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CHAPTER I

INTRODUCTION

1.1 Motivation and Literature Surveys

One of the most important, probably the hardest, tasks in investing is choosing

the best portfolio out of many assets available in financial markets. However, the word

“the best” is subjective. One may view the best portfolio as the one with minimal risk.

However, risk can be viewed differently from one investor to another. Moreover, the views

on the future prices of the assets are also not certain, thus subjective.

The most famous risk measure was proposed by Markowitz [17] in 1959 which won

him a noble price in 1990. The Markowitz framework measured risk as the variance of

the terminal wealth. Later on, there were more works on some other risk measures such

as Value-at-risk (VaR) [10] and Conditional Value-at-Risk (CVaR) [16]. Both VaR and

CVaR, stated in [2, 4, 13, 14], measure the loss occurring at the tail. However, CVaR is

more popular in practice as VaR is not sub-additive and convex. In 2018, Armstrong et

al. [3] viewed the exponential loss function as a risk measure. This loss function is more

sensible than the ones mentioned above as it does not penalize both upside and downside

like that of Markowitz and does not ignore the risk everywhere except the tail like VaR

and CVaR.

1.2 Research Objectives

In this work, we apply the portfolio optimization model based on the exponential

loss function [3] to the Stock Exchange of Thailand (SET). As there are many stocks in

the exchange, the questions are that if an investor would like to invest in only n stocks

out of all tradable assets, which stocks should he/she invest in and how much should the

fund be allocated to each asset? These questions lead us to a portfolio optimization model



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

which helps the investor to select his/her own portfolio out of the stocks in SET50.

1.3 Scope and Assumptions

In this thesis, we consider the stocks in SET50 using the data from 3 January 2018

to 24 January 2020 (506 trading days). However, since the data for two stocks, AWC and

OSP, are not available, only 48 stocks are considered in this research study. Additionally,

this work follows the assumptions described in Assumptions 1.1.

Assumptions 1.1.

• The market is assumed to be perfectly liquid, meaning that one can buy or sell any

amount of a particular asset and there are no transaction costs.

• The asset prices at maturity time are independent and follow the well-known bino-

mial distribution explained in details in Chapter 2.

1.4 Thesis Structure

This thesis is divided into five chapters which are organized as follows. First,

Chapter 1 is an introduction of this work, including motivation and literature reviews,

research objectives and thesis overview. Chapter 2 presents the background knowledge on

the models for asset prices, conditional expectation and a portfolio optimization model.

In Chapter 3, we apply the exponential loss function to the portfolio selection problem

which is given the prices of the 48 biggest stocks in terms of market capitalization. Then,

we estimate some parameters and find an optimal portfolio based on the exponential loss

function. Next, numerical results and discussion regarding the research are demonstrated

in Chapter 4. Finally, Chapter 5 provides the conclusion and possible future works.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

BACKGROUND KNOWLEDGE

In this chapter, the background knowledge about asset pricing models, conditional

expectation and the well-known portfolio optimization model are introduced. Let us first

assume that an investor has an initial wealth w to buy assets from the financial market

which is a set J consisting of all tradeable assets. The investor buys the assets at time

t = 0 and holds them until maturity time T without rebalancing. Moreover, the costs

of buying assets denoted by the vector S0 = (Si
0)i∈J are assumed to be known at time

t = 0. The values of the assets at time t = T denoted by the random vector ST = (Si
T )i∈J

are on a probability space (Ω,F ,P). Also, the portfolio x = (xi)i∈J is a vector of units

bought or sold in assets i ∈ J at time t = 0. Note that these units can be both positive

or negative values. Particularly, the negative unit means the short selling.

2.1 Binomial Models for Pricing Asset

One of the widely used models for asset prices is a geometric Brownian motion

which can be expressed in the following stochastic differential equation (SDE)

dSt = µStdt+ σStdWt, (2.1)

where Wt is the standard Brownian motion called a Wiener process, St is the asset price

at time t, µ is the growth rate, and σ is the volatility. Although this model is popular,

solving for the asset prices St in (2.1) is not suitable for the data used in this work because

the logarithm of its return is not normally distributed. Thus, a numerical method plays

an important role to approximate St. However, the consuming time to simulate the asset

prices St obtained from several numerical methods is actually very expensive.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

Therefore, in this work, we propose another model that is relatively easy to seek for

the asset prices at the maturity time ST by applying the well-known binomial distribution

given in [6]. It can be expressed as follows:

Si
T =






Si
0(1 + ui) with probability pi,

Si
0(1 + di) with probability 1− pi,

(2.2)

which is called a “binomial model for asset price”, where Si
0 and Si

T are the asset prices

at the initial and the maturity times, respectively, of the ith stock, −1 < di < 0 < ui and

0 < pi < 1 for i = 1, 2, . . . , n(J). However, the required parameters of this model are

ui, di and pi. We can estimate them by using historical data (k trading days) with the

adjusted formula of (2.2) that employs the stock prices of two consecutive trading days

as follows:

Si
t =






Si
t−1(1 + ui) with probability pi,

Si
t−1(1 + di) with probability 1− pi,

(2.3)

where Si
t−1 and Si

t are the ith stock prices at consecutively previous and current days for

t > 0. Furthermore, we can compute the relative return at time t of the ith stock by

rit =
Si
t − Si

t−1

Si
t−1

, (2.4)

which can be used to estimate ui and di by the following formulas

ui =
1

n

∑

t: rit>0

rit, (2.5)

di =
1

m

∑

t: rit≤0

rit, (2.6)

where ui is an average of the n positive relative returns and di is an average of the m non-

positive relative returns. In fact, we have m+ n = k − 1 and pi =
n

k−1 which means the

probability of positive relative returns. To make it clearer, we will illustrate the process

for estimating the parameters ui, di and pi via Example 2.1.
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Example 2.1. Assume that stock prices for 10 consecutive trading days are as follows:

79.5, 78︸ ︷︷ ︸
down

.25, 7︸ ︷︷ ︸
up

9, 8︸ ︷︷ ︸
up

0, 80︸ ︷︷ ︸
up

.75, 8︸ ︷︷ ︸
up

1, 80︸ ︷︷ ︸
down

.25, 8︸ ︷︷ ︸
down

0, 80︸ ︷︷ ︸
up

.25, 80︸ ︷︷ ︸
up

.5

First, we can find the relative return rit of each trading day t ∈ {1, 2, 3, . . . , 9} by using

(2.4) and their obtained values are shown in Table 2.1. Then, these values are utilized to

compute ui and di by (2.5) and (2.6), respectively, as also shown in Table 2.1. Obviously,

from Table 2.1, there are 6 positive relative returns out of all (9) relative returns. Thus,

the probability pi =
6
9 = 2

3 .

Table 2.1: The values of the relative return rit of each trading day

rit > 0 rit ≤ 0

ri2 = 79−78.25
78.25 = 0.00958 ri1 = 78.25−79.5

79.5 = −0.0157

ri3 = 80−79
79 = 0.0127 ri6 = 80.25−81

81 = −0.00926

ri4 = 80.75−80
80 = 0.00934 ri7 = 80−80.25

80.25 = −0.00311

ri5 = 81−80.75
80.75 = 0.0031

ri8 = 80.25−80
80 = 0.0031

ri9 = 80.5−80.25
80.25 = 0.0031

∴ ui =
ri2+ri3+ri4+ri5+ri8+ri9

6 = 0.00682 ∴ di =
ri1+ri6+ri7

3 = −0.00936

2.2 Expectation and Variance

The expected value or expectation of a random variable X is denoted by E[X] or

µX . If we observe random values X, then their mean will be approximately equal to E[X].

For continuous and discrete random variables, the expectation is defined in different ways.

Definition 2.1. Let X be a continuous random variable with probability density function

fX(x). The expected value of X is

E[X] =

∫ ∞

−∞
xfX(x) dx.
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Definition 2.2. Let X be a discrete random variable with probability mass function

fX(x). The expected value of X is

E[X] =
∑

x

xfX(x) =
∑

x

xP (X = x).

The variance of a random variable X is a measure of how dispersed its value is. In

other words, the variance measures how far the values of X are from their mean. The

exact definition of the variance is given below.

Definition 2.3. Let X be a random variable. The variance of X is

Var[X] = E[(X − µX)2] = E[X2]− (E[X])2.

Theorem 2.1. If random variables X1, X2, . . . , Xn are independent, then for any Borel

measurable functions f1, f2, . . . , fn, we have

E[f1(X1)f2(X2) . . . fn(Xn)] = E [f1(X1)]E [f2(X2)] . . .E [fn(Xn)] .

2.3 Independence of Random Variables

In this section, we demonstrate the well-known models for testing the independence

of random variables, consisting of Pearson correlation, Spearman’s rank correlation and

Kendall’s τ . Moreover, their advantages and limitations are also addressed here.

