich chemistry)
- 5. ใดเบนโซไทโอฟีน (Dibenzothiohene) (Aldrich chemistry)
- 6. 4,6 ไดเมทิลไดเบนโซไทโอฟีน (4,6 Dimethyldibenzothiohene) (Aldrich chemistry)
- 7. แนฟทาลีน (Naphthalene) (Loba Chemie)
- 8. ควิโนลีน (Quinoline) (Aldrich chemistry)
- 9. อินโดว (Indole) (Aldrich chemistry)
- 10. นอร์มัลออกเทน (n-octane) (A.R. Grade, RCI Labscan)
- 11. เฮกเซน (Hexane) (A.R. Grade, RCI Labscan)
- 12. โทลูอีน (Toluene) (A.R. Grade, RCI Labscan)

3.2 ขั้นตอนดำเนินการทดลอง

3.2.1 การเตรียมน้ำมันจำลอง

การศึกษาผลของสารประกอบแอโรแมติกและไนโตรเจนในน้ำมันจำลองต่อการดูดซับ สารประกอบกำมะถัน แบ่งน้ำมันจำลองออกเป็น 5 ชนิด ดังตาราง 3.1

ตารางที่ 3.1 องค์ประกอบของน้ำมันจำลอง

หมายเหตุ * แสดงถึงสารดังกล่าวมีความเข้มข้น 150 ppm S

3.2.2 การเตรียมตัวดูดซับ

ตัวดูดซับแบบโลหะเดี่ยว คือตัวดูดซับซีโอไลต์ Ni-Y, Ce-Y และ La-Y เตรียมโดยการนำ ซีโอไลต์ Na-Y ที่ผ่านการเผา 5 กรัมมาแลกเปลี่ยนไอออนในสารละลาย Ni(NO₃)₂, Ce(NO₃)₃ และ La(NO₃)₃ ความเข้มข้น 0.1 โมลาร์ ปริมาตร 1000 ลูกบาศก์เซนติเมตร ด้วยการปั่นกวนที่ อุณหภูมิห้องและความดันบรรยากาศเป็นเวลา 24 ชั่วโมง จากนั้นล้างด้วยน้ำปราศจากไอออน และ อบแห้งที่อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 12 ชั่วโมง จากนั้นนำตัวดูดซับซีโอไลต์ Ni-Y, Ce-Y และ La-Y ไปเผาที่อุณหภูมิ 450, 550 และ 530 องศาเซลเซียส เป็นเวลา 2, 4 และ 5 ชั่วโมง หลังจากนั้นกระตุ้นที่อุณหภูมิ 550, 550 และ 350 องศาเซลเซียส เป็นเวลา 2, 4 และ 3 ชั่วโมง ภายใต้บรรยากาศไฮโดรเจน, ไนโตรเจน และไนโตรเจน ตามลำดับ

ตัวดูดซับแบบทวิโลหะ คือตัวดูดซับซีโอไลต์ Ni-Ce-Y และ Ni-La-Y เตรียมโดยการนำซีโอไลต์ Ce-Y และ La-Y 5 กรัม มาแลกเปลี่ยนไอออนในสารละลาย Ni(NO₃)₂ ความเข้มข้น 0.1 โมลาร์ ปริมาตร 1000 ลูกบาศก์เซนติเมตร ด้วยการปั่นกวนที่อุณหภูมิห้องและความดันบรรยากาศเป็นเวลา 24 ชั่วโมง จากนั้นล้างด้วยน้ำปราศจากไอออน และอบแห้งที่อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 12 ชั่วโมง จากนั้นนำตัวดูดซับซีโอไลต์ Ni-Ce-Y และ Ni-La-Y ไปเผาที่อุณหภูมิ 450 องศาเซลเซียส เป็นเวลา 2 ชั่วโมง หลังจากนั้นกระตุ้นที่อุณหภูมิ 550 องศาเซลเซียสเป็นเวลา 2 ชั่วโมงภายใต้ บรรยากาศไฮโดรเจน

3.2.3 การทดลองการดูดซับ

โดย

การดูดขับทดลองในกระบวนการดูดขับแบบเบดนิ่งที่อุณหภูมิ 30 องศาเซลเซียส ดังแสดงใน รูปที่ 3.1 โดยตัวดูดซับ ได้แก่ ซีโอไลต์ Na-Y, Ni-Y, Ce-Y, La-Y, Ni-Ce-Y และ Ni-La-Y จะถูกบรรจุ ใส่คอลัมน์เหล็กกล้าไร้สนิมเส้นผ่านศูนย์กลาง 4.6 มม.และสูง 75 มม. ที่ปริมาณ 0.5 กรัม ในกรณีที่ ตัวดูดซับมิโลหะนิกเกิลเพื่อรีดิวซ์โลหะนิกเกิลให้มีเลขออกซิเดชันเป็น 2+ นำไปกระตุ้นที่อุณหภูมิ 550 องศาเซลเซียสภายใต้ไฮโดรเจน เป็นเวลา 2 ชั่วโมง ขณะที่ตัวดูดซับอื่นกระตุ้นภายใต้ไนโตรเจนที่ อุณหภูมิและเวลาต่างๆ เพื่อให้โลหะที่อยู่ในตัวดูดซับอยู่ในรูปของโลหะออกไซด์ หลังจากนั้นรอให้ คอลัมน์เย็นลงจนถึงอุณหภูมิห้องแล้วจึงทดลองการดูดซับด้วยการป้อนน้ำมันจำลองที่ไหลออกจากด้านบน ของคอลัมน์ด้วยอัตราการไหล 1 มิลลิลิตรต่อนาทีและเก็บตัวอย่างน้ำมันจำลองที่ไหลออกจากด้านบน ของคอลัมน์ทุก 2 นาที (หรือ 2 มิลลิลิตร) เพื่อนำไปวิเคราะห์หาปริมาณของสารประกอบต่างๆ ที่มีอยู่ ในน้ำมันจำลองที่ผ่านคอลัมน์แล้ว ด้วยเครื่องแก๊สโครมาโทกราฟ Shimadzu GC2010 ที่ประกอบกับ ดีเทคเตอร์แบบเฟรมไอออไนเซชัน (Flame ionization detector; FID) โดยใช้คอลัมน์ HP-88 ผลการทดลองที่ได้แสดงในรูปของเส้นโค้งเบรคทรู (Breakthrough curve) ซึ่งเป็นกราฟความสัมพันธ์ ระหว่างอัตราส่วนของความเข้มข้นสารขาออกและความเข้มข้นสารขาเข้า (C_{(t}/C₀) เทียบกับ ปริมาณ สะสมของสารขาออกต่อน้้ำหนักตัวดูดซับ โดยความจุการดูดซับสามารถคำนวณได้ด้วยสมการที่ (3.1) [24]

$$q = \left(\frac{v''}{m_{adsorbent}}\right) \rho_{fuel} X_i \int_0^t \left[1 - \frac{C_{(t)}}{C_0}\right] dt \qquad (3.1)$$

q	= ความจุการดูดซับ (มิลลิกรัมของกำมะถันต่อกรัมของตัวดูดซับ)
v′′	= อัตราการป้อนสารขาเข้า (มิลลิลิตรต่อนาที)
m _{adsorbent}	= น้ำหนักของตัวดูดซับ (กรัม)
ρ_{fuel}	= ความหนาแน่นของน้ำมัน (กรัมต่อมิลลิลิตร)
X _i	= สัดส่วนโดยน้ำหนักของกำมะถันหรือไนโตรเจนหรือแอโรแมติกในสาร
	ขาเข้า
$C_{(t)}$	= ความเข้มข้นของสารประกอบนั้น (ส่วนในล้านส่วน) ในน้ำมันจำลอง
	ขาออกที่เวลาต่างๆ (นาที)

นอกจากนั้นแล้ว จากเส้นโค้งเบรคทรูยังสามารถหาปริมาณของสารนั้นๆ ที่ป้อนเข้าสู่กระบวนการ ดูดซับได้จากสมการที่ (3.2)

ปริมาณของสาร =
$$\left(\frac{v''}{m_{adsorbent}}\right) \rho_{fuel} X_i \int_0^t [1] dt$$
 (3.2)

 v" = อัตราการป้อนสารขาเข้า (มิลลิลิตรต่อนาที)
m_{adsorbent} = น้ำหนักของตัวดูดซับ (กรัม)
ρ_{fuel} = ความหนาแน่นของน้ำมัน (กรัมต่อมิลลิลิตร)
X_i = สัดส่วนโดยน้ำหนักของกำมะถันหรือไนโตรเจนหรือแอโรแมติกในสาร ขาเข้า

โดย

โดยจากปริมาณของสารที่ป้อนที่ได้จากสมการที่ (3.2) และปริมาณของสารที่ถูกดูดซับ (ความจุเบรคทรูและความจุทั้งหมด) ที่ได้จากสมการที่ (3.1) ทำให้สามารถหาร้อยละของการดูดซับ สารนั้น ที่ค่าความจุเบรคทรูหรือความจุทั้งหมดที่สิ้นสุดของตัวดูดซับแต่ละชนิดเทียบกับปริมาณของ สารนั้นๆ ที่ป้อนเข้าสู่การดูดซับในระยะเวลาที่เกิดการดูดซับได้จากสมการที่ (3.3)

ร้อยละของสารดูดซับในช่วงความจุเบรคทรูหรือความจุทั้งหมด = ปริมาณของสารที่ถูกดูดซับ (ความจุเบรคทรูหรือความจุทั้งหมด) +100 (3.3)

รูปที่ 3.1 แผนภาพระบบการดูดซับแบบเบดนิ่ง

3.2.4 การศึกษาการคืนสภาพตัวดูดซับเพื่อนำกลับมาใช้ใหม่

ศึกษาปัจจัยที่ส่งผลต่อการคืนสภาพตัวดูดซับเพื่อนำกลับมาใช้ใหม่ ได้แก่ อัตราการไหลของ น้ำมัน อุณหภูมิ และชนิดของตัวทำละลาย การทดลองนี้เลือกใช้ตัวดูดซับซีโอไลต์ Na-Y, Ni-Y, Ni-Ce-Y และ Ni-La-Y มาดูดซับน้ำมันจำลองที่ประกอบไปด้วยสารประกอบกำมะถัน ไนโตรเจน และ แอโรแมติก ก่อนที่จะทำการคืนสภาพด้วยวิธีการสกัดด้วยตัวทำละลายแล้วกระตุ้นตัวดูดซับที่ภาวะ ต่างๆ ก่อนจะทำการดูดซับน้ำมันจำลองชนิดเดิมซ้ำ โดยศึกษาผลของอุณหภูมิที่ 30, 40 และ 50 องศาเซลเซียส ศึกษาอัตราการไหลของน้ำมันจำลองที่ 0.5, 1.0 และ 1.5 มิลลิลิตรต่อนาที ศึกษาชนิด ของตัวทำละลาย คือ เฮกเซนและโทลูอีน โดยแผนภาพของการศึกษาการคืนสภาพตัวดูดซับแสดงดัง รูปที่ 3.1

ผลการทดลองที่ได้จะแสดงในรูปของเส้นโค้งเบรคทรูเช่นเดียวกันการดูดซับ โดยจากเส้นโค้ง ดังกล่าวสามารถนำมาคำนวณหาปริมาณของการคายได้จากสมการที่ (3.4)

ปริมาณของสารที่เกิดการคายซับ =
$$\left(\frac{v''}{m_{adsorbent}}\right) \rho_{fuel} X_i \int_0^t \left[\frac{C_{(t)}}{C_0}\right] dt$$
 (3.4)

โดย

 $\mathbf{v}^{\prime\prime}$

= อัตราการป้อนสารขาเข้า (มิลลิลิตรต่อนาที)

m _{adsorbent}	= น้ำหนักของตัวดูดซับ (กรัม)
ρ_{fuel}	= ความหนาแน่นของน้ำมัน (กรัมต่อมิลลิลิตร)
X _i	= สัดส่วนโดยน้ำหนักของกำมะถันหรือไนโตรเจนหรือแอโรแมติกในส
	ขาเข้า

าร

= ความเข้มข้นของสารประกอบนั้น (ส่วนในล้านส่วน) ในน้ำมันจำลอง C_0 ขาเข้า

โดยจากปริมาณของสารประกอบนั้นๆ ที่เกิดการคายที่ได้จากสมการที่ (3.4) จะสามารถหา ร้อยละของการคายของสารประกอบนั้นๆ ได้จากสมการที่ (3.5)

ซึ่งร้อยละของการคายของสารทั้งหมดจะสามารถบ่งบอกถึงประสิทธิภาพของการคืนสภาพสามารถ ้คำนวณได้จากสัดส่วนของสารประกอบที่เกิดการคายกับสารประกอบทั้งหมดที่เกิดการดูดดังแสดงใน สมการที่ (3.6)

ปริมาณของสารทั้งหมดที่เกิดการคาย ปริมาณของสารทั้งหมดที่เกิดการดูดซับ ประสิทธิภาพของการคืนสภาพ (%) = " (3.6)

3.3 การวิเคราะห์ลักษณะของตัวดูดซับและน้ำมัน

GHULALONGKORN UNIVERSITY 3.3.1 การดูดซับ

3.3.1.1 ตัวดูดซับก่อนการดูดซับ

- 1. N2 adsorption-desorption measurement: เครื่อง Quantachrome Instruments โดย ใช้ N₂ ที่ภาวะ Outgas temp: 300 องศาเซลเซียส Outgas time: 12 ชั่วโมง
- 2. X-ray diffraction (XRD): เครื่อง PANanalytical รุ่น X' Pert PRO โดยวิเคราะห์ในช่วง 2**6** เท่ากับ 5.00-70.00 องศา Step size: 0.02 Time per step: 0.5 วินาที
- 3. X-ray fluorescence spectroscopy (XRF): เครื่อง EDAX รุ่น Orbis PC ใช้ Rh source, Energy: 30 kV collected time: 60 วินาที

3.3.1.2 น้ำมันที่ใช้ในการดูดซับ

- 1. Gas chromatography-flame ionization detection (GC-FID): เครื่อง Shimadzu GC2010 ใช้คอลัมน์ HP-88 (ID 0.25 มิลลิเมตร ID, Film 0.20 ไมโครเมตร และยาว 100.0 เมตร)
- Gas chromatography-Mass spectroscopy (GC-MS): เครื่อง Shimadzu GC2010Q ใช้ คอลัมน์ DB-1 (ID 0.25 มิลลิเมตร ID, Film 0.10 ไมโครเมตร และยาว 60.0 เมตร)

3.3.2 การคายซับ

3.3.2.1 ตัวดูดซับหลังการดูดซับ

- 1. Scanning electron microscopy (SEM) โดยเคลือบด้วยแพลตตินัมเป็นเวลา 30 วินาที
- 2. Energy dispersive X-ray spectroscopy (EDX)
- 3. Carbon, hydrogen, nitrogen analyzer (CHN analyzer): เครื่อง Lecco โมเดล CHN628
- 4. Sulfur analyzer (S analyzer): เครื่อง Lecco โมเดล 628S

บทที่ 4 ผลการทดลองและวิเคราะห์ผลการทดลอง

4.1 การวิเคราะห์สมบัติของตัวดูดซับ

4.1.1 เทคนิคการวิเคราะห์ธาตุโดย X-ray fluorescence spectroscopy (XRF)

เทคนิค XRF เป็นเทคนิคที่ใช้ในการระบุชนิดและปริมาณขององค์ประกอบตัวดูดซับที่อยู่บน ตัวดูดซับ เพื่อยืนยันการมีอยู่ของโลหะที่แลกเปลี่ยนไอออนกับซีโอไลต์ Na-Y รวมถึงผลของการ แลกเปลี่ยนไอออนและการเผาที่มีต่อสัดส่วนของซิลิกอนต่ออะลูมิเนียมของตัวดูดซับที่ผ่านการ แลกเปลี่ยนไอออนแล้ว โดยผลการวิเคราะห์แสดงดังตารางที่ 4.1 พบว่าตัวดูดซับซีโอไลต์ Na-Y ที่ผ่าน การแลกเปลี่ยนไอออน (ทั้งแบบโลหะเดี่ยวและทวิโลหะ) และผ่านการเผาแล้วมีอัตราส่วนของซิลิกอน ต่ออะลูมิเนียมที่คงที่ (3.31-3.38) แสดงว่าการแลกเปลี่ยนไอออนและการเผาไม่ก่อให้เกิดการกำจัด อะลูมิเนียม (Dealumination) ของโครงสร้างของซีโอไลต์ [22]

ตัวดูดซับ	ปริมาณโลหะที่แลกเปลี่ยน ไอออน (mmol/g adsorbent)	ปริมาณโลหะที่แลกเปลี่ยน ไอออน (%wt)	อัตราส่วน ซิลิกอนต่อ อะลูมิเนียม
Na-Y	3.34	7.69	3.38
Ni-Y	า.58 ลงกรณมห	9.29	3.34
La-Y	GF _{0.90} LONGKORN	12.48	3.34
Ce-Y	1.14	16.04	3.31
Ni-Ce-Y	0.69 (Ni), 1.00 (Ce)	4.06 (Ni), 14.02 (Ce)	3.32
Ni-La-Y	0.69 (Ni), 0.99 (La)	4.03 (Ni), 13.75 (La)	3.32

ตารางที่ 4.1 ผลการวิเคราะห์ของตัวดูดซับด้วยเทคนิค XRF

เมื่อพิจารณาปริมาณของโลหะที่แลกเปลี่ยนไอออนกับซีโอไลต์ Na-Y พบว่า ตัวดูดซับที่ถูก แลกเปลี่ยนไอออนแบบโลหะเดี่ยว ด้วยโลหะนิกเกิลมีปริมาณโลหะในตัวดูดซับ (1.58 mmol/g) ที่ มากกว่าตัวดูดซับที่ถูกแลกเปลี่ยนไอออนด้วยโลหะแลนทานัมหรือซีเรียมซึ่งเกิดจากการที่ไอออนของ โลหะนิกเกิลมีประจุ 2+ ขณะที่ไอออนของโลหะแลนทานัมและซีเรียมมีประจุ 3+ ดังนั้นไอออนของ โลหะนิกเกิลจึงสามารถแลกเปลี่ยนไอออนกับโซเดียมไอออนได้ในปริมาณที่มากกว่าไอออนของ แลนทานัมและซีเรียม เป็นเหตุให้ตัวดูดซับที่ถูกแลกเปลี่ยนไอออนด้วยไอออนของโลหะนิกเกิลมี ปริมาณของโลหะบนตัวดูดซับที่มากกว่าตัวดูดซับตัวอื่นในกรณีของตัวดูดซับแบบโลหะเดี่ยว ขณะที่ตัว ดูดซับที่ถูกแลกเปลี่ยนไอออนด้วยไอออนของโลหะแลนทานัมและซีเรียม พบว่า ปริมาณโลหะที่อยู่บน ตัวดูดซับที่ถูกแลกเปลี่ยนไอออนด้วยไอออนของโลหะซีเรียม (1.14 mmol/g) มีปริมาณของโลหะบน ตัวดูดซับมากกว่าตัวดูดซับที่ถูกแลกเปลี่ยนไอออนด้วยไอออนของโลหะแลนทานัม (0.9 mmol/g) ซึ่ง อาจเกิดจากโลหะซีเรียมมีขนาดของอะตอมที่เล็กกว่าโลหะแลนทานัม ทำให้อะตอมของซีเรียม สามารถแทรกเข้าไปแลกเปลี่ยนไอออนได้มากกว่าอะตอมของโลหะแลนทานัมที่มีขนาดของอะตอมที่ ใหญ่กว่า

เมื่อพิจารณาตัวดูดซับทวิโลหะ ได้แก่ ซีโอไลต์ Ni-Ce-Y และ Ni-La-Y พบว่า ปริมาณของ โลหะที่แลกเปลี่ยนไอออนในรอบแรกของตัวดูดซับทั้งสองกลับยังมีปริมาณคงที่ (0.99-1.0 mmol/g) แม้มีการแลกเปลี่ยนไอออนในรอบที่ 2 ของตัวดูดซับซีโอไลต์ Ce-Y และ La-Y ด้วยโลหะนิกเกิล แสดง ให้เห็นถึงการแลกเปลี่ยนไอออนในรอบที่ 2 อาจเกิดการแลกเปลี่ยนไอออนของไอออนของโลหะ นิกเกิลบนโลหะที่แลกเปลี่ยนไอออนรอบแรกที่อาจอยู่ในรูปออกไซด์ซึ่งก่อให้เกิดเป็นชั้นโลหะที่ทำการ แลกเปลี่ยนไอออนตามลำดับก่อนหลังของการแลกเปลี่ยนไอออน

4.1.2 เทคนิคการเลี้ยวเบนของรังสีเอกซ์ (X-ray diffraction, XRD)

เทคนิค XRD เป็นเทคนิคที่ถูกนำมาใช้ระบุเฟสของตัวดูดซับเพื่อระบุผลของการแลกเปลี่ยน ใอออนและการเผาที่มีต่อตัวดูดซับ โดยผลการวิเคราะห์แสดงในรูปที่ 4.1 ซึ่งพบว่าการแลกเปลี่ยน ไอออนและเผาไม่มีผลต่อโครงสร้างของตัวดูดซับ เนื่องจากรูปแบบของพีคที่ปรากฏของตัวดูดซับที่ถูก แลกเปลี่ยนไอออนทุกตัวมีรูปแบบของพีคที่คล้ายกับรูปแบบของพีคการวิเคราะห์ตัวดูดซับซีโอไลด์ Na-Y ซึ่งผลดังกล่าวคล้ายคลึงกับผลที่ได้จากการวิเคราะห์ในงานวิจัยของ Song และคณะ [25] นอกจากนั้นผลการวิเคราะห์ยังเป็นไปในแนวทางเดียวกันกับผลการวิเคราะห์ด้วยเทคนิค XRF อย่างไร ก็ตามพบว่ารูปแบบของพีคของตัวดูดซับที่ถูกแลกเปลี่ยนไอออนจะมีความเข้มของพีคที่ลดลง เนื่องมาจากการลดลงของความเป็นผลึกของตัวดูดซับ เนื่องจากการแลกเปลี่ยนไอออนจะงไอออน ของโลหะที่มีขนาดใหญ่กว่าไอออนของโลหะโซเดียม (ไอออนของโลหะนิกเกิล, แลนทานัมและซีเรียม) เข้าไปปกคลุมที่ผิวของตัวดูดซับส่งผลให้เกิดการบดบังโครงสร้างของตัวดูดซับบางส่วน เป็นเหตุให้ รูปแบบของพีคที่ได้มีความเข้มต่ำลงเมื่อเทียบกับตัวดูดซับซีโอไลต์ Na-Y [26] นอกจากนี้ยังพบว่า รูปแบบของพีคที่ได้จากตัวดูดซับที่ถูกแลกเปลี่ยนไอออนไม่ปรากฏพีคของโลหะที่เกิดการแลกเปลี่ยน ไอออน แสดงถึงการที่โลหะที่แลกเปลี่ยนไอออนมีขนาดผลึกเล็กหรือไม่มีผลึกโลหะในตัวดูดซับ [27] และมีการกระจายตัวบนตัวดูดซับที่ดี [25]

รูปที่ 4.1 ผลการวิเคราะห์ตัวดูดซับต่างๆ ด้วยเทคนิค XRD

4.1.3 เทคนิค N_2 physisorption measurement

พื้นที่ผิว BET และปริมาตรของรูพรุนทั้งหมดของตัวดูดซับหาโดยใช้เทคนิค N₂ physisorption measurement เพื่อระบุผลของการแลกเปลี่ยนไอออนต่อพื้นที่ผิว BET และปริมาตร ของรูพรุนทั้งหมด ดังแสดงผลในตารางที่ 4.2 โดยจากตารางตัวดูดซีโอไลต์ Na-Y ที่ถูกแลกเปลี่ยน ไอออนด้วยโลหะต่างๆ มีพื้นที่ผิว BET และปริมาตรของรูพรุนทั้งหมดที่ลดลงเมื่อเทียบกับตัวดูดซับ ซีโอไลต์ Na-Y แต่การลดลงมากหรือน้อยขึ้นอยู่กับจำนวนครั้งที่ตัวดูดซับซีโอไลต์ Na-Y ถูกนำไป แลกเปลี่ยนไอออนด้วยโลหะต่างๆ เพื่อให้ได้เป็นตัวดูดซับนั้นๆ ซึ่งผลการวิเคราะห์ดังกล่าวคล้ายคลึง กับผลการวิเคราะห์จากงานวิจัยของ Duan และคณะ [28] โดยการลดลงของพื้นที่ผิว BET และ ปริมาตรของรูพรุนทั้งหมดเกิดจากการแลกเปลี่ยนไอออนของโลหะ ซึ่งแม้ว่าตัวดูดซับที่แลกเปลี่ยน ไอออนมีปริมาณโลหะที่น้อยกว่าปริมาณของโลหะโซเดียมบนตัวดูดซับซีโอไลต์ Na-Y (ดังแสดงในผล การวิเคราะห์ด้วย XRF) แต่เนื่องจากโลหะที่แลกเปลี่ยนไอออนมีขนาดของอะตอมใหญ่กว่าโลหะ โซเดียมในตัวดูดซับซีโอไลต์ Na-Y (ดังที่ได้อธิบายในการลดลงของความเข้มของพีคจากผลการ วิเคราะห์ด้วย XRD) จึงทำให้โลหะที่แลกเปลี่ยนไอออนเข้าไปปกคลุมที่พื้นผิวและในรูพรุนของตัว ดูดซับมากกว่าโลหะโซเดียม นำมาสู่การลดลงของพื้นที่ผิว BET และปริมาตรของรูพรูนทั้งหมดของตัว ดูดซับที่ผ่านการแลกเปลี่ยนไอออน

