

Classification of Abusive Thai Messages in Social Networks Using Deep Learning

Mr. Ruangsung Wanasukapunt

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science in Computer Science and Information Technology

Department of Mathematics and Computer Science
FACULTY OF SCIENCE

Chulalongkorn University
Academic Year 2021

Copyright of Chulalongkorn University

การจำแนกข้อความไทยที่ใช้ไม่เหมาะสมในเครือข่ายสังคมโดยใช้การเรียนรู้เชิงลึก

นายเรืองสรรค์ วนาสุขพันธ์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
สาขาวิชาวิทยาการคอมพิวเตอร์และเทคโนโลยีสารสนเทศ ภาควิชาคณิตศาสตร์และวิทยาการ

คอมพิวเตอร์
คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2564
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title Classification of Abusive Thai Messages in Social Networks
Using Deep Learning

By Mr. Ruangsung Wanasukapunt
Field of Study Computer Science and Information Technology
Thesis Advisor Associate Professor SUPHAKANT PHIMOLTARES, Ph.D.

Accepted by the FACULTY OF SCIENCE, Chulalongkorn University in Partial
Fulfillment of the Requirement for the Master of Science

Dean of the FACULTY OF SCIENCE

 (Professor POLKIT SANGVANICH, Ph.D.)

THESIS COMMITTEE

Chairman

 (Professor CHIDCHANOK LURSINSAP, Ph.D.)

Thesis Advisor

 (Associate Professor SUPHAKANT PHIMOLTARES, Ph.D.)

Examiner

 (Prem Junsawang, Ph.D.)

 iii

ABSTRACT (THAI) เรืองสรรค์ วนาสุขพันธ์ : การจำแนกข้อความไทยที่ใช้ไม่เหมาะสมในเครือข่ายสังคมโดย

ใช้การเรียนรู้เชิงลึก. (Classification of Abusive Thai Messages in Social
Networks Using Deep Learning) อ.ที่ปรึกษาหลัก : รศ. ดร.ศุภกานต ์พิมลธเรศ

สื่อสังคมมีการปรับปรุงแหล่งข่าวแบบดั้งเดิมโดยอนุญาตให้มีการเข้าถึงข่าวสารเพ่ิมขึ้น

อย่างไรก็ตามการยอมไม่ให้เปิดเผยชื่อในสื่อสังคมก่อให้เกิดข้อความที่ใช้ไม่เหมาะสมและมีเจตนา
ร้ายโดยปราศจากการตรวจหาหรือผลที่ตามมาจากบุคคลด้วยความตั้งใจมุ่งร้าย งานวิจัยนี้พัฒนาตัว
แบบการจำแนกแบบทวินามและอเนกนามสำหรับจำแนกข้อความบนสื่อสังคมไทยออกเป็นห้า
ประเภทสำหรับการตรวจหาเนื้อหาที่ไม่เหมาะสมในสื่อสังคม อันได้แก่ข้อความหยาบคาย ข้อความ
อุปมาอุปไมย ข้อความลามก ข้อความก้าวร้าว และข้อความท่ีใช้ได้เหมาะสม การทดลองได้แสดงให้
เห็นว่าดิสทิลเบิร์ทได้ให้คะแนนเอฟวันสูงสุดที่ 0.8510 สำหรับตัวแบบทวินามและ 0.9067 สำหรับ
ตัวแบบอเนกนาม แอลเอสทีเอ็มแบบสองทิศทางได้ให้ผลดีที่สุดเป็นอันดับสองด้วยคะแนนเอฟวัน
0.8403 และ 0.8969 สำหรับตัวแบบทวินามและอเนกนามตามลำดับ ตัวแบบการเรียนรู้เชิงลึกทั้ง
สองได้ผลที่ดีกว่าตัวแบบการเรียนรู้ของเครื่องแบบดั้งเดิมที่มีคะแนนเอฟวันสูงสุดอยู่ที่ 0.7452 และ
0.8090 สำหรับตัวแบบทวินามและอเนกนามตามลำดับ สถาปัตยกรรมการเรียนรู้เชิงลึกได้ยอมให้
การแทนเชิงบริบทของกลุ่มคำดีขึ้น โดยดิสทิลเบิร์ทได้ทำให้การสร้างตัวแบบของความเกี่ยวข้องกัน
ระหว่างกลุ่มคำในช่วงที่ยาวดีขึ้น

