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Chapter 1. Introduction 
 Social media has improved on traditional news sources by allowing increased 
access to information. Breaking news can be published instantly and spread quickly. 
Niche content can be customized for unique interests. However, the anonymity 
social media provides can lead to abusive and hateful speech without detection or 
repercussion from individuals with malicious intentions. In [1] the percentage of 
anonymous users posting random tweets on Twitter was 40% but for hate speech 
the number ranged from 46%-55%. In order to control this type of behavior, web 
platforms are developing and implementing algorithms to detect such content. 
Governments are also mandating controls as well. In a U.S. Congressional hearing in 
March 2021, CEO of Facebook Mark Zuckerberg suggested to Congress that it 
implements a law to require that platforms have systems that can detect illegal 
content and remove it [2]. The number of users in Thailand on Facebook numbered 
56.4 million in 2021 [3] and thus could be affected as well. Also, the Royal Thai 
Police has stated that cyberbullying is a crime, citing a case involving the daughter of 
the Prime Minister Prayuth Chan-ocha as a victim. 
 Facebook currently has an AI system dedicated to detecting abusive content, 
which includes categories such as Hate Speech and Bullying and Harassment. This 
system detected hate speech before any human at a rate that rose from 24% in late-
2017 to reach 97% in the fourth quarter of 2020 [4]. 
 In light of these trends, abusive content detection should continue gaining in 
importance. Improvements in detection are enabled with state-of-the-art machine 
learning. While past research has focused on detecting Thai language abusive speech 
on social media using traditional machine learning techniques, this thesis improves 
upon this by using modern deep learning. This thesis will use variants of the 
Transformers [5] and Recurrent Neural Network (RNN) architectures. 
1.1. Statement of the problem 
Several problems are explored in this research: 

1. How to improve Thai abusive speech detection using deep learning rather 
than traditional machine learning techniques such as SVM and random forest. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2 

2. How to distinguish between different classes of abusive speech, such as rude, 
figurative, offensive, and dirty. 

3. How to design the proposed method to be compatible with a text belonging 
to multiple classes. 

1.2. Objective 
In order to improve Thai abusive speech detection, there are three goals: 

1. To develop a deep learning binomial model that can detect Thai abusive 
speech with high accuracy 

2. To evaluate the deep learning models as compared to previous research that 
used traditional (shallow) machine learning models 

3. To develop a multinomial model that can classify Thai abusive speech into 
five categories 

1.3. Scope of thesis and constraints 
There are two issues in this research as follows: 

1. The abusive language dataset was collected from Facebook manually and 
labeled by linguistic major students from Chulalongkorn University, consisting 
of 6,770 texts. 

2. The traditional machine learning models tested are the Support Vector 
Machine (SVM), Multinomial Naïve Bayes (MNB), Bernoulli Naïve Bayes (BNB), k-
Nearest Neighbor (kNN), Random Forest (RF), and Decision Tree (DT) classifiers. 
The deep learning models tested are Bidirectional Long-Short Term Model 
(BiLSTM) and DistilBERT [6]. 

1.4. Expected outcome 
 This research aims to develop a binomial and a multinomial classification 
model for classifying Thai social media text. The binomial model will have two 
classes: Abusive and Non-Abusive. The multinomial model will have five classes: 
Rude, Figurative, Dirty, Offensive, and Non-Abusive. 
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Chapter 2. Related Works 
 Abusive text detection in Asian languages has historically used traditional 
machine learning or classic deep learning techniques such as RNN. However, with the 
advent of the Transformers architecture in 2017, more recent research has focused 
on the BERT variant of this architecture. 
2.1. Thai Abusive Facebook Text using Traditional Machine Learning 
 Tuarob and Mitrpanont [7] developed a binomial model to detect Thai 
language abusive content within Facebook comments. The texts were labeled as 
Figurative, Dirty, Offensive, Rude, and Non-Abusive, though no multinomial model 
was created. The research used nine traditional machine learning classifiers including 
Discriminative Multinomial Naïve Bayes (DMNB) classifier, Repeated Incremental 
Pruning to Produce Error Reduction (RIPPER), Binomial Naïve Bayes (BNB) classifier, 
Support Vector Machine (SVM), Random Forest (RF), Maximum Entropy, K-Nearest 
Neighbor (kNN) classifier, C4.5 Decision Tree, and Decision Table/Naive Bayes Hybrid 
(DTNB). DMNB performed the best, achieving an 86% F-measure, 88.74% precision, 
and 83.53% recall. Notably, no deep learning techniques were used. 
2.2. Hate, Offensive, and Clean Speech Detection in Vietnamese 
 The Vietnamese Hate Speech Detection campaign is a dataset offered by the 
Vietnamese Language and Speech Processing 2019 workshop for a conference 
challenge.1 It is labeled with the Hate, Offensive, and Clean classes. Pham et al. 
adapted the Robustly Optimized BERT Pretraining Approach (RoBERTa) by re-training 
and fine-tuning the PhoBERT [8] model for the classification task. It achieved an F1 
score of 0.7221, a new state-of-the-art result [9]. 
2.3. Nepali YouTube 

Singh et al. created a dataset for targeted aspect-based sentiment analysis 
using comments from Nepali YouTube videos [10]. The target entities were tagged in 
the comments and include Organization, Person, Location, and Miscellaneous. These 
entities were annotated as being in the categories Violence, General, Profanity, 
Sarcasm Feedback, and Out-of-scope. The first task was to classify each entity as 

 
1 https://vlsp.org.vn/vlsp2019/eval/hsd 
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one of the first four categories. For this task, BERT performed best with an F1 of 
57.98 compared to BiLSTM with an F1 of 57.07. 

The second task was to detect the sentiment polarity of each aspect category 
with a Boolean output. The models tested were SVM, CNN, BiLSTM, and BERT. 
BiLSTM performed best with an F1 of 0.816 compared to BERT, CNN, and SVM, with 
F1 scores of 0.799, 0.811, and 0.712, respectively. 

While BiLSTM outperformed BERT in the Nepali study, contrary to this study’s 
result, this may have been due to the simpler nature of the task of binomial 
classification for easier to detect categories such as Profanity. The study noted more 
false positives in ambiguous categories such as General. Hence BERT’s better 
contextual representations may only provide a meaningfully significant advantage 
when dealing with difficult to detect categories such as Figurative. 
2.4. Indonesian Twitter 

Hendrawan, Adiwijaya, and Al Faraby used the Twitter dataset from [11] and 
added 5,227 new tweets with the majority having some Indonesian language [12]. 
The labels divided hate speech into categories such as individual, group, religion, 
race, gender, other, weak, moderate, and strong. An individual tweet may have 
multiple labels. Accuracy is calculated as: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (
1

𝑁
)∑(

 

|
𝑦̂𝑖 ∩ 𝑦𝑖

𝑦̂𝑖 ∪ 𝑦𝑖
|) × 100% 

𝑁

𝑖=1

(1) 

 
where  is the number of tweets,  is a prediction label set, and  is the actual label 
set. While [11] only used traditional machine learning, [12] included some deep 
learning models and tested RFDT, BiLSTM and BiLSTM with a pre-trained BERT 
model. The RFDT was found to perform the best with an accuracy level of 76.12% 
compared to BiLSTM at 68.49% and BiLSTM+BERT at 64.81%. No precision, recall or 
F1 statistics were provided. 
2.5. Facebook 

Facebook does not publicly disclose its abusive content detection algorithms. 
However, its research can reveal clues as to which models it prefers. Facebook AI 
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compared the NN, Extreme Learning Machine (ELM), and LSTM models in predicting 
the total interaction with a post and the models had 𝑅2 scores of 0.139, 0.053, and 
0.174, respectively, with LSTM scoring the highest. The count of interactions with a 
post includes the number of likes, comments, and shares of a post. LSTM also 
outperformed other models in creating an efficient neural language model in regards 
to perplexity [13].  
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Chapter 3. Theoretical Background 
3.1. Thai abusive speech detection 

Sentiment analysis is one of the major applications in natural language 
processing using machine learning. It is the analysis of text to systematically identify 
and extract emotional and subjective information from the source material. 

Thai language social media sentiment analysis presents several challenges. 
First, the Thai language does not use any punctuation to denote separation of 
sentences. Second, the number of publicly available datasets is small as compared 
to English. Third, social media uses new slang that may not appear in standard texts 
such as Wikipedia. Fourth, social media may use poor grammar and contain 
misspellings. 

Abusive speech detection, a specialized task within social media sentiment 
analysis, presents even more unique challenges. Thai language social media 
sentiment analysis has typically focused on straightforward, mutually exclusive 
classes such as positive, negative, and neutral ([14], [15], [16]) or variations of 
negative versus non-negative [17]. However, abusive speech detection research 
contains multiple classes which are not mutually exclusive and thus the same text 
may have more than a single label. Second, the use of one class in particular, the 
Figurative class, includes words that may have different meanings depending on the 
context, or the surrounding words. 

The scope of this thesis is limited to multiple label abusive speech detection 
as it is a more difficult task than simple sentiment polarity and therefore a better test 
when comparing the effectiveness of various models. Only [7] has published such 
research thus far for Thai language social media and those methods used only 
traditional machine learning models. The models used for testing will be described 
next. 
3.2. Traditional machine learning models 

Traditional machine learning models encompass a varied set of 
methodologies. They can be differentiated from deep learning in that the output 
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from one layer is not used as input to another. Hence, they may also be referred to 
as shallow learning models. 

This thesis aims to propose the use of deep learning-based models along 
with their comparison to shallow learning models similar to the ones used in [7]. The 
traditional machine learning models to be tested are SVM, MNB, BNB, kNN, RF, and 
DT.  

3.2.1. One-hot encoding 
In machine learning, the first step is to convert the words into vectors – in 

particular, one-hot vectors. In Figure 1, two similar words are encoded using one-hot 
vectors, where each vector has a single value of one representing the unique index 
and the rest of the cells contain 0’s. The size of the word vector dimension is equal 
to the number of unique words in the corpus. While the two words in the figure, 
“dirty” and “unclean”, are similar in meaning, when doing a dot product with the 
word vectors to check for similarity, the score is 0 since the one-hot vectors are 
orthogonal to each other. 