ตัวดูดซับ	BET suface area (m²/g)	Total pore volume (cm³/g)
Na-Y	612	0.35
Ni-Y	537	0.32
La-Y	562	0.34
Ce-Y	564	0.33
Ni-Ce-Y	492	0.28

ตารางที่ 4.2 พื้นที่ผิว BET และปริมาตรของรูพรุนทั้งหมดของตัวดูดซับชนิดต่างๆ

4.2 การดูดซับสารประกอบกำมะถัน

เนื่องจากในน้ำมันดีเซลมีสารประกอบประเภทอื่นนอกจากสารประกอบกำมะถันซึ่งแบ่งได้ เป็น 2 กลุ่ม คือสารประกอบแอโรแมติกและสารประกอบไนโตรเจน ดังนั้นงานวิจัยนี้ได้ใช้น้ำมัน จำลอง (Model oil) เพื่อศึกษาผลของสารประกอบแอโรแมติกและไนโตรเจนต่อการขจัดสารประกอบ กำมะถัน โดยน้ำมันจำลองที่ใช้แบ่งออกเป็น 4 ประเภท ดังนี้

- น้ำมันจำลองมีเพียงสารประกอบกำมะถัน (น้ำมันจำลอง 1) เพื่อศึกษาความสามารถของตัว ดูดซับในการขจัดสารประกอบกำมะถันที่สูงที่สุด
- น้ำมันจำลองมีสารประกอบกำมะถันและแอโรแมติก (น้ำมันจำลอง 2) เพื่อศึกษาผลของ สารประกอบแอโรแมติกต่อความสามารถในการขจัดสารประกอบกำมะถันของตัวดูดซับ
- น้ำมันจำลองมีสารประกอบกำมะถันและในโตรเจน (น้ำมันจำลอง 3) เพื่อศึกษาผลของ สารประกอบในโตรเจนต่อความสามารถในการขจัดสารประกอบกำมะถันของตัวดูดซับ
- น้ำมันจำลองมีสารประกอบกำมะถัน แอโรแมติกและในโตรเจน (น้ำมันจำลอง 4) เพื่อศึกษา ความสามารถในการขจัดสารประกอบกำมะถันของตัวดูดซับในน้ำมันจำลองที่มีองค์ประกอบ คล้ายน้ำมันดีเซลที่ใช้ทั่วไป

โดยนำตัวดูดซับบรรจุลงในคอลัมน์แบบเบดนิ่งก่อนการกระตุ้นด้วยภาวะที่เหมาะสม จากนั้น ทำการป้อนน้ำมันจำลองผ่านจากด้านล่างขึ้นสู่ด้านบนเพื่อทำให้เบดของตัวดูดซับสัมผัสกับน้ำมัน จำลองนั้นๆ อย่างทั่วถึงทุกส่วน ก่อนเก็บตัวอย่างน้ำมันจำลองที่ผ่านเครื่องปฏิกรณ์ด้วยอัตราการเก็บ 2 นาทีต่อครั้งหรือ 2 มิลลิลิตรต่อครั้ง แล้วจึงนำตัวอย่างไปวิเคราะห์ด้วยเครื่องแก๊สโครมาโตรกราฟ โดยผลการวิเคราะห์แสดงในรูปของเส้นโค้งเบรคทรู ความจุเบรคทรู ร้อยละการดูดซับเบรคทรู ความจุทั้งหมด (เวลา 216 นาที) และร้อยละการดูดซับทั้งหมด

4.2.1 ความสามารถในการขจัดสารประกอบกำมะถันของตัวดูดซับในน้ำมันจำลอง 1

การศึกษาความสามารถในการขจัดสารประกอบกำมะถันของตัวดูดซับต่างๆ ด้วยน้ำมัน จำลอง 1 ที่มีเพียงสารประกอบกำมะถัน โดยผลการทดลองแสดงในรูปที่ 4.2 ซึ่งบ่งบอกถึงเส้นโค้ง เบรคทรูของการดูดซับกำมะถันของตัวดูดซับต่างๆ และในตารางที่ 4.3 ซึ่งบอกค่าความจุเบรคทรู ร้อยละการดูดซับเบรคทรู ความจุทั้งหมด (เวลา 216 นาที) และร้อยละการดูดซับทั้งหมดของตัวดูด ซับต่างๆ

จากตารางที่ 4.3 ตัวดูดซับซิโอไลต์ Na-Y จะมีความจุเบรคทรูที่มากที่สุด = 0.44 และ 0.43 มิลลิโมลของ DBT และ 4,6-DMDBT ต่อกรัมของตัวดูดซับ (ร้อยละการดูดซับของ DBT และ 4,6-DMDBT = 61.1 และ 60.2 เปอร์เซ็นต์) ตามลำดับ นอกจากนั้นแล้วตัวดูดซับซิโอไลต์ Na-Y ยังคง มีปริมาณความจุทั้งหมด = 0.55 และ 0.53 มิลลิโมลของ DBT และ 4,6-DMDBT ต่อกรัมของตัวดูด ซับ (ร้อยละการดูดซับทั้งหมดของ DBT และ 4,6-DMDBT = 77.0 และ 74.9 เปอร์เซ็นต์) ตามลำดับ ที่มากกว่าตัวดูดซับตัวอื่น เช่น ตัวดูดซับซิโอไลต์ Ni-Y มีปริมาณความจุทั้งหมด = 0.45 และ 0.42 มิลลิโมลของ DBT และ 4,6-DMDBT ต่อกรัมของตัวดูดซับ (ร้อยละการดูดซับทั้งหมดของ DBT และ 4,6-DMDBT = 63.0 และ 58.8 เปอร์เซ็นต์) ตามลำดับ โดยสาเหตุอาจเกิดเนื่องมาจากการที่ตัวดูดซับ ซิโอไลต์ Na-Y มีปริมาณของโลหะบนตัวดูดซับและปริมาณพื้นที่ผิวมากกว่าตัวดูดซับตัวอื่นๆ จึงทำให้ ตัวดูดซับซิโอไลต์ Na-Y มีค่าความจุเบรคทรูและความจุทั้งหมดมากกว่าตัวดูดซับตัวอื่นที่ถูก แลกเปลี่ยนไอออนที่มีปริมาณของโลหะและปริมาณพื้นที่ผิวที่น้อยกว่า

เมื่อเปรียบเทียบความจุเบรคทรูและความจุทั้งหมดของตัวดูดซับที่ถูกแลกเปลี่ยนไอออนด้วย โลหะชนิดเดียว พบว่า ตัวดูดซับที่แลกเปลี่ยนกับนิกเกิลไอออนมีร้อยละการดูดซับทั้งหมดของ DBT และ 4,6-DMDBT = 63.0 และ 58.8 เปอร์เซ็นต์ ตามลำดับ มากกว่าตัวดูดซับที่แลกเปลี่ยนไอออน ด้วยไอออนของโลหะซีเรียมและแลนทานัมซึ่งเกิดจากการที่โลหะนิกเกิลส่งเสริมการดูดซับ สารประกอบกำมะถันผ่านการดูดซับแบบพาย [29] มากกว่าตัวดูดซับที่แลกเปลี่ยนไอออนด้วยไอออน ของโลหะซีเรียมและแลนทานัมที่ส่งเสริมการดูดซับสารประกอบกำมะถันผ่านการดูดซับแบบการ ดูดซับโดยตรง [30, 31] นอกจากนั้นแล้วตัวดูดซับซีโอไลต์ Ni-Y ยังมีปริมาณโลหะบนตัวดูดซับ มากกว่าตัวดูดซับซีโอไลต์ Ce-Y และ La-Y ซึ่งจากสาเหตุดังกล่าวทำให้ตัวดูดซับที่ถูกแลกเปลี่ยน ไอออนด้วยไอออนของโลหะนิกเกิลมีความจุในการดูดซับมากกว่าตัวดูดซับที่ถูกแลกเปลี่ยนไอออน ด้วยไอออนของโลหะซีเรียมและแลนทานัม

ขณะที่ตัวดูดซับแบบทวิโลหะ (ซีโอไลต์ Ni-La-Y และ Ni-Ce-Y) จะมีร้อยละการดูดซับทั้งหมด ของ DBT และ 4,6-DMDBT ที่ต่ำ = 28.2 และ 29.6 เปอร์เซ็นต์ ตามลำดับ สำหรับตัวดูดซับซีโอไลต์ Ni-La-Y และ = 23.5 และ 24.9 เปอร์เซ็นต์ ตามลำดับ สำหรับตัวดูดซับซีโอไลต์ Ni-Ce-Y คาดว่าเกิด มาจากการที่ตัวดูดซับมีพื้นที่ผิวต่ำ

รูปที่ 4.2 เส้นโค้งเบรคทรูของตัวดูดซับต่างๆ ที่ได้จากการดูดซับสารประกอบกำมะถันในน้ำมันจำลอง 1

ตารางที่ 4.3 ความจุเบรคทรูและความจุทั้งหมดของตัวดูดซับในการดูดซับกำมะถันในน้ำมันจำลอง 1 ที่อัตราการไหล 1 มิลลิลิตรต่อนาที, อุณหภูมิ 30 องศาเซลเซียส และอัตราการเก็บตัวอย่าง 2 นาทีต่อ ครั้ง

ตัวดูดซับ	ตัวถูกดูดซับ	ปริมาณ ที่ป้อน*	ความจุ เบรคทรู*	ร้อยละการ ดูดซับ เบรคทรู**	ความจุ ทั้งหมด**	ร้อยละการ ดูดซับ ทั้งหมด***
No Y	DBT	0.71	0.44	61.1	0.55	77.0
INd-1	4,6-DMDBT	0.71	0.43	60.2	0.53	74.9
Ni_V	DBT	0.71	0.28	38.9	0.45	63.0
111-1	4,6-DMDBT	0.71	0.26	37.0	0.42	58.8
	DBT	0.72	0.17	24.1	0.26	37.0
La i	4,6-DMDBT	0.72	0.19	25.9	0.35	49.3
Ce-Y	DBT 🥖	0.72	0.11	15.7	0.30	41.4
	4,6-DMDBT	0.72	0.11	14.8	0.30	41.4
	DBT 🏓	0.71	0.05	7.0	0.20	28.2
NI-Ld-1	4,6-DMDBT	0.71	0.05	7.0	0.21	29.6
Ni-Ce-Y	DBT	0.71	0.08	11.1	0.17	23.5
	4,6-DMDBT	0.71	0.08	11.1	0.18	24.9

หมายเหตุ * คือ หน่วยมิลลิโมลของสารประกอบต่อกรัมของตัวดูดซับ, ** ความจุทั้งหมด = ความจุทั้งหมดที่สิ้นสุดการทดลอง,

*** คือหน่วยเปอร์เซ็นต์

จุฬาลงกรณมหาวทยาลย Cuu al onekopy Huivepeit

4.2.2 ผลของสารประกอบแอโรแมติกในน้ำมันจำลอง 2

การศึกษาผลของสารประกอบแอโรแมติกต่อการขจัดสารประกอบกำมะถันในน้ำมันจำลอง 2 ที่มีสารประกอบกำมะถันและแอโรแมติก ผลการทดลองแสดงในรูปที่ 4.3 และ 4.4 ในรูปของเส้นโค้ง เบรคทรูของการดูดซับสารประกอบกำมะถันและแอโรแมติก ตามลำดับ และตารางที่ 4.4 แสดงความ จุเบรคทรู ร้อยละการดูดซับเบรคทรู ความจุทั้งหมด (เวลา 216 นาที) และร้อยละการดูดซับทั้งหมด ของการดูดซับกำมะถันและแอโรแมติกด้วยตัวดูดซับต่างๆ

จากรูปที่ 4.3 และตารางที่ 4.4 พบว่ามีการลดลงของความจุเบรคทรูและความจุทั้งหมดเมื่อ เทียบกับความจุเบรคทรูและความจุทั้งหมดที่ได้จากน้ำมันจำลอง 1 ขณะที่รูปที่ 4.4 แสดงให้เห็นว่า ตัวดูดซับต่างๆ สามารถเกิดการดูดซับสารประกอบแอโรแมติกได้ ซึ่งบ่งบอกถึงการมีสารประกอบ แอโรแมติกภายในน้ำมันจำลองก่อให้เกิดการแข่งขันในการดูดซับบนตัวดูดซับระหว่างสารประกอบ กำมะถันและแอโรแมติก [32] นำมาสู่การลดลงของความจุเบรคทรูและความจุทั้งหมดในการดูดซับ กำมะถันของตัวดูดซับต่างๆ โดยตัวดูดซับซีโอไลต์ Na-Y มีร้อยละการดูดซับทั้งหมดของ DBT และ 4,6-DMDBT = 43.5 และ 40.68 เปอร์เซ็นต์ ตามลำดับ และตัวดูดซับซีโอไลต์ Ni-Y มีร้อยละการ ดูดซับทั้งหมดของ DBT และ 4,6-DMDBT = 51.4 และ 45.1 เปอร์เซ็นต์ ตามลำดับ

ตัวดูดซับซีโอไลต์ La-Y มีร้อยละการดูดซับทั้งหมดของ DBT และ 4,6-DMDBT = 17.8 และ 27.1 เปอร์เซ็นต์ ตามลำดับ และตัวดูดซับซีโอไลต์ Ce-Y มีร้อยละการดูดซับทั้งหมดของ DBT และ 4,6-DMDBT = 25.1 และ 25.8 เปอร์เซ็นต์ ตามลำดับ

ตัวดูดซับซีโอไลต์ Ni-La-Y มีร้อยละการดูดซับทั้งหมดของ DBT และ 4,6-DMDBT = 8.5 และ 12.7 เปอร์เซ็นต์ ตามลำดับ และตัวดูดซับซีโอไลต์ Ni-Ce-Y มีร้อยละการดูดซับของ DBT และ 4,6-DMDBT = 34.0 และ 38.4 เปอร์เซ็นต์ ตามลำดับ

จากร้อยละการดูดซับทั้งหมดสามารถสรุปลำดับตัวดูดซับที่สามารถดูดสารประกอบกำมะถัน ในน้ำมันจำลอง 2 ได้ดังนี้

Ni-Y ~ Na-Y > Ni-Ce-Y > Ce-Y ~ La-Y > Ni-La-Y

Breakthrough curve of S compounds (DBT and 4,6-DMDBT) in model oil 2

รูปที่ 4.3 เส้นโค้งเบรคทรูของตัวดูดซับต่างๆ ที่ได้จากการดูดซับสารประกอบกำมะถันในน้ำมันจำลอง 2

Breakthrough curve of Aromatic compound (Naphthalene) in model oil 2

รูปที่ 4.4 เส้นโค้งเบรคทรูของตัวดูดซับต่างๆ ที่ได้จากการดูดซับสารประกอบแอโรแมติกในน้ำมันจำลอง 2

ตัวดูดซับ	ตัวถูกดูดซับ	ปริมาณ ที่ป้อน*	ความจุ เบรคทรู*	ร้อยละ การดูดซับ เบรคทรู**	ความจุ ทั้งหมด**	ร้อยละ การดูดซับ ทั้งหมด***
	DBT	0.73	0.19	25.9	0.32	43.5
Na-Y	4,6-DMDBT	0.73	0.18	25.0	0.30	40.7
	Naphthalene	1.22	0.30	25.0	0.51	42.0
	DBT	0.71	0.24	34.3	0.37	51.4
Ni-Y	4,6-DMDBT	0.71	0.22	31.5	0.32	45.1
	Naphthalene	1.19	0.33	27.8	0.40	33.6
	DBT	0.71	0.07	10.2	0.13	17.8
La-Y	4,6-DMDBT	0.71	0.08	11.1	0.19	27.1
	Naphthalene	1.19	0.09	7.4	0.15	13.0
	DBT	0.72	0.03	4.6	0.18	25.1
Ce-Y	4,6-DMDBT	0.72	0.03	3.7	0.19	25.8
	Naphthalene	1.20	0.03	2.8	0.22	18.7
	DBT	0.71	0	0	0.06	8.5
Ni-La-Y	4,6-DMDBT	0.71	แห-9วิท	ยาลัย	0.09	12.7
	Naphthalene	0.19	rn ^O N	VERSIT	0.04	21.1
	DBT	0.71	0.14	19.4	0.24	34.0
Ni-Ce-Y	4,6-DMDBT	0.71	0.15	21.3	0.27	38.4
	Naphthalene	1.19	0.18	14.8	0.21	17.7

ตารางที่ 4.4 ความจุเบรคทรูและความจุทั้งหมดของตัวดูดซับในการดูดซับสารประกอบต่างๆ ในน้ำมัน จำลอง 2 ที่อัตราการไหล 1 มิลลิลิตรต่อนาที, อุณหภูมิ 30 องศาเซลเซียส และอัตราการเก็บตัวอย่าง 2 นาทีต่อครั้ง

หมายเหตุ * คือ หน่วยมิลลิโมลของสารประกอบต่อกรัมของตัวดูดซับ, ** ความจุทั้งหมด = ความจุทั้งหมดที่สิ้นสุดการทดลอง, *** คือหน่วยเปอร์เซ็นต์

4.2.3 ผลของการมีสารประกอบในโตรเจนในน้ำมันจำลอง 3

การศึกษาผลของสารประกอบไนโตรเจนต่อการขจัดสารประกอบกำมะถันในน้ำมันจำลอง 3 ที่มีสารประกอบกำมะถันและไนโตรเจน ผลการทดลองแสดงในรูปที่ 4.5 และ 4.6 ในรูปเส้นโค้ง เบรคทรูของการดูดซับสารประกอบกำมะถันและไนโตรเจน ตามลำดับ และตารางที่ 4.5 แสดงความจุ เบรคทรู ร้อยละการดูดซับเบรคทรู ความจุทั้งหมด (เวลา 216 นาที) และร้อยละการดูดซับทั้งหมด ของตัวดูดซับต่างๆ

จากรูปที่ 4.5 และตารางที่ 4.5 พบว่าความจุเบรคทรูและความจุทั้งหมดของตัวดูดซับต่างๆ มีค่าลดลงเมื่อเทียบกับความจุเบรคทรูและความจุทั้งหมดของตัวดูดต่างๆ ในการดูดซับสารประกอบ กำมะถันจากน้ำมันจำลอง 1 ขณะที่รูปที่ 4.6 บ่งบอกว่าตัวดูดซับต่างๆ สามารถดูดซับสารประกอบ ในโตรเจนได้ แสดงถึงการมีสารประกอบในโตรเจนในน้ำมันจำลองก่อให้เกิดการแข่งขันในการดูดซับ บนตัวดูดซับระหว่างสารประกอบกำมะถันและไนโตรเจน [20] นำมาสู่การลดลงของความจุเบรคทรู และความจุทั้งหมดของการดูดซับกำมะถันของตัวดูดซับต่างๆ ในลักษณะเดียวกับผลจากการดูดซับ น้ำมันจำลอง 2 โดยตัวดูดซับซีโอไลต์ Na-Y มีร้อยละการดูดซับทั้งหมดของ DBT และ 4,6-DMDBT = 32.4 และ 31.9 เปอร์เซ็นต์ ตามลำดับ และตัวดูดซับซีโอไลต์ Ni-Y มีร้อยละการดูดซับทั้งหมดของ DBT และ 4,6-DMDBT = 38.7 และ 38.6 เปอร์เซ็นต์ ตามลำดับ

ตัวดูดซับซีโอไลต์ La-Y มีร้อยละการดูดซับทั้งหมดของ DBT และ 4,6-DMDBT = 28.6 และ 35.5 เปอร์เซ็นต์ ตามลำดับ และตัวดูดซับซีโอไลต์ Ce-Y มีร้อยละการดูดซับทั้งหมดของ DBT และ 4,6-DMDBT = 15.6 และ 15.2 เปอร์เซ็นต์ ตามลำดับ

ตัวดูดซับซีโอไลต์ Ni-La-Y มีร้อยละการดูดซับทั้งหมดของ DBT และ 4,6-DMDBT = 11.3 และ 14.1 เปอร์เซ็นต์ ตามลำดับ และตัวดูดซับซีโอไลต์ Ni-Ce-Y มีร้อยละการดูดซับทั้งหมดของ DBT และ 4,6-DMDBT = 36.2 และ 41.1 เปอร์เซ็นต์ ตามลำดับ

จากร้อยละการดูดซับทั้งหมดสามารถสรุปลำดับตัวดูดซับที่สามารถดูดสารประกอบกำมะถัน ในน้ำมันจำลอง 3 ได้ดังนี้

Breakthrough curve of S compounds (DBT and 4,6-DMDBT) in model oil 3

รูปที่ 4.5 เส้นโค้งเบรคทรูของตัวดูดซับต่างๆ ที่ได้จากการดูดซับสารประกอบกำมะถันในน้ำมันจำลอง 3

Breakthrough curve of N compounds (Quinoline and Indole) in model oil 3

รูปที่ 4.6 เส้นโค้งเบรคทรูของตัวดูดซับต่างๆ ที่ได้จากการดูดซับสารประกอบไนโตรเจนในน้ำมันจำลอง 3

ตัวดูดซับ	ตัวถูกดูดซับ	ปริมาณ ที่ป้อน*	ความจุ เบรคทรู*	ร้อยละ การดูดซับ เบรคทรู**	ความจุ ทั้งหมด**	ร้อยละ การดูดซับ ทั้งหมด***
	DBT	0.73	0.20	27.9	0.24	32.4
No V	4,6-DMDBT	0.73	0.20	26.9	0.23	31.9
INd-1	Quinoline	0.33	0.10	28.7	0.20	58.9
	Indole	0.33	0.09	27.8	0.14	40.8
	DBT	0.71	0.20	28.7	0.28	38.7
	4,6-DMDBT	0.71	0.20	28.7	0.28	38.6
111-1	Quinoline	0.33	0.11	34.3	0.21	65.2
	Indole	0.33	0.10	31.5	0.15	46.9
	DBT	0.71	0.07	9.3	0.20	28.6
l a-V	4,6-DMDBT	0.71	0.07	10.2	0.25	35.5
La-I	Quinoline	0.33	0.05	16.7	0.19	57.0
	Indole	0.33	0.05	15.7	0.16	48.2
	DBT	0.72	0.03	4.6	0.11	15.6
Co-V	4,6-DMDBT	0.72	0.03	4.6	0.11	15.2
Cen	Quinoline	0.33	0.02	5.6	0.10	30.7
	Indole	0.33	0.02	5.6	0.07	21.1
	DBT	0.71	0.01	1.4	0.08	11.3
Ni-l a-V	4,6-DMDBT	0.71	0.01	1.4	0.10	14.1
	Quinoline	0.33	0.01	3.0	0.12	36.4
	Indole	0.33	0.01	3.0	0.09	27.3
	DBT	0.71	0.19	25.9	0.26	36.2
Ni-Ce-V	4,6-DMDBT	0.71	0.19	25.9	0.29	41.1
NI CE I	Quinoline	0.33	0.17	50.9	0.26	80.8
	Indole	0.33	0.17	51.9	0.24	73.9

ตารางที่ 4.5 ความจุเบรคทรูและความจุทั้งหมดของตัวดูดซับในการดูดซับสารประกอบต่างๆ ในน้ำมันจำลอง 3 ที่อัตรา การไหล 1 มิลลิลิตรต่อนาที, อุณหภูมิ 30 องศาเซลเซียส และอัตราการเก็บตัวอย่าง 2 นาทีต่อครั้ง

หมายเหตุ * คือ หน่วยมิลลิโมลของสารประกอบต่อกรัมของตัวดูดซับ, ** ความจุทั้งหมด = ความจุทั้งหมดที่สิ้นสุดการทดลอง, *** คือหน่วยเปอร์เซ็นต์