2.3.1 Pearson Correlation Model

This section addresses the most popularly applied correlation concept in observed

data, namely, the Pearson correlation model. Although, there are severe limitations when

applied in finance, the Pearson correlation model is still the most widely applied in this

field, which we will mention later. Let’s take a closer look at the Pearson correlation

model.
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Let Sx = {x1, x2, ..., xn} and Sy = {y1, y2, ..., yn} be two samples from the contin-

uous random variables X and Y , respectively. The Pearson correlation coefficient rxy for

the samples is defined as follows:

rxy =
sxy
sxsy

(2.7)

where sxy is the sample covariance while sx and sy are the sample standard deviations of

Sx and Sy, respectively. The sample covariance sxy is defined below.

sxy =
1

n− 1

n∑

t=1

(xt − x̄)(yt − ȳ), (2.8)

where x̄ and ȳ are the sample means of Sx and Sy, respectively, i.e,

x̄ =
1

n

n∑

t=1

xt, (2.9)

ȳ =
1

n

n∑

t=1

yt. (2.10)

The sample standard deviations sx and sy are defined as follows:

sx =

√√√√ 1

n− 1

n∑

t=1

(xt − x̄)2, (2.11)

sy =

√√√√ 1

n− 1

n∑

t=1

(yt − ȳ)2. (2.12)

Therefore, from (2.7), the Pearson correlation coefficient rxy of the samples Sx and Sy

can be written as the following formula.

rxy =

∑n
t=1(xt − x̄)(yt − ȳ)√∑n

t=1 (xt − x̄)2
√∑n

t=1 (yt − ȳ)2
(2.13)

The population Pearson correlation between X and Y is defined by

ρ(X,Y ) =
Cov(X,Y )

σ(X)σ(Y )
. (2.14)
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In finance, the properties of the Pearson correlation coefficient are standard sta-

tistical tools to analyze the behavior of the data. For example, in 2005, the Pearson

correlation coefficient was applied by Altman et al. [1] to verify the negative correlation

between the default rates and recovery rates; in 2006, the correlations between the returns

of the asset with sector specific regional factor loadings was studied by Fitch [15]; and

Das et al. [8] regressed the mean of the default with market volatility and also debt to

asset ratios.

2.3.2 Spearman’s Rank Correlation

Spearman’s rank correlation is a measure of ordinal correlation given in [11]. This

indicates that the order of the items in a set is more important than their numerical

values for determining the connection. For ranking variables, the Spearman’s correlation

coefficient is also known as the Pearson correlation coefficient. A perfect correlation

coefficient of 1 will arise if an increase in the variables xi is always accompanied by an

increase in yi, regardless of the magnitude of the increase, and vice versa. In the sense

that it may be used without knowing the joint distribution of the variables, the Spearman

correlation technique is nonparametric. ρS representing the Spearman rank correlation

coefficient is defined by

ρS = 1−
6

n∑

i=1

d2i

n(n2 − 1)
, (2.15)

where di is the difference in rank for x and y.

2.3.3 Kendall’s τ

Kendall’s τ is an additional, widely used ordinal correlation metric in finance. The

Kendall’s τ is nonparametric, like the Spearman’s correlation coefficient. If a rise of the

variables x and y, regardless of the numerical increase, then the correlation coefficient

perfectly yield the value at 1. The two rank correlation measurements are not equivalent
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in most other circumstances. Kendall’s τ is given in [11] and defined as follows:

τ =
nc − nd

n(n− 1)/2
, (2.16)

where nc is the number of concordant data pairs and nd is the number of discordant pairs.

Rigorously, a concordant pair denotes mathematically as the observed pair for all t $= t∗

where xt > yt and xt∗ > yt∗ or xt < yt and xt∗ < yt∗ . On the other hand, the observed

discordant data pair is defined as the cases for all t $= t∗ where xt > yt and xt∗ < yt∗ or

xt < yt and xt∗ > yt∗ . In this respect, for the case of xt = yt or xt∗ = yt∗ , the pair is

defined neither concordant nor discordant.

2.3.4 Should We Apply Spearman’s Rank Correlation and Kendall’s τ?

Meissner [11] concludes that the properties and applications of the statistical cor-

relation measures in finance are limited in various situations. One primary concern with

the Pearson correlation coefficients is that the coefficients are evaluated for the linear

relationships. However, real-world samples in finance are always nonlinear. In contrast,

Spearman’s rank and Kendall’s τ are statistical rank correlation measures that should be

only applied with the financial variables which are ordinal such as the rating categories.

From the above reason, this work will focus on the Pearson correlation model.

2.3.5 Significance of Pearson Correlation Coefficient Test

In order to describe the independence of the stock pairs, this subsection addresses

a statistical correlation approach, which is the testing for the significance of the Pearson

correlation coefficient. Because of its mathematical simplicity of the Pearson correla-

tion model, it becomes one of the most popularity applied correlation and independence

concepts in finance. However, as mentioned in the previous subsection, there are some

major problems for the Pearson correlation model. For example, it measures only linear

relationships but the most of financial correlations are always nonlinear. Most impor-

tantly, it should be noted that the zero correlation calculated by the Pearson correlation

approach does not necessarily imply that the pair of financial data are independent. For
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this very reason, the Pearson correlation model may lead us misunderstanding. However,

the outcome performed by the Pearson correlation model can give a good approximation

for nonlinear financial correlations found in real-world problems [11]. In this work, the

testing for the significance of the Pearson correlation coefficient is applied inevitably. We

just need to be aware of its limitations.

Briefly, the Pearson correlation coefficient of the sample, r, with the sample size, n,

can be applied to test whether the relationship between the two variables is significant.

Technically speaking, r is an estimate of the Pearson correlation of the population, ρ,

which can infer whether ρ is significantly different from 0 as described in the following

hypothesis

Null hypothesis H0 : ρ = 0,

Alternative hypothesis Ha : ρ $= 0.

To decide whether to reject the null hypothesis or not, one can check by comparing the t-

and t∗-values which are the test statistic and the critical value of t, respectively. Given the

significance level α, if the t-value is greater than the t∗-value (or p-value < α), then the

relationship is statistically significant. This implies that the sample allows us to reject the

null hypothesis, H0, and vice versa for the case that the t-value is less than the t∗-value.

Anywise, for our convenience, this work applies the basic package in Mathematica

which is IndependenceTest with its option, namely, PearsonCorrelation and α = 0.05

that will perform the Pearson correlation coefficient test described above with significant

level α = 0.05.

2.4 Portfolio Optimization Model

The portfolio optimization model is specified as a constrained disutility-minimization

problem. The disutility function is used to measure the unhappiness of investors. Many

works of literature use this function to describe risk. Due to subjectivity, this function is

severally proposed in different forms.
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The simplest disutility is to use the expectation, v(x) = E[x] for x ∈ L∞(Ω,F ,P),

see [5] for more details. The portfolio selection problem using the expectation as a disu-

tility function can be written as,

Minimize E[C − ST · x],

subject to S0 · x ≤ w,





(2.17)

where x ∈ Rn is a portfolio consisting of n assets, S0 ∈ Rn is a vector of initial costs of

the assets, ST is a vector of random prices of the assets and C is a liability claim which

is a future expense.

Since the expectation of a claim is a constant, the problem is just to minimize the

negative value of the portfolio at time t = T . Obviously, the portfolio which yields the

minimized value is the one which invests all initial money in the asset which has the

highest return.

One of the drawbacks of this disutility is that it will not take the distribution of the

data into account. Although the portfolio yields the minimum expected value of C−ST ·x,

the biggest loss could be unexceptionably high.

2.5 Mean-Variance Criterion

In 1959, Markowitz [17] proposed a mathematical formulation for a portfolio se-

lection problem by taking a variance of the terminal wealth as a risk measure. Given a

required expected return r, the optimal portfolio is a combination of assets yielding the

minimal variance. The formulation can be expressed as

Minimize Var [ST · x] ,

subject to S0 · x ≤ w,

E [ST · x] ≥ r,






(2.18)

where ST · x denotes value of the portfolio at the maturity time T which x ∈ Rn is a
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portfolio consisting of n assets, S0 ∈ Rn is a vector of initial costs of the assets and ST is

a vector of random prices of the assets.

One of the benefits of this disutility does not only provide the low expectation

of losses, but the portfolio also gives the low variance. However, it also eliminates the

opportunity to take advantage of the possibility that the net investment is greater than

the expectation, since it minimizes the fluctuation for both sides of the distributions.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

PORTFOLIO OPTIMIZATION BASED ON

EXPONENTIAL LOSS FUNCTION UNDER

BINOMIAL MODEL

In this chapter, we will show the exponential loss function which is the main model

used in this work. Moreover, we apply the binomial model with the exponential loss

function in order to describe the prices at maturity time.

3.1 Exponential Loss Function

In 2018, Armstrong et al. [3] measured the risk by the exponential loss function.

The scheme was illustrated by implementing the model for a portfolio selection in S&P

500 options markets. The model can be written as follows

Minimize E[v(C − ST · x)],

subject to S0 · x ≤ w,





(3.1)

where v(x) = e
λx
w is the exponential loss function, λ > 0 is a risk aversion factor, C is a

liability, ST ·x denotes value of the portfolio at the maturity time T , x ∈ Rn is a portfolio

consisting of n assets, S0 ∈ Rn is a vector of initial costs of the assets and ST is a vector

of random prices of the assets. The exponential loss function has an advantage over the

mean-variance criterion because, unlike the mean-variance criterion which penalizes both

profit and loss, it only sees the loss as risk.

If we apply the properties of expectation and the binomial model (2.3) into the

model (3.1), we obtain the following proposition,
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Proposition 3.1. Suppose that ST follows the binomial model as described by (2.2).

The model (3.1) can be expressed as

Minimize e
λC
w

n∏

i=1

(
pi e

− λ
w
(1+ui)Si

0xi + (1− pi) e
− λ

w
(1+di)Si

0xi

)
,

subject to S0 · x ≤ w,





(3.2)

under the assumption that Si
T ’s for i = 1, 2, 3, . . . , n are mutually independent.

Proof. By considering (3.1) applied with the binomial model, we have

E
[
e

λ
w
(C−ST ·x)

]
= e

λC
w E

[
e−

λ
w

ST ·x
]

= e
λC
w E

[
e
− λ

w

n∑
i=1

Si
Txi
]

= e
λC
w E

[
e−

λ
w
(S1

Tx1) e−
λ
w
(S2

Tx2) · · · e−
λ
w
(Sn

Txn)
]

= e
λC
w E

[
e−

λ
w
(S1

Tx1)
]
E
[
e−

λ
w
(S2

Tx2)
]
· · ·E

[
e−

λ
w
(Sn

Txn)
]

= e
λC
w

n∏

i=1

E
[
e−

λ
w
(Si

Txi)
]

= e
λC
w

n∏

i=1

(
pi e

− λ
w
(1+ui)Si

0xi + (1− pi) e
− λ

w
(1+di)Si

0xi

)
.