สาขาวิชา วิทยาการคอมพิวเตอร์และ
เทคโนโลยีสารสนเทศ

ลายมือชื่อนิสิต ..

ปีการศึกษา 2564 ลายมือชื่อ อ.ที่ปรึกษาหลัก

 iv

ABSTRACT (ENGLISH) # # 6172627123 : MAJOR COMPUTER SCIENCE AND INFORMATION TECHNOLOGY
KEYWORD: Abusive language detection / Thai natural language processing /

Large scale social networks
 Ruangsung Wanasukapunt : Classification of Abusive Thai Messages in

Social Networks Using Deep Learning. Advisor: Assoc. Prof. SUPHAKANT
PHIMOLTARES, Ph.D.

Social media has improved on traditional news sources by allowing

increased access to information. However, the anonymity social media provides
can lead to abusive and hateful speech without detection or repercussion from
individuals with malicious intentions. This research develops a binomial and a
multinomial classification model for classifying Thai social media text for five
categories of abusive content detection in social media that include Rude,
Figurative, Dirty, Offensive and Non-Abusive. The experiments demonstrated that
DistilBERT achieved the highest F1 score with 0.8510 for the binomial model and
0.9067 for the multinomial model. BiLSTM performed second best with an F1
score of 0.8403 and 0.8969 for the binomial and multinomial models, respectively.
Both deep learning models outperformed the traditional machine learning
classifiers’ highest F1 score of 0.7452 and 0.8090 for the binomial and multinomial
models, respectively. The deep learning architectures allow for better contextual
representations of the words with the DistilBERT, enabling better modeling of long-
range dependencies between words.

Field of Study: Computer Science and
Information Technology

Student's Signature

Academic Year: 2021 Advisor's Signature

 v

ACKNOWLEDGE MENTS

ACKNOWLEDGEMENTS

I would like to express my thanks to several individuals for their invaluable
assistance and support guiding me to the successful completion of this thesis.

First, I am sincerely indebted to my research advisor, Associate Professor Dr.
Suphakant Phimoltares, for his constant guidance and support thoughout this process.
His deep knowledge and insights lead me since the initial step in developing the
knowledge to properly research and approach the subject matter. The conversations
and meetings were crucial in the successful design and production of the thesis.

Also, I would like to thank program chair, Professor Dr. Chidchanok Lursinsap,
whose course on artificial neural networks provided inspiration in addressing the topic
of the thesis. I am also grateful for his role as an examiner along with external
examiner, Dr. Prem Junsawang, both of whom provided sage and thoughtful
recommendations and comments for the thesis.

Last but not least, my parents deserve eternal gratitude for their
encouragement and support during the production of this study.