4.2.4 การเปลี่ยนแปลงค่าความจุเบรคทรูของสารประกอบกำมะถันในน้ำมันจำลอง 2 และ 3

เมื่อเปรียบเทียบผลของมีสารประกอบแอโรแมติกหรือสารประกอบไนโตรเจนในน้ำมันจำลอง ต่อค่าความจุเบรคทรูของสารประกอบกำมะถันของตัวดูดซับ พบว่าค่าความจุเบรคทรูของตัวดูดซับ ทุกตัวลดลงเมื่อเทียบกับค่าความจุเบรคทรูของสารประกอบกำมะถันในน้ำมันจำลอง 1 ดังแสดงใน ตารางที่ 4.6 โดยการลดลงมีค่าที่ต่างกันไปตามชนิดของตัวดูดซับ แสดงให้เห็นถึงประเภทของการ ดูดซับสารประกอบกำมะถันของตัวดูดซับแต่ละชนิดที่แตกต่างกัน โดยเมื่อพิจารณาที่น้ำมันจำลอง 2 พบว่า ตัวดูดซับซีโอไลต์ Ni-Y จะมีค่าการลดลงของค่าความจุเบรคทรูน้อยที่สุดตรงข้ามกับตัวดูดซับ ซีโอไลต์ Na-Y ที่มีค่าการลดลงของความจุเบรคทรูค่อนข้างมาก แสดงให้เห็นถึงความเฉพาะเจาะจง ของตัวดูดซับซีโอไลต์ Ni-Y ในการดูดซับสารประกอบกำมะถันมากกว่าสารประกอบแอโรแมติก ซึ่ง เกิดเนื่องจากสารประกอบกำมะถันในน้ำมันจำลองมีลักษณะของโมเลกุลที่มีความหนาแน่นของ อิเล็กตรอนมากกว่าสารประกอบแอโรแมติก [8] ทำให้สารประกอบกำมะถันจึงสามารถถูกดูดซับได้ มากกว่าการดูดซับของสารประกอบแอโรแมติก อย่างไรก็ตามการที่ในน้ำมันจำลองมีสารประกอบ แอโรแมติกปริมาณมาก ทำให้สารประกอบแอโรแมติก มีโอกาสถูกดูดซับในบริเวณตำแหน่งกัมมันต์ ของตัวดูดซับดังแสดงแนวคิดของการดูดซับของตัวดูดซับซีโอไลต์ Ni-Y ในรูปที่ 4.7(ก) ดังนั้น สารประกอบแอโรแมติกจึงทำให้ค่าความจุเบรคทรูของตัวดูดซับยังคงมีค่าที่ลดลงแม้ว่าสารประกอบ กำมะถันสามารถถูกดูดซับได้มากกว่าสารประกอบแอโรแมติก

เมื่อพิจารณาที่ตัวดูดซับซีโอไลต์ La-Y และ Ce-Y พบว่าค่าความจุเบรคทรูมีค่าลดลงแม้ว่า ชนิดของโลหะที่อยู่บนตัวดูดซับทั้งสองก่อให้เกิดการดูดซับสารประกอบกำมะถันแบบการดูดซับ โดยตรง แสดงให้เห็นถึงการที่ตัวดูดซับทั้งสองสามารถเกิดการดูดซับได้ทั้งแบบพายและการดูดซับ โดยตรง [22] จากการที่ตัวดูดซับทั้งสองเกิดการดูดซับสารประกอบแอโรแมติกบางส่วนผ่านการดูดซับ แบบพาย ทำให้ตัวดูดซับมีปริมาณของตำแหน่งกัมมันต์ที่สามารถเกิดการดูดซับแบบพายลดลง แต่ เนื่องจากการดูดซับสารประกอบกำมะถันของตัวดูดซับทั้งสองมักเกิดการดูดซับโดยตรงซึ่งทำให้ตัว ดูดซับทั้งสองมีค่าความจุเบรคทรูของการดูดซับที่น้อย และเมื่อตำแหน่งกัมมันต์ที่สามารถเกิดการ ดูดซับแบบพายถูกสารประกอบแอโรแมติกดูดซับอีก จึงทำให้ค่าความจุทั้งหมดของตัวดูดซับทั้งสองมี ค่าลดลง

รูปที่ 4.7 แนวคิดในการดูดซับสารประกอบต่างๆ ในน้ำมันจำลอง ก) 2 และ ข) 3 ของตัวดูดซับซีโอไลต์ Ni-Y

		ร้อยละการเปลี่ยนของค่าความจุเบรคทรู			
ଖ ୍ ଣଶୃଭାଷମ	ดาเมกดูดชบ	น้ำมันจำลอง 2	น้ำมันจำลอง 3		
No V	DBT	-56.6	-55.1		
INd-1	4,6-DMDBT	-57.5	-54.4		
Ni-V	DBT	-11.9	-26.2		
111-1	4,6-DMDBT	-15.0	-22.5		
L a V	DBT	-57.7	-61.6		
Ld-1	4,6-DMDBT	-57.2	-60.7		
(o V	DBT	-70.6	-70.6		
CE-1	4,6-DMDBT	-75.0	-68.8		
Ni-l a-V	DBT	-100	-71.4		
INI-La-I	4,6-DMDBT	-100	-71.4		
Ni-Co-V	DBT	+75.1	+133.4		
	4,6-DMDBT	+91.8	+133.4		

ตารางที่ 4.6 ร้อยละการเปลี่ยนของค่าความจุเบรคทรูของการดูดซับสารประกอบกำมะถัน (DBT และ 4,6-DMDBT) จากน้ำมันจำลอง 2 และ 3 เทียบกับน้ำมันจำลอง 1

หมายเหตุ 1) * คือ ร้อยละการเปลี่ยนของค่าความจุทั้งหมดที่สิ้นสุดการทดลอง (%)

2) เครื่องหมาย + แสดงถึงการเพิ่มขึ้น และเครื่องหมาย – แสดงถึงการลดลง

เมื่อพิจารณาน้ำมันจำลอง 3 ที่มีสารประกอบไนโตรเจน พบว่า ตัวดูดซับต่างๆ (ยกเว้นตัว ดูดซับซีโอไลต์ Ni-Ce-Y) มีค่าความจุเบรคทรูลดลงใกล้เคียงกับค่าความจุเบรคทรูลดลงที่ได้จากการ ดุดซับสารประกอบกำมะถันจากน้ำมันจำลอง 2 แม้ว่าในน้ำมันจำลอง 3 มีปริมาณสารประกอบ ในโตรเจนน้อยกว่าเมื่อเทียบกับปริมาณสารประกอบแอโรแมติกในน้ำมันจำลอง 2 แสดงว่า ความสามารถในการแข่งขันในการดูดซับของสารประกอบไนโตรเจนกับสารประกอบกำมะถันมากกว่า สารประกอบแอโรแมติก บ่งบอกถึงการดูดซับของสารประกอบในโตรเจนและสารประกอบแอโรแมติก ที่อาจดูดซับในตำแหน่งก่อกัมมันต์ชนิดเดียวกันดังแสดงแนวคิดของการดูดซับสารประกอบต่างๆ ใน ้น้ำมันจำลองที่ 3 ของตัวดูดซับซีโอไลต์ Ni-Y ในรูปที่ 4.7(ข) โดยงานวิจัยของ Laredo และคณะ [33] บ่งบอกถึงการดูดซับของควิโนลีนซึ่งเป็นสารประกอบในโตรเจนที่มีฤทธิ์เป็นเบสประเภทลิวอิส จึงทำ ให้ถูกดูดซับที่ตำแหน่งกรดประเภทลิวอิสบนตัวดูดซับได้ง่าย โดยการดูดซับจะดูดซับผ่านไนโตรเจนที่ อยู่ในโครงสร้างของโมเลกุลควิโนลีน ในทางกลับกันอินโดวซึ่งเป็นสารประกอบไนโตรเจนที่มีฤทธิ์เป็น กลาง เนื่องจากอิเล็กตรอนคู่โดดเดี่ยวของอะตอมในโตรเจนจะเข้าไปเคลื่อนที่ภายในระบบพาย อิเล็กตรอนของแอโรแมติก (Aromatic π electron system) [19] จึงทำให้สามารถถูกดูดซับใน ลักษณะที่เป็นการดูดซับแบบพายและนอกจากนั้นยังสามารถดูดซับผ่านพันธะไฮโดรเจนของอะตอม ไฮโดรเจนที่เกิดพันธะกับอะตอมของในโตรเจนที่อยู่ในโมเลกุลของอินโดวกับโครงสร้างของซีโอไลต์ได้ เช่นกัน [33]

ขณะที่งานวิจัยของ Shi และคณะ [22] พบว่า ตำแหน่งกรดประเภทลิวอิสบ่งบอกถึงการ ดูดซับสารประกอบกำมะถันแบบพาย ส่วนตำแหน่งกรดประเภทบรอนสเต็ดจะบ่งบอกถึงการดูดซับ สารประกอบกำมะถันแบบการดูดซับโดยตรง นอกจากนี้ Liu และคณะ [19] และ Kim และคณะ [8] พบว่าสารประกอบไนโตรเจนถูกดูดซับบนตัวดูดซับได้เสถียรกว่าสารประกอบแอโรแมติก เนื่องจาก การดูดซับของสารประกอบไนโตรเจนบนตัวดูดซับมีการปลดปล่อยพลังงานออกมามากกว่าการดูดซับ ของสารประกอบแอโรแมติกซึ่งบ่งบอกถึงการเกิดการดูดซับบนตัวดูดซับที่เสถียรกว่าของสารประกอบ ในโตรเจน นำมาสู่การที่สารประกอบไนโตรเจนอาจเกิดการดูดซับได้มากกว่าสารประกอบแอโรแมติก ซึ่งสอดคล้องกับร้อยละการดูดซับเบรคทรูและร้อยละการดูดซับทั้งหมดที่แสดงในตารางที่ 4.4 และ 4.5 ดังนั้นอาจกล่าวได้ว่าตัวดูดซับสามารถเกิดการดูดซับสารประกอบไนโตรเจนในน้ำมันจำลอง 3 ที่ ตำแหน่งกัมมันต์ที่ก่อให้เกิดการดูดซับแบบพายหรือตำแหน่งกรดประเภทลิวอิสในการดูดซับ สารประกอบกำมะถันได้มากกว่าการดูดซับสารประกอบแอโรแมติกในน้ำมันจำลอง 2 ทำให้ค่าความจุ เบรคทรูลดลงของการดูดซับกำมะถันจากน้ำมันจำลองแบบที่ 3 มีค่าลดลงใกล้เคียงกับค่าการลดลงที่ ได้จากน้ำมันจำลอง 2 แม้ในน้ำมันจำลอง 3 มีปริมาณโมเลกุลของสารประกอบไนโตรเจนน้อยกว่า โมเลกุลของสารประกอบแอโรแมติกในน้ำมันจำลอง 2 ก็ตาม

เมื่อพิจารณาตัวดูดซับแบบทวิโลหะ ได้แก่ ตัวดูดซับซีโอไลต์ Ni-Ce-Y และ Ni-La-Y พบว่า ้ตัวดูดซับซีโอไลต์ Ni-Ce-Y มีค่าความจุเบรคทรูของการดูดซับสารประกอบกำมะถันจากน้ำมันจำลอง 2 และ 3 เพิ่มขึ้น (ร้อยละการเปลี่ยนของค่าความจุทั้งหมด) เมื่อเทียบกับความจุเบรคทรูของการ ดูดซับสารประกอบกำมะถันจากน้ำมันจำลอง 1 ซึ่งตรงข้ามกับตัวดูดซับซีโอไลต์ Ni-La-Y ที่มีค่าความ ้จุเบรคทรูของสารดูดซับสารประกอบกำมะถันจากน้ำมันจำลอง 2 และ 3 ที่ลดลงเมื่อเทียบกับน้ำมัน จำลอง 1 ในลักษณะที่คล้ายกับตัวดูดซับแบบโลหะเดี่ยว โดยคาดว่าลักษณะดังกล่าวอาจเกิดจากการ ที่ตัวดูดซับซีโอไลต์ Ni-Ce-Y อาจทำให้สารในน้ำมันจำลอง 2 และ 3 เกิดปฏิกิริยากันเองจนเกิดเป็น สารใหม่ที่สามารถดูดซับบนตัวดูดซับได้ดีกว่าในกรณีที่น้ำมันจำลองมีเพียงสารประกอบกำมะถันเพียง ้อย่างเดียวเท่านั้น อย่างไรก็ตามเพื่อยืนยันพฤติกรรมที่คาดว่าอาจเกิดขึ้นในตัวดูดซับซีโอไลต์ Ni-Ce-Y และ Ni-La-Y จึงได้ทำการนำตัวดูดซับทวิโลหะทั้ง 2 ชนิด มาดูดซับน้ำมันจำลอง 4 ก่อนนำตัวดูดซับ ทวิโลหะทั้งสองมาคืนสภาพด้วยตัวทำละลายโทลูอีนที่อุณหภูมิ 50 องศาเซลเซียส และมีอัตราการไหล 1.0 มิลลิลิตรต่อนาที จากนั้นนำตัวทำละลายโทลูอีนที่ผ่านใช้คืนสภาพตัวดูดซับแล้วมาทำการ ้ วิเคราะห์ด้วยเครื่อง GC-MS (ใช้คอลัมน์ DB-1) เพื่อยืนยันพฤติกรรมที่อาจเกิดขึ้นระหว่างการดูดซับ ดังแสดงผลในรูปที่ 4.8 พบว่า สารคายซับออกมามีเพียงสารประกอบกำมะถัน ได้แก่ DBT และ 4,6-DMDBT, สารประกอบแอโรแมติก ได้แก่ แนฟทาลีน และสารประกอบไนโตรเจน ได้แก่ อินโดว (ปริมาณต่ำ) ซึ่งแสดงถึงการที่ตัวดูดซับทั้งสองมีพฤติกรรมในการดูดซับสารประกอบต่างๆ ในน้ำมัน จำลองเพียงอย่างเดียวเท่านั้น ดังนั้นจึงสามารถสรุปได้ว่า ตัวดูดซับซีโอไลต์ Ni-Ce-Y และ Ni-La-Y จะ มีพฤติกรรมในการดูดซับสารประกอบต่างๆ ในน้ำมันจำลองเพียงอย่างเดียวเท่านั้น ไม่มีพฤติกรรมที่ ก่อให้เกิดปฏิกิริยาใดๆ กับสารประกอบในน้ำมันจำลอง อย่างไรก็ตามจากการเพิ่มขึ้นของความจุ เบรคทรูของตัวดูดซับซีโอไลต์ Ni-Ce-Y ที่ตรงข้ามกับการลดลงของความจุเบรคทรูของตัวดูดซับ ซีโอไลต์ Ni-La-Y จึงคาดว่าอาจเกิดจากปฏิสัมพันธ์ของโลหะนิกเกิลและซีเรียมที่ก่อให้เกิดการเพิ่มขึ้น ของตำแหน่งกัมมันต์ แต่จากการที่มีพื้นที่ผิว BET และปริมาตรรูพรุนทั้งหมดต่ำจึงทำให้สารประกอบ ้กำมะถันแพร่เข้าไปดูดซับภายในรูพรุนได้ยากกว่าสารประกอบแอโรแมติกและไนโตรเจน ดังนั้นการมี สารประกอบแอโรแมติกหรือไนโตรเจนในน้ำมันจำลองอาจก่อให้เกิดการดูดซับสารประกอบ แอโรแมติกหรือไนโตรเจนภายในรูพรุนซึ่งนำมาสู่การอุดตันของพรุน ส่งผลให้เกิดการดูดซับ สารประกอบกำมะถันที่เพิ่มขึ้นจากการดูดซับแบบหลายชั้นที่เกิดจากการอุดตันรูพรุนของ สารประกอบแอโรแมติกและในโตรเจนที่ถูกดูดซับ

รูปที่ 4.8 โครมาโตรแกรมของ GC-MS ของการวิเคราะห์โทลูอีนใช้คายซับตัวดูดซับทวิโลหะ (ซิโอไลต์ Ni-La-Y และ Ni-Ce-Y)

4.2.5 ผลของสารประกอบแอโรแมติกและไนโตรเจนในน้ำมันจำลอง 4

เนื่องจากในน้ำมันดีเซลที่ใช้จริงมีองค์ประกอบทั้งสารประกอบกำมะถัน แอโรแมติก และ ในโตรเจน ดังนั้นการศึกษาหาความสามารถในการดูดซับสารประกอบกำมะถันในภาวะที่ใกล้เคียงกับ น้ำมันดีเซลที่ใช้จริงจึงเป็นสิ่งที่บ่งบอกถึงความสามารถที่แท้จริงของตัวดูดซับในการขจัดสารประกอบ กำมะถันจากน้ำมันดีเซลจริง โดยส่วนนี้ศึกษาการดูดซับสารประกอบกำมะถันในภาวะจำลองที่คล้าย กับน้ำมันดีเซลที่ใช้จริงมากที่สุด คือ น้ำมันจำลอง 4 ของตัวดูดซับ โดยผลการทดลองแสดงในรูปที่ 4.9, 4.10 และ 4.11 ที่แสดงถึงเส้นโค้งเบรคทรูของการดูดซับสารประกอบกำมะถัน แอโรแมติกและ ในโตรเจน ตามลำดับ และตารางที่ 4.8 และ 4.9 ที่แสดงถึงความจุเบรคทรู ร้อยละการดูดซับเบรคทรู ความจุทั้งหมด (เวลา 216 นาที) และร้อยละการดูดซับทั้งหมดของตัวดูดซับต่างๆ

จากผลการทดลองสามารถสรุปตัวดูดซับทุกตัวสามารถดูดซับสารประกอบกำมะถันในน้ำมัน จำลอง 4 ที่มีลักษณะคล้ายน้ำมันดีเซลได้ดังตารางที่ 4.7

a	ຍ ຍ	ູ	. 0	କ ୩ ୦ ୦ ଜନ	י א	ວ ວ	
mngn 17	ຽລແລະກາຮຸດຄະນາ	າມານມາຍອາຍານ	ໄຮຍຸດລາເດາາ	ແຂວງເປັງເປັນ	เขาลาลล.ๆ /ไ	ചെണ്ണാരരങ	പതറ എ
VIIJINVI 4.1	1000001113414100	MIN MISHAI () GIN 01 1 9 C	190116101119	๚๛ฅหฅหห	16101 4	0,6141,9141,01	
	ข					ข	

	Na-Y ~	Ni-Ce-\	′ ~ Ni-Y > La-Y > Ce-Y > Ni-La-Y
DBT (%)	37.6 ~	29.4	~ 29.1 > 19.6 > 16.5 > 8.5
4,6-DMDBT (%)	37.4 ~	35.7	~ 28.8 > 29.7 > 15.7 > 9.9
		COLUMN STREET	7 1

เมื่อพิจารณาตัวดูดซับที่แลกเปลี่ยนไอออนโลหะเดี่ยว พบว่าแม้ตัวดูดซับซีโอไลต์ Ni-Y มีพื้นที่ ผิวและปริมาตรทั้งหมดของรูพรุนที่ใกล้เคียงกับตัวดูดซับซีโอไลต์ La-Y และ Ce-Y แต่กลับดูดซับ สารประกอบกำมะถันต่างกัน แสดงถึงความสามารถในการดูดซับสารประกอบกำมะถันขึ้นอยู่กับชนิด ของโลหะที่ทำการแลกเปลี่ยนไอออนกับตัวดูดซับซีโอไลต์ Na-Y มากกว่าพื้นที่ผิวหรือปริมาตรทั้งหมด ของรูพรุน เนื่องจากลักษณะการดูดซับที่ต่างกันของโลหะเป็นเหตุให้ตัวดูดซับแต่ละชนิดสามารถ ดูดซับสารประกอบกำมะถันต่างกัน โดยสามารถสรุปว่าตัวดูดซับซีโอไลต์ Na-Y ที่ถูกแลกเปลี่ยน ไอออนด้วยนิกเกิลมีความสามารถในการดูดซับสารประกอบกำมะถันที่มากที่สุด รองลงมาคือโลหะ แลนทานัมและโลหะซีเรียมตามลำดับ เนื่องจากการที่โลหะนิกเกิลส่งเสริมการดูดซับแบบพายมากกว่า การดูดซับแบบการดูดซับโดยตรงจึงไม่ได้รับผลกระทบของความเกะกะของโครงสร้างของโมเลกุลที่ถูก ดูดซับทำให้สามารถดูดซับสารประกอบกำมะถันได้ในปริมาณที่มากกว่าการดูดซับแบบการดูดซับ โดยตรง ซึ่งตรงข้ามกับโลหะแลนทานัมและโลหะซีเรียมที่ส่งเสริมการดูดซับแบบการดูดซับโดยตรง

ขณะที่ตัวดูดซับซีโอไลต์ Ni-Ce-Y สามารถในการดูดซับสารประกอบกำมะถันค่อนข้างสูงตรง ข้ามกับตัวดูดซับซีโอไลต์ Ni-La-Y ดูดซับสารประกอบกำมะถันได้เพียงเล็กน้อย คาดว่าผลการดูดซับ สารประกอบกำมะถันที่ต่างกันเกิดมาจากโลหะซีเรียมที่อาจช่วยเพิ่มตำแหน่งกัมมันต์ในการดูดซับ นำมาสู่การดูดซับสารประกอบกำมะถันที่เพิ่มขึ้นซึ่งตรงข้ามกับโลหะแลนทานัม

Breakthrough curve of S compounds (DBT and 4,6-DMDBT) in model oil 4

รูปที่ 4.9 เส้นโค้งเบรคทรูของตัวดูดซับต่างๆ ที่ได้จากการดูดซับสารประกอบกำมะถันในน้ำมันจำลอง 4

Breakthrough curve of Aromatic compound (Naphthalene) in model oil 4

รูปที่ 4.10 เส้นโค้งเบรคทรูของตัวดูดซับต่างๆ ที่ได้จากการดูดซับสารประกอบแอโรแมติกในน้ำมันจำลอง 4

Breakthrough curve of N compounds (Quinoline and Indole) in model oil 4

รูปที่ 4.11 เส้นโค้งเบรคทรูของตัวดูดซับต่างๆ ที่ได้จากการดูดซับสารประกอบไนโตรเจนในน้ำมันจำลอง 4

ตัวดูดซับ	ตัวถูกดูดซับ	ปริมาณ ที่ป้อน*	ความจุ เบรคทรู*	ร้อยละ การดูดซับ เบรคทรู**	ความจุ ทั้งหมด**	ร้อยละ การดูดซับ ทั้งหมด***
	DBT	0.73	0.24	33.3	0.27	37.6
	4,6-DMDBT	0.73	0.24	33.3	0.27	37.4
Na-Y	Naphthalene	1.22	0.39	32.4	0.43	35.5
	Quinoline	0.33	0.17	50.0	0.25	76.0
	Indole	0.33	0.16	48.2	0.20	59.1
	DBT	0.71	0.13	18.5	0.21	29.1
	4,6-DMDBT	0.71	0.13	18.5	0.21	28.8
Ni-Y	Naphthalene	1.19	0.20	17.6	0.34	28.6
	Quinoline	0.33	0.07	24.1	0.18	54.8
	Indole	0.33	0.07	21.3	0.11	34.5

ตารางที่ 4.8 ความจุเบรคทรูและความจุทั้งหมดของตัวดูดซับในการดูดซับสารประกอบต่างๆ ในน้ำมัน จำลอง 4

ภาวะ: อัตราการไหล 1 มิลลิลิตรต่อนาที, อุณหภูมิ 30 องศาเซลเซียส และอัตราการเก็บตัวอย่าง 2 นาทีต่อครั้ง หมายเหตุ * คือ หน่วยมิลลิโมลของสารประกอบต่อกรัมของตัวดูดซับ, ** ความจุทั้งหมด = ความจุทั้งหมดที่สิ้นสุดการทดลอง, *** คือหน่วยเปอร์เซ็นต์

ตัวดูดซับ	ตัวถูกดูดซับ	ปริมาณ ที่ป้อน*	ความจุ เบรคทรู*	ร้อยละ การดูดซับ เบรคทรู**	ความจุ ทั้งหมด**	ร้อยละ การดูดซับ ทั้งหมด***
	DBT	0.72	0.07	9.3	0.14	19.6
	4,6-DMDBT	0.72	0.07	10.2	0.21	29.7
La-Y	Naphthalene	1.19	0.08	6.5	0.14	11.8
	Quinoline	0.33	0.10	31.5	0.21	65.3
	Indole	0.33	0.10	30.6	0.18	55.2
	DBT	0.72	0.01	1.9	0.12	16.5
	4,6-DMDBT	0.72	0.01	1.9	0.11	15.7
Ce-Y	Naphthalene	1.20	0.01	0.9	0.16	13.3
	Quinoline	0.33	0.01	2.8	0.12	37.7
	Indole	0.33	0.01	2.8	0.08	23.6
	DBT	0.71	0	0	0.06	8.5
	4,6-DMDBT	0.71	0	0	0.07	9.9
Ni-La-Y	Naphthalene	1.19	0	0	0.05	4.2
	Quinoline	0.33	0	0	0.08	24.2
	Indole	0.33	0	0	0.06	18.2
	DBT	0.71	0.09	12.0	0.21	29.4
	4,6-DMDBT	0.71	0.09	13.0	0.25	35.7
Ni-Ce-Y	Naphthalene	1.19	0.09	7.4	0.15	12.6
	Quinoline	0.33	0.17	50.9	0.30	90.5
	Indole	0.33	0.17	52.8	0.27	84.2