 

 
Figure 1: One-hot vectors 
  

To encode a sentence, or sequence of words, several methods exist to 
convert the set of word vectors into a sentence vector. The sequence may also be 
several sentences which together combine to make a document. These methods are 
known as vectorizers.  
 A count vectorizer creates a sentence vector equal in dimension to the 
number of words in the corpus, and it will count the number of times a particular 
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word appears in a sentence and add it to that vector at the word’s respective index. 
For example, the word “dirty” in Figure 1 has an index of three. Thus, if the word 
appeared in the sentence twice, there would be a count of two at index three in the 
sentence vector. The binary vectorizer simply replaces the word counts with a 
Boolean.  
 A term frequency inverse document frequency (tf-idf) vectorizer may also be 
used. The tf-idf formula is given below: 
  

𝑡𝑓𝑖𝑑𝑓(𝑡, 𝑑) = 𝑡𝑓(𝑡, 𝑑) × 𝑖𝑑𝑓(𝑡) (2)

𝑖𝑑𝑓(𝑡) = log (
1 + 𝑛

1 + 𝑑𝑓(𝑡)
) + 1 (3)

 

 
where 𝑡𝑓 is the raw count or occurrences of term (word) 𝑡, 𝑑 is the document (set of 
words), 𝑛 is the total number of documents, and 𝑑𝑓(𝑡) is the number of documents 
that contain the term 𝑡. The tf-idf vectors are then divided by the Euclidean norm. 
The effect is to give less weight to terms that are frequently used in many texts since 
their high frequencies implies less importance. However, when [7] tested the various 
methods, the difference in performance between different vectorizers was minimal. 
Sentence / document vectors may also be referred to as feature vectors. 

3.2.2. Support Vector Machine 
 An SVM creates an optimal separating hyperplane or set of hyperplanes in 
high-dimensional space to separate the data points in different classes from one 
another. Figure 2 shows a simple linear binomial classifier. The green circles 
represent data points in the “Figurative” class and the orange circles represent data 
points in the “Non-Figurative” class. In this simple case, the data points from 
different classes are clearly separated. However, there exist several lines that can be 
chosen to separate the two classes. The question is which line should be used. The 
equation for the separating hyperplane used in SVM is: 
 

ℎ𝑤,𝑏(𝑥) = 𝑔(𝑤𝑇𝑥 + 𝑏) (4) 
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where ℎ is the separating hyperplane, 𝑤 is the weight vector, 𝑥 is the input vector, 𝑏 
is the bias, and 𝑔 is a function where 𝑔 = 1 if 𝑤𝑇𝑥 + 𝑏 ≥ 0 and 𝑔 = −1 otherwise. 
 

 
Figure 2: Linear binomial classifier using SVM 
  

To reduce the generalization error, the hyperplane with the largest distance 
to the closest training points is chosen. The nearby points, which are the ones most 
likely to be misclassified, are known as support vectors. In this case, the separating 
hyperplane is 𝐻1, a straight line in two dimensions. 𝐻1 is assigned the equation 
𝑤𝑇𝑥 + 𝑏 = 0 where 𝑤 is a vector orthogonal to 𝐻1 and ∥ 𝑤 ∥= 1. Parallel lines 𝐻0 
and 𝐻2 run through the support vectors on opposite sides of 𝐻1. The margin is the 
distance between 𝐻0 and 𝐻2 and the hyperplanes chosen for 𝐻0, 𝐻1, and 𝐻2 create 
the maximum margin.  
 In the case of more than two classes, multiple hyperplanes are used. In the 
case the separation of classes in not linear, an SVM can also use a method known as 
the kernel trick for non-linear decision boundaries. If there is no clear separating 
hyperplane, a version of SVM known as soft margin can be used. 
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3.2.3. Naïve Bayes 
 The Bayes theorem states that the conditional probability of an event is a 
function of prior knowledge of the probabilities of related conditions. Its formulation 
is seen in (5) where the probability of a document consisting of word vectors 𝑥𝑖 for a 
vocabulary of size 𝑛 being in one of 𝐾 classes 𝐶𝑘 is: 
 

𝑃(𝐶𝑘|𝑥1, … , 𝑥𝑛) =
𝑃(𝐶𝑘)𝑃(𝑥1, … , 𝑥𝑛|𝐶𝑘)

𝑃(𝑥1, … , 𝑥𝑛)
(5) 

 
To simplify the use of Bayes theorem, it is assumed that the features, the 

word vectors, are conditionally independent. This assumption, known as the naïve 
assumption, is given by the expression: 

 
𝑃(𝑥𝑖|𝐶𝑘, 𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛) = 𝑃(𝑥𝑖|𝐶𝑘) (6) 

 
although the co-occurrence of the words in a document may not be actually 
independent. 
Combining (5) and (6) results in: 
 

𝑃(𝐶𝑘|𝑥1, … , 𝑥𝑛) =
𝑃(𝐶𝑘)Π𝑖=1

𝑛 𝑃(𝑥𝑖|𝐶𝑘)

𝑃(𝑥1, … , 𝑥𝑛)
(7) 

 

Since the denominator 𝑃(𝑥1, … , 𝑥𝑛) is constant, the equation can also be restated as 
a proportionality since only the relative probabilities are relevant: 
 

𝑃(𝐶𝑘|𝑥1, … 𝑥𝑛) 𝛼 𝑃(𝐶𝑘)Π𝑖=1
𝑛 𝑃(𝑥𝑖|𝐶𝑘) (8) 

 
This leads to the classification rule: 
 

𝐶̂ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑘

𝑃(𝐶𝑘)𝛱𝑖=1
𝑛 𝑃(𝑥𝑖|𝐶𝑘) (9) 

 
where the class with the highest probability is assigned to the text. 
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3.2.3.1. Multinomial Naïve Bayes 
 MNB is a variant of NB that works for multinomially distributed data which 
means a feature can have more than a success or failure outcome, or a Boolean 
value. For example, this is true when word counts are used as each word feature. 
From the NB formula, 𝑃(𝑥𝑖|𝐶𝑘) is replaced with a smoothed version of maximum 
likelihood, also known as relative frequency counting, or 𝑃̂, to arrive at: 
 

𝑃̂(𝑥𝑖|𝐶𝑘) =
𝑁𝑦𝑖 + 𝛼

𝑁𝑦 + 𝛼𝑛
(10) 

 
where 𝑃̂ estimates 𝑃(𝑥𝑖|𝐶𝑘) which is the probability of observing a word 𝑥𝑖 given 
class 𝐶𝑘, 𝑁𝑦𝑖 = ∑𝑥𝑖 is the number of time word 𝑥𝑖 appears in class 𝑦 (or 𝐶𝑘) in the 
training set, 𝑁𝑦 = ∑ 𝑁𝑦𝑖

𝑛
𝑖=1  is the total count of all words for class 𝑦, and 𝛼 is a 

constant used for smoothing. MNB was found to outperform BNB in [18] where the 
authors believe it has an advantage when the document length has high variance. 

3.2.3.2. Bernoulli Naïve Bayes 
 BNB is similar to MNB but instead of using word counts, each word is given a 
Boolean (Bernoulli) value. In other words, word count vectors are replaced by word 
occurrence vectors. The decision rule is based on: 
 

𝑃(𝑥𝑖|𝐶𝑘) = 𝑃(𝑥𝑖|𝐶𝑘)𝑥𝑖 + (1 − 𝑃(𝑥𝑖|𝐶𝑘))(1 − 𝑥𝑖) (11) 

 
where 𝑃(𝑥𝑖|𝐶𝑘) is the probability of class 𝐶𝑘 generating the term 𝑥𝑖 . One advantage 
is the ability to penalize the absence of a term. BNB was found to outperform MNB 
in [19] where it did better in four out of six datasets although the improved 
performance was not always statistically significant. 

3.2.4. K Nearest Neighbors 
 In the kNN algorithm, during the training phase, the feature vectors for the 
training set and their class labels are stored in memory. During the test phase, for 
each sample, the 𝑘 nearest points are selected. The label representing the majority 
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of those 𝑘 points is then assigned to that test data point. The parameter 𝑘 is 
selected by the user. The distance metric used is typically the Euclidian distance. 
 Figure 3 shows an example of kNN. The green circles represent texts labeled 
“Figurative” and the orange circles “Non-Figurative”. Only two dimensions appear 
here but the number of dimensions can be equal to the number of features. The 
green dots represent data points in the Figurative class and the orange dots for the 
Non-Figurative class. The yellow dot represents a new sample to classify. If 𝑘 = 5, 
the algorithm finds the labels of the nearest five points. In this case, these are four 
Figurative and one Non-Figurative data points. Since the majority is Figurative, the 
new sample will be classified as Figurative text. 
 

 
Figure 3: kNN 
  

It is a simple algorithm that is easy to interpret. However, it requires high 
memory since it stores all of the training data in memory. 

3.2.5. Decision Tree 
 A decision tree is a graph tree where internal nodes are a value query and 
leaf nodes are the classes. Figure 4 shows an example of a DT. In this case, the 
occurrence of a word in the document is the query node. If the word “bad” and 
“dog” both appear in a sentence, it is considered Figurative, but if only the word 
“dog” appears, it is Non-Figurative. 
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Figure 4: Decision Tree 
  

The algorithm for the decision tree starts at the root node and then grows 
the tree by recursively splitting the features one by one. In choosing which feature to 
split, several criteria exist depending on the type of tree used. 
 For the CART (classification and regression tree) algorithm [20], the split is 
based on Gini impurity. The Gini impurity equation appears in (12) where 𝑝𝑖 is the 
probability of a text with label 𝑖 being chosen and 1 − 𝑝𝑖 is the probability of an 
error in classifying that item with 𝐽 total number of distinct events or classes. It 
measures the probability a text would be incorrectly labeled if it were chosen 
randomly from the distribution of labels in the training set. It results in a binary split. 
 

𝐺𝑖𝑛𝑖 = ∑𝑝𝑖(1 − 𝑝𝑖) = ∑(𝑝𝑖 − 𝑝𝑖
2) = ∑𝑝𝑖 − ∑𝑝𝑖

2 = 1 − ∑𝑝𝑖
2

𝐽

𝑖=1

𝐽

𝑖=1

𝐽

𝑖=1

𝐽

𝑖=1

𝐽

𝑖=1

(12) 

 
 Information gain is the other major splitting criteria used in algorithms such as 
C4.5 [21]. It is calculated as the expected reduction in entropy from branching on an 
attribute. Entropy represents the average level of “information” or “surprise” of a 
random variable, and the equation is seen in (13) where 𝑝 is the vector [𝑝1, … , 𝑝𝐽]. 
The equation for information gain is seen in (14) where 𝐼𝐺 is the information gain, 𝑇 
is the training set, 𝑎 is the attribute, 𝐻(𝑇) is the a priori entropy of the training set, 
and 𝐻(𝑇|𝑎) is the conditional entropy. 
 