Ruangsung Wanasukapunt

TABLE OF CONTENTS

 Page
ABSTRACT (THAI) ... iii

ABSTRACT (ENGLISH) .. iv

ACKNOWLEDGEMENTS ..v

TABLE OF CONTENTS ... vi

Chapter 1. Introduction ... 1

1.1. Statement of the problem ... 1

1.2. Objective .. 2

1.3. Scope of thesis and constraints .. 2

1.4. Expected outcome .. 2

Chapter 2. Related Works ... 3

2.1. Thai Abusive Facebook Text using Traditional Machine Learning 3

2.2. Hate, Offensive, and Clean Speech Detection in Vietnamese 3

2.3. Nepali YouTube .. 3

2.4. Indonesian Twitter ... 4

2.5. Facebook .. 4

Chapter 3. Theoretical Background ... 6

3.1. Thai abusive speech detection ... 6

3.2. Traditional machine learning models .. 6

3.2.1. One-hot encoding .. 7

3.2.2. Support Vector Machine ... 8

3.2.3. Naïve Bayes ... 10

 vii

3.2.3.1. Multinomial Naïve Bayes ... 11

3.2.3.2. Bernoulli Naïve Bayes ... 11

3.2.4. K Nearest Neighbors .. 11

3.2.5. Decision Tree .. 12

3.2.6. Random Forest ... 14

Chapter 4. Proposed Methods ... 15

4.1. Deep Representation Learning .. 16

4.1.1. Word Embeddings .. 18

4.2. Recurrent Neural Networks .. 21

4.3. Long Short-Term Memory .. 23

4.3.1. Bidirectional LSTM RNN .. 24

4.3.2. Stacked LSTM RNN .. 25

4.4. Transformers.. 26

4.4.1. Model architecture .. 27

4.4.2. Encoder Stack ... 28

4.4.2.1 Residual connection ... 29

4.4.2.2. Layer Normalization .. 29

4.4.3. Scaled dot-product attention ... 30

4.4.4. Multi-head attention ... 33

4.4.5. Feed-forward network .. 34

4.4.6. Positional encoding ... 35

4.4.7. Masked Attention in Decoder Stack ... 36

4.5. Bidirectional Encoder Representations from Transformers 37

4.5.1. Pre-trained language model .. 37

 viii

4.5.2. Masked language modeling ... 38

4.5.3. Task specific module .. 38

4.5.4. Fine tuning ... 39

4.5.5. Segment embeddings ... 39

4.6. DistilBERT.. 40

4.6.1. Teacher-Student Training ... 40

4.6.2. Distillation .. 41

Chapter 5. Experiments and Results ... 44

5.1. Dataset .. 44

5.2. Performance Measurement .. 45

5.3. Binomial model .. 46

5.4. Multinomial model .. 49

5.5. Discussion ... 51

Chapter 6. Conclusion ... 54

APPENDIX .. 55

REFERENCES ... 60

VITA .. 66

Chapter 1. Introduction
 Social media has improved on traditional news sources by allowing increased
access to information. Breaking news can be published instantly and spread quickly.
Niche content can be customized for unique interests. However, the anonymity
social media provides can lead to abusive and hateful speech without detection or
repercussion from individuals with malicious intentions. In [1] the percentage of
anonymous users posting random tweets on Twitter was 40% but for hate speech
the number ranged from 46%-55%. In order to control this type of behavior, web
platforms are developing and implementing algorithms to detect such content.
Governments are also mandating controls as well. In a U.S. Congressional hearing in
March 2021, CEO of Facebook Mark Zuckerberg suggested to Congress that it
implements a law to require that platforms have systems that can detect illegal
content and remove it [2]. The number of users in Thailand on Facebook numbered
56.4 million in 2021 [3] and thus could be affected as well. Also, the Royal Thai
Police has stated that cyberbullying is a crime, citing a case involving the daughter of
the Prime Minister Prayuth Chan-ocha as a victim.
 Facebook currently has an AI system dedicated to detecting abusive content,
which includes categories such as Hate Speech and Bullying and Harassment. This
system detected hate speech before any human at a rate that rose from 24% in late-
2017 to reach 97% in the fourth quarter of 2020 [4].
 In light of these trends, abusive content detection should continue gaining in
importance. Improvements in detection are enabled with state-of-the-art machine
learning. While past research has focused on detecting Thai language abusive speech
on social media using traditional machine learning techniques, this thesis improves
upon this by using modern deep learning. This thesis will use variants of the
Transformers [5] and Recurrent Neural Network (RNN) architectures.
1.1. Statement of the problem
Several problems are explored in this research:

1. How to improve Thai abusive speech detection using deep learning rather
than traditional machine learning techniques such as SVM and random forest.