ตารางที่ 4.9 ความจุเบรคทรูและความจุทั้งหมดของตัวดูดซับในการดูดซับสารประกอบต่างๆ ในน้ำมัน จำลอง 4 (ต่อ)

ภาวะ: อัตราการไหล 1 มิลลิลิตรต่อนาที, อุณหภูมิ 30 องศาเซลเซียส และอัตราการเก็บตัวอย่าง 2 นาทีต่อครั้ง หมายเหตุ * คือ หน่วยมิลลิโมลของสารประกอบต่อกรัมของตัวดูดซับ, ** ความจุทั้งหมด = ความจุทั้งหมดที่สิ้นสุดการทดลอง, *** คือหน่วยเปอร์เซ็นต์

4.3 การคืนสภาพตัวดูดซับด้วยการสกัดด้วยตัวทำละลาย (Solvent extraction regeneration)

การนำตัวดูดซับที่ผ่านการใช้งานแล้วกลับมาใช้ใหม่เป็นอีกหนึ่งแนวทางที่ช่วยเพิ่มความคุ้มค่า ทางเศรษฐศาสตร์ของกระบวนการขจัดกำมะถันด้วยการดูดซับ อย่างไรก็ตาม ตัวดูดซับที่ผ่านการใช้ งานแล้วมีการปกคลุมของสารที่ถูกดูดซับส่งผลให้ตัวดูดซับดังกล่าวไม่สามารถดูดซับหรือมี ความสามารถในการดูดซับสารอื่นที่ลดลง ดังนั้นการคืนสภาพตัวดูดซับที่ผ่านการใช้งานแล้วเพื่อให้ สามารถนำกลับมาใช้งานใหม่ได้อีกครั้งจัดเป็นแนวทางหนึ่งที่สามารถช่วยลดต้นทุนของกระบวนการ ขจัดกำมะถัน นำมาสู่ความเป็นไปได้ในการพัฒนากระบวนการดังกล่าวมาใช้งานจริง

กระบวนการคืนสภาพของตัวดูดซับสามารถทำได้หลายกระบวนการ Han และคณะ [15] ศึกษากระบวนการคืนสภาพตัวดูดซับที่ผ่านการใช้งานแล้ว ได้แก่ กระบวนการคืนสภาพด้วย ความร้อน กระบวนการคืนสภาพด้วยอัลตราชาวน์ และกระบวนการคืนสภาพด้วยการสกัดด้วยตัว ทำละลาย พบว่ากระบวนการคืนสภาพด้วยการสกัดด้วยตัวทำละลายทำให้ตัวดูดซับที่ผ่านการ คืนสภาพสามารถดูดซับได้ในปริมาณที่มากที่สุดเมื่อเทียบกับกระบวนการอื่นๆ Li และคณะ [23] มี แนวคิดที่ใช้นอร์มัลออกเทนในการคืนสภาพตัวดูดซับถ่านกัมมันต์ที่ผ่านการใช้งานแล้ว เนื่องจาก นอร์มัลออกเทนที่ลักษณะที่คล้ายคลึงกับน้ำมันดีเซลที่ใช้งานจริง ดังนั้นงานวิจัยนี้ศึกษาการใช้ตัว ทำละลายเป็นเฮกเซนและโทลูอีน ผลของภาวะที่ใช้ในการคืนสภาพตัวดูดซับ ได้แก่ อุณหภูมิและ อัตราการไหลของตัวทำละลาย โดยน้ำมันจำลอง 5 ที่มีองค์ประกอบ ได้แก่ สารประกอบกำมะถัน (DBT 150 ppm S) สารประกอบแอโรแมติก (แนฟทาลีน 500 ppm) และสารประกอบไนโตรเจน (ควิโนลีนและอินโดว 15 ppm N) โดยใช้นอร์มัลออกเทนเป็นตัวทำละลาย

4.3.1 ผลของชนิดตัวทำละลายในการคืนสภาพตัวดูดซับซีโอไลต์ Na-Y

ชนิดตัวทำละลายที่ใช้ในการคืนสภาพตัวดูดซับที่ผ่านการใช้งานแล้วเป็นหนึ่งปัจจัยที่ส่งผลต่อ ความสามารถในการคืนสภาพของตัวดูดซับที่ผ่านการใช้งานแล้ว โดยตัวทำละลาย ได้แก่ เฮกเซนและ โทลูอีน ถูกนำมาใช้ในการศึกษาการคืนสภาพตัวดูดซับซีโอไลต์ Na-Y ที่ผ่านการใช้งานแล้ว ที่ภาวะใน การคืนสภาพ ได้แก่ อุณหภูมิ 30 องศาเซลเซียส และอัตราการไหลของตัวทำละลาย 1 มิลลิลิตรต่อ นาที โดยใช้อัตราการเก็บตัวอย่างทุกๆ 2 มิลลิลิตร โดยผลการทดลองแสดงดังรูปที่ 4.12 และตารางที่ 4.10

จากรูปที่ 4.12 และตารางที่ 4.10 จากการคืนสภาพตัวดูดซับที่ผ่านการใช้งานแล้วด้วยการ สกัดด้วยโทลูอีนทำให้สารที่ถูกดูดซับเกิดการคายซับมากกว่าการสกัดด้วยเฮกเซน เนื่องจากโทลูอีน เป็นสารประกอบแอโรแมติกมีหมู่เมทิลซึ่งมีความเป็นขั้วมากกว่าเฮกเซนที่เป็นพาราฟินที่ไม่มีขั้ว [34] โทลูอีนจึงสามารถสกัด (หรือละลาย) สารที่ถูกดูดซับที่มีขั้ว เช่น สารประกอบแอโรแมติก ไนโตรเจน และกำมะถัน โดยเฉพาะอย่างยิ่งสารประกอบไนโตรเจนได้ง่ายกว่าเฮกเซน นอกจากนั้นการที่โทลูอีนมี ลักษณะเป็นแอโรแมติกไฮโดรคาร์บอนที่คล้ายกับสารที่ถูกดูดซับ ทำให้อาจเกิดการดูดซับแทนที่สารที่ ถูกดูดซับได้เช่นกัน ขณะที่การใช้เฮกเซนเป็นตัวทำละลายพบว่าไม่สามารถสกัดสารประกอบ ในโตรเจนได้ คาดว่าอาจเกิดจากความเป็นขั้วที่ต่างกันมากของโมเลกุล จึงขอสรุปว่าความเป็นขั้วของ ตัวทำละลาย เช่น โทลูอีน มีผลต่อความสามารถและความมากหรือน้อยในการละลายหรือการสกัด สารที่ถูกดูดซับ [35] ซึ่งบ่งบอกถึงประสิทธิภาพในการคืนสภาพตัวดูดซับด้วยตัวทำละลายสำหรับการ คายสารถูกดูดซับต่างๆ

รูปที่ 4.12 การคายซับของสารที่ถูกดูดซับเมื่อผ่านการคืนสภาพตัวดูดซับซีโอไลต์ Na-Y ด้วยการสกัด ด้วยเฮกเซนและโทลูอีนที่อุณหภูมิ 30 องศาเซลเซียส และอัตราการไหลตัวทำละลาย 1 มิลลิลิตรต่อ นาที โดยใช้อัตราการเก็บตัวอย่างทุก 2 มิลลิลิตร

ตารางที่ 4.10 ความจุทั้งหมด ปริมาณของสารคายซับ ร้อยละของสารคายซับและประสิทธิภาพการ คืนสภาพจากการคืนสภาพตัวดูดซับซีโอไลต์ Na-Y ที่อุณหภูมิ 30 องศาเซลเซียส และอัตราการไหล ของตัวทำละลาย 1 มิลลิลิตรต่อนาที

	ตัวทำละลาย	สารถูกดูดซับ	ความจุทั้งหมด*	ร้อยละ	ประสิทธิภาพของ
				การคายซับ**	การคืนสภาพ***
	Hexane	DBT	0.39	21.6	19.7
		Naphthalene	0.46	43.7	
		Quinoline	0.32	0	
		Indole	0.30	0	
	Toluene	DBT	0.32	63.2	65.7
		Naphthalene	0.33	82.9	
		Quinoline	0.31	48.9	
		Indole	0.28	66.9	

หมายเหตุ * คือ ความจุทั้งหมดที่สิ้นสุดการทดลอง (มิลลิโมลต่อกรัมของตัวดูดซับ),

** คือ หน่วยเปอร์เซ็นต์, *** คิดจากปริมาณสารที่เกิดการคายซับทั้งหมดเทียบกับสารที่ดูดซับทั้งหมด หน่วยเปอร์เซ็นต์

4.3.2 ผลของอุณหภูมิในการคืนสภาพตัวดูดซับซีโอไลต์ Na-Y

นอกจากชนิดตัวทำละลายที่ใช้ในการคืนสภาพแล้ว ภาวะของการคืนสภาพตัวดูดซับ เช่น อุณหภูมิของตัวทำละลายเป็นอีกหนึ่งปัจจัยที่ส่งผลต่อความสามารถในการคืนสภาพด้วยการสกัดด้วย ตัวทำละลาย ในส่วนนี้เป็นการศึกษาผลของอุณหภูมิต่อความสามารถในการคายซับของตัวดูดซับ ซีโอไลต์ Na-Y ด้วยการสกัดด้วยตัวทำละลายเฮกเซนและโทลูอีนที่อุณหภูมิ 30, 40 และ 50 องศา เซลเซียส ที่อัตราการไหลของตัวทำละลายที่ 1 มิลลิลิตรต่อนาที และทำการเก็บตัวทำละลายที่ผ่านตัว ดูดซับแล้วทุก 2 มิลลิลิตร ผลการทดลองแสดงอยู่ในรูปที่ 4.13 และตารางที่ 4.11

จากรูปที่ 4.13 และตารางที่ 4.11 และ 4.12 การเพิ่มอุณหภูมิทำให้เกิดการคายซับเพิ่มอย่าง ชัดเมื่อใช้ตัวทำละลายเฮกเซน อธิบายได้ว่า 1) การเพิ่มอุณหภูมิทำให้โมเลกุลของเฮกเซนมีพลังงาน มากขึ้นสามารถละลายสารที่ถูกดูดซับได้มากขึ้น 2) ตัวทำละลายอุณหภูมิสูงไหลผ่านทำให้โมเลกุลสาร ที่ถูกดูดซับเข้าสู่ภาวะที่ไม่เสถียรและนำมาสู่การคายซับของสารถูกดูดซับง่ายขึ้น หรืออาจกล่าวได้ว่า การให้เพิ่มอุณหภูมิหรือเพิ่มความร้อนสามารถช่วยเพิ่มประสิทธิภาพของการสกัดได้ เนื่องจากการเพิ่ม ความร้อนเป็นการช่วยเพิ่มความสามารถการละลายของสารที่ต้องการสกัดและทำให้สารในระบบมี อัตราการแพร่และการเคลื่อนที่ของมวลสารที่รวดเร็ว [36, 37] อย่างไรก็ตามโทลูอีนแสดงผลใน ทางตรงข้ามที่แม้เพิ่มอุณหภูมิกลับเกิดการคายซับที่ค่อนข้างคงที่ ซึ่งอาจเกิดจากอุณหภูมิที่ทดลอง คืนสภาพ (30 ถึง 50 องศาเซลเซียส) ต่ำกว่าจุดเดือดของโทลูอีน (110.6 องศาเซลเซียส) มาก ตรงข้ามกับเฮกเซนที่มีจุดเดือด (69 องศาเซลเซียส) ใกล้กับอุณหภูมิที่ทดลองคืนสภาพ (30 ถึง 50 องศาเซลเซียส) ทำให้การเพิ่มอุณหภูมิในช่วงดังกล่าวอาจส่งผลให้โมเลกุลของโทลูอีนมีพลังงานที่ เพิ่มขึ้นเพียงเล็กน้อย เป็นเหตุให้การเพิ่มอุณหภูมิของโทลูอีนในช่วงดังกล่าวไม่ก่อให้เกิดการคายซับ ที่เพิ่มขึ้น อย่างไรก็ตามอาจสรุปได้ว่าอุณหภูมิตัวทำละลายเป็นอีกหนึ่งปัจจัยที่ส่งผลต่อประสิทธิภาพ การคืนสภาพด้วยตัวทำละลาย

รูปที่ 4.13 การคายซับของสารที่ถูกดูดซับเมื่อผ่านการคืนสภาพตัวดูดซับซีโอไลต์ Na-Y ด้วยการสกัด ด้วย ก) เฮกเซนและ ข) โทลูอีน ที่อุณหภูมิ 30, 40 และ 50 องศาเซลเซียส และอัตราการไหลของตัว ทำละลาย 1 มิลลิลิตรต่อนาทีและอัตราการเก็บตัวอย่างทุก 2 มิลลิตร
*	discooper	2	ร้อยละ	ประสิทธิภาพของ
ด์เทมป์ท	สาวถูกตู่ทอบ	ผเาเทท์มงมายแ	การคายซับ***	การคืนสภาพ****
		Hexane		
	DBT	0.39	21.64	
20	Naphthalene	0.46	43.71	10.7
30	Quinoline	0.32	0	19.7
	Indole	0.3	0	
	DBT	0.36	29.97	
40	Naphthalene	0.39	75.26	20.4
40	Quinoline	0.31	0	29.6
	Indole	0.29	0	
	DBT	0.39	34.52	
50	Naphthalene	0.34	100.00	22.0
50	Quinoline	0.33	0	55.8
	Indole	0.33	0	
	-	Toluene		
	DBT	0.32	63.21	
20	Naphthalene	0.33	82.92	657
50	Quinoline	0.31	48.93	05.7
	Indole	0.28	1618	
	DBT OF	0.36	53.28	
40	Naphthalene	0.42	72.18	50.2
40	Quinoline	0.3	46.31	59.3
	Indole	0.27	61.67	
	DBT	0.32	59.00	
50	Naphthalene	0.38	81.25	
50	Quinoline	0.27	46.87	65.8
	Indole	0.23	69.19	

ตารางที่ 4.11 ความจุทั้งหมด ปริมาณของสารคายซับ ร้อยละของสารคายซับและประสิทธิภาพการ คืนสภาพจากการคืนสภาพตัวดูดซับซีโอไลต์ Na-Y ด้วยตัวทำละลายเฮกเซนและโทลูอีนที่อุณหภูมิ 30, 40 และ 50 องศาเซลเซียส และอัตราการไหล 1 มิลลิลิตรต่อนาที

หมายเหตุ * คือ หน่วยองศาเซลเซียส, ** คือ ความจุทั้งหมดที่สิ้นสุดการทดลอง (มิลลิโมลต่อกรัมของตัวดูดซับ),

*** คือ หน่วยเปอร์เซ็นต์, **** คิดจากปริมาณสารที่เกิดการคายซับทั้งหมดเทียบกับสารที่ดูดซับทั้งหมด หน่วยเปอร์เซ็นต์

4.3.3 ผลของอัตราการไหลในการคืนสภาพตัวดูดซับซีโอไลต์ Na-Y

อัตราการไหลตัวทำละลายเป็นอีกหนึ่งปัจจัยที่มีผลต่อความสามารถคืนสภาพของตัวดูดซับ เนื่องจากอัตราการไหลตัวทำละลายส่งผลถึงเวลาที่ตัวทำละลายสัมผัสกับเบดของตัวดูดซับ จากการ ทดลองเพื่อคืนสภาพตัวดูดซับซีโอไลต์ Na-Y ที่ผ่านการใช้งานแล้วด้วยตัวทำละลายเฮกเซนและ โทลูอีนที่อัตราการไหล 0.5, 1 และ 1.5 มิลลิลิตรต่อนาที ที่อุณหภูมิ 50 องศาเซลเซียส และเก็บตัว ทำละลายที่ผ่านตัวดูดซับแล้วทุก 2 มิลลิลิตร ผลการทดลองแสดงอยู่ในรูปที่ 4.14 และตารางที่ 4.12

จากรูปที่ 4.14 และตารางที่ 4.12 การใช้ตัวทำละลายโทลูอีนทำให้สารถูกดูดซับเกิดการ คายซับได้มากที่สุดเมื่ออัตราการไหลของตัวทำละลายต่ำที่ 0.5 มิลลิลิตรต่อนาที เนื่องจากการใช้อัตรา การไหลต่ำทำให้ตัวทำละลายใช้เวลาการไหลผ่านเบดของตัวดูดซับมาก [38] ส่งผลให้ตัวทำละลาย สามารถแทนที่ในการดูดซับหรือสกัดสารถูกดูดซับออกมาจากตัวดูดซับที่มาก เนื่องจากมีเวลาที่ใช้ใน การสกัดมากเมื่อเทียบกับตัวทำละลายที่มีอัตราการไหลที่สูง 1.0 และ 1.5 มิลลิลิตรต่อนาที ทางตรง ข้ามกับเฮกเซนที่สกัดโดยการชะสารที่ถูกดูดซับเพียงเท่านั้น ทำให้การใช้อัตราการไหลที่ต่ำอาจทำให้ เกิดสมดุลของการดูดซับส่งผลให้สามารถสกัดสารละลายได้ต่ำเมื่อเทียบกับการใช้อัตราการไหลที่ สูงขึ้น ขณะที่การใช้อัตราการไหลที่สูงเกินไปอาจทำให้เฮกเซนมีเวลาในการชะสารที่ถูกดูดซับที่น้อยซึ่ง นำมาสู่การมีการคายซับที่ลดลง

จากการศึกษาปัจจัยที่ส่งผลต่อการคืนสภาพของตัวดูดซับที่ผ่านการใช้งานแล้ว ได้แก่ ชนิดตัว ทำละลาย อุณหภูมิที่ใช้ในการคืนสภาพและอัตราการไหลตัวทำละลาย พบว่าปัจจัยทั้ง 3 ชนิด ส่งผล อย่างมากต่อการคายซับของสารที่ถูกดูดซับ โดยพบว่าการที่ตัวทำละลายแต่ละชนิดสามารถทำให้เกิด การคายซับได้มากน้อยต่างกันขึ้นอยู่กับโครงสร้างและสภาพความเป็นขั้วของตัวทำละลาย อุณหภูมิ และอัตราการไหลของตัวทำละลาย ดังนั้น การใช้ตัวทำละลายเอกเซนหรือโทลูอีนในการคืนสภาพตัว ดูดซับที่ผ่านการใช้งานแล้วจัดเป็นอีกแนวทางหนึ่งที่สามารถช่วยพัฒนาประสิทธิภาพของการคืน สภาพตัวดูดซับที่ผ่านการใช้งานแล้วให้สามารถนำกลับมาใช้งานได้อย่างมีประสิทธิภาพอีกครั้งหนึ่ง

4.3.4 ผลการคืนสภาพตัวดูดซับ Ni-Y ซีโอไลต์ด้วยภาวะที่เหมาะสม

หลังจากได้ทำการศึกษาภาวะที่เหมาะสมในการคืนสภาพตัวดูดซับซีโอไลต์ Na-Y ที่ผ่านการ ใช้งานแล้ว จึงได้ทดลองนำภาวะดังกล่าว (โทลูอีนที่อุณหภูมิ 50 องศาเซลเซียสและอัตราการไหล 0.5 มิลลิลิตรต่อนาที) มาวิเคราะห์การคืนสภาพกับตัวดูดซับซีโอไลต์ Ni-Y ที่ผ่านการใช้งานแล้วกับน้ำมัน จำลอง 4 โดยผลจะแสดงในรูปที่ 4.15 และตารางที่ 4.13 ซึ่งพบว่า ตัวดูดซับซีโอไลต์ Ni-Y มี ประสิทธิภาพของการคืนสภาพต่ำกว่าเมื่อเทียบกับตัวดูดซับซีโอไลต์ Na-Y ที่คืนสภาพในภาวะ เดียวกัน แสดงให้เห็นถึงการที่ตัวดูดซับซีโอไลต์ Ni-Y สามารถเกิดการดูดซับสารประกอบต่างๆ ใน น้ำมันจำลองด้วยอันตรกิริยาที่แข็งกว่าตัวดูดซับซีโอไลต์ Na-Y โดยเฉพาะอย่างยิ่งสารประกอบ ในโตรเจน หรืออาจกล่าวได้ว่าตัวดูดซับซีโอไลต์ Na-Y เกิดการดูดซับสารประกอบต่างๆ ด้วยการ ดูดซับทางกายภาพที่ไม่ใช่การดูดซับแบบพายในลักษณะเดียวกับตัวดูดซับซีโอไลต์ Ni-Y จึงทำให้ สามารถเกิดการคายซับได้มากกว่าที่ภาวะการคืนสภาพเดียวกัน และอาจบอกเป็นนัยถึงสาเหตุที่ตัว ดูดซับซีโอไลต์ Na-Y สามารถเกิดการดูดซับได้มากกว่าตัวดูดซับที่ผ่านการแลกเปลี่ยนไอออนอีกด้วย

รูปที่ 4.14 การคายซับของสารที่ถูกดูดซับเมื่อผ่านการคืนสภาพตัวดูดซับซีโอไลต์ Na-Y ด้วยการสกัด ด้วย ก) เฮกเซนและ ข) โทลูอีน ที่อัตราการไหลตัวทำละลาย 0.5, 1 และ 1.5 มิลลิลิตรต่อนาที อุณหภูมิ 50 องศาเซลเซียส และอัตราการเก็บตัวอย่างทุก 2 มิลลิลิตร

อัตราการไหว *	3250000 8 91	2 0001000000000000000000000000000000000	ร้อยละ	ประสิทธิภาพของ
6M111111100	តារពូកម្តីមាមប	น 1 เหลุ้่มวุ่มหม	การคายซับ***	การคืนสภาพ****
		Hexane		
	DBT	0.39	31.38	
0.5	Naphthalene	0.42	77.01	21.0
0.5	Quinoline	0.32	0.00	51.2
	Indole	0.30	0.00	
	DBT	0.39	34.52	
1	Naphthalene	0.34	100.00	22.0
1	Quinoline	0.33	0	0.00
	Indole	0.33	0	
	DBT	0.37	30.26	
1 5	Naphthalene	0.36	72.34	26.0
1.5	Quinoline	0.33	0.00	20.9
	Indole	0.33	0.00	
	Ĵ.	Toluene		
	DBT	0.25	72.34	
0.5	Naphthalene	0.29	99.05	77.0
0.5	Quinoline	0.26	56.99	11.2
	Indole	ณมา _{0.21} วิทย	าลย _{ั73.01}	
	GHULDBTONG	0.32	ERS 59.00	
1	Naphthalene	0.38	81.25	
1	Quinoline	0.27	46.87	0.50
	Indole	0.23	69.19	
	DBT	0.21	31.45	
1 5	Naphthalene	0.25	42.13	25.0
1.5	Quinoline	0.27	34.10	55.8
	Indole	0.22	34.17	

ตารางที่ 4.12 ความจุทั้งหมด ร้อยละของสารคายซับและประสิทธิภาพการคืนสภาพจากการคืนสภาพ ตัวดูดซับซีโอไลต์ Na-Y ด้วยตัวทำละลายเฮกเซนและโทลูอีนที่อัตราการไหลของตัวทำละลาย 0.5, 1 และ 1.5 มิลลิลิตรต่อนาที ที่อุณหภูมิ 50 องศาเซลเซียส

หมายเหตุ * คือ หน่วยมิลลิลิตรต่อนาที, ** คือ ความจุทั้งหมดที่สิ้นสุดการทดลอง (มิลลิโมลต่อกรัมของตัวดูดซับ),

*** คือ หน่วยเปอร์เซ็นต์, **** คิดจากปริมาณสารที่เกิดการคายซับทั้งหมดเทียบกับสารที่ดูดซับทั้งหมด หน่วยเปอร์เซ็นต์

รูปที่ 4.15 การคายซับของสารที่ถูกดูดซับเมื่อผ่านการคืนสภาพตัวดูดซับซีโอไลต์ Ni-Y ด้วยการสกัด ด้วยโทลูอีน ที่อัตราการไหลตัวทำละลาย 0.5 มิลลิลิตรต่อนาที อุณหภูมิ 50 องศาเซลเซียส และอัตรา การเก็บตัวอย่างทุก 2 มิลลิลิตร

ตารางที่ 4.13 ความจุทั้งหมด ร้อยละของสารคายซับและประสิทธิภาพการคืนสภาพจากการคืนสภาพ ตัวดูดซับซีโอไลต์ Ni-Y ด้วยตัวทำละลายโทลูอีนที่อัตราการไหลของตัวทำละลาย 0.5 มิลลิลิตรต่อนาที ที่อุณหภูมิ 50 องศาเซลเซียส

			- Mah I		
-	d05000000	200100 ×	 ້	ประสิทธิภาพของ	
	តារពូកទាបប	แ า เทม์ แก เทพ	การคายซับ**	การคืนสภาพ***	
-	DBT	0.16	87.6		
	4,6-DMDBT	0.16	43.5 STY		
	Naphthalene	0.26	74.2	48.6	
	Quinoline	0.15	0.0		
	Indole	0.09	0.1		