Note that by applying the properties of mutual independence into the third line of this

proof, it can be separated into the product of expectation as shown in the fourth line.

Next, we will show that the objective function in (3.2) is a convex function. Let

us provide some important properties of convex function as the following lemmas, given

in [7, 12].
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Lemma 3.1 ([12]). Let fi : Rn &→ R be convex functions for all i = 1, 2, . . . ,m. Then,

the following functions are convex as well:

(i) The multiplication by scalars λfi for any λ > 0.

(ii) The sum function
∑m

i=1 fi.

Proof. The proof of this lemma can be found in the reference [12].

Lemma 3.2 ([7]). For any b ∈ Rn, the function f : Rn &→ R+ defined as f(x) = eb"x is

convex.

Proof. It is easy to see that the Hessian matrix of f(x) is eb"xbb& = f(x)bb&. Next,

we will show that the Hessian matrix of f(x) is semi-positive definite. Let v ∈ Rn be a

nonzero vector, then we have

v&
(
f(x)bb&

)
v = f(x)

(
v&b

)(
b&v

)
= f(x)

(
v&b

)2
≥ 0,

because f(x) ∈ R+ and
(
v&b

)2 ≥ 0. Therefore, the Hessian matrix of f(x) is the semi-

positive definite. It is a result that f(x) is a convex function.

Proposition 3.2. The objective function in (3.2) is convex.

Proof. Let us first define the universal set U = {1, 2, 3, . . . , n}. Then, we rewrite the

product term of the objective function into the summation form as follows

e
λC
w

n∏

i=1

(
pie

− λ
w
(1+ui)Si

0xi + (1− pi)e
− λ

w
(1+di)Si

0xi

)

= e
λC
w

∑

Y⊆U

(
∏

i∈Y
pie

− λ
w
(1+ui)Si

0xi

∏

i∈Y c
(1− pi)e

− λ
w
(1+di)Si

0xi

)

= e
λC
w

∑

Y⊆U




(
∏

i∈Y
pi
∏

i∈Y c
(1− pi)

)
e
− λ

w

(
∑
i∈Y

(1+ui)Si
0xi+

∑

i∈Y c
(1+di)Si

0xi

)



= e
λC
w

∑

Y⊆U

(
a(Y ) eb(Y )"x

)
, (3.3)
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where a(Y ) :=
∏
i∈Y

pi
∏

i∈Y c
(1− pi) is always greater than zero, b(Y ) ∈ Rn is the coefficient

vector of x which means that b(Y )&x := − λ
w

(∑
i∈Y

(1 + ui)Si
0xi +

∑
i∈Y c

(1 + di)Si
0xi

)
is a

linear combination of x1, x2, . . . , xn and Y c is a complement of the set Y . Note that an

empty product, when Y = ∅, is defined to be 1.

From (3.3), we can see that b(Y ) ∈ Rn for all Y ⊆ U ; thus, eb(Y )"x is actually the

convex function by Lemma 3.2. Also, since e
λC
w ≥ 0 and a(Y ) ≥ 0, by using Lemma 3.1,

hence (3.3) is obviously convex function.

Since the objective function and the constraint of (3.2) are both convex, (3.2) is

a convex optimization problem. In fact, if we know that the considered problem is the

convex optimization, then its local minimizer is also a global minimizer. Therefore, if we

can find a local minimum of the convex optimization problem by using certain methods

(e.g. NMinimize command in Mathematica), the found result indeed becomes the global

minimum.

3.2 The Market, Views, and Preferences

In this work, we consider 48 biggest stocks, in terms of market capitalization, in-

cluded in SET50 index computation in SET from 3 January 2018 to 24 January 2020

(506 trading days) excluding AWC and OSP as their data are not available. The quotes

were obtained from SET website [18] on 25 January 2020. The market is assumed to be

perfectly liquid, meaning that one can buy or sell any amount of a particular asset and

there are no transaction costs. We assume that an investor, with an initial wealth w,

buys assets at time t = 0 and holds them until time T without rebalancing.

In addition, we collect the combinations of two, three and four assets that are in-

dependent by using Pearson correlation test with 5% significant level as mentioned in

Chapter 2. Remark that the Pearson correlation test measures only the linear uncorrela-

tion, not the real independence.
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Due to the assumption of Proposition 3.1, the stocks within the three- and four-asset

combinations under consideration must be mutually independent. However, testing for

mutually independence is complicated while pairwise independence can be tested more

easily. Moreover, Feller [9, p. 126] mentioned that three-event instances with pairwise

independent events but not mutually independent are scarce. Therefore, we will use

Pearson correlation test for pairwise independence instead to approximate the mutually

independence of the stocks within such combinations.

We found two- and three-combination of 48 stocks that are independent, including,

42 pairs out of
(48
2

)
= 1,128 pairs and 3 three-combinations out of

(48
3

)
= 17,296 combi-

nations. Unfortunately, there are no independent four-combinations under 5% significant

level. All independent combinations are shown in Tables 3.1 and 3.2. Thus, we apply the

model (3.1) with the data in these tables to seek the optimal portfolio for different “risk

aversion” of investors. Finally, we will investigate the efficiency of the optimal portfolio

by using backtesting as provided in Chapter 4.

Table 3.1: The stock pairs that are considered independent by Pearson correlation test

Stock pairs p-value Stock pairs p-value Stock pairs p-value

RATCH TU 0.051239 ADVANC TU 0.092964 BDMS TOP 0.239417

BBL RATCH 0.056201 BTS PTTEP 0.093095 BTS TOA 0.262216

KBANK TOA 0.057090 BTS IRPC 0.095334 CBG DELTA 0.278802

BBL BDMS 0.061888 CPN DELTA 0.110941 BEM DELTA 0.283987

BH RATCH 0.062640 GLOBAL RATCH 0.112973 BBL TOA 0.287464

EGCO KTB 0.066369 KTB RATCH 0.132111 LH TOA 0.406997

BH TOA 0.067611 DELTA VGI 0.135416 DELTA TISCO 0.539678

BTS DTAC 0.068647 BEM TOA 0.140315 ADVANC DELTA 0.549352

BJC DELTA 0.077417 DELTA RATCH 0.144312 DELTA TCAP 0.577700

TOA TU 0.080730 RATCH TMB 0.144746 DELTA GULF 0.599336

CPF VGI 0.081921 KTB TOA 0.160038 DELTA TOA 0.654170

TMB VGI 0.083364 TOA VGI 0.164075 BDMS DELTA 0.926874

DELTA PTTEP 0.087297 DELTA INTUCH 0.182432 DELTA GPSC 0.955458

DELTA DTAC 0.091314 DELTA LH 0.201683 DELTA KTC 0.971446
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Table 3.2: The three-stock combinations that are considered independent by Pearson
correlation test

Three-stock

combinations

Pairwise p-value

Stock pairs p-value Stock pairs p-value Stock pairs p-value

(BEM, DELTA, TOA) BEM DELTA 0.283987 DELTA TOA 0.654170 TOA BEM 0.140315

(DELTA, LH, TOA) DELTA LH 0.201683 LH TOA 0.406997 TOA DELTA 0.654170

(DELTA, TOA, VGI) DELTA TOA 0.654170 TOA VGI 0.164075 VGI DELTA 0.135416



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

NUMERICAL RESULTS AND DISCUSSION

This chapter shows numerical results of the optimal portfolios obtained from (3.2)

under parameters estimated by historical data. Moreover, an important assumption such

as divisibility, liquidity and short selling are also provided in this chapter.

4.1 The Experiment

Recall from the previous chapter that this work considers 48 biggest stocks in the

terms of market capitalization that are in the SET50 index provided by the Stock Ex-

change of Thailand from 3 January 2018 to 21 November 2019, excluding AWC and OSP

as their data are not available. The quotes were obtained from the SET website [18] on

25 January 2020. Actually, we use the data to estimate parameters ui, di and pi for the

binomial model. In this experiment, we study portfolio selection based on the model (3.1)

under Assumptions 1.1.

In this case, the model for optimizing the portfolio is proposed in Proposition 3.1

based on the binomial model in which the condition for mutual independence of all stocks

in each combination is required. In the context of independent property, Pearson cor-

relation test for selecting the stocks is applied in this study. We apply the backtesting

method to the data from 22 November 2019 to 24 January 2020 (34 trading days) in order

to study the volatility of return of the optimal portfolio.