 2

2. How to distinguish between different classes of abusive speech, such as rude,
figurative, offensive, and dirty.

3. How to design the proposed method to be compatible with a text belonging
to multiple classes.

1.2. Objective
In order to improve Thai abusive speech detection, there are three goals:

1. To develop a deep learning binomial model that can detect Thai abusive
speech with high accuracy

2. To evaluate the deep learning models as compared to previous research that
used traditional (shallow) machine learning models

3. To develop a multinomial model that can classify Thai abusive speech into
five categories

1.3. Scope of thesis and constraints
There are two issues in this research as follows:

1. The abusive language dataset was collected from Facebook manually and
labeled by linguistic major students from Chulalongkorn University, consisting
of 6,770 texts.

2. The traditional machine learning models tested are the Support Vector
Machine (SVM), Multinomial Naïve Bayes (MNB), Bernoulli Naïve Bayes (BNB), k-
Nearest Neighbor (kNN), Random Forest (RF), and Decision Tree (DT) classifiers.
The deep learning models tested are Bidirectional Long-Short Term Model
(BiLSTM) and DistilBERT [6].

1.4. Expected outcome
 This research aims to develop a binomial and a multinomial classification
model for classifying Thai social media text. The binomial model will have two
classes: Abusive and Non-Abusive. The multinomial model will have five classes:
Rude, Figurative, Dirty, Offensive, and Non-Abusive.

 3

Chapter 2. Related Works
 Abusive text detection in Asian languages has historically used traditional
machine learning or classic deep learning techniques such as RNN. However, with the
advent of the Transformers architecture in 2017, more recent research has focused
on the BERT variant of this architecture.
2.1. Thai Abusive Facebook Text using Traditional Machine Learning
 Tuarob and Mitrpanont [7] developed a binomial model to detect Thai
language abusive content within Facebook comments. The texts were labeled as
Figurative, Dirty, Offensive, Rude, and Non-Abusive, though no multinomial model
was created. The research used nine traditional machine learning classifiers including
Discriminative Multinomial Naïve Bayes (DMNB) classifier, Repeated Incremental
Pruning to Produce Error Reduction (RIPPER), Binomial Naïve Bayes (BNB) classifier,
Support Vector Machine (SVM), Random Forest (RF), Maximum Entropy, K-Nearest
Neighbor (kNN) classifier, C4.5 Decision Tree, and Decision Table/Naive Bayes Hybrid
(DTNB). DMNB performed the best, achieving an 86% F-measure, 88.74% precision,
and 83.53% recall. Notably, no deep learning techniques were used.
2.2. Hate, Offensive, and Clean Speech Detection in Vietnamese
 The Vietnamese Hate Speech Detection campaign is a dataset offered by the
Vietnamese Language and Speech Processing 2019 workshop for a conference
challenge.1 It is labeled with the Hate, Offensive, and Clean classes. Pham et al.
adapted the Robustly Optimized BERT Pretraining Approach (RoBERTa) by re-training
and fine-tuning the PhoBERT [8] model for the classification task. It achieved an F1
score of 0.7221, a new state-of-the-art result [9].
2.3. Nepali YouTube

Singh et al. created a dataset for targeted aspect-based sentiment analysis
using comments from Nepali YouTube videos [10]. The target entities were tagged in
the comments and include Organization, Person, Location, and Miscellaneous. These
entities were annotated as being in the categories Violence, General, Profanity,
Sarcasm Feedback, and Out-of-scope. The first task was to classify each entity as

1 https://vlsp.org.vn/vlsp2019/eval/hsd

 4

one of the first four categories. For this task, BERT performed best with an F1 of
57.98 compared to BiLSTM with an F1 of 57.07.