หมายเหตุ * คือ ความจุทั้งหมดที่สิ้นสุดการทดลอง (มิลลิโมลต่อกรัมของตัวดูดซับ), ** คือ หน่วยเปอร์เซ็นต์, *** คิดจากปริมาณสารที่เกิดการคายซับทั้งหมดเทียบกับสารที่ดูดซับทั้งหมด หน่วยเปอร์เซ็นต์

4.3.5 การวิเคราะห์เอกลักษณ์ของตัวดูดซับซีโอไลต์ Na-Y ที่ผ่านการใช้งาน

เมื่อนำตัวดูดซับซีโอไลต์ Na-Y ที่ยังไม่ผ่านการใช้งาน ผ่านการใช้งานแล้ว และผ่านการใช้งาน และคืนสภาพแล้วมาทำการวิเคราะห์ด้วยเครื่อง Scanning electron microscopy (SEM) (รูปที่ 4.16) พบว่า ตัวดูดซับที่ยังไม่ผ่านการใช้งานมีอนุภาคที่แยกตัวกันกระจายตัวอยู่ ตัวดูดซับที่ผ่านการ ใช้งานแล้วมีการเกาะกลุ่มกันของอนุภาคของตัวดูดซับบางส่วนซึ่งอาจนำมาสู่การลดลงของพื้นที่ผิว ของตัวดูดซับที่อาจนำมาสู่การลดลงของความจุในการดูดซับ ขณะที่เมื่อนำตัวดูดซับที่ผ่านการใช้งาน แล้วมาทำการคืนสภาพแล้วจะมีลักษณะของอนุภาคที่ยังเกาะตัวกันเองเล็กน้อยเมื่อเทียบกับลักษณะ ของตัวดูดซับที่ผ่านการใช้งานแล้ว

นอกจากการหาประสิทธิภาพของการคืนสภาพตัวดูดซับด้วยตัวทำละลายเฮกเซนและโทลูอีน ได้จากการปริมาณของสารที่เกิดการคายซับแล้ว การวัดปริมาณคาร์บอน ไฮโดรเจน ไนโตรเจนและ กำมะถัน ของสารที่เหลืออยู่บนตัวดูดซับที่ผ่านการคืนสภาพแล้ว ดังแสดงในตารางที่ 4.13 เป็นอีก วิธีการที่บ่งบอกถึงประสิทธิภาพในการคืนสภาพตัวดูดซับที่ผ่านการใช้งานได้ โดยพบว่าปริมาณของ คาร์บอน ไนโตรเจน และกำมะถันลดลงอย่างเห็นได้ชัดเมื่อตัวดูดซับที่ผ่านการใช้งานได้ โดยพบว่าปริมาณของ คาร์บอน ไนโตรเจน และกำมะถันลดลงอย่างเห็นได้ชัดเมื่อตัวดูดซับที่ผ่านการใช้งานแล้วไปคืนสภาพ ด้วยการสกัดด้วยตัวทำละลายทั้งเฮกเซนและโทลูอีน ซึ่งแสดงความสามารถในการคืนสภาพตัวดูดซับ ที่ผ่านการใช้งานแล้วของตัวทำละลายทั้งสองชนิด อย่างไรก็ตาม พบว่าการคืนสภาพด้วยโทลูอีน ตัว ดูดซับมีปริมาณของไนโตรเจนและกำมะถันน้อยกว่าการคืนสภาพด้วยเฮกเซน ดังนั้นเป็นการยืนยัน ความสามารถของโทลูอีนในการสกัดสารประกอบไนโตรเจนและกำมะถันที่มากกว่าเฮกเซนเนื่องจาก สารประกอบไนโตรเจนและกำมะถันมีความเป็นขั้วใกล้เคียงกับโทลูอีนมากกว่าเฮกเซน ทำให้สามารถ สกัดสารประกอบไนโตรเจนและกำมะถันได้มากกว่า

รูปที่ 4.16 ภาพของตัวดูดซับซีโอไลต์ Na-Y ที่ยังไม่ผ่านการใช้งาน ผ่านการใช้งานแล้ว และผ่านการใช้ งานและคืนสภาพที่ได้จากการวิเคราะห์ด้วยเครื่อง Scanning electron microscopy (SEM) หมายเหตุ Toluene* แสดงถึงการคืนสภาพตัวดูดซับด้วยโทลูอีน Hexane** แสดงถึงการคืนสภาพตัวดูดซับด้วยเฮกเซน

ตารางที่ 4.14 ปริมาณองค์ประกอบ ได้แก่ คาร์บอน ไฮโดรเจน ไนโตรเจนและกำมะถันบนตัวดูดซับ ซีโอไลต์ Na-Y ที่ผ่านการใช้งานแล้วและตัวดูดซับซีโอไลต์ Na-Y ที่ถูกใช้งานและผ่านการคืนสภาพด้วย ตัวทำละลายเฮกเซนและโทลูอีน

	ปริมาณองค์ประกอบ (เปอร์เซ็นต์โดยน้ำหนัก)					
	กำมะถัน ¹	คาร์บอน ¹	ไฮโดรเจน ¹	ในโตรเจน ¹	กำมะถัน²	ไนโตรเจน ²
ตัวดูดซับที่ผ่านการใช้งาน	1.1	8.2	2.4	0.3	0.4	0.8
ตัวดูดซับที่คืนสภาพด้วย เฮกเซน	0.7	6.6	2.4	0.3	0.2	0.7
ตัวดูดซับที่คืนสภาพด้วย โทลูอีน	0.3	2.2	2.5	0.0	0.2	0.0

หมายเหตุ 1) วิเคราะห์ด้วย CHN analyzer และ S analyzer, 2) Energy dispersive X-ray spectroscopy (EDX)

บทที่ 5 สรุปผลการทดลองและข้อเสนอแนะ

5.1 สรุปผลการทดลอง

งานวิจัยนี้ได้ศึกษาผลของสารประกอบแอโรแมติกและไนโตรเจนต่อความสามารถในการขจัด กำมะถันในนอมัลออกเทนด้วยการดูดซับในเบดนิ่ง ที่ภาวะ 30 องศาเซลเซียส ด้วยอัตราไหลน้ำมัน จำลอง 1 มิลลิลิตรต่อนาที โดยใช้ตัวดูดซับ ได้แก่ ตัวดูดซับซีโอไลต์ Na-Y ตัวดูดซับแบบโลหะเดี่ยว (ซีโอไลต์ Ni-Y, La-Y และ Ce-Y) และตัวดูดซับแบบทวิโลหะ (ซีโอไลต์ Ni-Ce-Y และ Ni-La-Y) และ ศึกษาปัจจัยที่มีผลต่อการคืนสภาพของตัวดูดซับที่ผ่านการใช้งานแล้วด้วยการสกัดด้วยตัวทำละลาย ได้แก่ ชนิดตัวทำละลาย อุณหภูมิที่ใช้ในการคืนสภาพ และอัตราไหลของตัวทำละลาย

5.1.1 ผลของสารประกอบแอโรแมติกและในโตรเจนต่อการขจัดกำมะถันด้วยการดูดซับ

สำหรับน้ำมันจำลองมีสารประกอบแอโรแมติกและกำมะถันในนอร์มัลออนเทน (น้ำมันจำลอง 2) หรือมีสารประกอบไนโตรเจนและกำมะถันในนอร์มัลออนเทน (น้ำมันจำลอง 3) พบว่า ตัวดูดซับ ทุกตัว (ซีโอไลต์ Na-Y, Ni-Y, La-Y, Ce-Y, Ni-La-Y และ Ni-Ce-Y) มีค่าความจุในการดูดซับ สารประกอบกำมะถันทั้งความจุเบรคทรูและความจุทั้งหมดที่ลดลง เนื่องจากสารประกอบแอโรแมติก หรือไนโตรเจนเกิดการแข่งขันในการดูดซับกับสารประกอบกำมะถันบนตำแหน่งกัมมันต์ที่อยู่บนตัวดูด ซับนำมาสู่ค่าความจุในการดูดซับกำมะถันที่ลดน้อยลง เมื่อเปรียบเทียบผลของสารประกอบ แอโรแมติกและไนโตรเจนต่อการดูดซับสารประกอบกำมะถันในน้ำมันจำลอง 4 พบว่า ตัวดูดซับทุกตัว สามารถดูดซับสารประกอบไนโตรเจนได้มากกว่าสารประกอบแอโรแมติก แสดงว่าสารประกอบ ในโตรเจนในน้ำมันส่งผลให้เกิดการลดลงของความจุในการดูดซับกำมะถันที่มากกว่าสารประกอบ แอโรแมติก

5.1.2 ผลของชนิดตัวทำละลาย อุณหภูมิและอัตราการไหลต่อประสิทธิภาพของการ คืนสภาพ

การคืนสภาพด้วยการสกัดด้วยตัวทำละลายเป็นกระบวนการหนึ่งในการคืนสภาพตัวดูดซับที่ มีประสิทธิภาพสูง จากผลการทดลองพบว่า ชนิดตัวทำละลายเป็นหนึ่งปัจจัยที่ส่งต่อการคืนสภาพของ ด้วยดูดซับด้วยวิธีการสกัดด้วยตัวทำละลาย ความสามารถในการละลายสารที่ถูกดูดซับไม่เท่ากันจาก ผลของสภาพความเป็นขั้วที่ต่างกันของสารถูกดูดซับและตัวทำละลายแต่ละตัว

อุณหภูมิของตัวทำละลายเป็นอีกหนึ่งปัจจัยที่ส่งผลต่อความสามารถในการสกัดสารที่ถูกดูด ซับ จากผลการทดลองพบว่า ตัวทำละลายที่อุณหภูมิสูงสามารถเพิ่มความสามารถในการสกัดสารที่ถูก ดูดซับ ส่งผลให้มีประสิทธิภาพในการคืนสภาพของตัวทำละลายเพิ่มสูงขึ้น อัตราการไหลของตัวทำละลายเป็นอีกหนึ่งปัจจัยที่ส่งผลต่อความสามารถในการสกัดสารที่ถูก ดูดซับจากตัวดูดซับที่ผ่านการใช้งานแล้วในเบดนิ่ง จากผลการทดลองพบว่า ตัวทำละลายที่อัตราการ ไหลต่ำสามารถสกัดสารที่ถูกดูดซับออกมาได้มากกว่าตัวทำละลายที่อัตราการไหลที่สูง เนื่องจากการ ใช้อัตราการไหลต่ำทำให้ตัวทำละลายใช้เวลานานในการไหลผ่านตัวดูดซับในเบดนิ่ง จึงนำมาสู่การคาย ซับที่มากกว่าเมื่อสกัดด้วยตัวทำละลายที่มีอัตราการไหลต่ำ

5.2 ข้อเสนอแนะ

จากการทดลองพบว่าการมีสารประกอบแอโรแมติกและไนโตรเจนในน้ำมันก่อให้เกิดการ แข่งขันในการดูดซับบนตัวดูดซับกับสารประกอบกำมะถัน ส่งผลให้ตัวดูดซับมีความสามารถในการ ขจัดสารประกอบกำมะถันลดลง ซึ่งจากสาเหตุข้างต้น การขจัดสารประกอบแอโรแมติกและไนโตรเจน ก่อนกระบวนการดูดซับสารประกอบกำมะถันจึงจัดเป็นอีกหนึ่งแนวทางช่วยลดการลดลงของความจุ ในการดูดซับสารประกอบกำมะถันที่เกิดจากการแข่งขันในการดูดซับบนตัวดูดซับ โดยจากการทดลอง พบว่า ตัวดูดซับแต่ละชนิดมีความสามารถในการดูดซับสารประกอบแต่ละชนิดต่างกัน เช่น ตัวดูดซับ ซีโอไลต์ Na-Y และ Ni-Y มีความสามารถในการดูดซับสารประกอบแอโรแมติกมาก ตัวดูดซับซีโอไลต์ Ni-Ce-Y ที่มีความสามารถในการดูดซับสารประกอบไนโตรเจนสูง ดังนั้น ศึกษาการดูดซับ 2 ขั้นตอน ขั้นตอน 1 เป็นสารประกอบแอโรแมติกและไนโตรเจน ขั้นตอน 2 เป็นสารประกอบกำมะถันด้วยตัว ดูดซับที่เหมาะสมจึงจัดเป็นอีกหนึ่งวิธีที่สามารถช่วยลดการลดลงของความจุในการดูดซับสารประกอบ กำมะถันจากน้ำมันดีเซล

Screening aromatic & nitrogen

- Na-Y or Ni-Y for aromatic
- Ni-Ce-Y for nitrogen

Adsorptive desulfurization

รูปที่ 5.1 แนวคิดการขจัดกำมะถันด้วยการดูดซับอย่างมีประสิทธิภาพ

สำหรับคืนสภาพตัวดูดซับที่ผ่านการใช้งานแล้วด้วยวิธีการสกัดด้วยตัวทำละลาย พบว่า ตัวทำ ละลายต่างชนิดกันทำให้เกิดการคายซับของสารที่ถูกดูดซับในปริมาณที่ต่างกันขึ้นอยู่กันสภาพความ เป็นขั้วที่เหมือนหรือต่างกันระหว่างสารที่ถูกดูดซับกับตัวทำละลาย เช่น เฮกเซนสามารถละลาย สารประกอบแอโรแมติกได้มากแต่ไม่สามารถละลายสารประกอบไนโตรเจนได้เลย ขณะที่โทลูอีน สามารถละลายสารประกอบไนโตรเจนออกมาได้ อย่างไรก็ตามจากการที่ตัวทำละลายแต่ละชนิดที่ ความเหมาะสมที่ต่างกันในการละลายสารที่ถูกดูดซับแต่ละชนิดและภาวะที่ก่อให้เกิดการคายซับที่ มากที่สุดที่ต่างกัน การใช้ตัวทำละลายทั้ง 2 ชนิด ศึกษาการสกัด 2 ขั้นตอน เช่น ขั้นตอน 1 ใช้โทลูอีน ขั้นตอน 2 ใช้เฮกเซน ที่ภาวะเหมาะสมจะช่วยทำให้การคืนสภาพตัวดูดซับที่ผ่านการใช้งานแล้วมี ประสิทธิภาพมากยิ่งขึ้น

CHULALONGKORN UNIVERSITY

รายการอ้างอิง

[1] สำนักงานนโยบายและแผนพลังงาน กรมธุรกิจพลังงาน กระทรวงพลังงาน. น้ำมันยูโร 4. กระทรวง พลังงาน, 2552.

[2] Chevron, Diesel Fuels Technical Review - About Hydrocarbons (2007) 30 - 32.

[3] C. Sentorun-Shalaby, S.K. Saha, X. Ma, C. Song, Mesoporous-molecular-sievesupported nickel sorbents for adsorptive desulfurization of commercial ultra-low-sulfur diesel fuel, Applied Catalysis B: Environmental, 101 (2011) 718-726.

[4] Diesel Fuel.[ออนไลน์]. สืบค้นจาก: <u>https://ienergyguru.com/knowledgebase/diesel-</u> <u>fuel/</u> [30 เมษายน 2561]

[5] R. Hua, Y. Li, W. Liu, J. Zheng, H. Wei, J. Wang, X. Lu, H. Kong, G. Xu, Determination of sulfur-containing compounds in diesel oils by comprehensive two-dimensional gas chromatography with a sulfur chemiluminescence detector, Journal of Chromatography A, 1019 (2003) 101-109.

[6] F.C.-Y. Wang, W.K. Robbins, F.P. Di Sanzo, F.C. McElroy, Speciation of sulfurcontaining compounds in diesel by comprehensive two-dimensional gas chromatography, Journal of chromatographic science, 41 (2003) 519-523.

 [7] ฟองน้ำเพื่อสิ่งแวดล้อม:สามคุณลักษณะในหนึ่งเดียว. ข่าววิทยาศาสตร์.[ออนไลน์]. สืบค้นจาก: https://www.mtec.or.th/index.php/2013-05-29-09-06-21/2013-05-29-09-38-47/887- [8 มีนาคม 2561]

[8] J.H. Kim, X. Ma, A. Zhou, C. Song, Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: A study on adsorptive selectivity and mechanism, Catalysis Today, 111 (2006) 74-83.

 [9] Pradthana's Weblog. (2551). กระบวนการดูดซับ.[ออนไลน์]. สืบค้นจาก: http://pradthana.wordpress.com/2008/04/13/adsorption-process/ [1 มีนาคม 2561]
[10] นพิดา หิญชีระนันทน์, ชวลิต งามจรัสศรีวิชัย. (2556). เทคโนโลยีตัวเร่งปฏิกิริยา. 46-47.

[11] A.J. Hernández-Maldonado, F.H. Yang, G. Qi, R.T. Yang, Desulfurization of transportation fuels by π -complexation sorbents: Cu (I)-, Ni (II)-, and Zn (II)-zeolites, Applied Catalysis B: Environmental, 56 (2005) 111-126.

[12] ซีโอไลต์.[ออนไลน์]. สืบค้นจาก: http://www.vcharkarn.com/vblog/38694 [20 มิถุนายน 2561]

[13] J. Weitkamp, Zeolites and catalysis, Solid State Ionics, 131 (2000) 175-188.

[14] G. Blanco-Brieva, J. Campos-Martin, S. Al-Zahrani, J. Fierro, Thermal regeneration of the metal organic frameworks used in the adsorption of refractory organosulfur compounds from liquid fuels, Fuel, 105 (2013) 459-465.

[15] X. Han, H. Lin, Y. Zheng, Regeneration methods to restore carbon adsorptive capacity of dibenzothiophene and neutral nitrogen heteroaromatic compounds, Chemical Engineering Journal, 243 (2014) 315-325.

[16] G. Blanco-Brieva, J. Campos-Martin, S. Al-Zahrani, J. Fierro, Efficient solvent regeneration of Basolite C300 used in the liquid-phase adsorption of dibenzothiophene, Fuel, 113 (2013) 216-220.

[17] V.M. Bhandari, C.H. Ko, J.G. Park, S.-S. Han, S.-H. Cho, J.-N. Kim, Desulfurization of diesel using ion-exchanged zeolites, Chemical Engineering Science, 61 (2006) 2599-2608.

[18] D. Liu, L. Song, J. Gui, S. Liu, Z. Sun, Adsorption structures of heterocyclic sulfur compounds on Cu (I) Y zeolite: a first principle study, in: Studies in Surface Science and Catalysis, Elsevier, 2007, pp. 1699-1704.

[19] D. Liu, J. Gui, Z. Sun, Adsorption structures of heterocyclic nitrogen compounds over Cu (I) Y zeolite: a first principle study on mechanism of the denitrogenation and the effect of nitrogen compounds on adsorptive desulfurization, Journal of Molecular Catalysis A: Chemical, 291 (2008) 17-21.

[20] J. Xiao, C. Song, X. Ma, Z. Li, Effects of aromatics, diesel additives, nitrogen compounds, and moisture on adsorptive desulfurization of diesel fuel over activated carbon, Industrial & Engineering Chemistry Research, 51 (2012) 3436-3443.

[21] J.-H. Shan, X.-Q. Liu, L.-B. Sun, R. Cui, Cu– Ce Bimetal ion-exchanged Y zeolites for selective adsorption of thiophenic sulfur, Energy & Fuels, 22 (2008) 3955-3959.

[22] Y. Shi, W. Zhang, H. Zhang, F. Tian, C. Jia, Y. Chen, Effect of cyclohexene on thiophene adsorption over NaY and LaNaY zeolites, Fuel processing technology, 110 (2013) 24-32.

[23] W. Li, J. Chen, G. Cong, L. Tang, Q. Cui, H. Wang, Solvent desulfurization regeneration process and analysis of activated carbon for low-sulfur real diesel, RSC Advances, 6 (2016) 20258-20268.

[24] L. Wang, B. Sun, F.H. Yang, R.T. Yang, Effects of aromatics on desulfurization of liquid fuel by π -complexation and carbon adsorbents, Chemical engineering science, 73 (2012) 208-217.

[25] H. Song, Y. Chang, H. Song, Deep adsorptive desulfurization over Cu, Ce bimetal ion-exchanged Y-typed molecule sieve, Adsorption, 22 (2016) 139-150.

[26] Z. Zhang, T. Shi, C. Jia, W. Ji, Y. Chen, M. He, Adsorptive removal of aromatic organosulfur compounds over the modified Na-Y zeolites, Applied Catalysis B: Environmental, 82 (2008) 1-10.

[27] H. Song, H. Gao, H. Song, G. Yang, X. Li, Effects of Si/Al ratio on adsorptive removal of thiophene and benzothiophene over ion-exchanged AgCeY zeolites, Industrial & Engineering Chemistry Research, 55 (2016) 3813-3822.

[28] L. Duan, X. Gao, X. Meng, H. Zhang, Q. Wang, Y. Qin, X. Zhang, L. Song, Adsorption, co-adsorption, and reactions of sulfur compounds, aromatics, olefins over Ce-exchanged Y zeolite, The Journal of Physical Chemistry C, 116 (2012) 25748-25756.

[29] A.J. Hernández-Maldonado, R.T. Yang, Desulfurization of diesel fuels via π -complexation with nickel (II)-exchanged X-and Y-zeolites, Industrial & engineering chemistry research, 43 (2004) 1081-1089.

[30] H. Song, X. Wan, M. Dai, J. Zhang, F. Li, H. Song, Deep desulfurization of model gasoline by selective adsorption over Cu–Ce bimetal ion-exchanged Y zeolite, Fuel processing technology, 116 (2013) 52-62.

[31] F. Tian, W. Wu, Z. Jiang, C. Liang, Y. Yang, P. Ying, X. Sun, T. Cai, C. Li, The study of thiophene adsorption onto La (III)-exchanged zeolite NaY by FT-IR spectroscopy, Journal of Colloid and Interface Science, 301 (2006) 395-401.

[32] J. Bu, G. Loh, C.G. Gwie, S. Dewiyanti, M. Tasrif, A. Borgna, Desulfurization of diesel fuels by selective adsorption on activated carbons: Competitive adsorption of polycyclic aromatic sulfur heterocycles and polycyclic aromatic hydrocarbons, Chemical Engineering Journal, 166 (2011) 207-217. [33] G.C. Laredo, P.M. Vega-Merino, J.A. Montoya-de la Fuente, R.J. Mora-Vallejo, E. Meneses-Ruiz, J.J. Castillo, B. Zapata-Rendón, Comparison of the metal–organic framework MIL-101 (Cr) versus four commercial adsorbents for nitrogen compounds removal in diesel feedstocks, Fuel, 180 (2016) 284-291.

[34] HPLC Solvent Properties HPLC Solvent Prope.[ออนไลน์]. สืบค้นออนไลน์: http://www.finarchemicals.com/pdf/hplc_solvent_properties_solvent_miscibility_tabl e.pdf [14 มิถุนายน 2561]

[35] T. Bosiljkov, B. Levaj, The Effect of Extraction Solvents, Temperature and Time on the Composition and Mass Fraction of Polyphenols in Dalmatian Wild Sage (Salvia officinalis L.) Extracts.

[36] A. Mokrani, K. Madani, Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit, Separation and Purification Technology, 162 (2016) 68-76.

[37] N. Ruenroengklin, J. Zhong, X. Duan, B. Yang, J. Li, Y. Jiang, Effects of various temperatures and pH values on the extraction yield of phenolics from litchi fruit pericarp tissue and the antioxidant activity of the extracted anthocyanins, International Journal of Molecular Sciences, 9 (2008) 1333-1341.