4.2 Parameter Estimation for Binomial Model

In this section, we can find the parameters ui and di for each asset by employing

(2.5) and (2.6), respectively. Moreover, the probability pi of positive returns for each

stock is also provided. Thus, these obtained parameters are displayed in Table 4.1.
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Table 4.1: Estimated value of ui, di and pi for each stock i

Stocks ui di pi Stocks ui di pi

AOT 0.01146 −0.00714 0.40000 IRPC 0.01874 −0.00859 0.37659
BBL 0.01706 −0.00725 0.42766 IVL 0.02681 −0.00648 0.44255
ADVANC 0.01883 −0.00570 0.42766 KBANK 0.01937 −0.00875 0.41063
BANPU 0.01163 −0.01023 0.45745 KTB 0.01516 −0.00966 0.38085
BDMS 0.01020 −0.01180 0.42766 KTC 0.01135 −0.01153 0.38510
BEM 0.01430 −0.01427 0.38085 LH 0.01025 −0.01314 0.45532
BGRIM 0.01130 −0.00965 0.41277 MINT 0.01727 −0.01168 0.45957
BH 0.01773 −0.00545 0.41277 MTC 0.01453 −0.01042 0.41276
BJC 0.01625 −0.00768 0.41277 PTT 0.01050 −0.00813 0.40638
BPP 0.01037 −0.00074 0.38511 PTTEP 0.01504 −0.00763 0.38510
BTS 0.01449 −0.00711 0.40000 PTTGC 0.01321 −0.00726 0.39574
CBG 0.01464 −0.01144 0.33192 RATCH 0.02337 −0.01605 0.36170
CPALL 0.02132 −0.01845 0.44255 SAWAD 0.01167 −0.01216 0.42767
CPF 0.01283 −0.01478 0.39149 SCB 0.02158 −0.00750 0.38936
CPN 0.01847 −0.01092 0.45106 SCC 0.01841 −0.01223 0.41489
DELTA 0.00138 −0.00967 0.40851 TCAP 0.01102 −0.00789 0.47446
DTAC 0.00957 −0.01324 0.44043 TISCO 0.01181 −0.00922 0.44468
EA 0.01380 −0.01641 0.40638 TMB 0.01374 −0.00973 0.39361
EGCO 0.01210 −0.00950 0.39362 TOA 0.01296 −0.01078 0.42760
GLOBAL 0.01256 −0.00914 0.44255 TOP 0.01050 −0.01193 0.35531
GPSC 0.01591 −0.00813 0.39575 TU 0.00968 −0.00691 0.40638
GULF 0.01982 −0.01006 0.37447 VGI 0.01517 −0.01167 0.36808
HMPRO 0.01736 −0.00755 0.37447 WHA 0.01411 −0.00792 0.40425
INTUCH 0.01451 −0.01800 0.45532 TRUE 0.01903 −0.01031 0.33617

4.3 Numerical Results

We examine the portfolio optimization models given in Chapter 3 by implementing

the model (3.2) with λ ∈ {1, 2, . . . , 10}, C = 0 and w = 100,000. In this experiment,

we estimated the ith asset price Si
T by using the values pi, ui and di, where pi is the

probability that the ith stock price goes up in a day estimated from the 482-day data,

and ui and di are the average of returns for each day that the ith stock price goes up and

down, respectively.

Our numerical results of (3.2) are solved based on the convex methods. It is im-

plemented by applying the basic packages in Mathematica and the implemented code is

provided in the appendix. In addition, all our calculations use the software of Wolfram

Mathematica 9 that runs on a PC with the following configurations: Intel(R) Core(TM)

i7-8750H, CPU @2.20GHz, 16.0GB RAM, Windows 10, 64-bit Operating System.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21

The obtained numerical results including the optimized portfolios for each λ ∈

{1, 2, . . . , 10} and objective values of model are demonstrated in Table 4.2. From the 42

stock pairs that are independent and the exponential loss function based framework (3.2),

the pair (DELTA, GULF) is the best choice to invest in for risk aversions from 1 to 10 as

they give the minimum exponential loss values. The optimal pairs are acquired by doing

portfolio optimization for all possible pairs. The pair with the smallest objective value is

the optimal pair. The result shows optimal portfolios; for example, in the case of λ = 1,

an investor should buy DELTA for −16738.80327 and GULF for 5450.16883. Recall that

the negative value means short selling.

Moreover, we apply the backtesting method for 34 trading days in order to observe

the fluctuate of return of portfolio given by the model (3.2). The obtained results are

shown in Figure 4.1 for risk-lover investors and Figure 4.2 for risk-averse investors. We

also compute the mean and standard deviation of daily returns for λ ∈ {1, 2, . . . , 10} as

shown in Table 4.3. From this table, we notice here that the mean of returns closes to

zero and the standard deviation of returns ever decreases for increasing λ values, which

correspond to the risk preference of investors.

For the combination of three stocks, we found that the best choice is (BEM, DELTA,

TOA) as shown in Table 4.4. The backtesting results of (BEM, DELTA, TOA) are de-

picted in Figure 4.3 for λ ∈ {1, 2, . . . , 5} and Figure 4.4 for λ ∈ {6, 7, . . . , 10}. Further-

more, their results provide the mean and standard deviation similar to the stock pairs

where the mean of returns tends towards zero and the standard deviation of returns de-

creases for increasing λ values, as displayed in Table 4.5. However, we observe that all

means obtained are negative values which mean that investors have an opportunity to

lose the profit.
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Table 4.2: Numerical results for stock pairs obtained from (3.2).

λ Stock Pairs Portfolios Obj. Value

1 (DELTA, GULF) (−16738.80327, 5450.16883) 3.63× 10−1

2 (DELTA, GULF) (−7772.13334, 2855.26889) 1.34× 10−1

3 (DELTA, GULF) (−4783.36031, 1990.33609) 4.91× 10−2

4 (DELTA, GULF) (−3289.05870, 1557.89426) 1.81× 10−2

5 (DELTA, GULF) (−2392.54341, 1298.44817) 6.64× 10−3

6 (DELTA, GULF) (−1794.91943, 1125.49941) 2.44× 10−3

7 (DELTA, GULF) (−1368.08891, 1001.97724) 8.99× 10−4

8 (DELTA, GULF) (−1048.00291, 909.34629) 3.31× 10−4

9 (DELTA, GULF) (−799.07871, 837.30914) 1.22× 10−4

10 (DELTA, GULF) (−599.96667, 779.68732) 4.48× 10−5

Table 4.3: Backtesting of (DELTA, GULF) from model (3.2).

λ Mean of Daily Returns Standard Deviation of Daily Returns

1 12118.35 58242.31
2 9119.11 30936.00
3 8119.42 21981.42
4 7619.61 17595.67
5 7319.74 15024.41
6 7119.85 13351.56
7 6977.08 12185.82
8 6870.02 11332.73
9 6786.76 10684.99
10 6720.16 10178.41
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Figure 4.1: Backtesting of (DELTA, GULF) from (3.2) with λ ∈ {1, 2, . . . , 5}
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Figure 4.2: Backtesting of (DELTA, GULF) from (3.2) with λ ∈ {6, 7, . . . , 10}
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Table 4.4: Numerical results for three-combination of stocks obtained from (3.2).

λ Combinations Portfolios Obj. Value

1 ( ฺBEM, DELTA, TOA) (48161.72264, −14666.21764, 6745.12331) 3.66× 10−1

2 ( ฺBEM, DELTA, TOA) (26140.97411, −6985.91096, 3641.86569) 1.34× 10−1

3 ( ฺBEM, DELTA, TOA) (18802.21462, −4426.03175, 2607.32118) 4.95× 10−2

4 ( ฺBEM, DELTA, TOA) (15133.96391, −3146.26021, 2089.95293) 1.82× 10−2

5 ( ฺBEM, DELTA, TOA) (12933.92600, −2378.53238, 1779.45356) 6.67× 10−3

6 ( ฺBEM, DELTA, TOA) (11468.00231, −1866.82696, 1572.38728) 2.46× 10−3

7 ( ฺBEM, DELTA, TOA) (10421.57921, −1501.42055, 1424.42446) 9.06× 10−4

8 ( ฺBEM, DELTA, TOA) (9637.34995, −1227.45144, 1313.40029) 3.33× 10−4

9 ( ฺBEM, DELTA, TOA) (9027.92191, −1014.44094, 1227.00096) 1.22× 10−4

10 ( ฺBEM, DELTA, TOA) (8540.85959, −844.10182, 1157.83821) 4.51× 10−5

Table 4.5: Backtesting of (BEM, DELTA, TOA) from model (3.2).

λ Mean Daily of Returns Standard Deviation of Daily Returns

1 −37668.50 54170.10
2 −17686.50 26725.90
3 −11025.40 17589.00
4 −7694.64 13029.30
5 −5695.92 10300.60
6 −4363.25 8487.79
7 −3411.16 7198.39
8 −2696.94 6236.29
9 −2141.29 5492.53
10 −1696.63 4901.71
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Figure 4.3: Backtesting of (BEM, DELTA, TOA) from (3.2) with λ ∈ {1, 2, . . . , 5}
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Figure 4.4: Backtesting of (BEM, DELTA, TOA) from (3.2) with λ ∈ {6, 7, . . . , 10}



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this work, we have studied the portfolio allocation of the 48 biggest stocks,

in terms of market capitalization, included in SET50 index in the Stock Exchange of

Thailand using the data from 3 January 2018 to 21 November 2020 (482 trading days) to

construct portfolio optimization model based on exponential loss function and applied the

results with the data from 22 November 2019 to 24 January 2020 to examine the volatility

of the daily returns by the backtesting method, excluding AWC and OSP as their data are

not available. By using independent properties of the stock prices at time T and following

the well-known binomial distribution, we have purposed the method to choose the optimal

combination of two and three stocks for investor under the Armstrong’s frameworks.

In this experiment, we found that the portfolio allocations under the Armstrong’s

framework for two and three combinations of stocks are (DELTA, GULF) and (BEM,

DELTA, TOA), respectively. These combinations yield the smallest exponential loss val-

ues for all λ ∈ {1, 2, . . . , 10} as can be seen from each table in Appendix.

After that, we apply the backtesting method in order to observe the volatility of

the obtained returns via mean and standard deviation for each of the optimal portfolios.

As a result of (DELTA, GULF) and (BEM, DELTA, TOA), their standard deviations of

the daily returns usually decrease and their means of the daily returns tend to zero when

λ increases. A small value of λ represents a behavior of an investor who is a risk lover. In

contrast, a behavior of an investor who is a risk aversion is represented by a large value

of λ.
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For the example of (DELTA, GULF), we can obviously see in Table 4.3 that from

λ = 1 to λ = 10, the means of the daily returns change from 12118.35 to 6720.16 which

mean that the obtained returns are decreasing. Moreover, the standard deviations of the

daily returns decrease from 58242.31 to 10178.41 indicating that their volatility is also

decreasing. Similarly, for the example of (BEM, DELTA, TOA) in Table 4.5 from λ = 1

to λ = 10, the means of the daily returns change from −37668.50 to −1696.63. We notice

here that they are negative values which mean that an investor has an opportunity to lose

their profit. The standard deviation of the daily return for (BEM, DELTA, TOA) provides

the same behavior of the stock pair (DELTA, GULF). However, this thesis focuses on one

of the models proposed for both risk-lover and risk-averse investors to choose a suitable

portfolio. Therefore, the investors and practitioners who want to invest or hedge in the

markets should realize and understand the fund features, conditions of the returns and

also the risk before making an investment decision.