The second task was to detect the sentiment polarity of each aspect category
with a Boolean output. The models tested were SVM, CNN, BiLSTM, and BERT.
BiLSTM performed best with an F1 of 0.816 compared to BERT, CNN, and SVM, with
F1 scores of 0.799, 0.811, and 0.712, respectively.

While BiLSTM outperformed BERT in the Nepali study, contrary to this study’s
result, this may have been due to the simpler nature of the task of binomial
classification for easier to detect categories such as Profanity. The study noted more
false positives in ambiguous categories such as General. Hence BERT’s better
contextual representations may only provide a meaningfully significant advantage
when dealing with difficult to detect categories such as Figurative.
2.4. Indonesian Twitter

Hendrawan, Adiwijaya, and Al Faraby used the Twitter dataset from [11] and
added 5,227 new tweets with the majority having some Indonesian language [12].
The labels divided hate speech into categories such as individual, group, religion,
race, gender, other, weak, moderate, and strong. An individual tweet may have
multiple labels. Accuracy is calculated as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (
1

𝑁
)∑(

|
𝑦̂𝑖 ∩ 𝑦𝑖

𝑦̂𝑖 ∪ 𝑦𝑖
|) × 100%

𝑁

𝑖=1

(1)

where is the number of tweets, is a prediction label set, and is the actual label
set. While [11] only used traditional machine learning, [12] included some deep
learning models and tested RFDT, BiLSTM and BiLSTM with a pre-trained BERT
model. The RFDT was found to perform the best with an accuracy level of 76.12%
compared to BiLSTM at 68.49% and BiLSTM+BERT at 64.81%. No precision, recall or
F1 statistics were provided.
2.5. Facebook

Facebook does not publicly disclose its abusive content detection algorithms.
However, its research can reveal clues as to which models it prefers. Facebook AI

 5

compared the NN, Extreme Learning Machine (ELM), and LSTM models in predicting
the total interaction with a post and the models had 𝑅2 scores of 0.139, 0.053, and
0.174, respectively, with LSTM scoring the highest. The count of interactions with a
post includes the number of likes, comments, and shares of a post. LSTM also
outperformed other models in creating an efficient neural language model in regards
to perplexity [13].

 6

Chapter 3. Theoretical Background
3.1. Thai abusive speech detection

Sentiment analysis is one of the major applications in natural language
processing using machine learning. It is the analysis of text to systematically identify
and extract emotional and subjective information from the source material.

Thai language social media sentiment analysis presents several challenges.
First, the Thai language does not use any punctuation to denote separation of
sentences. Second, the number of publicly available datasets is small as compared
to English. Third, social media uses new slang that may not appear in standard texts
such as Wikipedia. Fourth, social media may use poor grammar and contain
misspellings.

Abusive speech detection, a specialized task within social media sentiment
analysis, presents even more unique challenges. Thai language social media
sentiment analysis has typically focused on straightforward, mutually exclusive
classes such as positive, negative, and neutral ([14], [15], [16]) or variations of
negative versus non-negative [17]. However, abusive speech detection research
contains multiple classes which are not mutually exclusive and thus the same text
may have more than a single label. Second, the use of one class in particular, the
Figurative class, includes words that may have different meanings depending on the
context, or the surrounding words.

The scope of this thesis is limited to multiple label abusive speech detection
as it is a more difficult task than simple sentiment polarity and therefore a better test
when comparing the effectiveness of various models. Only [7] has published such
research thus far for Thai language social media and those methods used only
traditional machine learning models. The models used for testing will be described
next.
3.2. Traditional machine learning models

Traditional machine learning models encompass a varied set of
methodologies. They can be differentiated from deep learning in that the output

 7

from one layer is not used as input to another. Hence, they may also be referred to
as shallow learning models.

This thesis aims to propose the use of deep learning-based models along
with their comparison to shallow learning models similar to the ones used in [7]. The
traditional machine learning models to be tested are SVM, MNB, BNB, kNN, RF, and
DT.