[38] X. Luo, Z. Deng, X. Lin, C. Zhang, Fixed-bed column study for Cu2+ removal from solution using expanding rice husk, Journal of hazardous materials, 187 (2011) 182-189

CHULALONGKORN UNIVERSITY

ภาคผนวก ก

ก.1 ตัวอย่างการเตรียมตัวดูดซับ Ni-Y ซีโอไลต์ ด้วยการแลกเปลี่ยนไอออน

เตรียมสารละลาย Ni(NO₃)₂ ความเข้มข้น 0.1 โมลาร์ (หรือ 0.1 โมลต่อลิตร หรือ 0.1 mol ต่อ 1000 mL) ปริมาตร 1,000 ลูกบาศก์เซนติเมตร โดยใช้ Ni(NO₃)₂.6H₂O มวลโมเลกุล 290.81 กรัม/mol แต่เนื่องจากการใส่ Ni(NO₃)₂.6H₂O ปริมาณ 0.1 mol เสมือนกับการใส่ Ni(NO₃)₂ ปริมาณ 0.1 เช่นกัน

ดังนั้น	Ni(NO ₃) ₂ .6H ₂ O	1 mc	ง มีน้ำหนัก	290.81		g
	Ni(NO ₃) ₂ .6H ₂ O	0.10 mc	ol มีน้ำหนัก	0.1 X	290.81 1	g
				=	29.08	g

แต่เนื่องจากในโมเลกุลของตัวถูกละลายมีน้ำอยู่ 6 mol ต่อ Ni(NO₃)₂.6H₂O จำนวน 1 mol ดังนั้น จะต้องใส่น้ำเพิ่มเท่ากับ 1000-น้ำที่อยู่ในโมเลกุลของตัวถูกละลาย ซึ่งสามารถหาน้ำที่อยู่ในโมเลกุล ของตัวถูกละลายได้จาก 0.10 molของ Ni(NO₂)₂.6H₂O มี H₂O = 0.10 x 6 x 18 g

้าวถูกละลายได้จาก	0.10 molของ Ni(NO ₃) ₂ .6H ₂ O มี H ₂ O	=	0.10 × 6 × 18	g
	- A GA	=	10.8	g
	มี H ₂ O อยู่	=	10.8	mL
	ดังนั้น ต้องเติมน้ำปริมาตร 1,000 – 10.8	3 =	989.2	mL

ดังนั้น ต้องนำ Ni(NO3)2.6H2O 29.08 กรัม ไปละลายน้ำปริมาตร 989.2 mL

ก.2 การเตรียมน้ำมันจำลอง

```
วิธีคำนวณการเตรียมน้ำมันจำลองในนอร์มัลออกเทน ปริมาณ 400 mL โดยมีองค์ประกอบ
```

0 94

คือ

- กำมะถันจาก DBT A ppmw
- กำมะถันจาก 4,6-DMDBT B ppmw
- แนฟทาลีน C ppmw
- ในโตรเจนจาก ควิโนลีน D ppmw
- ในโตรเจนจาก อินโดว E ppmw

เนื่องจากหน่วย ppm หรือหนึ่งในล้านส่วนโดยน้ำหนัก ซึ่งหมายถึงปริมาณสารละลายหรือ น้ำมันจำลอง 10⁶ g มีกำมะถันจาก DBT A g, กำมะถันจาก 4,6-DMDBT B g, แนฟทาลีน C g, ในโตรเจนจากควิโนลีน D g และไนโตรเจนจากอินโดว E g เนื่องจากใช้ปริมาณตัวทำละลาย 400 mL จึงกำหนดให้เป็นตัวที่ใช้ในการเทียบ (มีปริมาณ มากที่สุดในสารละลายหรือน้ำมันจำลอง)

1. มีคราวมออลสิมโลล	(400 × 0 702) 🗸	Е
เนเตรเขนขากอนเตร	$= (400 \times 0.705)$	(10 ⁶ -А-В-С-D-Е) ⁹
	= e	g
เทียบหาปริมาณของอินโดว		
มวลโมเลกุลของอินโดว	= 117.15	g/mol
ปริมาณไนโตรเจน 14.01 g ในอิน	โดว 117.15	g
ปริมาณไนโตรเจน e g ในอินโดวปริมาณ e	$\times \frac{117.15}{14.01}$	g
	= 8.36e	g

<u>ตัวอย่างการคำนวณการเตรียมน้ำมันจำลอง 4</u>

การเตรียมน้ำมันจำลองในนอร์มัลออกเทน ปริมาณ 400 mL โดยมีองค์ประกอบคือ

- กำมะถันจาก DBT 75 ppmw
- กำมะถันจาก 4,6-DMDBT 75 ppmw
- แนฟทาลีน 500 ppmw
- ในโตรเจนจาก ควิโนลีน 15 ppmw
- ในโตรเจนจาก อินโดว 15 ppmw

เนื่องจากใช้ปริมาณตัวทำละลาย 400 mL จึงกำหนดให้เป็นตัวที่ใช้ในการเทียบ (มีปริมาณ มากที่สุดในสารละลายหรือน้ำมันจำลอง)

ູ້	Sauvõuooo DPT	(100×0.702)	75	
ตงนน	กามะถนจาก DBI	$= (400 \times 0.703)$		15–15) ^g
		= 0.0211	g	
เทียบห	าปริมาณของ DBT			
	มวลโมเลกุลของ DBT	= 184.26	g/mol	
ปริมาณ	เกำมะถัน 32.16 g ใน DBT ปรี	ร้มาณ 184.26	g	
ปริมาณ	เกำมะถัน 0.0211 g ใน DBT ($1.0211 \times \frac{184.26}{32.16}$	g	
		= 0.1209	g	
กำบะกั	นอาก 4 6-DMDRT	- (100 × 0 703)	×75	a
11199081		- (400 × 0.703)	(10 ⁶ -75-75-500-	15–15) ⁸
		= 0.0211	g	

เทียบหาปริมาณของ 4,6-DMDBT

ดังนั้น

น้ำมันจำลอง 4 ปริมาณ 400 mLจะประกอบไปด้วย

- นอมัลออกเทน ปริมาณ 400 mL
- DBT ปริมาณ 0.1209 g
- 4,6-DMDBT ปริมาณ 0.1393 g
- แนฟทาลีน ปริมาณ 0.1407 g
- ควิโนลีน ปริมาณ 0.0387 g
- อินโดว ปริมาณ 0.0351 g

Na₂O

ก.3 การคำนวณปริมาณธาตุที่วิเคราะห์ด้วยเทคนิค XRF (ข้อมูลการวิเคราะห์อยู่ในภาคผนวก จ)

ตัวอย่างการคำนวณปริมาณของ Na ในตัวดูดซับ Na-Y zeolite

มีปริมาณอยู่ 9.91 wt9	6			
ถ้าตัวดูดซับ 100 g	นี	Na ₂ O	9.91	g
Na ₂ O มวลโมเลกุล	100	61.98		g/mol
Na มวลโมเลกุล		22.99	1	g/mol
ดังนั้น มี Na	ZU	= 2×22.99×	9.91 61.98	g
Contraction of the second		= 7.35	20	g ในตัวดูดซับ 100 g
จหาลงเ		ณ์มหาวิทย	าลัย	

72

ภาคผนวก ข การวิเคราะห์สารประกอบแอโรแมติก ไนโตรเจน และกำมะถันในน้ำมันจำลอง

ในงานวิจัยนี้ได้ใช้เครื่องแก๊สโครมาโทรกราฟที่ของ Shimadzu GC2010 ประกอบด้วยดีเทค เตอร์แบบเฟรมไอออไนเซชัน (Flame ionization detector; FID) และคอลัมน์แบบ HP-88 โดย ข้อมูลและภาวะของเครื่องแสดงดังตารางที่ ข1 เพื่อวิเคราะห์ปริมาณสารประกอบที่อยู่ภายในน้ำมัน จำลอง

	Column	HP-88	
	Temperature (°C)	230	
Injection	Pressure (kPa)	464.5	
	Total Flow (mL/min)	96.1	
Injection	Column flow (mL/min)	1.86	
	Purge flow (mL/min)	1.5	
	Split ratio	50	
	Temperature (°C)	230 (Isothermal and hold 17.50 min)	
Column	Time (min)	17.5	
	Temperature (°C)	230	
	H2 Flow (mL/min)	40	
ΓIU	Air Flow (mL/min)	M400 สัย	
	Makeup Flow (mL/min)	30-RSITY	

ตารางที่ ข1 ข้อมูลและภาวะของเครื่องแก๊สโครมาโทกราฟรุ่น Shimadzu GC2010

รูปที่ ข2 ตัวอย่างเส้นโค้งเบรคทรูของการดูดซับ (กรณีคิดปริมาณสารที่ถูกดูดซับ)

ข.1 การคำนวณความจุการดูดซับจากเส้นโค้งเบรคทรู

รูปที่ ข1 เส้นเทียบมาตรฐานของสารประกอบในน้ำมันจำลอง

Calibration curve

 $\begin{aligned} & \text{Breakthrough capacity} & = \text{Area}_A \times \boldsymbol{\rho}_{\text{fuel}} \times X_0 \\ & \text{Total adsorption capacity} & = (\text{Area}_A + \text{Area}_B) \times \boldsymbol{\rho}_{\text{fuel}} \times X_0 \\ & X_0 = \text{Total sulfur or nitrogen or naphthalene fraction (by weight) in feed} \end{aligned}$

<u>ตัวอย่างการคำนวณความจุการดูดซับ</u>

จากการดูดซับ DBT ในน้ำมันจำลอง 2 ของตัวดูดซับ Ni-Y ซีโอไลต์

พบว่ามีความจุทั้งหมดของการดูดซับ หรือ Area_A+ Area_B = 222.3760 mL/g sorbent ดังนั้น จะมีความจุในหน่วยมิลลิรูของกำมะถัน

> $= 222.3760 \times 0.703 \times \frac{75}{(10^{6} - 75 - 75 - 500 - 0 - 0)}$ = 0.0117 g S/g sorbent = 11.7324 mg S/g sorbent = $\frac{11.7324}{32.06} \times 184.26$ mg DBT/mmol DBT = 67.4302 mg DBT/g sorbent = $\frac{67.4302}{184.26}$ = 0.3660 mmol DBT/g sorbent

<u>ตัวอย่างการคำนวณร้อยละการเปลี่ยนความจุทั้งหมด</u>

เนื่องจากตัวดูดซับ Ni-Y ซีโอไลต์ สามารถดูดซับสารประกอบกำมะถัน (DBT) จากน้ำมัน จำลอง 1 = 0.42 mmol DBT/g sorbent ขณะที่ตัวดูดซับ Ni-Y ซีโอไลต์ สามารถดูดซับสารประกอบกำมะถัน (DBT) จากน้ำมันจำลอง

3 = 0.28 mmol DBT/g sorbent

ดังนั้น ร้อยละการเปลี่ยนความจุทั้งหมด

$$= \frac{\text{Adsorbed DBT model oil 1 - Adsorbed DBT model oil 3}}{\text{Adsorbed DBT model oil 1}} \times 100$$
$$= \frac{0.42 - 0.28}{0.42} \times 100$$
$$= 33.3333 \%$$

รูปที่ ข3 ตัวอย่างเส้นโค้งเบรคทรูของการดูดซับ (กรณีคิดปริมาณสารที่ป้อน)

Feeding = Area_x × \mathbf{p}_{fuel} × X₀

<u>ตัวอย่างการคำนวณร้อยละการดูดซับ (ในกรณีร้อยละการดูดซับช่วงเบรคทรูคิดเทียบกับปริมาณสาร</u> <u>ทั้งหมดที่ป้อนเข้าระบบเช่นเดียวกับกรณีร้อยละการดูดซับช่วงสิ้นสุดการทดลอง)</u> จากการดูดซับ DBT ในน้ำมันจำลอง 2 ของตัวดูดซับ Ni-Y ซีโอไลต์

พบว่าป้อนสารเข้าระบบ หรือ Area_x = 432.8258 mL/g sorbent

ดังนั้น จะป้อน DBT ในหน่วยมิลลิกรัมของกำมะถัน

 $= 432.8258 \times 0.703 \times \frac{75}{(10^6 - 75 - 75 - 500 - 0 - 0)}$ = 0.0228 g S/g sorbent = 22.8356 mg S/g sorbent = $\frac{22.8356}{32.06} \times 184.26$ mg DBT/mmol DBT = 131.2441 mg DBT/g sorbent = $\frac{131.2441}{184.26}$ = 0.7123 mmol DBT/g sorbent จึงสามารถคำนวณร้อยะลการดูดซับได้ดังนี้

ร้อยละการดูดซับ =
$$rac{ ext{Adsorbed}}{ ext{Feeding}} imes 100$$

= $rac{ ext{0.3660}}{ ext{0.7123}} imes 100$ = 51.3180 %

ข.2 การคำนวณการคายซับ

Total desorption capacity = Area_C × $\mathbf{\rho}_{fuel}$ × X₀

<u>ตัวอย่างการคำนวณการคายซับ</u>

จากการคายซับ DBT ในโทลูอีนจากน้ำมันจำลอง 5 ของตัวดูดซับซีโอไลต์ Na-Y (อัตราการ ไหล 0.5 มิลลิลิตรต่อนาที ที่อุณหภูมิ 50 องศาเซลเซียส

พบว่ามีความจุทั้งหมดของการดูดซับ หรือ Area_c = 110.2409 mL/g sorbent

ดังนั้น จะมีความจุในหน่วยมิลลิกรัมของกำมะถัน

 $= 110.2409 \times 0.703 \times \frac{75}{(10^6 - 75 - 75 - 500 - 0 - 0)}$ = 0.0058 g S/g sorbent = 5.8164 mg S/g sorbent $=\frac{5.8164}{32.06} \times 184.26$ mg DBT/mmol DBT = 33.4289 mg DBT/g sorbent $=\frac{33.4289}{184.26}=0.1814$ mmol DBT/g sorbent

<u>ตัวอย่างการคำนวณร้อยละการคายซับ</u>

เนื่องจากตัวดูดซับซีโอไลต์ Na-Y ดูดซับ DBT = 0.2508 mmol/ g sorbent แต่สามารถคายซับออกมาในโทลูอีน (ภาวะในการคืนสภาพ: อัตราการไหล 0.5 มิลลิลิตรต่อนาที ที่ อุณหภูมิ 50 องศาเซลเซียส) = 0.1814 mmol DBT/g sorbent

ดังนั้น ร้อยละการคายซับ = $\frac{0.1814}{0.2508} \times 100$ = 72.3285 %

<u>ตัวอย่างการคำนวณประสิทธิภาพของการคืนสภาพ</u>

เนื่องจากตัวดูดซับซีโอไลต์ Na-Y ดูดซับสารทั้งหมด = 1.0168 mmol แต่สามารถคายซับออกมาในโทลูอีน (ภาวะในการคืนสภาพ: อัตราการไหล 0.5 มิลลิลิตรต่อนาที ที่ อุณหภูมิ 50 องศาเซลเซียส) = 0.7758 mmol

ดังนั้น ร้อยละการคายซับ = $rac{0.7758}{1.0168} imes 100$ = 76.2982 %

นอกจากนั้นในงานวิจัยนี้ยังได้ใช้เครื่องแก๊สโครมาโทรกราฟี ที่ประกอบด้วยเครื่อง แมสสเปกโทรสโคปี (Mass spectroscopy; GC-MS) ของ Shimadzu GC2010Q ในการหา สารประกอบที่อาจจะเกิดขึ้นระหว่างการดูดซับที่ได้จากการคายซับของตัวดูดซับทวิโลหะด้วยตัวทำ ละลาย และคอลัมป์ DB-1 โดยข้อมูลและภาวะของเครื่องแสดงดังตารางที่ ข2

	Column	DB-1
	Temperature (°C)	260
Injection	Pressure (kPa)	120
	Total flow (mL/min)	20
Injection	Column flow (mL/min)	0.81
	Purge flow (mL/min)	3
	Split ratio	20
Column	Tomporature (%)	100 to 260 (Heating rate 10°C/min and
Column	Column Temperature (°C)	hold 10 min)
	lonSource temperature (°C)	280
GC program	Interface temperature (°C)	260
	Solvent cut time (min)	2
	start (min)	2
	Filament off (min)	6
MS program	Filament on (min)	8.3
	End (min)	26

ตารางที่ ข2 ข้อมูลและภาวะของเครื่องแก๊สโครมาโทกราฟรุ่น Shimadzu GC2010Q

ภาคผนวก ค ข้อมูลดิบจากการทดลองดูดซับ

ตารางที่ ค1 ข้อมูลการดูดซับน้ำมันจำลองประเภทที่ 1 ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที

Adaarbaat	Sampling		Volume per 1 g	Concentr	ation (ppm)
Adsorbent	(time)	(time)		DBT	4,6-DMDBT
		Feed		72.6879	69.04165
	1	2	4.011425	0	0
	48	96	192.5484	0	0
NEX	60	120	240.6855	0	0
	65	130	260.7426	0	0
INdi	66	132	264.754	0	5.3292
	67	134	268.7654	5.56662	8.9363
	72	144	288.8226	18.63546	26.4605
	84	168	336.9597	62.9292	68.98255
	108	216	433.2339	71.38536	69.96245
		feed) 4	74.07228	69.0097
	1	2	4.011425	0	0
	36	72	144.4113	0	0
	40	80	160.457	0	0
	41	จุฬาลง82รณ์มหาวิ	164.4684	0	3.61935
	42	hulaloi ⁸⁴ korn U	168.4798	0	4.33905
NiY	43	86	172.4913	3.94356	5.4679
	48	96	192.5484	8.6583	11.05555
	60	120	240.6855	36.25614	42.54645
	66	132	264.754	45.09378	49.30295
	72	144	288.8226	49.9362	52.0967
	84	168	336.9597	58.17036	58.42195
	108	216	433.2339	64.82718	62.8655

	Sampling		Volume per 1 g	Concentra	ation (ppm)
Adsorbent	(time)	Volume per 0.5 g (mL)	(mL)	DBT	4,6-DMDBT
		Feed		72.98012	67.28175
	1	2	4.02502	0	0
	24	48	96.60047	0	0
	26	52	104.6505	0	0
	27	54	108.6755	5.3192	0
	28	56	112.7005	9.85442	0
LaV	29	58	116.7256	13.11152	3.27375
Lai	30	60	120.7506	17.75834	4.7936
	36	72	144.9007	51.3209	19.3607
	48	96	193.2009	62.60618	40.49755
	60	120	241.5012	63.44948	49.15825
	72	144	289.8014	64.95008	52.9862
	84	168	338.1016	68.99174	57.1942
	108	216	434.7021	73.51352	62.2011
		Feed		74.00084	68.55325
	1	2	4.048263	0	0
	16	32	64.77221	0	0
	17	34	68.82048	0	2.94475
	18 G	HULALO 36 KORN U	72.86874	3.54248	5.0515
CeV	24	48	97.15832	18.45104	20.8386
cer	36	72	145.7375	41.47634	39.92885
	48	96	194.3166	52.3322	48.91955
	60	120	242.8958	58.36244	53.5485
	72	144	291.475	61.2194	55.5633
	84	168	340.0541	62.50568	56.8034
	108	216	437.2124	68.05148	62.0601

ตารางที่ ค2 ข้อมูลการดูดซับน้ำมันจำลองประเภทที่ 1 ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที

Adapathaat	Samplin		Volume per 1 g	Concentration (ppm)		
Ausorbent	(time)	volume per 0.5 g (mL)	(mL)	DBT	4,6-DMDBT	
		Feed		73.1132	75.38494	
	6	12	24.09857	0	0	
	7	14	28.115	0	0	
	8	16	32.13143	1.2669	2.04907	
	12	24	48.19714	15.5645	16.75039	
Nil N	24	48	96.39428	40.7716	41.66266	
INILdT	36	72	144.5914	53.7794	55.10047	
	48	96	192.7886	61.0893	62.20111	
	60	120	240.9857	65.8409	66.50041	
	72	144	289.1828	67.7959	67.95616	
	84	168	337.38	69.234	69.18988	
	108	216	433.7742	69.6214	70.33666	
		Feed		71.57474	66.1044	
	12	24	48.19714	0	0	
	13	26	52.21357	7.17494	5.17475	
	24	48	96.39428	60.12032	54.0708	
	36	72	144.5914	63.17858	57.6823	
NICET	48	96 96	192.7886	64.65458	59.44255	
	60	GHULALO 120 KORN U	240.9857	66.1778	59.4978	
	72	144	289.1828	67.24424	60.51855	
	84	168	337.38	67.52894	61.7926	
	108	216	433.7742	68.97356	62.52995	

ตารางที่ ค3 ข้อมูลการดูดซับน้ำมันจำลองประเภทที่ 1 ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที

	C I'm a		Malana and a	Concentration (ppm)		
Adsorbent	(time)	Volume per 0.5 g (mL)	volume per 1 g (mL)	Naphthalene	DBT	4,6- DMDBT
		Feed		485.5742	73.02762	69.7662
	1	2	4.103675	0	0	0
	24	48	98.48821	0	0	0
	26	52	106.6956	0	0	0
	27	54	110.7992	0	0	0
	28	56	114.9029	21.66014	0	4.1366
N=V	29	58	119.0066	53.78418	9.03198	11.9404
INd Y	30	60	123.1103	95.75104	15.81732	19.56185
	36	72	147.7323	224.0109	34.17414	37.3827
	48	96	196.9764	347.5197	51.36198	52.988
	60	120	246.2205	402.5869	58.28328	58.72145
	72	144	295.4646	434.9288	63.0732	62.58175
	84	168	344.7087	450.0788	65.28198	64.2984
	108	216	443.1969	473.2799	70.05888	66.66005
		Feed	58 II ()	480.2107	73.43826	68.9195
	1	2	4.007647	0	0	0
	24	48	96.18352	0	0	0
	30	60	120.2294	0	0	0
	31	62	124.237	15.09072	0	0
	32	64	128.2447	24.03862	0	0
	34	68	136.26	73.90558	0	0
	35		140.2676	122.1397	0	3.5721
	36	GHULAL ⁷² NGKOR	144.2753	176.9046	0	4.9163
NiY	37	74	148.2829	259.6439	0	7.12355
	38	76	152.2906	355.4068	3.14472	10.9068
	40	80	160.3059	521.5169	5.4897	19.73495
	41	82	164.3135	566.6885	7.31088	24.6742
	42	84	168.3212	602.8015	9.7536	29.95945
	48	96	192.367	586.5744	29.11854	49.0824
	60	120	240.4588	512.6434	54.5127	57.91435
	72	144	288.5506	500.948	63.01002	61.97785
	84	168	336.6423	516.1492	69.32862	66.1282
	108	216	432.8258	508.0996	73.47834	68.61115

ตารางที่ ค4 ข้อมูลการดูดซับน้ำมันจำลองประเภทที่ 2 ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที

Adsorbort	Sampling	Volumo por 0.5 g (ml.)	Volumo por 1 g (ml.)	Concentration (ppm)		
Ausorbent	(time)		votume per 1 g (mL)	Naphthalene	DBT	4,6-DMDBT
		Feed		468.1579	71.45616	68.05525
	1	2	4.021297	0	0	0
	8	16	32.17037	0	0	0
	9	18	36.19167	19.9447	0	0
	10	20	40.21297	60.76102	0	0
	11	22	44.23426	162.3794	0	0
	12	24	48.25556	383.9392	7.0447	0
LaY	13	26	52.27686	521.4769	14.8273	6.3213
	24	48	96.51112	436.0656	71.3420	46.2699
	36	72	144.7667	435.8521	69.0814	55.9556
	48	96	193.0222	445.4815	69.1235	59.8125
	60	120	241.2778	450.4204	69.7601	61.9677
	72	144	289.5334	453.4674	69.1602	62.3897
	84	168	337.7889	455.9387	69.3597	62.9725
	108	216	434.3001	465.7123	71.3743	64.3020
		Feed		483.5187	73.98996	69.599
	1	2	4.047534	0	0	0
	3	6	12.1426	0	0	0
	4	8	16.19014	19.9883	0	0
	5	10	20.23767	40.1758	0	5.1985
	6	12	24.28521	71.7562	6.7992	9.6107
CoV	12	24	48.57041	285.8646	30.0821	35.1645
Cer	24	48	97.14082	392.7132	49.4968	48.7007
	36	GHULA72ONGKO	145.7112	409.6337	56.3387	52.3971
	48	96	194.2816	440.6200	63.7618	58.3559
	60	120	242.8521	446.8329	65.7000	59.3095
	72	144	291.4225	449.7813	66.1293	60.2403
	84	168	339.9929	462.7137	68.3510	62.0036
	108	216	437.1337	465.9315	70.3901	62.9319

ตารางที่ ค5 ข้อมูลการดูดซับน้ำมันจำลองประเภทที่ 2 ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที

Adsorbent	Sampling	Volumo por 0.5 g (ml.)	Volume per 1 g	Conc	Concentration (ppm)		
Ausoident	(time)	votume per 0.5 g (mL)	(mL)	Naphthalene	DBT	4,6-DMDBT	
		Feed		501.5230	73.8662	76.0396	
	1	2	4.017182	62.4095	3.1396	2.17507	
	2	4	8.034364	183.0150	15.9497	11.6493	
	4	8	16.06873	294.1265	31.5807	26.3376	
	6	12	24.10309	341.1785	40.3398	34.7387	
	12	24	48.20619	511.9210	58.6710	50.5549	
NiLaY	24	48	96.41237	496.7020	70.3091	67.7547	
	36	72	144.6186	506.4860	72.3395	71.5879	
	48	96	192.8247	504.1740	73.0052	72.6338	
	60	120	241.0309	502.4365	72.8308	72.9322	
	72	144	289.2371	507.5410	73.6911	74.0540	
	84	168	337.4433	507.2225	73.6783	74.1359	
	108	216	433.8557	504.5785	73.2461	74.7812	
		Feed	0A	491.6302	76.05654	71.24455	
	12	24	48.20619	0	0	0	
	16	32	64.27491	0	0	0	
	17	34	68.2921	30.7357	0	0	
	18	36	72.30928	72.3526	0	0	
	20	40	80.34364	196.7969	0	0	
	21	42	84.36082	266.2577	0	0	
NiCoV	22	44	88.37801	312.1678	6.5961	0	
NICer	23	46	92.39519	339.2613	10.55298	0	
	24	48	96.41237	369.92	14.66844	7.63435	
	36	CHUL ⁷² LONGK	144.6186	512.1637	50.1489	40.10295	
	48	96	192.8247	510.9157	63.9891	54.08815	
	60	120	241.0309	505.6988	69.53754	61.3756	
	72	144	289.2371	514.2333	72.02448	65.37215	
	84	168	337.4433	514.0723	73.7151	67.0823	
	108	216	433.8557	515.8502	76.31286	69.18765	