5.2 Future work

For the future work, we will investigate the portfolio allocation problem in combi-

nation of different markets including SET50, S&P500, and especially, cryptocurrencies

which are poorly studied. We can also change the binomial model to other models in

order to estimate the prices at maturity time using the Monte Carlo simulations. In the

context of utility function, we can change the exponential utility function to others such

as VaR and CVaR.
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Table 1: Portfolios of stock pairs obtained from (3.2) with λ = 1

Stock Pairs Portfolios Obj. Value Stock Pairs Portfolios Obj. Value

(DELTA,GULF) (−16738.8,5450.17) 0.363090 (KTB,TOA) (−19791.82,10049.37) 0.367063
(BTS,IRPC) (73259.04,−255458.93) 0.363602 (BDMS,TOP) (17165.59,−4721.96) 0.367121
(RATCH,TMB) (14277.74,−562489.72) 0.364770 (BBL,TOA) (−1750.2,9574.78) 0.367125
(DELTA,KTC) (−9392.21,13542.67) 0.364987 (ADVANC,TU) (2292.9,−28597.77) 0.367191
(EGCO,KTB) (2666.68,−49512.46) 0.365625 (DELTA,GPSC) (−6032.21,4703.49) 0.367195
(TMB,VGI) (−570326.51,102154.68) 0.365727 (DELTA,INTUCH) (−8156.5,8625.07) 0.367206
(BEM,DELTA) (63380.82,−12108.37) 0.366028 (BTS,PTTEP) (21927.69,−1647.26) 0.367295
(DELTA,RATCH) (−13799.42,10959.17) 0.366035 (BTS,DTAC) (19293.14,−3100.63) 0.367299
(BH,RATCH) (−4709.78,10625.56) 0.366324 (LH,TOA) (−22645.73,7646.4) 0.367322
(RATCH,TU) (10016.43,−45315.87) 0.366343 (TOA,VGI) (8541.06,−26618.35) 0.367336
(KBANK,TOA) (−2808.13,12436.26) 0.366523 (BBL,BDMS) (−1861.61,17232.49) 0.367388
(DELTA,TOA) (−8268.88,11712.16) 0.366582 (DELTA,DTAC) (−4538.11,6119.7) 0.367389
(KTB,RATCH) (−40753.22,11095.35) 0.366629 (DELTA,TCAP) (−6427.2,7170.03) 0.367448
(BBL,RATCH) (−3570.59,10415.64) 0.366762 (BTS,TOA) (12537.69,−1639.26) 0.367450
(TOA,TU) (10820.86,−27265.74) 0.366768 (CBG,DELTA) (3199.97,−3417.76) 0.367462
(BH,TOA) (−2689.45,10960.38) 0.366796 (GLOBAL,RATCH) (−9341.71,3696.85) 0.367550
(BDMS,DELTA) (22160.06,−9322.25) 0.366807 (BEM,TOA) (5136.05,1066.14) 0.367587
(DELTA,VGI) (−12208.99,69691.78) 0.366940 (DELTA,LH) (−5548.57,37050.17) 0.367613
(DELTA,PTTEP) (−7508.92,3853.37) 0.366948 (CPF,VGI) (9623.94,−15819.83) 0.367696
(DELTA,TISCO) (−9305.67,5583.03) 0.366977 (CPN,DELTA) (2195.26,−756.14) 0.368106
(ADVANC,DELTA) (2574.04,−9064.44) 0.366991 (BJC,DELTA) (2114.66,145.65) 0.368148

Table 2: Portfolios of stock pairs obtained from (3.2) with λ = 2

Stock Pairs Portfolios Obj. Value Stock Pairs Portfolios Obj. Value

(DELTA,GULF) (−7772.13,2855.27) 0.133528 (ADVANC,DELTA) (1439.27,−4145.11) 0.135033
(BTS,IRPC) (39316.15,−123783.92) 0.133714 (DELTA,PTTEP) (−3178.4,2115.7) 0.135033
(RATCH,TMB) (7655.54,−272244.48) 0.134189 (BTS,TOA) (9004.85,−510.43) 0.135045
(DELTA,KTC) (−3914.43,7084.3) 0.134296 (KTB,TOA) (−7577.27,5308.1) 0.135047
(EGCO,KTB) (1397.51,−23045.62) 0.134473 (BDMS,TOP) (9924.28,−2111.9) 0.135061
(TMB,VGI) (−284934.32,56142.47) 0.134535 (BBL,TOA) (−657.38,5074.19) 0.135064
(DELTA,RATCH) (−6603.47,5997.34) 0.134636 (ADVANC,TU) (1298.39,−12883) 0.135100
(BEM,DELTA) (34366.52,−5606.74) 0.134651 (LH,TOA) (−7818.43,4189.62) 0.135114
(BH,RATCH) (−2235.59,5802.23) 0.134740 (DELTA,INTUCH) (−3709.27,4883.13) 0.135121
(RATCH,TU) (5524.79,−21571.91) 0.134744 (TOA,VGI) (4276.37,−8232.33) 0.135125
(KTB,RATCH) (−18971.36,5936.9) 0.134854 (BEM,TOA) (5632.35,940.45) 0.135131
(KBANK,TOA) (−1189.55,6632.34) 0.134878 (DELTA,GPSC) (−2390.54,2595.74) 0.135139
(DELTA,TOA) (−3514.03,6338.34) 0.134892 (GLOBAL,RATCH) (−3958.82,2398.73) 0.135153
(BBL,RATCH) (−1653.48,5598.63) 0.134900 (BBL,BDMS) (−754.03,9398.44) 0.135158
(TOA,TU) (5891.1,−11366.32) 0.134950 (DELTA,DTAC) (−1569.16,3380.24) 0.135225
(BH,TOA) (−1109.36,5911.57) 0.134961 (DELTA,TCAP) (−2786.43,4106.64) 0.135226
(BDMS,DELTA) (12247.26,−4215.34) 0.134963 (CPF,VGI) (4827.21,−2849.09) 0.135258
(DELTA,VGI) (−6097.02,39911.49) 0.134981 (CBG,DELTA) (1752.6,−924.64) 0.135263
(BTS,DTAC) (12587.06,−1351.21) 0.135000 (DELTA,LH) (−2366.85,21626.09) 0.135295
(BTS,PTTEP) (13556.98,−697.64) 0.135002 (CPN,DELTA) (1550.31,81.28) 0.135521
(DELTA,TISCO) (−4286.64,3124.99) 0.135025 (BJC,DELTA) (1641.11,582.01) 0.135546
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Table 3: Portfolios of stock pairs obtained from (3.2) with λ = 3

Stock Pairs Portfolios Obj. Value Stock Pairs Portfolios Obj. Value

(DELTA,GULF) (−4783.36,1990.34) 0.04911 (BEM,TOA) (5799.4,898.14) 0.049680
(BTS,IRPC) (28003.57,−79898.92) 0.049176 (DELTA,TISCO) (−2613.68,2305.68) 0.049684
(RATCH,TMB) (5448.34,−175504.63) 0.049366 (ADVANC,DELTA) (1061.02,−2505.35) 0.049688
(DELTA,KTC) (−2088.44,4931.43) 0.049419 (KTB,TOA) (−3505.24,3727.48) 0.049688
(EGCO,KTB) (974.44,−14223.08) 0.049459 (BDMS,TOP) (7511.18,−1242.13) 0.049692
(TMB,VGI) (−189803.66,40805.08) 0.049490 (BBL,TOA) (−293.1,3573.96) 0.049692
(DELTA,RATCH) (−4205.15,4343.62) 0.049524 (DELTA,PTTEP) (−1734.68,1536.4) 0.049695
(BEM,DELTA) (24697.17,−3439.99) 0.049537 (GLOBAL,RATCH) (−2165.19,1966.19) 0.049700
(BH,RATCH) (−1411,4194.73) 0.049562 (LH,TOA) (−2874.19,3036.94) 0.049703
(RATCH,TU) (4027.81,−13658.48) 0.049562 (TOA,VGI) (2854.81,−2103.65) 0.049706
(KTB,RATCH) (−11711.2,4217.53) 0.049604 (ADVANC,TU) (966.9,−7644.86) 0.049710
(BBL,RATCH) (−1014.52,3993.15) 0.049619 (DELTA,INTUCH) (−2227.05,3635.98) 0.049723
(BTS,DTAC) (10353.07,−768.43) 0.049622 (BBL,BDMS) (−384.88,6787.33) 0.049725
(BTS,PTTEP) (10768.49,−381.3) 0.049623 (DELTA,GPSC) (−1176.65,1893.15) 0.049739
(BTS,TOA) (7828.36,−134.5) 0.049635 (CPF,VGI) (3228.3,1474.5) 0.049755
(KBANK,TOA) (−650.06,4697.85) 0.049638 (DELTA,TCAP) (−1573.07,3085.71) 0.049768
(DELTA,TOA) (−1929.13,4547.12) 0.049641 (DELTA,DTAC) (−579.29,2466.88) 0.049777
(DELTA,VGI) (−4059.7,29984.74) 0.049654 (CBG,DELTA) (1269.95,−93.27) 0.049796
(TOA,TU) (4247.93,−6066.81) 0.049658 (DELTA,LH) (−1306.74,16486.97) 0.049796
(BDMS,DELTA) (8943.56,−2513.33) 0.049662 (CPN,DELTA) (1335.26,360.5) 0.049896
(BH,TOA) (−582.73,4228.84) 0.049662 (BJC,DELTA) (1483.17,727.55) 0.049909