𝐻(𝑝) = −∑𝑝(𝑥𝑖) log2 𝑝(𝑥𝑖) 

𝐽

𝑖=1

(13) 
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𝐼𝐺(𝑇, 𝑎) = 𝐻(𝑇) − 𝐻(𝑇|𝑎) (14) 

 
3.2.6. Random Forest 

Bagging averages a method’s results over many samples to reduce the 
variance. Let 𝐶(𝑆, 𝑥) be a classifier given a training set 𝑆 for data point 𝑥. The 
bagging procedure will draw samples 𝑆∗1, … , 𝑆∗𝐵 of size 𝑁 each with replacement 
from the training set. The the output of the bagging (or bootstrap aggregation) of 
classifier 𝐶 will follow: 
 

𝐶̂𝑏𝑎𝑔(𝑥) = 𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑉𝑜𝑡𝑒{𝐶(𝑆∗𝑏 , 𝑥)}𝑏=1
𝐵 (15) 

 
 Random forest is an improved version of bagged trees. Instead of considering 
all the features when splitting, a random sample of 𝑘 features is taken where 𝑘 is 
typically the square root or the log base 2 of the number of features. This reduces 
the correlation of the trees. Otherwise, if a small set of features strongly predicts the 
output, the trees may be correlated. The number of trees may range from a few 
hundred to several thousand depending on the training set. 
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Chapter 4. Proposed Methods 
 

While Thai language social media sentiment analysis has been researched in 
the past using traditional machine learning methods such as in [7], [17], [22], and [16], 
more modern research techniques use deep learning. This includes RNN variants 
such as LSTM and GRU, as in [23] , [15] and [14]. Also, in 2020-1 a small number of 
sentiment analysis research includes variants of the more modern Transformer 
architecture, although they are limited to simple polarity sentiment as in [14] and 
[24]. 
 Our proposed method will test two deep learning architectures – the RNN 
and the Transformer. In particular, this study will test the BiLSTM and DistilBERT 
models, respectively. These models are expected to outperform the traditional, 
shallow learning machine models due to better contextual representations of the 
words in the input. We will compare these methods to traditional machine learning 
methods similar to the ones used in Tuarob and Mitrpanont [7]. Both a binomial and 
a multinomial model will be tested. The proposed method process can be seen in 
Figure 5. 
 

 
Figure 5: Proposed Method Process 
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4.1. Deep Representation Learning 

The machine learning models have simple representations of the input. 
These models can also be referred to “shallow” learning or feature-based learning. 
They take the input vector 𝑥, extract features using some function 𝜙(𝑥), and then 
use these features to create a decision rule. For example, 𝜙(𝑥) could be an 
algorithm function to convert words to one-hot vectors and sum the vectors for each 
document. The decision rule could be 𝜙(𝑥)𝑇𝜃 ≤ 0 where 𝜃 is a vector of learned 
parameters. In shallow learning, the features must be manually designed and 
programmed by humans, which is a difficult task for complex inputs. 

Deep learning will be defined as methods having two characteristics. First, 
they take the output from one layer and use it as input to another layer. Second, 
they use some form of gradient descent learning. 

Deep learning, as compared to shallow learning, treats the features as 
learned, free parameters rather than as hard-coded, fixed inputs. Allowing the model 
to discover the representations needed for feature detection on its own is also 
known as representation learning [25]. Since the features are learned automatically, 
they can be represented as layers of features. 

Figure 6 shows an example where a cat image is the input that is trained on 
for a convolutional neural network. The first transformation, pictured as the bottom-
most arrow, transforms the image into a series of edges and curves as feature 
representations. The second transformation uses the edges and curves features from 
the first layer and converts them into eyes and ears feature representations in the 
second layer. The third transformation converts the eyes and ears feature 
representations into a face feature representation. These layers of transformations 
allow the model to learn its own features as a hierarchical representation where the 
lower layers are building blocks for the higher ones. 
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Figure 6: Layers of learned representations in deep learning 
 
The function used to transform one layer to another layer is typically a 

neural network (NN). It has been shown that a single layer NN, the perceptron, has 
limitations, such as the ability to learn invariants, according to the Group Invariance 
Theorem for Perceptrons [26]. Hence the need for deep learning, or multiple layers. 

Figure 7 illustrates an example of an NN diagram where 𝑥 is the input, 𝑊𝑙 and 
𝑏𝑙 are the weight matrix and bias for layer 𝑙, and 𝑦 is the output.  
 

 
Figure 7: Deep Neural Network 

 
Each layer calculates the formulas in (16), (17), and (18), where 𝜎 is some 

non-linear function known as the activation function. The presence of as little as two 
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layers can approximate any continuous function within a reasonable accuracy, a 
property known as the Universal Approximation theorem [27] [28]. 

 
𝑧𝑖+1 = 𝑊𝑖𝑎𝑖 + 𝑏𝑖 (16)

𝑎𝑖+1 = 𝜎(𝑧𝑖+1) (17)

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
exp(zi)

∑ exp (zj)
𝐾
𝑗=1

(18)
 

 
The input is transformed at each layer from left to right. This process is 

known as forward propagation. At the last step of the network, a loss function is 
calculated. The loss functions measure the difference between predicted output and 
actual output. The algorithm is run multiple times. With each epoch, the parameters 
are adjusted in the direction of the negative gradient using backpropagation until the 
loss function appears to reach a minimum. In a sentiment classification task, the 
argmax of the set of probabilities output by the softmax function is the prediction. 

NNs have several general advantages over traditional machine learning 
techniques. Non-linear relationships can be modeled due in part to the activation 
functions. Various techniques exist to improve generalization to new data such as 
randomized node dropout and regularization in the loss function that controls the 
usage of too many parameters to prevent overfitting. 

One of the largest advantages NNs have is the better input representations. [7] 
used one-hot vectors that have no similarity measure. NNs, on the other hand, 
encode words as dense vectors and include a similarity measure as one of their 
operations. These dense vectors are referred to as word vectors, word embeddings, 
or word representations. 

4.1.1. Word Embeddings 
An ideal word embedding should include a measure of similarity. One 

instance where this is useful is when a particular word appears in the training set but 
not in the test set. One possible way to do this is to maintain a list of synonyms. 
However, this approach has several weaknesses. It could miss new words such as 
slang. The synonym chosen is subjective and different people may disagree on what 
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is a proper synonym. It also cannot compute a similarity measure that could have a 
range rather than a Boolean. 

One possible measure of similarity in meaning between two words is whether 
they are used in similar sentences. The distributional hypothesis states that words 
used in the same contexts are likely to have similar meanings [29]. Context refers to 
the nearby surrounding words in the document. The number of words is a 
hyperparameter. 

For example, assume that some hypothetical training data has the following 
sentences: 

• The doctor is treating patients. 

• The nurse is treating patients. 

• The doctor is going to the hospital. 
Since “doctor” and “nurse” appear in identical contexts, it hints at the fact that 

these words have similar meanings, or semantic similarity. Assume that the test set 
may contain the partial sentence: 

• The nurse is going to the ____ 
 Based on the semantic similarity of “doctor” and “nurse”, and the fact that 
“doctor” has appeared in a similar context to the training set, it can be predicted 
that there is a high probability that missing word is likely to be “hospital”. 
 Table 1 shows an example of a possible simple word embedding. Each 
column represents a different word vector with identical dimensions, with the word 
at top. The rows represent an aspect of its meaning. The word “Bangkok” may be 
rated high on the “Hot” dimension due to the weather but zero on the “Female” 
dimension since it does not have a gender. In an actual word embedding, however, 
the meaning of each dimension is learned and typically cannot be interpreted. 
  
Table 1: Word embedding 

 Bangkok Antarctica Prince Princess 

Hot 0.8 -0.9 0.0 0.0 

Continent 0.2 1.0 0.0 0.0 

Female 0.0 0.0 -1.0 1.0 
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In an NN, these embeddings must be learned. To do this, the task the NN will 
accomplish is to predict the nearby words of a word from its embedding value. 
Figure 8 illustrates the task where w is the word and t is the time step. 

 

 
Figure 8: Context word prediction 

 
The task can be described by first calculating: 
 

𝑃(𝑜|𝑐) =
exp(𝑢𝑜

𝑇𝑣𝑐)

∑ exp(𝑢𝑤
𝑇 𝑣𝑐)𝑤∈𝑉

 (19) 

 
where 𝑜 is the context word, 𝑐 is the center word, 𝑢 is the learned vector 
representation of the word, 𝑤 is the index of the word in the vocabulary, 𝑣 is the 
learned vector representation of 𝑐, and 𝑉 is the set of all possible words in the 
vocabulary. The goal is to optimize: 
 

𝑎𝑟𝑔𝑚𝑎𝑥𝑢1,…𝑢𝑛,𝑣1,…𝑣𝑛
∑log𝑃(𝑜|𝑐)

𝑐,𝑜

 (20) 

 
for vectors 𝑢 and 𝑣 as optimization variables and sum for all possible 𝑐 and 𝑜 
combinations and maximize the log likelihood which is given by the softmax 
expression in (19). However, this implementation is computationally expensive due 
to the denominator in (19). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 21 

 The word2vec skip-gram model [30] uses a similar algorithm but is more 
computationally efficient. It replaces the softmax operation with a binary 
classification by replacing (19) and (20) with: 
 

𝑃(𝑜 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑤𝑜𝑟𝑑|𝑐) = σ(uo
T𝑣𝑐) =

1

exp(−𝑢𝑤
𝑇 𝑣𝑐)

(21) 

𝑃(𝑜 𝑖𝑠 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑤𝑜𝑟𝑑|𝑐) = σ(−uo
T𝑣𝑐) =

1

exp(−𝑢𝑤
𝑇 𝑣𝑐)

(22) 

𝑎𝑟𝑔𝑚𝑎𝑥𝑢1,…𝑢𝑛,𝑣1,…𝑣𝑛
∑(log 𝑝(𝑜 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝑐) + ∑log 𝑝(𝑤 𝑖𝑠 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝑐)) 

𝑤𝑐,𝑜

(23) 

 
where 𝜎 is the sigmoid function so the denominator is no longer required and the 
output is a number between 0 and 1. In (23), 𝑤 is chosen randomly and (22) is 
needed to provide contrast to words that are similar in meaning. 
 While these embeddings contain more information than the one-hot vectors 
in machine learning, they are local representations that do not take into account the 
context in which they are used within the actual document. For example, the word 
“chair” has different meanings in the phrases “office chair” and “committee chair”. 