ตารางที่ ค6 ข้อมูลการดูดซับน้ำมันจำลองประเภทที่ 2 ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที

A desula sust	Sampling	Volume per 0.5	Volume per 1		Concentration (ppm)				
Adsorbent	(time)	g (mL)	g (mL)	Quinoline	Indole	DBT	4,6-DMDBT		
		Feed		12.3000	14.2894	76.1750	70.1413		
	1	2	4.100848	0	0	0	0		
	12	24	49.21018	0	0	0	0		
	24	48	98.42035	0	0	0	0		
	29	58	118.9246	0	0	0	0		
	30	60	123.0254	0	0	3.4005	3.889		
	31	62	127.1263	0	1.02052	11.5031	11.8272		
NaY	32	64	131.2271	0.61101	2.79248	27.7918	27.2397		
	34	68	139.4288	2.15685	6.11012	45.8322	43.9557		
	36	72	147.6305	3.31926	8.13468	57.0857	53.6067		
	48	96	196.8407	6.42786	11.5504	74.7072	68.2575		
	60	120	246.0509	7.07106	12.2449	74.5084	69.7297		
	72	144	295.2611	8.36001	13.1903	76.3352	70.4525		
	84	168	344.4712	8.14992	13.1367	77.9196	71.5396		
	108	216	442.8916	9.03888	13.2401	75.0826	70.8477		
		Feed		13.7667	14.3533	74.2559	69.7165		
	1	2	4.009913	0	0	0	0		
	24	48	96.2379	0	0	0	0		
	30	60	120.2974	0	0	0	0		
	31	62	124.3073	0	0	0	0		
	32	64	128.3172	0	0	3.1090	3.2834		
	34	68	136.337	0	0	6.2925	6.2546		
NEV	35	70	140.3469		0.7898	8.8086	8.7586		
INIT	36	CHU72ALO	144.3569	UN VERS	1.1668	12.176	12.3035		
	37	74	148.3668	0	1.8107	18.5845	18.5324		
	38	76	152.3767	0.4148	3.0693	28.7859	28.2421		
	48	96	192.4758	3.9854	9.8400	65.5380	61.9938		
	60	120	240.5948	6.4218	11.8660	72.1670	67.6837		
	72	144	288.7137	8.0564	12.6589	73.6664	69.2874		
	84	168	336.8327	9.3225	13.1324	74.1728	69.0749		
	108	216	433.0706	10.7840	13.6823	75.0100	70.1605		

ตารางที่ ค7 ข้อมูลการดูดซับน้ำมันจำลองประเภทที่ 3 ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที

Adcarbont	Sampling	Volume per 0.5	Volume per 1	Concentration (ppm)				
Ausorbent	(time)	g (mL)	g (mL)	Quinoline	Indole	DBT	4,6-DMDBT	
		Feed		11.68203	13.9317	71.9190	67.0833	
	1	2	4.022041	0	0	0	0	
	10	20	40.22041	0	0	0	0	
	11	22	44.24245	0	0	4.3760	0	
	12	24	48.26449	0	0	7.85466	4.4479	
	17	34	68.37469	0	0	27.2562	17.4167	
	18	36	72.39673	0	0.9967	29.9248	19.6940	
LaY	19	38	76.41877	0.30468	1.2075	32.0972	21.6874	
	24	48	96.52898	2.94543	4.8345	44.1699	35.2940	
	36	72	144.7935	3.98376	6.3258	52.0965	42.4810	
	48	96	193.058	5.2254	7.9722	56.9918	47.5772	
	60	120	241.3224	6.4611	9.3338	62.9785	53.1206	
	72	144	289.5869	7.26015	10.1782	66.4250	57.0491	
	84	168	337.8514	7.7271	10.7026	68.8009	59.9870	
	108	216	434.3804	8.49888	11.2697	69.6407	61.8659	
		Feed		11.8666	14.4030	75.1340	70.0263	
	1	2	4.046077	0	0	0	0	
	4	8	16.18431	0	0	0	0	
	5	10	20.23038	00	0	0	0	
	6	12	24.27646	0	0	10.7284	12.9583	
	7	14	28.32254	0.6930	2.2561	20.9394	22.6837	
CoV	12	24	48.55292	6.6474	9.5438	57.8096	55.1647	
Cer	24	48	97.10584	8.1169	11.6359	65.1866	62.2934	
	36	CHU72ALO	145.6588	8.7337	12.1810	68.5612	64.4267	
	48	96	194.2117	8.8319	12.2610	68.0850	63.6008	
	60	120	242.7646	9.2446	12.7122	70.3526	64.7468	
	72	144	291.3175	9.6087	13.0764	71.6427	66.5904	
	84	168	339.8704	9.8024	13.1268	71.8074	66.4837	
	108	216	436.9763	9.9350	13.3575	71.9001	67.4217	

ตารางที่ ค8 ข้อมูลการดูดซับน้ำมันจำลองประเภทที่ 3 ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที

A	Sampling	Volume per	Volume per 1		Concentration	(ppm)	
Adsorbent	(time)	0.5 g (mL)	g (mL)	Quinoline	Indole	DBT	4,6-DMDBT
		Feed		15.2202	15.9928	73.3370	75.1758
	1	2	4.017182	0	0	0	0
	2	4	8.034364	0	0	0	0
	3	6	12.05155	0	0	3.1473	3.0975
	4	8	16.06873	1.7531	3.1256	29.7274	29.7409
	6	12	24.10309	4.3098	6.0592	47.1968	46.8290
	12	24	48.20619	6.3406	8.6843	57.8702	56.3841
NILar	24	48	96.41237	8.7376	10.8056	66.3451	65.0227
	36	72	144.6186	9.8469	11.5819	67.1899	67.9221
	48	96	192.8247	10.5052	12.3655	68.9491	68.7368
	60	120	241.0309	11.1453	12.7972	70.2202	70.3039
	72	144	289.2371	11.4656	13.0551	70.2952	70.5069
	84	168	337.4433	11.7041	13.3604	70.5992	70.9863
	108	216	433.8557	12.2774	13.6660	70.9664	71.5158
		Feed		13.2551	14.8999	79.5125	74.5779
	1	2	4.017182	0	0	0	0
	12	24	48.20619	0	0	0	0
	24	48	96.41237	0	0	0	0
	26	52	104.4467	0	0	0	0
	28	56	112.4811	0	0	0	0
	29	58	116.4983	0	0	8.6628	5.6344
	30	60	120.5155	2220	0	13.3001	9.5513
NiCoV	36	72	144.6186		0	44.3558	35.2518
NICET	48	GH 96 AL	192.8247	Unovers	0	63.1585	53.7316
	55	110	220.945	0	0	70.3975	58.6567
	56	112	224.9622	0.2254	0	71.5675	59.2171
	57	114	228.9794	0.3430	1.0919	72.1693	60.543
	58	116	232.9966	0.5005	1.2229	73.9160	61.5022
	60	120	241.0309	0.8415	2.2670	74.7109	62.8487
	72	144	289.2371	4.1066	7.4115	78.4147	68.8212
	84	168	337.4433	6.2945	9.4963	80.0536	71.2855
	108	216	433.8557	8.7529	11.7804	81.7776	73.2321

ตารางที่ ค9 ข้อมูลการดูดซับน้ำมันจำลองประเภทที่ 3 ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที
	Consultan	Volume	Volume		Conce	entration (pp	ım)	
Adsorbent	(time)	per 0.5 g (mL)	per 1 g (mL)	Naphthalene	Quinoline	Indole	DBT	4,6- DMDBT
		Feed		490.384	12.41901	14.34168	73.67088	69.3389
	1	2	4.1042	0	0	0	0	0
	6	12	24.6263	0	0	0	0	0
	12	24	49.25259	0	0	0	0	0
	24	48	98.50518	0	0	0	0	0
	35	70	143.6534	0	0	0	0	0
	36	72	147.7578	14.63702	0	0	0	0
	37	74	151.8622	24.30642	> 0	0	3.63462	4.2795
	38	76	155.9665	38.14596	0	0	5.91942	6.4563
NL-XZ	48	96	197.0104	482.6687	0	0	70.02762	69.7512
Nar	52	104	213.4279	545.1634	0	0	77.3148	73.1498
	53	106	217.5323	547.8679	0	0.8172	77.33004	72.63555
	54	108	221.6367	551.0846	0	1.83096	77.51478	72.66125
	55	110	225.741	552.1792	0.36849	2.84152	77.5911	72.6124
	56	112	229.8454	548.8933	0.70932	4.56748	77.81856	72.48265
	58	116	238.0542	541.2886	1.77444	6.9256	77.14452	72.04295
	60	120	246.263	537.7638	2.57988	8.666	76.92402	71.7127
	72	144	295.5156	524.5701	5.63988	12.22924	76.38204	71.38625
	84	168	344.7681	519.5006	6.96909	13.0118	76.27848	71.3673
	108	216	443.2733	517.5828	8.76762	13.76704	76.28046	71.66075

ตารางที่ ค10 ข้อมูลการดูดซับน้ำมันจำลองประเภทที่ 4 ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที

CHULALONGKORN UNIVERSITY

	C		Volume		Conce	entration (pp	m)	
Adsorbent	Sampung (time)	0.5 g (mL)	per 1 g (mL)	Naphthalene	Quinoline	Indole	DBT	4,6- DMDBT
		Feed		402.2708	9.97161	12.4396	66.1632	63.01525
	1	2	4.008402	0	0	0	0	0
	12	24	48.10082	0	0	0	0	0
	14	28	56.11762	0	0	0	0	0
	18	36	72.15123	0	0	0	0	0
	19	38	76.15963	0	0	0	0	0
	20	40	80.16803	14.76078	0	0	0	0
	21	42	84.17643	17.88286	> 0	0	2.4486	2.6027
	22	44	88.18484	21.15288	0	0	2.88936	3.04755
N 12 7	23	46	92.19324	28.8312	0	0	4.2429	4.2538
NIY	24	48	96.20164	41.77218	0	0.71124	6.1797	6.2601
	26	52	104.2184	79.40198	0	1.62584	12.58326	12.4023
	27	54	108.2268	94.18636	0.45363	2.0686	14.87148	14.6013
	28	56	112.2352	111.6134	0.61371	2.52116	17.97852	17.4854
	36	72	144.3025	351.9137	2.51529	8.94072	57.05148	54.92615
	48	96	192.4033	398.8065	5.33817	11.19448	65.35986	62.43085
	60	120	240.5041	401.7931	6.432	11.5694	65.80032	62.66105
	72	144	288.6049	403.7392	7.02654	11.7884	66.05262	63.3061
	84	168	336.7057	408.9218	7.67805	11.98972	67.1385	63.98535
	108	216	432.9074	401.1179	7.9323	11.90836	65.6505	62.67475

ตารางที่ ค11 ข้อมูลการดูดซับน้ำมันจำลองประเภทที่ 4 ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที

Chulalongkorn University

	Sampling	Volume	Volume		Conce	entration (pp	vm)	
Adsorbent	(time)	per 0.5 g (mL)	per 1 g (mL)	Naphthalene	Quinoline	Indole	DBT	4,6-DMDBT
		Feed		487.7923	12.61254	14.26572	74.03316	69.44025
	1	2	4.024274	0	0	0	0	0
	7	14	28.16992	0	0	0	0	0
	8	16	32.1942	18.48086	0	0	0	0
	10	20	40.24274	73.69498	0	0	0	0
	11	22	44.26702	89.09036	0	0	5.70636	0
	12	24	48.29129	103.8396	0	0	8.09046	4.99035
	24	48	96.58259	565.5326	> 0	0	42.41688	24.2147
	30	60	120.7282	484.0285	0	0	73.33818	40.73085
Lay	33	66 -	132.8011	493.9221	0	0	71.43678	44.9101
	34	68	136.8253	496.156	0	1.1254	72.64836	48.1278
	35	70 🥖	140.8496	498.4372	0.27489	1.44016	71.21046	49.35345
	36	72	144.8739	499.6941	0.62169	2.39332	70.14306	49.91135
	48	96	193.1652	512.7775	3.3228	6.40708	73.9128	60.0017
	60	120	241.4565	504.6208	3.97674	7.46536	74.86212	63.33115
	72	144	289.7478	496.8471	8.0889	11.0088	74.02956	66.8031
	84	168	338.0391	496.1812	9.29496	12.1998	74.38266	67.6806
	108	216	434.6216	498.0433	9.71292	12.8855	75.04974	68.64535

ตารางที่ ค12 ข้อมูลการดูดซับน้ำมันจำลองประเภทที่ 4 ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

	Sampling	Volume	Volume	Volume Concentration (ppm)				
Adsorbent	(time)	per 0.5 g (mL)	per 1 g (mL)	Naphthalene	Quinoline	Indole	DBT	4,6- DMDBT
		Feed		487.0747	11.54064	14.30204	75.4563	70.8955
	1	2	4.046077	0	0	0	0	0
	2	4	8.092153	25.28584	0	0	0	0
	3	6	12.13823	81.96142	0	0	9.74802	12.50095
	4	8	16.18431	201.5716	0.9891	2.19864	26.54472	29.89865
	6	12	24.27646	307.0213	3.1899	5.63424	43.61412	44.01255
Call	12	24	48.55292	362.8737	4.54407	7.40172	52.3176	50.93555
Cer	24	48	97.10584	420.7984	6.35673	10.19664	62.12742	58.7801
	36	72	145.6588	443.2655	7.15086	11.39816	66.58596	62.4185
	48	96	194.2117	457.2199	7.87146	12.19832	68.43996	64.43615
	60	120	242.7646	459.4297	8.23296	12.4382	68.63304	65.4187
	72	144	291.3175	459.4658	8.41023	12.4132	68.90118	65.0202
	84	168	339.8704	456.5608	8.63919	12.59248	68.4954	64.81585
	108	216	436.9763	467.9608	9.10698	13.10724	71.6754	66.69325

ตารางที่ ค13 ข้อมูลการดูดซับน้ำมันจำลองประเภทที่ 4 ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

	Compling	Volume	Volume		Conc	entration (ppm)	
Adsorbent	(time)	per 0.5 g	per 1 g	Naphthalopo	Quinclino	Indolo		4,6-
	(time)	(mL)	(mL)	(mL)	Quinoune	Indote	DBT	DMDBT
-		Feed		510.3455	15.63463	16.14332	74.3237	76.66141
	1	2	4.008402	288.6665	2.4677	3.5406	33.7373	35.21641
	2	4	8.016803	330.6975	3.42971	5.02108	40.8092	41.51902
	6	12	24.05041	421.69	7.03898	8.75132	52.982	53.57866
	12	24	48.10082	470.337	8.64156	10.19308	60.7592	61.05991
	24	48	96.20164	492.623	11.40054	12.155	67.9434	68.656
INILdT	36	72	144.3025	502.022	11.88046	13.15212	70.8685	71.4775
	48	96	192.4033	507.8395	12.37676	13.60732	71.4109	72.37183
	60	120	240.5041	504.7295	12.79403	14.06908	71.7765	72.61519
	72	144	288.6049	504.472	13.04176	14.2574	71.4061	72.61069
	84	168	336.7057	506.6625	13.37895	14.5562	72.5693	73.89877
	108	216	432.9074	509.312	13.9582	14.86428	73.0327	74.68978

ตารางที่ ค14 ข้อมูลการดูดซับน้ำมันจำลองประเภทที่ 4 ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

	C	Volume	Volume		Conc	entration (ppn	ר)	
Adsorbent	(time)	per 0.5 g (mL)	per 1 g (mL)	Naphthalene	Quinoline	Indole	DBT	4,6- DMDBT
		Feed		504.314	12.41934	14.9534	79.4628	74.4098
	1	2	4.008402	0	0	0	0	0
	8	16	32.06721	0	0	0	0	0
	9	18	36.07561	16.84182	0	0	0	0
	10	20	40.08402	32.53126	0	0	0	0
	12	24	48.10082	100.6879	0	0	0	0
	13	26	52.10922	165.5532	0	0	0	0
	14	28	56.11762	220.2276	0	0	5.5272	0
	15	30	60.12602	268.1586	0	0	9.45216	5.13665
	24	48	96.20164	399.5449	0	0	36.14382	27.103
NiCeY	36	72	144.3025	496.475	0	0	56.6349	45.3487
	48	96	192.4033	534.351	0	0	69.5964	57.3291
	55	110	220.4621	532.6353	0	0	72.40626	60.97665
	56	112	224.4705	538.4933	0.23217	0	72.63342	61.18665
	57	114	228.4789	536.8564	0.27408	0	72.21204	61.4647
	58	116	232.4873	538.7903	0.31707	1.10324	73.21344	62.20465
	59	118	236.4957	538.7754	0.33879	1.32764	72.89154	62.31185
	60	120	240.5041	538.8319	0.46749	1.6432	72.76464	62.24405
	72	144	288.6049	532.4595	1.70424	3.90256	75.1419	66.711
	84	168	336.7057	540.4077	2.72925	5.46076	77.02614	67.6128
	108	216	432.9074	545.3004	4.46943	8.03224	78.48264	70.9994

ตารางที่ ค15 ข้อมูลการดูดซับน้ำมันจำลองประเภทที่ 4 ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที

ภาคผนวก ง ข้อมูลดิบจากการทดลองการคืนสภาพ

ตารางที่ ง1 ข้อมูลการดูดซับน้ำมันจำลอง 5 ด้วยตัวดูดซับซีโอไลต์ Na-Y ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที เพื่อศึกษาการ คายซับด้วยเฮกเซนที่อุณหภูมิ 30 องศาเซลเซียส และอัตราการไหล 1.0 มิลลิลิตรต่อนาที

Sampling	Volume per	Volume per 1		Concentration	(ppm)	
(time)	0.5 g (mL)	g (mL)	Naphthalene	Quinoline	Indole	DBT
			Adsorption			
	Feed		568.033	17.4673	18.4562	166.8636
1	2	4.104383	0 10	0	0	0
24	48	98.50518	0	0	0	0
26	52	106.7139	0	0	0	0
28	56	114.9227	0	0	0	0
29	58	119.0271	1.307	0	0	0
30	60	123.1315	39.9545	0	0	2.6394
36	72	147.7578	378.358	0	0	50.1828
48	96	197.0104	418.6345	0	0	87.9925
60	120	246.263	486.3865	0	0	112.3642
61	122	250.3673	482.341	0	0	111.671
62	124	254.4717	506.3745	0	0.82172	117.0469
64	128	262.6805	517.4295	0	1.783	120.5454
65	130	266.7849	507.676	0	2.1022	118.6673
66	132	270.8893	524.029	0.45338	2.60428	122.4609
72	144	295.5156	553.461	1.29541	4.73396	130.7354
84	168	344.7681	637.744	4.92085	10.2298	154.8237
108	216	443.2733	629.0235	6.0426	11.95852	165.5451
			Desorption	LIGHT		
	Feed		568.0315	17.4673	18.4562	166.8636
1	2	4.104383	738.586	0	0	146.6395
6	12	24.6263	366.7295	0	0	71.0391
12	24	49.25259	207.6695	0	0	41.7719
24	48	98.50518	112.9405	0	0	23.6123
36	72	147.7578	77.1275	0	0	16.5441
48	96	197.0104	57.0925	0	0	12.4464
60	120	246.263	44.0135	0	0	9.9166
72	144	295.5156	36.7115	0	0	8.4926
84	168	344.7681	31.765	0	0	7.4451

Sampling	Volume per	Volume per 1		Concentration	(ppm)	
(time)	0.5 g (mL)	g (mL)	Naphthalene	Quinoline	Indole	DBT
			Adsorption			
	Feed		587.3295	18.00931	19.0466	173.9599
1	2	4.104383	0	0	0	0
24	48	98.50518	0	0	0	0
36	72	147.7578	0	0	0	0
42	84	172.3841	0	0	0	0
44	88	180.5928	0/2	0	0	0
45	90	184.6972	0	0	0	0
46	92	188.8016	42.4405	0	0	0
47	94	192.906	111.4135	0	0	0
48	96	197.0104	169.1935	0	0	1.6471
60	120	246.263	1085.025	0	0	81.5124
72	144	295.5156	816.776	0	0	174.8103
84	168	344.7681	748.46	0	0	190.4682
96	192	394.0207	722.916	0	0	195.258
97	194	398.1251	706.267	0	0.6898	190.8426
98	196	402.2295	710.6615	0	1.34628	192.4858
99	198	406.3339	706.709	0	1.93804	193.2123
100	200	410.4383	701.351	0.37029	2.45748	191.659
102	204	418.647	699.7825	0.98223	3.65692	192.8015
108	216 🌍	443.2733	694.4975	2.05407	6.35284	193.9768
			Desorption			
	Feed	ULALUNG	587.3295	18.00931	19.0466	173.9599
1	2	4.104383	1044.585	0	0	214.961
6	12	24.6263	559.287	0	0	95.6507
12	24	49.25259	332.97	0	0	56.4396
24	48	98.50518	177.2795	0	0	30.5843
36	72	147.7578	114.561	0	0	20.311
48	96	197.0104	82.335	0	0	15.0817
60	120	246.263	62.642	0	0	12.0613
72	144	295.5156	49.38	0	0	10.0139
84	168	344.7681	39.301	0	0	8.2208

ตารางที่ ง2 ข้อมูลการดูดซับน้ำมันจำลอง 5 ด้วยตัวดูดซับซีโอไลต์ Na-Y ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที เพื่อศึกษาการ คายซับด้วยเฮกเซนที่อุณหภูมิ 40 องศาเซลเซียส และอัตราการไหล 1.0 มิลลิลิตรต่อนาที

Sampling	Volume per	Volume per 1		Concentration	(ppm)	
(time)	0.5 g (mL)	g (mL)	Naphthalene	Quinoline	Indole	DBT
			Adsorption			
	Feed		463.6094	11.93298	14.43104	152.4676
1	2	4.104383	0	0	0	0
32	64	131.3402	0	0	0	0
33	66	135.4446	0	0	0	0
34	68	139.549	14.55122	0	0	0
35	70	143.6534	37.98294	0	0	0
36	72	147.7578	80.88684	0	0	5.15412
38	76	155.9665	147.2271	0	0	12.21768
42	84	172.3841	372.2106	0	0	34.0782
48	96	197.0104	550.6184	0	0	89.35968
60	120	246.263	507.596	0	0	126.8405
72	144	295.5156	519.0126	0	0	142.4741
75	150	307.8287	396.4634	0	0	111.6596
76	152	311.9331	396.5648	0	0.66248	112.4342
77	154	316.0375	396.1298	0.23253	0.85564	112.5698
78	156	320.1418	401.4486	0.6036	1.02576	114.1351
84	168	344.7681	400.9461	0.61131	2.76072	114.5592
108	216	443.2733	379.3125	3.34041	7.75556	117.3967
			Desorption	-1101-		
	Feed	หาลงกร	463.6094	11.93298	14.43104	152.4676
1	2	4.104383	1187.407	0	0	250.5666
6	12	24.6263	579.164	/ERS ₀ TY	0	109.1742
12	24	49.25259	332.59	0	0	61.6424
24	48	98.50518	160.614	0	0	30.38
36	72	147.7578	102.2335	0	0	20.3807
48	96	197.0104	70.978	0	0	14.7928
60	120	246.263	53.326	0	0	11.7614
72	144	295.5156	41.894	0	0	9.9083
84	168	344.7681	33.203	0	0	8.4596

ตารางที่ ง3 ข้อมูลการดูดซับน้ำมันจำลอง 5 ด้วยตัวดูดซับซีโอไลต์ Na-Y ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที เพื่อศึกษาการ คายซับด้วยเฮกเซนที่อุณหภูมิ 50 องศาเซลเซียส และอัตราการไหล 1.0 mL/min

Sampling	Volume per	Volume per 1		Concentration	(ppm)	
(time)	0.5 g (mL)	g (mL)	Naphthalene	Quinoline	Indole	DBT
			Adsorption			
	Feed		614.8786	17.65455	17.3539	165.0234
1	2	4.104383	0	0	0	0
24	48	98.50518	0	0	0	0
35	70	143.6534	0	0	0	0
36	72	147.7578	4.84435	0	0	0
37	74	151.8622	21.1834	0	0	0.73441
38	76	155.9665	37.5151	0	0	2.44935
48	96	197.0104	604.0216	0	0	74.86215
54	108	221.6367	723.6649	0	0	117.3007
55	110	225.741	728.5527	1.0215	1.30195	118.9241
56	112	229.8454	794.647	1.04595	1.8583	128.7536
60	120	246.263	852.8296	0.99705	2.55625	145.7654
72	144	295.5156	809.326	0	2.0608	172.9747
80	160	328.3506	767.7271	0	1.84315	183.2302
82	164	336.5594	734.2342	0	3.2524	179.8261
83	166	340.6638	724.7874	1.23045	4.15675	176.3708
84	168	344.7681	746.4342	1.80615	5.21305	182.564
108	216	443.2733	687.0966	8.8083	14.2489	175.2749
			Desorption	1111		
	Feed 🧃	หาลงกร	614.8786	17.65455	17.3539	165.0234
1	2	4.104383	1448.518	0	0	259.815
6	12	24.6263	674.3475	ERSI ₀ TY	0	106.7231
12	24	49.25259	372.7413	0	0	59.25574
24	48	98.50518	183.8169	0	0	30.63813
36	72	147.7578	117.7215	0	0	20.29206
48	96	197.0104	84.0238	0	0	15.81205
60	120	246.263	61.0939	0	0	11.97139
72	144	295.5156	46.0831	0	0	9.81888
84	168	344 7681	33 33085	0	0	7 36389