3.2.1. One-hot encoding
In machine learning, the first step is to convert the words into vectors – in

particular, one-hot vectors. In Figure 1, two similar words are encoded using one-hot
vectors, where each vector has a single value of one representing the unique index
and the rest of the cells contain 0’s. The size of the word vector dimension is equal
to the number of unique words in the corpus. While the two words in the figure,
“dirty” and “unclean”, are similar in meaning, when doing a dot product with the
word vectors to check for similarity, the score is 0 since the one-hot vectors are
orthogonal to each other.

Figure 1: One-hot vectors

To encode a sentence, or sequence of words, several methods exist to
convert the set of word vectors into a sentence vector. The sequence may also be
several sentences which together combine to make a document. These methods are
known as vectorizers.
 A count vectorizer creates a sentence vector equal in dimension to the
number of words in the corpus, and it will count the number of times a particular

 8

word appears in a sentence and add it to that vector at the word’s respective index.
For example, the word “dirty” in Figure 1 has an index of three. Thus, if the word
appeared in the sentence twice, there would be a count of two at index three in the
sentence vector. The binary vectorizer simply replaces the word counts with a
Boolean.
 A term frequency inverse document frequency (tf-idf) vectorizer may also be
used. The tf-idf formula is given below:

𝑡𝑓𝑖𝑑𝑓(𝑡, 𝑑) = 𝑡𝑓(𝑡, 𝑑) × 𝑖𝑑𝑓(𝑡) (2)

𝑖𝑑𝑓(𝑡) = log (
1 + 𝑛

1 + 𝑑𝑓(𝑡)
) + 1 (3)

where 𝑡𝑓 is the raw count or occurrences of term (word) 𝑡, 𝑑 is the document (set of
words), 𝑛 is the total number of documents, and 𝑑𝑓(𝑡) is the number of documents
that contain the term 𝑡. The tf-idf vectors are then divided by the Euclidean norm.
The effect is to give less weight to terms that are frequently used in many texts since
their high frequencies implies less importance. However, when [7] tested the various
methods, the difference in performance between different vectorizers was minimal.
Sentence / document vectors may also be referred to as feature vectors.

3.2.2. Support Vector Machine
 An SVM creates an optimal separating hyperplane or set of hyperplanes in
high-dimensional space to separate the data points in different classes from one
another. Figure 2 shows a simple linear binomial classifier. The green circles
represent data points in the “Figurative” class and the orange circles represent data
points in the “Non-Figurative” class. In this simple case, the data points from
different classes are clearly separated. However, there exist several lines that can be
chosen to separate the two classes. The question is which line should be used. The
equation for the separating hyperplane used in SVM is:

ℎ𝑤,𝑏(𝑥) = 𝑔(𝑤𝑇𝑥 + 𝑏) (4)

 9

where ℎ is the separating hyperplane, 𝑤 is the weight vector, 𝑥 is the input vector, 𝑏
is the bias, and 𝑔 is a function where 𝑔 = 1 if 𝑤𝑇𝑥 + 𝑏 ≥ 0 and 𝑔 = −1 otherwise.

Figure 2: Linear binomial classifier using SVM

To reduce the generalization error, the hyperplane with the largest distance
to the closest training points is chosen. The nearby points, which are the ones most
likely to be misclassified, are known as support vectors. In this case, the separating
hyperplane is 𝐻1, a straight line in two dimensions. 𝐻1 is assigned the equation
𝑤𝑇𝑥 + 𝑏 = 0 where 𝑤 is a vector orthogonal to 𝐻1 and ∥ 𝑤 ∥= 1. Parallel lines 𝐻0
and 𝐻2 run through the support vectors on opposite sides of 𝐻1. The margin is the
distance between 𝐻0 and 𝐻2 and the hyperplanes chosen for 𝐻0, 𝐻1, and 𝐻2 create
the maximum margin.
 In the case of more than two classes, multiple hyperplanes are used. In the
case the separation of classes in not linear, an SVM can also use a method known as
the kernel trick for non-linear decision boundaries. If there is no clear separating
hyperplane, a version of SVM known as soft margin can be used.