Word embeddings are non-contextual word representations. The embedding 
for each word remains fixed. However, going forward the model architectures to be 
discussed will be limited to ones that use contextual representations where the 
same word may have more than one vector representation that changes depending 
on the context. The first of these is the RNN. 
4.2. Recurrent Neural Networks 

An RNN is a class of variable-size NNs. This makes it naturally appropriate for 
natural language processing tasks since the input, sentences and documents, are also 
variable in size. The variable size architecture is illustrated in Figure 9. The first 
sentence has three words where each word is 𝑥1,𝑖 where 𝑖 is the index of the word in 
the sentence 1. However, the second sentence only has two words so it skips the 
first layer and instead replaces it with a zero. 
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Figure 9: Variable layer count in RNN 

 
Each layer calculates: 
 

ℎ̅𝑙−1 = [ℎ𝑙−1, 𝑥𝑖,𝑡] (24) 

𝑧𝑙 = 𝑊𝑙ℎ̅𝑙−1 + 𝑏𝑙 (25) 

ℎ𝑙 = 𝜎(𝑧𝑙) (26) 

 
where ℎ is the hidden state layer, 𝑙 is the layer, 𝑥 is the input, 𝑖 is the index of the 
input, 𝑡 is the time step or word position, ℎ̅ is the concatenation of ℎ and 𝑥, 𝑊 is 
the weight matrix, 𝑏 is the bias, and 𝜎 is the activation function. 

If a different weight matrix is used at each layer, as in the DNN in Figure 7, 
then the later layers will end up being trained more often than others. To prevent 
this, the same 𝑊 and 𝑏1 is used at each layer, as shown in Figure 10. 

The input 𝑥 may start off as a one-hot vector before being transformed into a 
dense word embedding. The final output of the sequence is 𝑦̂ which is equal to 
𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑈ℎ(𝑡) + 𝑏2) with weight matrix 𝑈 and constant 𝑏2 applied to the final 
layer. In a sentiment classification task, 𝑦̂ is the sentiment. 𝑡 and 𝑙 are similar 
variables but at 𝑡 = 0 the sentence may not start processing at 𝑙 = 0 if it is not a 
maximum length sequence. 
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Figure 10: Simplified RNN 

 
RNNs are very deep networks which causes problems during backpropagation 

where the gradient from each layer is multiplied by one another. Multiplying many 
gradients together will either lead to a very large number if most numbers are 
greater than 1 and 0 if most numbers are less than 1. This is known as the exploding 
gradient and vanishing gradient problems, respectively. In a vanishing gradient, the 
gradient signal from later layers diminishes rapidly as it approaches earlier ones [31]. 
4.3. Long Short-Term Memory 

LSTM, a variant of RNN, preserves memory by using a cell state 𝑐(𝑡)to store 
long-term information, thereby remedying the gradient problem. Three gates are 
used to select and discard certain information as follows at each time step 𝑡:  

 
𝑓(𝑡) = 𝜎(𝑊𝑓ℎ

(𝑡−1) + 𝑈𝑓𝑥
(𝑡) + 𝑏𝑓) (27) 

𝑖(𝑡) = 𝜎(𝑊𝑖ℎ
(𝑡−1) + 𝑈𝑖𝑥

(𝑡) + 𝑏𝑖) (28) 

𝑜(𝑡) = 𝜎(𝑊𝑜ℎ
(𝑡−1) + 𝑈𝑜𝑥

(𝑡) + 𝑏𝑜) (29) 

𝑐̃(𝑡) = 𝑡𝑎𝑛ℎ(𝑊𝑐ℎ
(𝑡−1) + 𝑈𝑐𝑥

(𝑡) + 𝑏𝑐) (30) 

𝑐(𝑡) = 𝑓(𝑡) ∘ 𝑐(𝑡−1) + 𝑖(𝑡) ∘ 𝑐̃(𝑡) (31) 

ℎ(𝑡) = 𝑜(𝑡) ∘ 𝑡𝑎𝑛ℎ(𝑐(𝑡)) (32) 

 
where 𝑥(𝑡) is the input vector, ℎ(𝑡) is the hidden state vector, 𝑐(𝑡) is the cell state 
vector, 𝑖(𝑡) is the input gate vector, 𝑓(𝑡)is the forget gate vector,  𝑐̃(𝑡) is the new cell 
content vector, 𝑜(𝑡) is the output gate vector, 𝑏 is a constant, 𝑊 and 𝑈 are weight 
matrices, 𝑡𝑎𝑛ℎ is the hyperbolic tangent function, and 𝜎 is the sigmoid function. 
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 Figure 11 shows a diagram of an LSTM cell where 𝑐(𝑡) is known as the “long 
term” memory and ℎ(𝑡) is known as the “short term” memory since the former has 
small changes between steps while the latter changes frequently. The forget gate 
𝑓(𝑡) has a range between 0 and 1 where 0 would represent forgetting the previous 
value and the new value would only use the current input. The circle marked 
“𝑊,𝑈, 𝑏” includes the various weights. 
 

 
Figure 11: LSTM Cell 
 

4.3.1. Bidirectional LSTM RNN 
 The BiLSTM has two LSTMs. The forward LSTM processes left-to-right while 
the backward LSTM processes right-to-left. The two opposite directions create 
different, complementary contextual representations that can lead to better 
predictions. Figure 12 shows an example. The final representation vector or hidden 
state concatenates the output of the forward and backward LSTMs. 
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Figure 12: Bidirectional LSTM 

 
The formulas for the BiLSTM are: 
 

ℎ⃑ (𝑡) = 𝐿𝑆𝑇𝑀𝐹𝑊(ℎ⃑ (𝑡−1), 𝑥(𝑡)) (33) 

ℎ⃑⃐(𝑡) = 𝐿𝑆𝑇𝑀𝐵𝑊(ℎ⃑⃐(𝑡+1), 𝑥(𝑡)) (34) 

ℎ(𝑡) = [ℎ⃑ (𝑡);  ℎ⃑⃐(𝑡)] (35) 

 
where (33) is the forward LSTM, (34) is the backward LSTM, (35) is the concatenated 
hidden states, and 𝐿𝑆𝑇𝑀 represents a computation of one step of the LSTM. 

4.3.2. Stacked LSTM RNN 
 RNNs can have many layers, as in Figure 13. The output from one layer is 
used as input for another layer. These are known as stacked layer RNNs (or LSTMs). 
This allows for greater model complexity. Sutskever et al [32] found that four layers 
significantly outperformed single layer LSTMs in their sequence-to-sequence learning 
models. 
 In the experiments a four-layer stacked BiLSTM is used. 
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Figure 13: RNNs with multiple layers 
 
4.4. Transformers 
 The recurrence mechanism in the LSTM makes parallelization difficult. 
Transformers fixed this problem using attention mechanisms. One example is in 
sequence-to-sequence (seq2seq) [32] machine translation models, where the first 
sequence is a sentence in one language to be translated to a different language in 
the second sequence. The source language is used as input for the first RNN where 
the RNN is referred to as the encoder. The output of the encoder is used as input to 
a second RNN that is referred to as the decoder which translates the input into a 
second language. Figure 14 shows an example:  
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Figure 14: Sequence to sequence model 
 
where 𝑥 is the source sentence, 𝑥𝑡 is the input word vector for 𝑥 at time step 𝑡, 𝑦 is 
the target sentence, <START> is a token indicating the start of a sentence, <EOS> is a 
token indicating the end of a sentence, and 𝑦𝑡̂ is the output of each layer in the 
decoder RNN. The neural machine translation (NMT) model calculates: 
 

𝑃(𝑦|𝑥) = 𝑃(𝑦1|𝑥)𝑃(𝑦2|𝑦1, 𝑥)𝑃(𝑦3|𝑦1, 𝑦2, 𝑥) …𝑃(𝑦𝑇|𝑦1, … , 𝑦𝑇−1, 𝑥) (36) 

  
The task of the NMT is to predict the next word given the previous words, 

which is known as the neural language model. One problem with this architecture is 
that the decoder only has access to the information from the final layer and cannot 
access previous layer outputs of the encoder. This problem is also known as the 
bottleneck problem. 

4.4.1. Model architecture 
The Transformer takes the encoder and decoder RNNs and replaces it with a 

series of encoder and decoder modules. Attention mechanisms replace the recurrent 
mechanisms, allowing for greater parallelization. 
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Attention as a mechanism simply takes a weighted sum of the encoder 
hidden states of the input word vectors to use when decoding. The weights depend 
on the query. In other words, the decoder has access to every hidden state in the 
original input sequence, rather than simply the final hidden state. 

A simple seq2seq model on the other hand cannot choose selectively which 
word vectors to weight since it cannot go back to the refer to the original input as it 
is processing. Thus, the attention mechanism solves the bottleneck problem. Several 
variations of attention exist. The Transformer uses self-attention, also more 
descriptively referred to as scaled dot product attention, which will be described 
later. 

4.4.2. Encoder Stack 
Each encoder layer is made up of two sub-layers which are the self-attention 

layer followed by a feed-forward network. A residual connection [33] is also used for 
each of the two sub-layers, and then goes to a layer normalization [34]. The outputs 
of each of these sub-layers as well as the embedding layer at the start have the 
same dimension output of 𝑑𝑚𝑜𝑑𝑒𝑙 = 512. One encoder layer can be seen in Figure 
15. Encoder layers are repeated six times. 

 

 
Figure 15: Encoder architecture 
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4.4.2.1 Residual connection 

 In a typical NN, the input 𝑥 gets transformed into 𝐹(𝑥) in one layer, whose 
output is then used as an input for the next layer. A residual connection is shown in 
Figure 16. Here the output to the feed-forward network layer is 𝐹(𝑥) which is then 
added to the original input 𝑥 to get 𝐻(𝑥) = 𝐹(𝑥) + 𝑥. 𝐻(𝑥) is used as input for the 
next layer. Intuitively, the reason for this is to not lose any information. Rather than 
using an entirely new input, the layer uses the previous input as well as a new input. 
 