Table 4: Portfolios of stock pairs obtained from (3.2) with λ = 4

Stock Pairs Portfolios Obj. Value Stock Pairs Portfolios Obj. Value

(DELTA,GULF) (−3289.06,1557.89) 0.018063 (BH,TOA) (−319.46,3387.62) 0.018276
(BTS,IRPC) (22348.59,−57961.49) 0.018086 (GLOBAL,RATCH) (−1268.88,1750.04) 0.018277
(RATCH,TMB) (4344.88,−127141.27) 0.018162 (DELTA,TISCO) (−1777.25,1896.04) 0.018282
(DELTA,KTC) (−1175.37,3854.91) 0.018188 (KTB,TOA) (−1468.81,2937) 0.018283
(EGCO,KTB) (762.9,−9811.62) 0.018192 (BBL,TOA) (−110.95,2823.81) 0.018283
(TMB,VGI) (−142238.38,33136.39) 0.018205 (BDMS,TOP) (6305.16,−807.43) 0.018284
(DELTA,RATCH) (−3006.24,3516.94) 0.018218 (ADVANC,DELTA) (871.89,−1685.49) 0.018284
(BEM,DELTA) (19864.07,−2356.98) 0.018225 (TOA,VGI) (2144.03,960.7) 0.018285
(RATCH,TU) (3279.5,−9702.71) 0.018231 (LH,TOA) (−400.68,2460.28) 0.018285
(BH,RATCH) (−998.82,3391.2) 0.018231 (DELTA,PTTEP) (−1012.67,1246.68) 0.018290
(BTS,DTAC) (9237.12,−477.32) 0.018241 (ADVANC,TU) (801.16,−5025.9) 0.018292
(BTS,PTTEP) (9375.58,−223.28) 0.018241 (BBL,BDMS) (−200.32,5481.95) 0.018295
(BTS,TOA) (7240.97,53.18) 0.018244 (DELTA,INTUCH) (−1486.08,3012.52) 0.018298
(KTB,RATCH) (−8081.46,3357.92) 0.018247 (CPF,VGI) (2428.84,3636.3) 0.018303
(BBL,RATCH) (−695.09,3190.55) 0.018252 (DELTA,GPSC) (−569.71,1541.87) 0.018309
(DELTA,VGI) (−3041.04,25021.38) 0.018265 (DELTA,TCAP) (−966.57,2575.4) 0.018318
(BEM,TOA) (5884.17,876.67) 0.018266 (DELTA,DTAC) (−84.18,2010.04) 0.018325
(KBANK,TOA) (−380.35,3730.71) 0.018269 (DELTA,LH) (−777.03,13919.12) 0.018329
(DELTA,TOA) (−1136.71,3651.55) 0.018270 (CBG,DELTA) (1028.48,322.66) 0.018334
(TOA,TU) (3426.42,−3417.26) 0.018275 (CPN,DELTA) (1227.68,500.18) 0.018372
(BDMS,DELTA) (7292.14,−1662.55) 0.018275 (BJC,DELTA) (1404.12,800.39) 0.018378
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Table 5: Portfolios of stock pairs obtained from (3.2) with λ = 5

Stock Pairs Portfolios Obj. Value Stock Pairs Portfolios Obj. Value

(DELTA,GULF) (−3289.06,1557.89) 0.018063 (BH,TOA) (−319.46,3387.62) 0.018276
(BTS,IRPC) (22348.59,−57961.49) 0.018086 (GLOBAL,RATCH) (−1268.88,1750.04) 0.018277
(RATCH,TMB) (4344.88,−127141.27) 0.018162 (DELTA,TISCO) (−1777.25,1896.04) 0.018282
(DELTA,KTC) (−1175.37,3854.91) 0.018188 (KTB,TOA) (−1468.81,2937) 0.018283
(EGCO,KTB) (762.9,−9811.62) 0.018192 (BBL,TOA) (−110.95,2823.81) 0.018283
(TMB,VGI) (−142238.38,33136.39) 0.018205 (BDMS,TOP) (6305.16,−807.43) 0.018284
(DELTA,RATCH) (−3006.24,3516.94) 0.018218 (ADVANC,DELTA) (871.89,−1685.49) 0.018284
(BEM,DELTA) (19864.07,−2356.98) 0.018225 (TOA,VGI) (2144.03,960.7) 0.018285
(RATCH,TU) (3279.5,−9702.71) 0.018231 (LH,TOA) (−400.68,2460.28) 0.018285
(BH,RATCH) (−998.82,3391.2) 0.018231 (DELTA,PTTEP) (−1012.67,1246.68) 0.018290
(BTS,DTAC) (9237.12,−477.32) 0.018241 (ADVANC,TU) (801.16,−5025.9) 0.018292
(BTS,PTTEP) (9375.58,−223.28) 0.018241 (BBL,BDMS) (−200.32,5481.95) 0.018295
(BTS,TOA) (7240.97,53.18) 0.018244 (DELTA,INTUCH) (−1486.08,3012.52) 0.018298
(KTB,RATCH) (−8081.46,3357.92) 0.018247 (CPF,VGI) (2428.84,3636.3) 0.018303
(BBL,RATCH) (−695.09,3190.55) 0.018252 (DELTA,GPSC) (−569.71,1541.87) 0.018309
(DELTA,VGI) (−3041.04,25021.38) 0.018265 (DELTA,TCAP) (−966.57,2575.4) 0.018318
(BEM,TOA) (5884.17,876.67) 0.018266 (DELTA,DTAC) (−84.18,2010.04) 0.018325
(KBANK,TOA) (−380.35,3730.71) 0.018269 (DELTA,LH) (−777.03,13919.12) 0.018329
(DELTA,TOA) (−1136.71,3651.55) 0.018270 (CBG,DELTA) (1028.48,322.66) 0.018334
(TOA,TU) (3426.42,−3417.26) 0.018275 (CPN,DELTA) (1227.68,500.18) 0.018372
(BDMS,DELTA) (7292.14,−1662.55) 0.018275 (BJC,DELTA) (1404.12,800.39) 0.018378

Table 6: Portfolios of stock pairs obtained from (3.2) with λ = 6

Stock Pairs Portfolios Obj. Value Stock Pairs Portfolios Obj. Value

(DELTA,GULF) (−1794.92,1125.5) 0.002444 (DELTA,TOA) (−344.36,2756.05) 0.002475
(BTS,IRPC) (16696.27,−36034.38) 0.002447 (KBANK,TOA) (−110.69,2763.76) 0.002475
(RATCH,TMB) (3241.74,−78791.33) 0.002459 (BBL,TOA) (71.21,2073.58) 0.002475
(EGCO,KTB) (551.33,−5399.75) 0.002461 (TOA,TU) (2605.02,−768.09) 0.002476
(TMB,VGI) (−94673.22,25467.72) 0.002464 (KTB,TOA) (568.48,2146.2) 0.002476
(DELTA,KTC) (−262.15,2778.21) 0.002464 (BH,TOA) (−56.28,2546.68) 0.002476
(BTS,DTAC) (8123.31,−186.76) 0.002465 (BDMS,TOP) (5100.2,−373.11) 0.002476
(BTS,TOA) (6655.35,240.3) 0.002465 (DELTA,TISCO) (−940.93,1486.45) 0.002476
(BTS,PTTEP) (7985.36,−65.57) 0.002465 (ADVANC,DELTA) (682.78,−865.68) 0.002476
(DELTA,RATCH) (−1807.86,2690.62) 0.002465 (CPF,VGI) (1629.37,5798.12) 0.002477
(RATCH,TU) (2531.55,−5748.86) 0.002467 (BBL,BDMS) (−15.81,4176.9) 0.002477
(BH,RATCH) (−586.85,2588.09) 0.002467 (ADVANC,TU) (635.43,−2407.17) 0.002477
(BEM,DELTA) (15034.16,−1274.67) 0.002467 (DELTA,PTTEP) (−290.33,956.83) 0.002478
(KTB,RATCH) (−4452.43,2498.48) 0.002469 (DELTA,INTUCH) (−745.41,2389.31) 0.002479
(BBL,RATCH) (−375.78,2388.24) 0.002470 (DELTA,GPSC) (37.23,1190.57) 0.002481
(BEM,TOA) (5971.5,854.56) 0.002470 (DELTA,TCAP) (−360.44,2065.39) 0.002482
(DELTA,VGI) (−2022.38,20058.03) 0.002472 (DELTA,LH) (−248.04,11354.72) 0.002484
(GLOBAL,RATCH) (−373.64,1534.15) 0.002472 (DELTA,DTAC) (411.29,1552.86) 0.002484
(TOA,VGI) (1433.24,4025.06) 0.002474 (CBG,DELTA) (786.7,739.14) 0.002486
(LH,TOA) (2075.68,1882.95) 0.002475 (CPN,DELTA) (1120.02,639.98) 0.002491
(BDMS,DELTA) (5641.61,−812.22) 0.002475 (BJC,DELTA) (1324.94,873.36) 0.002493
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Table 7: Portfolios of stock pairs obtained from (3.2) with λ = 7