ตารางที่ ง4 ข้อมูลการดูดซับน้ำมันจำลอง 5 ด้วยตัวดูดซับซีโอไลต์ Na-Y ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที เพื่อศึกษาการ คายซับด้วยเฮกเซนที่อุณหภูมิ 50 องศาเซลเซียส และอัตราการไหล 0.5 mL/min

Sampling	Volume per	Volume per 1		Concentration	n (ppm)	
(time)	0.5 g (mL)	g (mL)	Naphthalene	Quinoline	Indole	DBT
			Adsorption			
	Feed		463.6094	11.93298	14.43104	152.4676
1	2	4.104383	0	0	0	0
32	64	131.3402	0	0	0	0
33	66	135.4446	0	0	0	0
34	68	139.549	14.55122	0	0	0
35	70	143.6534	37.98294	0	0	0
36	72	147.7578	80.88684	0	0	5.15412
38	76	155.9665	147.2271	0	0	12.21768
42	84	172.3841	372.2106	0	0	34.0782
48	96	197.0104	550.6184	0	0	89.35968
60	120	246.263	507.596	0	0	126.8405
72	144	295.5156	519.0126	0	0	142.474
75	150	307.8287	396.4634	0	0	111.6596
76	152	311.9331	396.5648	0	0.66248	112.4342
77	154	316.0375	396.1298	0.23253	0.85564	112.5698
78	156	320.1418	401.4486	0.6036	1.02576	114.1351
84	168	344.7681	400.9461	0.61131	2.76072	114.5592
108	216	443.2733	379.3125	3.34041	7.75556	117.3967
		1011	Desorption			
	Feed 🗧	หาลงกร	463.6094	11.93298	14.43104	152.4676
1	2	4.104383	1187.407	0	0	250.5666
6	12	24.6263	579.164	/ERS ₀ TY	0	109.1742
12	24	49.25259	332.59	0	0	61.6424
24	48	98.50518	160.614	0	0	30.38
36	72	147.7578	102.2335	0	0	20.3807
48	96	197.0104	70.978	0	0	14.7928
60	120	246.263	53.326	0	0	11.7614
72	144	295.5156	41.894	0	0	9.9083
84	168	344.7681	33.203	0	0	8.4596

ตารางที่ ง5 ข้อมูลการดูดซับน้ำมันจำลอง 5 ด้วยตัวดูดซับซีโอไลต์ Na-Y ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที เพื่อศึกษาการ คายซับด้วยเฮกเซนที่อุณหภูมิ 50 องศาเซลเซียส และอัตราการไหล 1.0 mL/min

Sampling	Volume per	Volume per 1		Concentration	ı (ppm)	
(time)	0.5 g (mL)	g (mL)	Naphthalene	Quinoline	Indole	DBT
			Adsorption			
	Feed		564.6939	15.87765	16.01275	151.0949
1	2	4.104383	0	0	0	0
24	48	98.50518	0	0	0	0
36	72	147.7578	0	0	0	0
40	80	164.1753	0	0	0	0
41	82	168.2797	32.69035	0	0	0
42	84	172.3841	125.3991	0	0	0
43	86	176.4885	308.1558	0	0	0
44	88	180.5928	711.9627	0	0	24.62577
48	96	197.0104	812.0235	0	0	50.39794
60	120	246.263	675.4122	0	0	122.7289
72	144	295.5156	625.5865	0	0	137.6212
84	168	344.7681	608.5335	0	0	139.6902
96	192	394.0207	610.9275	0	0	147.2837
97	194	398.1251	610.2765	0	0	147.0772
98	196	402.2295	610.7763	0	1.71775	147.6021
100	200	410.4383	614.278	0	2.1523	148.3549
102	204	418.647	613.6071	0	2.677	148.391
106	212	435.0646	614.5353	0	3.50275	148.5069
107	214	439.1689	621.964	าลัย	3.976	151.7134
108	216	443.2733	619.066	1.05975	4.0168	149.8753
	Ui	IULALONG	Desorption	ERSITY		
	Feed		564.6939	15.87765	16.01275	151.0949
1	2	4.104383	991.669	0	-0.303	208.5066
6	12	24.6263	476.1873	0	0	82.58451
12	24	49.25259	273.1792	0	0	47.12044
24	48	98.50518	145.1244	0	0	25.63087
36	72	147.7578	97.98985	0	0	18.3704
48	96	197.0104	71.84695	0	0	13.54782
60	120	246.263	56.896	0	0	12.23834
72	144	295.5156	42.83755	0	0	8.92246
84	168	344.7681	34.3777	0	0	7.34033

ตารางที่ ง6 ข้อมูลการดูดซับน้ำมันจำลอง 5 ด้วยตัวดูดซับซีโอไลต์ Na-Y ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที เพื่อศึกษาการ คายซับด้วยเฮกเซนที่อุณหภูมิ 50 องศาเซลเซียส และอัตราการไหล 1.5 mL/min

Sampling	Volume per	Volume per 1							
(time)	0.5 g (mL)	g (mL)	Naphthalene	Quinoline	Indole	DBT			
Adsorption									
	Feed		614.8786	17.65455	17.3539	165.0234			
1	2	4.104383	0	0	0	0			
24	48	98.50518	0	0	0	0			
36	72	147.7578	0	0	0	0			
38	76	155.9665	0	0	0	0			
39	78	160.0709	7.71295	0	0	0			
40	80	164.1753	30.8875	0	0	0.96754			
42	84	172.3841	73.8241	0	0	4.62694			
48	96	197.0104	238.0263	0	0	24.60753			
60	120	246.263	821.5522	0	0	99.7455			
72	144	295.5156	785.701	0	0	148.3454			
74	148	303.7243	776.8443	0	0	147.6358			
75	150	307.8287	783.3427	0	1.2781	148.4826			
76	152	311.9331	798.0228	0	1.6525	151.8167			
78	156	320.1418	799.2712	0	2.22535	155.1657			
80	160	328.3506	781.4737	0	2.9734	158.7038			
82	164	336.5594	762.7858	0	3.47845	161.501			
83	166	340.6638	754.4688	1.1142	3.9124	161.5973			
84	168	344.7681	755.9734	1.30755	4.20085	166.1043			
108	216	443.2733	679.0515	6.7425	11.7148	171.597			
	n .		Desorption						
	Feed	ULALUNG	614.8786	17.65455	17.3539	165.0234			
1	2	4.104383	1058.427	0	17.40625	192.8041			
6	12	24.6263	583.1277	22.79865	53.65135	135.0063			
12	24	49.25259	320.0145	20.8089	25.49755	91.04711			
24	48	98.50518	162.0955	13.3599	13.3852	62.1331			
36	72	147.7578	111.2944	9.17715	8.7229	50.10344			
48	96	197.0104	74.4415	8.613	6.69355	38.91206			
60	120	246.263	56.0014	6.88755	4.96855	33.45887			
72	144	295.5156	44.87455	5.50605	4.1713	29.59237			
84	168	344.7681	37.85215	4.79445	3.29335	27.63879			

ตารางที่ ง7 ข้อมูลการดูดซับน้ำมันจำลอง 5 ด้วยตัวดูดซับซีโอไลต์ Na-Y ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที เพื่อศึกษาการ คายซับด้วยโทลูอีนที่อุณหภูมิ 30 องศาเซลเซียส และอัตราการไหล 1.0 mL/min

ตารางที่ ง8 ข้อมูลการดูดซับน้ำมันจำลอง 5 ด้วยตัวดูดซับซีโอไลต์ Na-Y ปริมาณตัวดูดซับ 0.5 g
อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที เพื่อศึกษาการ
คายซับด้วยโทลูอีนที่อุณหภูมิ 40 องศาเซลเซียส และอัตราการไหล 1.0 mL/min

Sampling	Volume per	Volume per 1		Concentration	(ppm)						
(time)	0.5 g (mL)	g (mL)	Naphthalene	Quinoline	Indole	DBT					
	Adsorption										
	Feed		592.4675	18.47684	19.03228	172.7262					
1	2	4.104383	0	0	0	0					
24	48	98.50518	0	0	0	0					
28	56	114.9227	0	0	0	0					
29	58	119.0271	0	0	0	0					
30	60	123.1315	22.7075	0	0	0					
36	72	147.7578	307.9985	0	0	20.7261					
48	96	197.0104	526.4435	0	0	99.7041					
60	120	246.263	539.266	0	0	118.2054					
72	144	295.5156	650.8105	0	0	138.6529					
73	146	299.6199	657.0435	0	0	141.9379					
74	148	303.7243	661.4485	0	0.53644	143.7184					
75	150	307.8287	658.29	0	1.30884	143.897					
76	152	311.9331	661.6015	0.42972	2.66196	144.4428					
78	156	320.1418	694.211	1.3715	4.73308	149.6916					
84	168	344.7681	685.1055	2.56542	7.7842	152.1881					
108	216	443.2733	634.8365	6.41787	12.63124	168.7036					
		4	Desorption	1							
	Feed	0.0110	592.4675	18.47684	19.03228	172.7262					
1	2	4.104383	ณ์มหาวิทย	ยาลัย	0	0					
6	12	24.6263	0	0	0	0					
12	24	49.25259		/ERS ₀ TY	0	0					
24	48	98.50518	0	0	0	0					
36	72	147.7578	107.8825	0	0	0					
48	96	197.0104	90.4795	0	0	39.1955					
60	120	246.263	75.086	0	0	35.5003					
72	144	295.5156	62.2895	0	0	31.5258					
84	168	344.7681	51.3835	0	0	27.5385					

ตารางที่ ง9 ข้อมูลการดูดซับน้ำมันจำลอง 5 ด้วยตัวดูดซับซีโอไลต์ Na-Y ปริมาณตัวดูดซับ 0.5 g
อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที เพื่อศึกษาการ
คายซับด้วยโทลูอีนที่อุณหภูมิ 50 องศาเซลเซียส และอัตราการไหล 1.0 mL/min

Sampling	Volume per	Volume per 1		Concentration	(ppm)				
(time)	0.5 g (mL)	g (mL)	Naphthalene	Quinoline	Indole	DBT			
Adsorption									
	Feed		503.0745	15.53957	15.91084	146.4803			
1	2	4.104383	0	0	0	0			
24	48	98.50518	0	0	0	0			
27	54	110.8183	0	0	0	0			
28	56	114.9227	0	0	0	0			
29	58	119.0271	6.377	0	0	0			
30	60	123.1315	9.7625	0	0	0			
31	62	127.2359	14.4385	0	0	0			
32	64	131.3402	27.0455	0	0	0			
34	68	139.549	73.6675	0	0	4.3733			
36	72	147.7578	120.9325	0	0	10.3891			
48	96	197.0104	408.789	0	0	58.8422			
60	120	246.263	632.488	0	0	143.8989			
62	124	254.4717	624.4305	0	0	147.3545			
63	126	258.5761	616.068	0	1.6278	148.3218			
64	128	262.6805	608.547	1.20553	3.933	147.9022			
66	132	270.8893	599.978	2.95938	6.84596	148.8037			
72	144	295.5156	579.9205	6.00193	10.55004	148.9688			
84	168	344.7681	564.816	8.03347	12.36124	149.2597			
108	216	443.2733	550.17 3 9 8	10.01538	13.4774	149.6034			
	n .		Desorption						
	Feed	IULALUNG	503.0745	15.53957	15.91084	146.4803			
1	2	4.104383	1311.253	6.19926	41.38068	277.8973			
6	12	24.6263	468.6225	17.52981	34.49468	123.1563			
12	24	49.25259	257.5075	13.95876	19.25756	77.3939			
24	48	98.50518	144.1925	10.1481	9.88052	49.8084			
36	72	147.7578	88.753	6.40625	6.3182	33.2485			
48	96	197.0104	67.645	5.47609	4.8606	27.0505			
60	120	246.263	54.87	4.6244	4.14516	23.567			
72	144	295.5156	46.1045	3.84285	3.2646	20.6988			
84	168	344.7681	38.477	3.33675	2.88932	18.8682			

Sampling	Volume per	Volume per 1		Concentration	ı (ppm)	
(time)	0.5 g (mL)	g (mL)	Naphthalene	Quinoline	Indole	DBT
			Adsorption			
	Feed		518.677	15.60306	16.20916	153.478
1	2	4.104383	0	0	0	0
24	48	98.50518	0	0	0	0
25	50	102.6096	0	0	0	0
26	52	106.7139	12.1775	0	0	0.2103
32	64	131.3402	480.4885	0	0	63.816
36	72	147.7578	539.397	0	0	95.579
48	96	197.0104	532.1295	0	0	131.352
49	98	201.1148	540.0705	0	0	135.160
50	100	205.2191	544.949	0	1.1786	137.413
51	102	209.3235	540.267	0	1.82868	138.205
52	104	213.4279	542.935	0.45009	2.46868	140.475
54	108	221.6367	568.4635	1.31746	4.35668	150.977
60	120	246.263	550.812	3.49817	8.50972	148.934
72	144	295.5156	543.9205	5.96889	11.23724	151.593
84	168	344.7681	537.119	7.90985	12.65732	151.372
108	216	443.2733	532.0635	10.73855	14.22972	152.466
		24	Desorption	A.		
	Feed	1010	518.677	15.60306	16.20916	153.478
1	2	4.104383	1069.023	1.5752	29.87628	233.849
6	12	24.6263	688.9395	27.61702	43.17548	127.194
12	24	49.25259	340.6485	19.3482	21.30668	81.8273
24	48	98.50518	113.4175	11.49357	9.45852	49.3335
36	72	147.7578	70.595	8.24459	6.18932	39.2405
48	96	197.0104	43.5725	6.03602	3.99332	29.5381
60	120	246.263	27.5735	4.05117	2.5854	23.6679
72	144	295.5156	18.3495	3.17925	1.81172	16.8969
84	168	344 7681	12 388	2 79936	1 3054	13 439

ตารางที่ ง10 ข้อมูลการดูดซับน้ำมันจำลอง 5 ด้วยตัวดูดซับซีโอไลต์ Na-Y ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที เพื่อศึกษาการ คายซับด้วยโทลูอีนที่อุณหภูมิ 50 องศาเซลเซียส และอัตราการไหล 0.5 mL/min

Sampling	Volume per	Volume per 1		Concentration	ı (ppm)				
(time)	0.5 g (mL)	g (mL)	Naphthalene	Quinoline	Indole	DBT			
Adsorption									
	Feed		503.0745	15.53957	15.91084	146.4803			
1	2	4.104383	0	0	0	0			
24	48	98.50518	0	0	0	0			
27	54	110.8183	0	0	0	0			
28	56	114.9227	0	0	0	0			
29	58	119.0271	6.377	0	0	0			
30	60	123.1315	9.7625	0	0	0			
31	62	127.2359	14.4385	0	0	0			
32	64	131.3402	27.0455	0	0	0			
34	68	139.549	73.6675	0	0	4.3733			
36	72	147.7578	120.9325	0	0	10.3891			
48	96	197.0104	408.789	0	0	58.8422			
60	120	246.263	632.488	0	0	143.8989			
62	124	254.4717	624.4305	0	0	147.3545			
63	126	258.5761	616.068	0	1.6278	148.3218			
64	128	262.6805	608.547	1.20553	3.933	147.9022			
66	132	270.8893	599.978	2.95938	6.84596	148.8037			
72	144	295.5156	579.9205	6.00193	10.55004	148.9688			
84	168	344.7681	564.816	8.03347	12.36124	149.2597			
108	216	443.2733	550.17	10.01538	13.4774	149.6034			
	0.	1	Desorption						
	Feed	IULALONG	503.0745	15.53957	15.91084	146.4803			
1	2	4.104383	1311.253	6.19926	41.38068	277.8973			
6	12	24.6263	468.6225	17.52981	34.49468	123.1563			
12	24	49.25259	257.5075	13.95876	19.25756	77.3939			
24	48	98.50518	144.1925	10.1481	9.88052	49.8084			
36	72	147.7578	88.753	6.40625	6.3182	33.2485			
48	96	197.0104	67.645	5.47609	4.8606	27.0505			
60	120	246.263	54.87	4.6244	4.14516	23.567			
72	144	295.5156	46.1045	3.84285	3.2646	20.6988			
84	168	344.7681	38.477	3.33675	2.88932	18.8682			

ตารางที่ ง11 ข้อมูลการดูดซับน้ำมันจำลอง 5 ด้วยตัวดูดซับซีโอไลต์ Na-Y ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที เพื่อศึกษาการ คายซับด้วยโทลูอีนที่อุณหภูมิ 50 องศาเซลเซียส และอัตราการไหล 1.0 mL/min

Sampling	Volume per	Volume per 1	Concentration (ppm)						
(time)	0.5 g (mL)	g (mL)	Naphthalene	Quinoline	Indole	DBT			
Adsorption									
	Feed		507.728	16.12253	16.1198	151.0925			
1	2	4.104383	0	0	0	0			
24	48	98.50518	0	0	0	0			
36	72	147.7578	0	0	0	0			
37	74	151.8622	5.8295	0	0	0			
38	76	155.9665	20.023	0	0	1.246			
42	84	172.3841	221.2125	0	0	28.9205			
48	96	197.0104	547.2955	0	0	89.2964			
50	100	205.2191	603.2315	0	0	102.3676			
51	102	209.3235	609.12	0	0	108.5433			
52	104	213.4279	612.0895	0	0.99652	114.2775			
53	106	217.5323	632.1375	0.37414	1.77236	121.0949			
54	108	221.6367	643.015	0.61501	2.32884	124.3734			
60	120	246.263	703.164	2.05869	4.8022	145.0553			
72	144	295.5156	606.606	2.84192	6.70476	160.2525			
84	168	344.7681	582.3805	6.19107	11.4538	163.6145			
108	216	443.2733	546.2945	10.41942	15.85452	158.7608			
		24	Desorption	A					
	Feed	1011	507.728	16.12253	16.1198	151.0925			
1	2	4.104383	1464.87	ยาลัย	0.83436	258.6573			
6	12	24.6263	687.6255	0	0	98.1234			
12	24	49.25259	378.207	/ERS ₀ TY	0	54.627			
24	48	98.50518	163.3635	0	0	25.0948			
36	72	147.7578	95.752	0	0	15.7956			
48	96	197.0104	62.7945	0	0	11.0454			
60	120	246.263	45.185	0	0	8.5892			
72	144	295.5156	33.178	0	0	6.79			
84	168	344.7681	25.4735	0	0	5.6154			

ตารางที่ ง12 ข้อมูลการดูดซับน้ำมันจำลอง 5 ด้วยตัวดูดซับซีโอไลต์ Na-Y ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที เพื่อศึกษาการ คายซับด้วยโทลูอีนที่อุณหภูมิ 50 องศาเซลเซียส และอัตราการไหล 1.5 mL/min

Conceliere	Volume	Volume		Cond	centration (pp	m)	
(time)	per 0.5 g (mL)	per 1 g (mL)	Naphthalene	Quinoline	Indole	DBT	4,6-DMDBT
			Adsorp	otion			
	Feed		500	15	15	75	75
1	2	4.008402	0	0	0	0	0
2	4	8.016803	2.224784	0	0	0	0
3	6	12.0252	17.48906	0	0	2.336007	2.577407
4	8	16.03361	49.45963	0 - 0	0.721843	7.157877	7.812518
5	10	20.04201	89.5569	0.632455	1.742743	13.41991	14.095
6	12	24.05041	125.9627	1.141288	2.642677	18.81307	19.81
12	24	48.10082	238.4365	3.279705	5.790883	36.13458	36.6863
24	48	96.20164	327.0629	5.524322	8.630684	49.196	49.54768
36	72	144.3025	384.8923	7.364104	10.39996	57.7105	57.95954
48	96	192.4033	426.7783	8.334207	11.35551	61.9332	62.2903
60	120	240.5041	461.4526	9.244803	12.40729	67.06373	67.2641
72	144	288.6049	466.5914	10.05988	13.14465	69.8873	70.05015
84	168	336.7057	487.205	10.98916	13.84269	73.05342	73.15772
108	216	432.9074	497.8922	11.6014	13.78864	72.53898	72.38757
			Desor	otion	5)		
	Feed	24	500	15	15	75	75
1	2	4.104383	253.6245	0.360067	0.369722	21.81411	29.49724
6	12	24.6263	785.3594	าวิทยาว	ລັຍ ⁰	104.9129	29.64219
12	24	49.25259	222.2541	0	0	43.71995	16.12806
24	48	98.50518	57.61527	UNOVER	S TO	17.33677	8.852619
36	72	147.7578	26.41851	0	0.278749	10.32992	6.41109
48	96	197.0104	14.31097	0	0.312467	6.779149	5.430736
60	120	246.263	8.390958	0	0.283488	5.121542	4.282192
72	144	295.5156	7.11259	0	0.340639	3.25636	4.094064
84	168	344.7681	7.217671	0	0.331396	2.864006	3.446667

ตารางที่ ง 13 ข้อมูลการดูดซับน้ำมันจำลอง 5 ด้วยตัวดูดซับ Ni-Y ซีโอไลต์ปริมาณตัวดูดซับ 0.5 g อัตราการไหล 1 mL/min อุณหภูมิ 30 องศาเซลเซียส เก็บสารตัวอย่างที่ทุก 2 นาที เพื่อศึกษาการ คายซับด้วยโทลูอีนที่อุณหภูมิ 50 องศาเซลเซียส และอัตราการไหล 0.5 mL/min

Repeat	
2	3
10.34	10.5
17.95	17.93
71 55	71 41

ตารางที	จ1	ข้อมูลขอ 	งตัวดูด	เซับจาก	การวิเครา	าะห์ X	(RF

	Oxide		Repeat	
Adsorbent	composition	1	2	3
	Na ₂ O	10.25	10.34	10.5
NaY	Al_2O_3	17.97	17.95	17.93
	SiO ₂	71.63	71.55	71.41
	Ni ₂ O ₃	13.03	13.12	13.11
NiY	Al ₂ O ₃	17.59	17.58	17.56
	SiO ₂	69.2	69.13	69.12
-	La ₂ O ₃	14.47	14.93	14.52
LaY	Al ₂ O ₃	17.36	17.23	17.25
	SiO ₂	68.18	67.84	68.23
	Ce ₂ O ₃	18.73	18.98	18.66
CeY	Al ₂ O ₃	16.51	16.45	16.7
E.	SiO ₂	64.76	64.57	64.65
_	Ni ₂ O ₃	5.69	5.7	5.64
nii ay	La ₂ O ₃	16.08	16.14	16.17
GHUL	Al ₂ O ₃	15.97	15.9	15.89
	SiO ₂	62.26	62.26	62.3
	Ni ₂ O ₃	5.75	5.72	5.7
NiCeY	Ce ₂ O ₃	16.51	16.39	16.36
MCCT	Al_2O_3	15.77	15.77	15.95
	SiO ₂	61.97	62.12	61.99

ภาคผนวก จ

ประวัติผู้เขียนวิทยานิพนธ์

นายอานันท์ ศิลาจันทร์ เกิดวันที่ 11 กรกฎาคม 2536 สำเร็จการศึกษา ปริญญาจนร วิศวกรรมศาสตรบัณฑิต สาขาปิโตรเคมีและวัสดุพอลิเมอร์ ภาควิชาวิทยาการและวิศวกรรมวัสดุ คณะวิศวกรรมศาสตร์และเทคโนโลยีอุตสาหกรรม มหาวิทยาลัยศิลปากร วิทยาเขตพระราชวัง สนามจันทร์ ปีการศึกษา 2558 และเข้าศึกษาต่อในหลักสูตร วิทยาศาสตรมหาบัณฑิต สาขา เทคโนโลยีเชื้อเพลิง ภาควิชาเคมีเทคนิค คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2559 เสนองานวิจัยในหัวข้อ Adsorptive desulfurization of diesel oil over Ni-Ce-Y and Ni-La-Y zeolites งานประชุมวิชาการ The 24th PPC Symposium on Petroleum, Petrochemicals, and Polymers and The 9th Research Symposium on Petrochemical and Materials Technology กรุงเทพๆ วันที่ 5 มิถุนายน 2561

CHULALONGKORN UNIVERSITY