 
Figure 16: Residual connection 
 
 A residual connection, also known as a skip connection, can make deeper 
networks easier to train [33]. In a typical network, in order to back propagate, the 
derivative of many functions must be calculated and multiplied together due to the 
chain rule. This leads to either 0 if all the derivatives are small or infinity if they are 
all large. However, if they are close to 1, then they are less likely to converge to 
these two extremes. In a typical network, the Jacobian of a layer is 𝑑𝐻

𝑑𝑥
. In a residual 

connection, the Jacobian is 𝑑𝐻

𝑑𝑥
=

𝑑𝐹

𝑑𝑥
+ 𝐼 where 𝐼 is the identity matrix. Thus, if the 

value of 𝑑𝐹

𝑑𝑥
 is small, the Jacobian will be close to 1, leading to more usable value 

when applying the chain rule to these values. 
4.4.2.2. Layer Normalization 

 Typical normalization standardizes the inputs by computing a new 
standardized mean and standard deviation for each dimension of the input vectors. 
Batch normalization does this for the layer inputs before activations (the summed 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 30 

inputs to each hidden unit) on each training mini-batch [35]. However, in an RNN the 
sequences have different lengths so batches can vary in size depending on the 
length of the sentences. 
 Rather than calculating based on a mini-batch, layer normalization calculates 
the new standardized numbers by including all of the hidden layers on a single 
training data point, thereby making it more applicable for RNN models [34]. The 
calculations are: 
 

𝜇 =
1

𝑑
∑𝑎𝑗

𝑑

j=1

(37) 

𝜎 = √
1

𝑑
∑(𝑎𝑗 − 𝜇)2

𝑑

𝑗=1

 (38) 

𝑎̅ =
𝑎 − 𝜇

𝜎
𝛾 + 𝛽 (39) 

 
where 𝜇 is the mean, 𝑗 is the index for each dimension of 𝑎, 𝜎 is the standard 
deviation, 𝑎 is the activation vector, 𝑑 is the dimension, 𝑎̅ is the transformed 
activation, 𝛾 is a learned scale, and 𝛽 is the bias. Using these formulas, there are no 
dependencies between training cases, so information does not have to be shared 
across the batch.  
 Layer normalization is applied in a Transformer as follows: 
 

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥 + 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑥)) (40) 

 
where 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 is the function, 𝑥 is the input, and 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟 is either the 
attention layer or the feed-forward network layer. 

4.4.3. Scaled dot-product attention 
The self-attention layer operation is also known as scaled dot-product 

attention. An illustration can be seen in Figure 17. 
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Figure 17: Simplified self-attention operation 

Attention represents the weight assigned to each word in the sequence. The 
formula for it is:  

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

)𝑉 (41) 

 
where multiple queries are combined in a single matrix Q. The K and V matrices also 
represent multiple keys and values. The queries and keys have dimension 𝑑𝑘 and 
the values have dimension 𝑑𝑣. 

The variables in Figure 17 are calculated as follows: 
 

ℎ𝑡 = 𝜎(𝑊𝑥𝑡 + 𝑏) (42) 

𝑞𝑡 = 𝑞(ℎ𝑡) (43) 

𝑘𝑡 = 𝑘(ℎ𝑡) (44) 

𝑣𝑡 = v(ℎ𝑡) (45) 
𝑒𝑙,𝑡 = ql ∙ 𝑘𝑡  (46) 

𝛼𝑙,𝑡 = 𝑒𝑥𝑝(𝑒𝑙,𝑡)/(∑exp(𝑒𝑙,𝑡′)

𝑡′

(47) 

𝑎𝑙 = ∑𝛼𝑙,𝑡

𝑡

𝑣𝑡 (48) 
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where ℎ𝑡 is the hidden state for word 𝑥𝑡 which uses weight matrix W, activation 
function 𝜎, and bias b, to output a key vector 𝑘𝑡, a query vector 𝑞𝑡, and a value 
vector 𝑣𝑡 at time step (position) 𝑡 in the sentence. 

𝑘𝑡, 𝑞𝑡, and 𝑣𝑡 are linear functions of ℎ𝑡 while ℎ𝑡 is a non-linear function of 𝑥𝑡. 
When using a seq2seq model, the queries are derived from the decoder while the 
keys are derived from the encoder, but in Self-Attention, 𝑘, 𝑞 and 𝑣 are generated 
from the same input. In Figure 17, word 𝑥2 conducts a query 𝑞2 to find the “who”, 
or subject, of a sentence. 𝑞2 finds a key 𝑘𝑡 that is most similar to itself by executing 
a dot product operation with each 𝑘𝑡. The sums of these dot product operations are 
converted to a probability measure through the softmax operation and multiplied by 
the respective values 𝑣𝑡 to arrive at an attention output 𝑎2. The softmax operation is 
used in (47) rather than 𝑎𝑟𝑔𝑚𝑎𝑥 since it is differentiable which is needed during 
backpropagation. 

The multiple keys, queries, and value vectors from different time steps are 
combined into single matrices. By combining multiple calculations into a single 
matrix, there is a single multiplication per layer which leads to efficiency on the 
Tensor Processing Unit (TPU). The batch size is based on number of words and not 
limited to the number of sequences.  

In the Transformer, since the operation is a single multiplication per layer, it 
can process 3 sentences of 4 words each in a single batch size of 12, where each row 
represents a different sentence and each column a different word. In the LSTM, only 
one word at a time can be processed. Thus, for 3 sentences, the batch size is limited 
to 3. TPUs can process large matrix multiplications which the Transformer can take 
advantage of. 

The attention output 𝑎2 in Figure 17 is an example of a contextualized 
representation of input 𝑥2. In a word2vec embedding, each word has only one 
representation vector. However, in many instances a word can have more than one 
meaning. To give an instance, the word “bank” may be used to either represent a 
place to store money or a geographic entity. A contextualized representation outputs 
a different word vector depending on the words surrounding it, so the single word 
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“bank” can have multiple word vectors which allows for more accurate 
interpretations of the meanings of the sentences in which it is used. More accurate 
interpretations allow for better sentiment classifications. 

4.4.4. Multi-head attention 
The equation for multi-head attention is: 
 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊
𝑂 (49) 

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) (50) 

 
where 𝑊𝑖

𝑄 is the query weight matrix for attention head 𝑖, 𝑊𝑖
𝐾 is the key weight 

matrix, 𝑊𝑖
𝑉 is the value weight matrix, and 𝑊𝑂 is the output weight matrix. 𝑄,𝐾 and 

𝑉 represent the query, key, and value matrices. 
 An illustration of multi-head attention appears in Figure 18. Each row is made 
up of a different attention head. The queries, keys, and values are not the result of 
functions provided by the model but rather learned functions. Each attention head 
focuses on a different representation subspace. In the illustration, the subspaces 
focus on the “who”, “did what”, and “to whom” aspects of the sentence. The 
output of each layer is concatenated in a final 𝑎2 attention output. The utilization of 
multiple dedicated attention head outputs should create a better representation 
than the output of a single attention head that averages the different aspects. 

 
Figure 18: Multi-head attention 
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The functions for computing multi-head attention are: 
 

𝑒𝑙,𝑡,𝑖 = 𝑞𝑙,𝑖 ∙ 𝑘𝑙,𝑖 (51) 

𝛼𝑙,𝑡,𝑖 =
exp(𝑒𝑙,𝑡,𝑖)

∑ exp(𝑒𝑙,𝑡′,𝑖) 𝑡′

 (52) 

𝑎𝑙,𝑖 = ∑𝛼𝑙,𝑡,𝑖𝑣𝑡,𝑖

𝑡

(53) 

 
where 𝑒 is the attention score, 𝑙 is the position where the position is being 
computed, 𝑡 is the time step (the position for the values), 𝑖 is the attention head 
index, 𝛼 is the attention weight, 𝑣 is the value vector, 𝑞 is the query vector, and 𝑎 is 
the attention. 

4.4.5. Feed-forward network 
 The key, query, values, and attentions are linear functions. This can be seen 
in: 
 

𝑎𝑙 = ∑𝛼𝑙,𝑡𝑣𝑡 = ∑𝛼𝑙,𝑡𝑊𝑣ℎ𝑡 = 𝑊𝑣 ∑𝛼𝑙,𝑡ℎ𝑡

𝑡𝑡𝑡

(54) 

 
where each subsequent self-attention layer is a linear transformation of the previous 
self-attention layer (not including the non-linear weights). The purely linear 
transformations limit the types of functions that can be approximated. 
 The other sub-layer in the encoder in addition to the attention layer is a fully 
connected feed-forward network for each position in the sequence. It is a simple 
network with the function given in (55) where the 𝑅𝑒𝐿𝑈(𝑥):= max (0, 𝑥), 𝑥 is the 
input, 𝑊𝑖 are the weight matrices, and 𝑏𝑖 are the biases. 
 

𝐹𝐹𝑁(𝑥) = max(0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (55) 

 
Within the layer, the same parameters are used for each position of the 

sentence but are different from layer to layer. The feed-forward network adds more 
expressiveness to the representations. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 35 

4.4.6. Positional encoding 
As the Transformer does not use recurrence to process information as the 

LSTM does, positional information is not included in the encoding, which can be 
important to the meaning of a sentence. For example, “The condo is horribly good” 
has a positive sentiment while “The ‘good’ condo is horrible” has a negative 
sentiment, despite using nearly the same words, due to the relative position of the 
words. The position embedding is added to the input word embedding early in the 
Transformer before the encoder stack. 

A naïve position embedding could simply concatenate the absolute position 
with the word embedding. However, relative position is better. For example, in the 
sentences “I went to campus every Monday” and “Every Monday I went to 
campus”, the position of “to campus” coming after “I went” is more important than 
the absolute position of “to campus” in the sentence. 