Stock Pairs Portfolios Obj. Value Stock Pairs Portfolios Obj. Value

(DELTA,GULF) (−1368.09,1001.98) 0.000899 (BDMS,DELTA) (5170.41,−569.47) 0.000911
(BTS,IRPC) (15082.48,−29774) 0.0009 (KTB,TOA) (1150.94,1920.11) 0.000911
(RATCH,TMB) (2926.69,−64982.96) 0.000905 (CPF,VGI) (1400.95,6415.8) 0.000911
(EGCO,KTB) (490.88,−4139.04) 0.000905 (BDMS,TOP) (4756.4,−249.19) 0.000911
(TMB,VGI) (−81083.22,23276.68) 0.000906 (DELTA,TOA) (−117.99,2500.21) 0.000911
(BTS,TOA) (6488.82,293.51) 0.000906 (KBANK,TOA) (−33.66,2487.57) 0.000911
(BTS,DTAC) (7806.02,−103.99) 0.000906 (DELTA,TISCO) (−702.02,1369.45) 0.000911
(BTS,PTTEP) (7589.34,−20.64) 0.000906 (BH,TOA) (18.88,2306.53) 0.000911
(DELTA,RATCH) (−1465.69,2454.68) 0.000907 (TOA,TU) (2370.37,−11.32) 0.000911
(DELTA,KTC) (−1.15,2470.49) 0.000907 (BBL,BDMS) (36.88,3804.17) 0.000911
(RATCH,TU) (2318.01,−4620.02) 0.000908 (ADVANC,DELTA) (628.76,−631.47) 0.000911
(BH,RATCH) (−469.25,2358.82) 0.000908 (ADVANC,TU) (588.09,−1659.08) 0.000912
(BEM,DELTA) (13655.57,−965.75) 0.000908 (DELTA,INTUCH) (−533.92,2211.36) 0.000912
(BEM,TOA) (5997.58,847.95) 0.000908 (DELTA,PTTEP) (−83.81,873.97) 0.000912
(KTB,RATCH) (−3415.86,2253) 0.000908 (DELTA,GPSC) (210.65,1090.2) 0.000914
(BBL,RATCH) (−284.6,2159.13) 0.000909 (DELTA,TCAP) (−187.42,1919.81) 0.000914
(DELTA,VGI) (−1731.34,18639.94) 0.000909 (DELTA,LH) (−97.21,10623.53) 0.000914
(GLOBAL,RATCH) (−118.32,1472.58) 0.000909 (DELTA,DTAC) (553.03,1422.09) 0.000915
(TOA,VGI) (1230.16,4900.59) 0.000910 (CBG,DELTA) (717.48,858.37) 0.000916
(LH,TOA) (2784.47,1717.7) 0.000911 (CPN,DELTA) (1089.21,679.97) 0.000917
(BBL,TOA) (123.27,1859.19) 0.000911 (BJC,DELTA) (1302.25,894.26) 0.000918

Table 8: Portfolios of stock pairs obtained from (3.2) with λ = 8

Stock Pairs Portfolios Obj. Value Stock Pairs Portfolios Obj. Value

(DELTA,GULF) (−1048.00291,909.3463) 0.000331 (BBL,TOA) (162.32275,1698.3631) 0.000335
(BTS,IRPC) (13872.83161,−25081.38701) 0.000332 (KTB,TOA) (1588.02548,1750.44691) 0.000335
(RATCH,TMB) (2690.47965,−54630.1998) 0.000333 (BDMS,DELTA) (4817.23721,−387.51907) 0.000335
(EGCO,KTB) (445.53122,−3193.39492) 0.000333 (BDMS,TOP) (4498.83692,−156.35734) 0.000335
(BTS,TOA) (6364.38762,333.2726) 0.000333 (BBL,BDMS) (76.39301,3524.69984) 0.000335
(BTS,DTAC) (7568.61949,−42.05533) 0.000333 (DELTA,TISCO) (−522.87646,1281.71642) 0.000335
(BTS,PTTEP) (7293.0142,12.97738) 0.000333 (BH,TOA) (75.23288,2126.47482) 0.000335
(TMB,VGI) (−70890.74985,21633.40661) 0.000333 (ADVANC,DELTA) (588.24265,−455.83725) 0.000335
(DELTA,RATCH) (−1209.19239,2277.81858) 0.000334 (TOA,TU) (2194.41746,556.17271) 0.000335
(RATCH,TU) (2157.95035,−3773.89784) 0.000334 (KBANK,TOA) (24.09398,2280.46775) 0.000335
(BH,RATCH) (−381.09585,2186.97386) 0.000334 (DELTA,TOA) (51.77571,2308.34817) 0.000335
(DELTA,KTC) (194.66076,2239.62836) 0.000334 (ADVANC,TU) (552.5842,−1098.08618) 0.000336
(BEM,TOA) (6017.8129,842.82608) 0.000334 (DELTA,INTUCH) (−375.38183,2077.96445) 0.000336
(BEM,DELTA) (12622.44393,−734.24398) 0.000334 (DELTA,PTTEP) (71.1668,811.77971) 0.000336
(KTB,RATCH) (−2638.6168,2068.92874) 0.000334 (DELTA,TCAP) (−57.75122,1810.70697) 0.000336
(BBL,RATCH) (−216.23878,1987.37254) 0.000334 (DELTA,GPSC) (340.72637,1014.91292) 0.000336
(GLOBAL,RATCH) (72.88263,1426.46729) 0.000334 (DELTA,LH) (15.7286,10076.0365) 0.000337
(DELTA,VGI) (−1513.05683,17576.37386) 0.000334 (DELTA,DTAC) (659.43118,1323.90649) 0.000337
(TOA,VGI) (1077.84508,5557.24951) 0.000335 (CBG,DELTA) (665.47812,947.94606) 0.000337
(LH,TOA) (3316.81354,1593.59495) 0.000335 (CPN,DELTA) (1066.09262,709.99493) 0.000338
(CPF,VGI) (1229.63292,6879.05384) 0.000335 (BJC,DELTA) (1285.20708,909.96626) 0.000338
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Table 9: Portfolios of stock pairs obtained from (3.2) with λ = 9

Stock Pairs Portfolios Obj. Value Stock Pairs Portfolios Obj. Value

(DELTA,GULF) (−799.08,837.31) 0.0001218 (BBL,TOA) (192.7,1573.25) 0.0001234
(BTS,IRPC) (12932.61,−21433.99) 0.0001219 (KTB,TOA) (1928.19,1618.41) 0.0001234
(RATCH,TMB) (2506.84,−46581.24) 0.0001225 (BBL,BDMS) (107.11,3307.4) 0.0001234
(BTS,TOA) (6268.03,364.06) 0.0001225 (BDMS,DELTA) (4542.75,−246.11) 0.0001234
(BTS,PTTEP) (7063.17,39.05) 0.0001225 (BDMS,TOP) (4298.76,−84.24) 0.0001234
(BTS,DTAC) (7384.48,5.98) 0.0001225 (DELTA,TISCO) (−383.57,1213.49) 0.0001234
(EGCO,KTB) (410.26,−2457.8) 0.0001225 (ADVANC,DELTA) (556.73,−319.25) 0.0001235
(TMB,VGI) (−62963.3,20355.31) 0.0001226 (BH,TOA) (119.04,1986.49) 0.0001235
(DELTA,RATCH) (−1009.82,2140.34) 0.0001228 (ADVANC,TU) (524.98,−661.83) 0.0001235
(RATCH,TU) (2033.54,−3116.25) 0.0001228 (TOA,TU) (2057.58,997.5) 0.0001235
(BH,RATCH) (−312.59,2053.42) 0.0001229 (KBANK,TOA) (69.01,2119.42) 0.0001235
(BEM,TOA) (6034.16,838.68) 0.0001229 (DELTA,TOA) (183.81,2159.13) 0.0001235
(KTB,RATCH) (−2034.25,1925.8) 0.0001229 (DELTA,INTUCH) (−252.15,1974.27) 0.0001236
(BBL,RATCH) (−163.1,1853.85) 0.000123 (DELTA,PTTEP) (191.78,763.38) 0.0001237
(BEM,DELTA) (11819.64,−554.35) 0.000123 (DELTA,TCAP) (43.02,1725.92) 0.0001238
(DELTA,KTC) (347.01,2060.01) 0.0001230 (DELTA,GPSC) (441.9,956.35) 0.0001239
(GLOBAL,RATCH) (221.34,1390.67) 0.0001230 (DELTA,LH) (103.41,9651.01) 0.0001239
(DELTA,VGI) (−1343.28,16749.16) 0.0001230 (DELTA,DTAC) (742.28,1247.46) 0.0001241
(TOA,VGI) (959.38,6067.98) 0.0001232 (CBG,DELTA) (624.95,1017.75) 0.0001242
(CPF,VGI) (1096.38,7239.37) 0.0001233 (CPN,DELTA) (1048.09,733.37) 0.0001245
(LH,TOA) (3731.54,1496.91) 0.0001233 (BJC,DELTA) (1271.92,922.21) 0.0001246