Therefore, a relative position encoding is added to the original word 
embedding. The positional encodings have a dimension size of 𝑑𝑚𝑜𝑑𝑒𝑙 so they can 
be summed with the word embeddings. Sine and cosine functions with varying 
frequencies are used:  

 

𝑝(𝑡,2𝑖) = sin(
𝑡

10000
2𝑖
𝑑

) (56) 

𝑝(𝑡,2𝑖+1) = cos (
𝑡

10000
2𝑖
𝑑

) (57) 

 
where 𝑡 is the position of the word, 𝑖 the index of the dimension of the position 
vector 𝑝𝑡, 𝑑 the size of the word vector, and 10,000 an arbitrary constant which can 
be made smaller if 𝑑 is smaller than the 512 used in the original paper. The position 
encoding vector 𝑝𝑡 alternates between using a sine and cosine function.  

Figure 19 illustrates the construction of a position embedding. The curves are 
sine waves for different values of 𝑖 using 𝑑 = 128. The 𝑦 axis is the value of the sine 
curve and the 𝑥 axis is the word index in the sequence. The sine wave is only used 
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for the even-numbered dimensions of the position embedding while a cosine one is 
used for the odd-numbered ones. 

 

 
Figure 19: Position embeddings 

 
Let 𝑝𝑡,𝑖 represent the position embedding vector dimension index where 𝑡 is 

the word index and 𝑖 is the dimension of the vector. For the word at position 0, 𝑝0,0, 
𝑝0,2 and 𝑝0,4 all have values of 0. For the word at position 8, 𝑝8,0, 𝑝8,2 and 𝑝8,4 have 
values of 0.99, -0.28, and -0.98.  

4.4.7. Masked Attention in Decoder Stack 
Once the encoder layers process their inputs, the outputs are used as input for 

the decoder stack. This thesis will use a pre-trained model for machine translation to 
compute the initial word embeddings so it can be helpful to understand the basic 
mechanics. Additionally, it will serve as relevant background to the development of 
the BERT model. 

For the decoder, self-attention is modified to turn it into masked attention. 
Since the decoder must predict the next word in a sentence using only the previous 
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words, the words following the target word must be omitted from the calculation. 
Thus, the attention score 𝑒 for layer 𝑙 at time step 𝑡 is calculated from query vector 
𝑞 and key vector 𝑘 as follows: 

 

𝑒𝑙,𝑡 = {
𝑞𝑙 ∙ 𝑘𝑡  𝑖𝑓 𝑙 ≥ 𝑡
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(58) 

 
However, since the primary task is sentiment classification, a decoder is not 

required. Thus, a variant of the Transformer was used, the BERT, whose architecture 
allows it to be used in a wider range of tasks. 
4.5. Bidirectional Encoder Representations from Transformers 

BERT extends the Transformer architecture to tasks other than language 
modeling [36]. The language modeling task is used to create a pre-trained model 
whose word representations can then be used for further processing for tasks such as 
sentiment classification. 

4.5.1. Pre-trained language model 
Natural language modeling is a task to predict the next word in a sentence, 

given the previous words. Mathematically, this probability is: 
 

𝑃(𝑦𝑡|𝑦1, … , 𝑦𝑡−1) (59) 

 
where 𝑦 is a word and 𝑡 is the position in the sentence. The language model is a 
system to generate the probability distribution in (59). 

BERT uses a pre-trained language model, which means it was trained on a 
corpus different from the one that will actually be tested. Using a pre-trained model 
is also known as transfer learning, where the learned representations from one 
model can be transferred, or used as input, to another. 

Transfer learning is especially useful for a small corpus that has a model which 
has relatively many parameters. For example, our corpus has a few thousand texts as 
compared to Wikipedia which for English has around 2.5B words. For smaller models, 
in terms of number of parameters, such as LSTM, it may not be necessary to use a 
pre-trained model. 
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4.5.2. Masked language modeling 
In typical language modeling, only the previous words in a sentence are used 

to predict the next word, as in (59). This is also the mechanism used for masked 
attention in the Transformer. However, BERT does something different it refers to as 
masked language modeling (MLM). 

An illustration of BERT appears in Figure 20. The input starts at the left. An 
extra token [CLS] is added to the beginning, known as the classification token. One or 
more words is replaced with a [MASK] token to identify which words will be 
predicted during the language modeling task. The [SEP] token separates sentences. 

 

 
Figure 20: BERT model 

 
The Transformer encoder stack executes the language modeling task. The 

Transformer’s masked attention model predicts the following word to the right, given 
the previous words on the left, or uni-directionally. However, BERT’s approach is to 
randomly mask a certain percentage of the words, typically 15%, and predicts these 
words. BERT refers to this as a bidirectional approach, although it could also be 
called non-directional. The output is a set of contextual representations of the 
words. 

4.5.3. Task specific module 
Several task-specific modules exist. This flexibility is one of the reasons why 

BERT is popular. BERT is pre-trained as a language model first in the encoder stack, as 
seen in Figure 20. Each encoder module outputs a different representation of the 
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sequence. Each of these layer outputs can be used as an input into the task specific 
module in different ways including first layer only (the embedding), last layer only, 
sum all of the layers, sum certain layers, or concatenate certain layers.  

The output from the language model is then used as input for the task-specific 
module. For the sentiment classification task, it can be a simple feedforward network 
that predicts the [CLS] token. 

4.5.4. Fine tuning 
 Rather than simply tuning the task-specific module parameters, the 
parameters of the entire model are adjusted. Thus, if the pre-trained language model 
had 200M parameters and the classification head had 200k parameters, the fine-
tuning could adjust 200.2M parameters, although the actual fine tuning would only 
impact the relevant parameters and thus possibly number only slightly above 200k. 

4.5.5. Segment embeddings 
In addition to position embeddings, BERT also has segment embeddings as 

seen in Figure 21. A segment (or type) embedding can detect the “type” of word. For 
example, in a web search, one segment could be the URL and another could be the 
query. Segment embeddings are learned. In the example in Figure 21, the segment 
embeddings represent two different sentences.  

 

 
Figure 21: Embeddings 

 
BERT is expected to outperform both the machine learning models and 

BiLSTM due to its better contextual representations due to the various architecture 
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improvements including the multi-head self-attention mechanism and masked 
language modeling. 

Sentences in the figurative language classification class in particular can be 
considered a good test of the contextual representations. In this category the Thai 
word for certain animals or animals in general can be either treated literally or 
figuratively depending on the surrounding contextual words. For example, the 

appearance of the word “ไอ”้ in a sentence connotes the animal words as being 
figurative and abusive.  
4.6. DistilBERT 
 While a larger BERT model such as RoBERTa [37] could have been used in 
order to obtain higher accuracy levels, it would require the use of large 
computational resources and thus may process information with large latencies. 
However, in highly regulated countries where website owners can be liable for the 
abusive speech of users, real time detection with low latency is a priority. 
Additionally with social networks serving many users simultaneously, the amount of 
computation that can be used is a constraint. 
 Hence DistilBERT, a compressed version of BERT, was chosen over other 
variations of BERT. On a General Language Understanding Evaluation (GLUE) 
sentiment analysis task, DistilBERT finished 60% faster than BERT while scoring 97% of 
BERT’s performance on the GLUE benchmark despite using 40% less parameters [6]. 
DistilBERT reduced the number of layers used by half. It also removed the token-
type embeddings and the pooler. 

4.6.1. Teacher-Student Training 
 Distillation is one method of model compression [38] [39]. The idea can be 
seen in Figure 22. The Teacher is the full model trained to optimize for maximum 
accuracy, training on the actual dataset and labels. The Student is a smaller model, 
possibly 50x smaller, that instead of training on the original dataset, trains on the 
labels predicted by the Teacher, also known as pseudo-label data. 
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Figure 22: Distillation 
  

In theory the Teacher builds a simpler function approximation of the actual 
generating function, and thus can be represented using a simpler, more compact 
model. Language modeling may be considered the “ultimate” NLP task since it can 
be used in other tasks. In the process of language modeling it learns many latent 
features. The specific task then only emphasizes the latent features relevant for its 
own objective, so it is only learning a subset of the original features. The alternative 
would be to simply skip the Teacher step and just use a smaller model but this was 
shown to have worse results [40]. 

4.6.2. Distillation 
 One naïve solution is to simply use the labels of the Teacher model as the 
true labels and have the Student maximize the log probability of predicting these 
labels. However, this leaves out the important information of the relative 
probabilities of the wrong answers. For example, the word “dog” is more similar to 
“cow” than it is to “car”. This information could be useful in the classification of 
sentences. 
 One solution to retaining the information contained in the probability 
distribution while compressing the model was introduced in 2006 [38]. In the softmax 
formula, the output of the final layer is 𝑧𝑖(𝑥), also known as the logit or model 
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score, where 𝑖 is the class from all classes 𝑗 of input 𝑥. The logit is then converted 
into a probability 𝑝. 
 

𝑝𝑖(𝑥) =
exp(𝑧𝑖(𝑥))

∑ exp(𝑧𝑖(𝑥))𝑗

(60) 

 
 Rather than pass parameter 𝑝 to the Student model, the predecessor logits 𝑧 
are transferred instead. The objective function is then set to minimize the squared 
difference between the logits of the Teacher and the Student. 
 Distillation is a refinement of the preceding model compression method that 
was introduced by Hinton in 2015 [39]. One weakness of the softmax function is that 
the exponential function produces extreme probabilities where small probabilities 
are transformed into being close to zero, making similarities more difficult to detect. 
Distillation remedies this by modifying the softmax with an additional 
hyperparameter referred to as “temperature” 𝑇 in the formula below to create a 
smoother probability distribution. This function is referred to as the softmax-
temperature. 
 

𝑝𝑖(𝑥) =
exp (

𝑧𝑖(𝑥)
𝑇

)

∑ exp (
𝑧𝑖(𝑥)

𝑇
)𝑗

(61) 

  
The same softmax temperature parameter value is used in both the Teacher 

and Student models for training. During inference the temperature is reset to 1. 
 Cross entropy is often used as a measure of the difference between two 
probability distributions. In distillation, the cross-entropy training loss used by the 
Student is: 
 

𝐿𝑐𝑒 = ∑𝑡𝑖 ∙ log(𝑠𝑖)

𝑖

(62) 
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where 𝑡𝑖 is the Teacher’s probability estimation for the target label and 𝑠𝑖 is the 
Student’s probability estimation of sample 𝑖. 
 In the equation below, 𝐿𝑚𝑙𝑚 is the typical cross entropy loss function used as 
an objective function in the masked language modeling task where the identity of 
the masked words is predicted given the other words in the sentence. The variable 𝑝 
refers to the actual probability distribution and 𝑞 the estimated distribution of 
sample 𝑖. 
 

𝐿𝑚𝑙𝑚 = −∑ 𝑝i log2 𝑞𝑖
𝑖

(63) 

 
 These two loss functions, 𝐿𝑐𝑒 and 𝐿𝑚𝑙𝑚, are combined linearly to be used as 
the final objective function. To ensure correct alignment between the Teacher and 
Student hidden state vectors, a cosine embedding loss is also used, calculated as 
follows: 
 

𝐿𝑐𝑜𝑠 (𝑥, 𝑦) = {
1 − cos (𝑥𝑡, 𝑥𝑠), 𝑦 = 1

max (0, cos(𝑥𝑡, 𝑥𝑠) − margin), 𝑦 = −1
(64) 

 
where 𝑥 is the hidden state vector of the Student 𝑠 or Teacher 𝑡, 𝑦 is a tensor label 
containing 1 or -1, and margin is a number from -1 to 1.   
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Chapter 5. Experiments and Results 
Regulations for social media content differ from country to country. To 

account for this, two scenarios are envisioned. In a strict scenario, all abusive content 
is regulated and for this a binomial model is developed. In a less strict scenario, only 
certain types of abusive content are regulated and for this a multinomial model is 
developed. 
5.1. Dataset 

In order to replicate the methodology of [7], abusive comments were 
collected from Facebook public pages. The data were manually retrieved as 
automated scraping is no longer permitted. The same five classes as [7] were used: 
Figurative, Rude, Dirty, Offensive, and Non-Abusive. Rude texts will contain at least 

one rude word including มึง or กู. No hostile intent is required. Figurative text is 
defined as metaphorical and departing in meaning from the literal sense. Examples 

of figurative words include ควาย and สัตว ์which can have abusive meanings 
depending on how they are used. Context can be used to discern the intention of 
the sentence. Offensive texts are intended to attack, annoy, or harass an individual 
or group of people. Sarcasm is included in this category. Harsh language is not 
required. Dirty texts have sexual undertones and typically have explicit sexual 
wording. If none of these categories apply, the text is labeled Non-Abusive.  

A new dataset was created since no public dataset of this type exists. Since 
the categories can be difficult to interpret, undergraduate linguistic major students 
from Chulalongkorn university were hired. Offensive public Facebook pages were 
chosen as the data source and comments from 2018 to 2021 were collected. The 
initial labels were verified by a second student and if there was a disagreement, the 
researcher would decide the final labels. Neutral sentiment texts from the Wisesight 
Sentiment dataset [41], which also has Facebook comments as its sources, were 
used for the Non-Abusive texts. Tokenization, the process of dividing the sentences 
into individual words, was accomplished using PyThaiNLP [42] 

A total of 6,770 texts in the Abusive category were gathered and 14,561 Non-
Abusive texts were used. Within the Abusive category there were 5,617 Rude; 2,661 
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Figurative; 1,565 Dirty; and 1,224 Offensive comments, and each of these comments 
can have multiple labels. The range of the length of the texts was wide, ranging from 
one to 556 words. The dataset was unbalanced but oversampling and undersampling 
methods did not improve results. 
5.2. Performance Measurement 
 Several performance measurements were available. The most obvious one to 
use may be accuracy. The formula is: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
(65) 

 
where TP is True Positive, FP is False Positive, TN is True Negative, and FN is False 
Negative. The categories can be more easily seen in the table below: 
 
Table 2: Confusion Matrix 

  Actual values 

  Positive Negative 
Predicted 
Values 

Positive True 
Positive 

False 
Positive 

Negative False 
Negative 

True 
Negative 

  
A Positive result is a text classified as Abusive or in one of the Abusive sub-

categories. However, in the case of unbalanced data, it could be a misleading 
statistic. For example, if 99.9% of the text on social media is not abusive and the 
model simply guessed all Negative, it would have a high accuracy statistic but would 
not detect any actual abusive text. To get better granularity and to account for 
unbalanced data, Precision and Recall are better statistics. Precision, also known as 
positive predictive value, measures the proportion of correct positive predictions to 
total positive predictions, as seen in the equation: 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(66) 

 
 Recall, also known as sensitivity, measures the correct positive predictions as 
a proportion of the number of samples that should have been marked positive, 
calculated as: 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(67) 

 
 Since both Precision and Recall are both desirable yet measure different 
aspects, the harmonic mean of these two statistics, known as F1, is often used: 
 

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
(68) 

 
 Precision is more desired than recall when the cost of false positives is high, 
such as in the detection of cancer which would cause unnecessary stress to a 
misdiagnosed patient. Recall is more appropriate when the cost of false negatives is 
high, such as in the detection of illegal content on a social media site. Hence greater 
importance is placed on Recall. 
5.3. Binomial model 

Scikit-learn [43] software libraries were used for the traditional machine 
learning models. Feature extraction was done using the count vectorizer which 
transforms each sentence into a vector of word counts. MNB and BNB are used in 
both the multinomial and binomial models since the difference in the two methods 
is that MNB uses frequency counts of each feature while BNB uses a Boolean for 
each feature. The deep learning models used PyTorch [44] for implementation.  

The experiments were run on Google Colab using an Nvidia Tesla P100 16GB 
GPU, Intel 2-core Xeon CPU at 2.00GHz, and 27GB of RAM.  

The major parameter settings are listed in Table 3. A Gaussian Error Linear 
Unit (GELU) [45] was used for the activation for DistilBERT. The dataset is divided into 
training, validation, and test sets to prevent overfitting in the deep learning models. 
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Table 3: Binomial model parameter settings 

Classifier Parameter setting 
SVM Loss: Hinge (linear SVM) 

MNB Smoothing prior alpha: 1.0  
(Laplace smoothing) 

BNB Smoothing prior alpha: 1.0 

kNN Number of neighbors: 5 
Weight function: Uniform  

RF Number of trees: 100 
Splitting criterion: Gini impurity 

DT Algorithm: CART 
Splitting criterion: Gini impurity 

BiLSTM Train Batch size: 64 
Test Batch size: 64 
Learning rate: 5e-4 
Embedding dimension: 50 
Hidden state dimension: 64 
Number of stacked recurrent layers: 4 
Epochs: 5 
Dropout: 30% 
Maximum length of input: 80 
Optimizer: Adam 
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Table 3 (continued) 

Classifier Parameter setting 
DistilBERT Train Batch size: 32 

Test Batch size: 64 
Learning rate: 5e-5 
Epochs: 1 
Maximum length of input: 80 
Positional embeddings: False 
Number of hidden layers in Transformer encoder: 6 
Number of attention heads for each attention layer: 12 
Dimension of encoder layers and pooler layer: 768 
Hidden layer dimension: 3072 
Dropout in fully connected layers in the encoder, 
embeddings, and pooler: 10% 
Dropout for attention probabilities: 10% 
Dropout for sequential classification model: 20% 
Activation: GeLU 
Pretrained Model: “distilbert-base-multilingual-cased” 
Optimizer: Adam 

 
On F1 score, the DistilBERT performed best at 0.8510 while the BiLSTM was 

next at 0.8403, as seen in Table 4. The two deep learning models beat all of the 
machine learning models as predicted, with the best one being SVM at 0.7452. 
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Table 4: Binomial Model Results 

Classifier F1 Precision Recall Accuracy 

BiLSTM 0.8403 0.8761 0.8074 0.9040 
BNB 0.6232 0.4690 0.9282 0.6488 

DistilBERT 0.8510 0.8336 0.8690 0.9048 

DT 0.6477 0.6483 0.6471 0.7798 
kNN 0.4901 0.7271 0.3696 0.7594 

MNB 0.7029 0.6022 0.8439 0.7768 

RF 0.7236 0.8344 0.6388 0.8473 
SVM 0.7452 0.8098 0.6902 0.8524 

 
For precision BiLSTM performed the best while in recall DistilBERT did best. 

Both had similar accuracy scores. Since abusive language detection could be 
regulated by the government, the cost of an abusive false negative is likely greater 
than that of a false positive, thereby making recall the most important statistic for 
this task. BNB performed the best of all the models in recall at 0.9282 but at the 
cost of being the worst in precision at 0.4690 since it made the most positive 
predictions. 
5.4. Multinomial model 
 Five categories will be classified by the multinomial model. While [7] also had 
five labels, only a binomial classifier was developed. Since a single text can have 
multiple labels, a prediction was considered correct if it was in the set of correct 
labels. 

The major parameter setting changes from the binomial model are listed in 
Table 5.  
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Table 5: Multinomial model parameter changes 

Classifier Parameter setting 

BiLSTM Epochs: 2 
DistilBERT Epochs: 2 

Learning rate: 5e-5 
Dropout in fully connected layers in the encoder, 
embeddings, and pooler: 20% 
Dropout for attention probabilities: 20% 
Dropout for sequential classification model: 40% 

  
Testing the same models as in the binomial classification task, the DistilBERT 

again performed best on F1 score at 0.9067 and BiLSTM was second with 0.8969, as 
seen in Table 6. The deep learning models outperformed the machine learning 
models with the closest one being SVM at 0.8090. 

 
Table 6: Multinomial Model Results 

Classifier F1 Precision Recall Accuracy 
BiLSTM 0.8969 0.9039 0.8900 0.8862 

BNB 0.7092 0.7151 0.7034 0.6628 

DistilBERT 0.9067 0.9128 0.9006 0.8965 
DT 0.7383 0.7606 0.7174 0.7283 

kNN 0.7163 0.7529 0.6830 0.7304 

MNB 0.7786 0.7897 0.7679 0.7539 
RF 0.7953 0.8240 0.7685 0.8026 

SVM 0.8090 0.8339 0.7855 0.8112 
  

Since the figurative class is the one most likely to contain texts with words 
that have more than a single meaning, it can better highlight the difference in the 
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effectiveness of different contextual representations between models. DistilBERT 
performed significantly better at 81.83% recall as seen in Table 7.  
 