Table 10: Portfolios of stock pairs obtained from (3.2) with λ = 10

Stock Pairs Portfolios Obj. Value Stock Pairs Portfolios Obj. Value

(DELTA,GULF) (−799.08,837.31) 0.0001218 (BBL,TOA) (192.7,1573.25) 0.0001234
(BTS,IRPC) (12932.61,−21433.99) 0.0001219 (KTB,TOA) (1928.19,1618.41) 0.0001234
(RATCH,TMB) (2506.84,−46581.24) 0.0001225 (BBL,BDMS) (107.11,3307.4) 0.0001234
(BTS,TOA) (6268.03,364.06) 0.0001225 (BDMS,DELTA) (4542.75,−246.11) 0.0001234
(BTS,PTTEP) (7063.17,39.05) 0.0001225 (BDMS,TOP) (4298.76,−84.24) 0.0001234
(BTS,DTAC) (7384.48,5.98) 0.0001225 (DELTA,TISCO) (−383.57,1213.49) 0.0001234
(EGCO,KTB) (410.26,−2457.8) 0.0001225 (ADVANC,DELTA) (556.73,−319.25) 0.0001235
(TMB,VGI) (−62963.3,20355.31) 0.0001226 (BH,TOA) (119.04,1986.49) 0.0001235
(DELTA,RATCH) (−1009.82,2140.34) 0.0001228 (ADVANC,TU) (524.98,−661.83) 0.0001235
(RATCH,TU) (2033.54,−3116.25) 0.0001228 (TOA,TU) (2057.58,997.5) 0.0001235
(BH,RATCH) (−312.59,2053.42) 0.0001229 (KBANK,TOA) (69.01,2119.42) 0.0001235
(BEM,TOA) (6034.16,838.68) 0.0001229 (DELTA,TOA) (183.81,2159.13) 0.0001235
(KTB,RATCH) (−2034.25,1925.8) 0.0001229 (DELTA,INTUCH) (−252.15,1974.27) 0.0001236
(BBL,RATCH) (−163.1,1853.85) 0.000123 (DELTA,PTTEP) (191.78,763.38) 0.0001237
(BEM,DELTA) (11819.64,−554.35) 0.000123 (DELTA,TCAP) (43.02,1725.92) 0.0001238
(DELTA,KTC) (347.01,2060.01) 0.0001230 (DELTA,GPSC) (441.9,956.35) 0.0001239
(GLOBAL,RATCH) (221.34,1390.67) 0.0001230 (DELTA,LH) (103.41,9651.01) 0.0001239
(DELTA,VGI) (−1343.28,16749.16) 0.0001230 (DELTA,DTAC) (742.28,1247.46) 0.0001241
(TOA,VGI) (959.38,6067.98) 0.0001232 (CBG,DELTA) (624.95,1017.75) 0.0001242
(CPF,VGI) (1096.38,7239.37) 0.0001233 (CPN,DELTA) (1048.09,733.37) 0.0001245
(LH,TOA) (3731.54,1496.91) 0.0001233 (BJC,DELTA) (1271.92,922.21) 0.0001246



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

36

Table 11: Portfolios for three combinations obtained from (3.2) with λ = 1

Combinations Portfolios Obj. Value

(BEM, DELTA, TOA) (48161.72,−14666.22,6745.12) 0.365614
(DELTA, TOA, VGI) (517724894.30,1755658.96,−234364262.50) 3.727424
(DELTA, LH, TOA) (4271110847.00,−1205490259.00,−2132215884.00) 9.065911

Table 12: Portfolios for three combinations obtained from (3.2) with λ = 2

Combinations Portfolios Obj. Value

(BEM, DELTA, TOA) (26140.97,−6985.91,3641.87) 0.134473
(DELTA, TOA, VGI) (70670364.64,−19939597.70,−35278867.34) 1.266002
(DELTA, LH, TOA) (49387872.88,31564.60,−4249872.18) 2.256337

Table 13: Portfolios for three combinations obtained from (3.2) with λ = 3

Combinations Portfolios Obj. Value

(BEM, DELTA, TOA) (18802.21,−4426.03,2607.32) 0.049462
(DELTA, LH, TOA) (3984017.12,−1124359.62,−1988896.84) 1.062857
(DELTA, TOA, VGI) (370420809.80,1201491.09,−167693936.00) 2.016559

Table 14: Portfolios for three combinations obtained from (3.2) with λ = 4

Combinations Portfolios Obj. Value

(BEM, DELTA, TOA) (15133.96,−3146.26,2089.95) 0.018194
(DELTA, LH, TOA) (2165460.87,−610378.74,−1080888.32) 0.793073
(DELTA, TOA, VGI) (193185947.8,674669.82,−87458730.01) 0.850695

Table 15: Portfolios for three combinations obtained from (3.2) with λ = 5

Combinations Portfolios Obj. Value

(BEM, DELTA, TOA) (12933.93,−2378.53,1779.45) 0.006693
(DELTA, TOA, VGI) (24413867.96,85177.38,−11052576.74) 0.674440
(DELTA, LH, TOA) (199384909.1,−56164517.23,−99516031.67) 0.723128
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Table 16: Portfolios for three combinations obtained from (3.2) with λ = 6

Combinations Portfolios Obj. Value

(BEM, DELTA, TOA) (11468.00,−1866.83,1572.39) 0.002462
(DELTA, LH, TOA) (2082847.94,−587494.11,−1039726.79) 0.324044
(DELTA, TOA, VGI) (274438.51,913.54,−124241.93) 0.456907

Table 17: Portfolios for three combinations obtained from (3.2) with λ = 7

Combinations Portfolios Obj. Value

(BEM, DELTA, TOA) (10421.58,−1501.42,1424.42) 0.000906
(DELTA, LH, TOA) (2082847.94,−587494.11,−1039726.79) 0.059457
(DELTA, TOA, VGI) (274438.51,913.54,−124241.93) 0.062168

Table 18: Portfolios for three combinations obtained from (3.2) with λ = 8

Combinations Portfolios Obj. Value

(BEM, DELTA, TOA) (9637.35,−1227.45,1313.40) 0.000333
(DELTA, LH, TOA) (2082847.94,−587494.11,−1039726.79) 0.010918
(DELTA, TOA, VGI) (274438.51,913.54,−124241.93) 0.028132

Table 19: Portfolios for three combinations obtained from (3.2) with λ = 9

Combinations Portfolios Obj. Value

(BEM, DELTA, TOA) (9027.92,−1014.44,1227.00) 0.000123
(DELTA, LH, TOA) (186549.15,−52655.44,−93130.36) 0.002261
(DELTA, TOA, VGI) (180397.61,585.07,−81667.92) 0.002954

Table 20: Portfolios for three combinations obtained from (3.2) with λ = 10

Combinations Portfolios Obj. Value

(BEM, DELTA, TOA) (8540.86,−844.1,1157.84) 0.000045
(DELTA, LH, TOA) (186549.15,−52655.44,−93130.36) 0.000651
(DELTA, TOA, VGI) (180397.61,585.07,−81667.92) 0.000687



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

38

Example of Mathematica Code

1 V0 = 100000;

2 num = 48;

3 Lcompany = {AOT, BBL, ADVANC, BANPU, BDMS, BEM, BGRIM, BH, BJC, BPP,

4 BTS, CBG, CPALL, CPF, CPN, DELTA, DTAC, EA, EGCO, GLOBAL, GPSC,

5 GULF, HMPRO, INTUCH, IRPC, IVL, KBANK, KTB, KTC, LH, MINT, MTC,

6 PTT, PTTEP, PTTGC, RATCH, SAWAD, SCB, SCC, TCAP, TISCO, TMB, TOA,

7 TOP, TU, VGI, WHA, TRUE, AWC, OSP};

8 Table[S0[i] =

9 Import["TESTIMPORT.xlsx", {"Data", i, Range[37, 37], 3}], {i, num}];

10 Table[Data[i] =

11 Import["TESTIMPORT.xlsx", {"Data", i, Range[38, 507], 2}], {i,

12 num}];

13 Table[u[i] = Mean[Select[(Data[i])/100, # > 0 &]], {i, 1, num}];

14 Table[d[i] = Mean[Select[(Data[i]/100), # <= 0 &]], {i, 1, num}];

15 Table[p[i] = (Count[Data[i], u_ /; u > 0])/(Length[Data[i]]), {i, 1,

16 num}];

17 Table[EK[i] = 100*((1 + u[i])*p[i] + (1 + d[i]) (1 - p[i]) - 1), {i,

18 1, num}];

19 Table[VarData[i] = (100/S0[i])^2*p[i]*(1 - p[i]), {i, 1, num}];

20 Table[Var[x1_, x2_][i,

21 j] = (x1*S0[i]/V0)^2*VarData[i] + (x2*S0[j]/V0)^2*VarData[j], {i,

22 1, num}, {j, i + 1, num}];

23 Table[Expec[x1_, x2_][i,

24 j] = (x1*S0[i]/V0)*EK[i] + (x2*S0[j]/V0)*EK[j], {i, 1, num}, {j,

25 i + 1, num}];

26 com = Table[{Lcompany[[i]], Lcompany[[j]]}, {i, 1, num}, {j, i + 1,

27 num}];

28 inde2 = Subsets[Range[1, 48], {2}];

29 listinde =

30 Table[{IndependenceTest[Data[inde2[[i]][[1]]],

31 Data[inde2[[i]][[2]]],"PearsonCorrelation"]}, {i, 1, Length[inde2

]}];
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32 companyinde =

33 Table[If[listinde[[i]][[1]] > 0.05, {inde2[[i]]}, {}], {i, 1,

34 Length[listinde]}];

35 abc = Flatten[companyinde, 1]

36 lambda = 1;

37 claim = 0;

38 ansxx = Table[{Lcompany[[abc[[i]][[1]]]], Lcompany[[abc[[i]][[2]]]],

39 Flatten[OPx[i] =

40 NMinimize[{Exp[

41 lambda*claim/V0]*(p[abc[[i]][[1]]]*

42 Exp[-(lambda/V0)*(1 + u[abc[[i]][[1]]])*S0[abc[[i]][[1]]]*

43 x1] + (1 - p[abc[[i]][[1]]])*

44 Exp[-(lambda/V0)*(1 + d[abc[[i]][[1]]])*S0[abc[[i]][[1]]]*

45 x1])*(p[abc[[i]][[2]]]*

46 Exp[-(lambda/V0)*(1 + u[abc[[i]][[2]]])*S0[abc[[i]][[2]]]*

47 x2] + (1 - p[abc[[i]][[2]]])*

48 Exp[-(lambda/V0)*(1 + d[abc[[i]][[2]]])*S0[abc[[i]][[2]]]*

49 x2]),

50 x1*S0[abc[[i]][[1]]] + x2*S0[abc[[i]][[2]]] <= V0}, {x1, x2}]]

51 }, {i, 1, Length[abc]}]
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