Table 7: Figurative Recall in Multinomial Model 

Classifier BiLSTM BNB DistilBERT DT 

Recall % 67.95 70.01 81.83 64.11 
     

Classifier kNN MNB RF SVM 

Recall % 42.39 70.75 56.13 61.45 
 
 The maximum recall rates for Rude, Figurative, Offensive, and Dirty was 91%, 
82%, 72% and 87%, respectively. The Offensive category was the most difficult to 
predict potentially due to comprising only 18% of the total Abusive category while 
having a large set of possibly affiliated words in its category. 
 The BiLSTM did not use a pre-trained model as in [12] as the results did not 
improve in that study and is not considered fundamental to that particular 
architecture as the pre-trained model cannot be fine-tuned. DistilBERT used 
significantly more parameters with 135M compared to BiLSTM only using 1.7M. When 
positional encoding was tested, in some cases it improved performance and in others 
made it worse and therefore was not used. 
5.5. Discussion 
 For both the binomial and multinomial models, DistilBERT performed best. 
While parallelization is often cited as the reason to use the Transformer architecture, 
it is unlikely to be the reason for the consistent outperformance. Rather the multi-
head self-attention mechanism appeared to be the biggest contributor. 
 One weakness with traditional learning models is the absence of contextual 
representations since one-hot vectors are used. BiLSTM is an improvement in that it 
does offer contextual representations. However, it has a locality bias. The nearby 
words will be weighted heavier than the ones that are further away. 
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 Due to the complete reliance on self-attention mechanisms and foregoing 
any recurrence mechanism, DistilBERT can assign any weight to any other word in the 
sentence without any distance restriction. 
 In addition to being limited by distance, the LSTM contextual representations 
are also limited by the position of the words. For example, in a uni-directional LSTM, 
only the context words left of the target word are used for encoding. By adding a 
backwards LSTM and stacking multiple LSTMs, the BiLSTM can overcome this 
limitation somewhat. However, when encoding, the target word can “see itself” [36], 
as seen in Figure 23. When predicting and encoding the word “tastes” using a simple 
backward LSTM, the only input is the word “delicious”. When using the stacked 
BiLSTM, the input also includes the forward LSTM representation of “tastes” and 
thus the target word can “see itself”. 
 

 
Figure 23: Stacked BiLSTM 
 Rather than the uni-directional approach, DistilBERT uses the MLM to 
randomly select words to predict. This non-directional approach has more degrees of 
freedom. 
 To highlight the effectiveness of the different models’ word representations, 
the Figurative class was highlighted since the type of words appearing within this 
category have a higher probability of having more than a single meaning. The 
intention and meaning of the figurative words could be inferred through better 
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contextual representations. For example, if other abusive words appeared in the 
sentence, the figurative word is likely being used as slang. The multiple attention-
head approach could lead to one of the attention heads specializing in figurative 
texts as well.  
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Chapter 6. Conclusion 
 In this thesis, we compared six traditional machine learning classifiers to two 
deep learning models. The machine learning classifiers include the SVM, MNB, BNB, 
kNN, RF, and DT and the deep learning models include variants of the RNN and 
Transformer architectures, the BiLSTM and DistilBERT. Both a binomial and 
multinomial model were developed for five categories of abusive content detection 
in social media that include Rude, Figurative, Dirty, Offensive and Non-Abusive. The 
experiments demonstrated that DistilBERT achieved the highest F1 score with 0.8510 
for the binomial model and 0.9067 for the multinomial model. BiLSTM performed 
second best with an F1 score of 0.8403 and 0.8969 for the binomial and multinomial 
models, respectively. Both deep learning models outperformed the traditional 
machine learning classifiers’ highest F1 score of 0.7452 and 0.8090 for the binomial 
and multinomial models, respectively. The deep learning architectures allow for 
better contextual representations of the words with the DistilBERT enabling better 
modeling of long-range dependencies between words. 
 For future work, a larger variant of BERT such as RoBERTa can be used. 
However, we believe a compressed model such as DistilBERT remains a better choice 
for real-time applications with many simultaneous users such as a social network due 
to its better speed and lower computational requirements. Also, more abusive 
classes can be included such as Bullying and Harassment, Violent Content, and 
Regulated Goods. Content from other social media platforms such as Twitter or 
YouTube can also be tested. 
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APPENDIX 
Table 8: SVM Binomial Confusion Matrix 

  Predicted class 

  Non-Abusive Abusive 

Ac
tu

al
 

cla
ss

 Non-Abusive 92.6% 7.4% 

Abusive 31.0% 69.0% 
 
Table 9: MNB Binomial Confusion Matrix 

  Predicted class 

  Non-Abusive Abusive 

Ac
tu

al
 

cla
ss

 Non-Abusive 74.6% 25.4% 
Abusive 15.6% 84.4% 

 
Table 10: BNB Binomial Confusion Matrix 

  Predicted class 

  Non-Abusive Abusive 

Ac
tu

al
 

cla
ss

 Non-Abusive 52.2% 47.8% 
Abusive 7.2% 92.8% 

 
Table 11: kNN Binomial Confusion Matrix 

  Predicted class 

  Non-Abusive Abusive 

Ac
tu

al
 

cla
ss

 Non-Abusive 93.7% 6.3% 

Abusive 63.0% 37.0% 
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Table 12: RF Binomial Confusion Matrix 

  Predicted class 

  Non-Abusive Abusive 

Ac
tu

al
 

cla
ss

 Non-Abusive 93.9% 6.1% 
Abusive 36.1% 63.9% 

 
Table 13: DT Binomial Confusion Matrix 

  Predicted class 

  Non-Abusive Abusive 

Ac
tu

al
 

cla
ss

 Non-Abusive 84.0% 16.0% 
Abusive 35.3% 64.7% 

 
Table 14: BiLSTM Binomial Confusion Matrix 

  Predicted class 

  Non-Abusive Abusive 

Ac
tu

al
 

cla
ss

 Non-Abusive 94.8% 5.2% 

Abusive 19.3% 80.7% 
 
Table 15: DistilBERT Binomial Confusion Matrix 

  Predicted class 

  Non-Abusive Abusive 

Ac
tu

al
 

cla
ss

 Non-Abusive 92.1% 7.9% 

Abusive 13.1% 86.9% 
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Table 16: SVM Multinomial Confusion Matrix 
  Predicted class 
  Rude Figurative Offensive Dirty Non-Abusive 

Ac
tu

al
 c

la
ss

 

Rude 57.1% 1.1% 2.2% 1.1% 38.5% 
Figurative 4.9% 61.5% 3.3% 1.0% 29.4% 

Offensive 9.6% 1.4% 63.9% 0.4% 24.6% 
Dirty 2.5% 0.5% 2.2% 45.8% 49.0% 

Non-Abusive 4.6% 0.6% 0.2% 0.1% 94.6% 

 
Table 17: MNB Multinomial Confusion Matrix 
  Predicted class 
  Rude Figurative Offensive Dirty Non-Abusive 

Ac
tu

al
 cl

as
s 

Rude 80.8% 0.5% 0.1% 0.2% 18.4% 
Figurative 18.8% 70.8% 0.0% 0.3% 10.2% 

Offensive 21.8% 0.4% 70.4% 0.0% 7.5% 

Dirty 8.2% 0.0% 0.0% 64.7% 27.1% 
Non-Abusive 20.9% 0.4% 0.1% 0.4% 78.2% 

 
Table 18: BNB Multinomial Confusion Matrix 
  Predicted class 
  Rude Figurative Offensive Dirty Non-Abusive 

Ac
tu

al
 c

la
ss

 

Rude 88.8% 0.0% 0.6% 0.1% 10.6% 

Figurative 23.8% 70.0% 0.6% 0.0% 5.6% 
Offensive 25.7% 0.0% 69.6% 0.0% 4.6% 

Dirty 10.2% 0.0% 0.0% 78.6% 11.2% 
Non-Abusive 36.5% 0.1% 0.8% 0.1% 62.5% 
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Table 19: kNN Multinomial Confusion Matrix 
  Predicted class 
  Rude Figurative Offensive Dirty Non-Abusive 

Ac
tu

al
 c

la
ss

 

Rude 30.3% 2.6% 0.6% 2.2% 64.3% 

Figurative 2.4% 42.4% 0.6% 1.9% 52.7% 
Offensive 3.9% 2.5% 39.6% 2.9% 51.1% 

Dirty 0.5% 1.5% 0.0% 37.1% 61.0% 

Non-Abusive 3.0% 1.6% 0.2% 2.1% 93.1% 
 

Table 20: RF Multinomial Confusion Matrix 
  Predicted class 
  Rude Figurative Offensive Dirty Non-Abusive 

Ac
tu

al
 cl

as
s 

Rude 48.4% 1.1% 0.1% 0.1% 50.2% 

Figurative 5.3% 56.1% 0.2% 0.0% 38.4% 
Offensive 8.9% 1.8% 50.7% 0.0% 38.6% 

Dirty 2.2% 0.3% 0.0% 48.0% 49.5% 

Non-Abusive 2.3% 0.8% 0.0% 0.2% 96.7% 
 
Table 21: DT Multinomial Confusion Matrix 
  Predicted class 
  Rude Figurative Offensive Dirty Non-Abusive 

Ac
tu

al
 cl

as
s 

Rude 49.9% 6.9% 2.8% 6.2% 34.3% 

Figurative 3.4% 64.1% 2.1% 5.2% 25.3% 

Offensive 4.3% 5.4% 59.3% 6.1% 25.0% 
Dirty 1.5% 4.5% 1.2% 61.4% 31.3% 

Non-Abusive 6.5% 3.6% 1.0% 5.5% 83.6% 
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Table 22: BiLSTM Multinomial Confusion Matrix 
  Predicted class 
  Rude Figurative Offensive Dirty Non-Abusive 

Ac
tu

al
 c

la
ss

 

Rude 90.5% 0.0% 0.0% 0.0% 9.5% 
Figurative 19.2% 68.0% 0.0% 0.0% 12.9% 

Offensive 24.3% 0.0% 65.7% 0.0% 10.0% 
Dirty 7.0% 0.0% 0.0% 85.1% 8.0% 

Non-Abusive 5.5% 0.0% 0.0% 0.0% 94.5% 

 
Table 23: DistilBERT Multinomial Confusion Matrix 
  Predicted class 
  Rude Figurative Offensive Dirty Non-Abusive 

Ac
tu

al
 c

la
ss

 

Rude 85.5% 2.8% 0.1% 0.1% 11.5% 
Figurative 4.0% 81.8% 0.0% 0.0% 14.2% 

Offensive 9.3% 3.2% 71.8% 0.0% 15.7% 

Dirty 4.5% 0.8% 0.0% 87.1% 7.7% 
Non-Abusive 4.3% 0.4% 0.0% 0.3% 95.1% 
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