 10

3.2.3. Naïve Bayes
 The Bayes theorem states that the conditional probability of an event is a
function of prior knowledge of the probabilities of related conditions. Its formulation
is seen in (5) where the probability of a document consisting of word vectors 𝑥𝑖 for a
vocabulary of size 𝑛 being in one of 𝐾 classes 𝐶𝑘 is:

𝑃(𝐶𝑘|𝑥1, … , 𝑥𝑛) =
𝑃(𝐶𝑘)𝑃(𝑥1, … , 𝑥𝑛|𝐶𝑘)

𝑃(𝑥1, … , 𝑥𝑛)
(5)

To simplify the use of Bayes theorem, it is assumed that the features, the

word vectors, are conditionally independent. This assumption, known as the naïve
assumption, is given by the expression:

𝑃(𝑥𝑖|𝐶𝑘, 𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛) = 𝑃(𝑥𝑖|𝐶𝑘) (6)

although the co-occurrence of the words in a document may not be actually
independent.
Combining (5) and (6) results in:

𝑃(𝐶𝑘|𝑥1, … , 𝑥𝑛) =
𝑃(𝐶𝑘)Π𝑖=1

𝑛 𝑃(𝑥𝑖|𝐶𝑘)

𝑃(𝑥1, … , 𝑥𝑛)
(7)

Since the denominator 𝑃(𝑥1, … , 𝑥𝑛) is constant, the equation can also be restated as
a proportionality since only the relative probabilities are relevant:

𝑃(𝐶𝑘|𝑥1, … 𝑥𝑛) 𝛼 𝑃(𝐶𝑘)Π𝑖=1
𝑛 𝑃(𝑥𝑖|𝐶𝑘) (8)

This leads to the classification rule:

𝐶̂ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑘

𝑃(𝐶𝑘)𝛱𝑖=1
𝑛 𝑃(𝑥𝑖|𝐶𝑘) (9)

where the class with the highest probability is assigned to the text.

 11

3.2.3.1. Multinomial Naïve Bayes
 MNB is a variant of NB that works for multinomially distributed data which
means a feature can have more than a success or failure outcome, or a Boolean
value. For example, this is true when word counts are used as each word feature.
From the NB formula, 𝑃(𝑥𝑖|𝐶𝑘) is replaced with a smoothed version of maximum
likelihood, also known as relative frequency counting, or 𝑃̂, to arrive at:

𝑃̂(𝑥𝑖|𝐶𝑘) =
𝑁𝑦𝑖 + 𝛼

𝑁𝑦 + 𝛼𝑛
(10)

where 𝑃̂ estimates 𝑃(𝑥𝑖|𝐶𝑘) which is the probability of observing a word 𝑥𝑖 given
class 𝐶𝑘, 𝑁𝑦𝑖 = ∑𝑥𝑖 is the number of time word 𝑥𝑖 appears in class 𝑦 (or 𝐶𝑘) in the
training set, 𝑁𝑦 = ∑ 𝑁𝑦𝑖

𝑛
𝑖=1 is the total count of all words for class 𝑦, and 𝛼 is a

constant used for smoothing. MNB was found to outperform BNB in [18] where the
authors believe it has an advantage when the document length has high variance.

3.2.3.2. Bernoulli Naïve Bayes
 BNB is similar to MNB but instead of using word counts, each word is given a
Boolean (Bernoulli) value. In other words, word count vectors are replaced by word
occurrence vectors. The decision rule is based on:

𝑃(𝑥𝑖|𝐶𝑘) = 𝑃(𝑥𝑖|𝐶𝑘)𝑥𝑖 + (1 − 𝑃(𝑥𝑖|𝐶𝑘))(1 − 𝑥𝑖) (11)

where 𝑃(𝑥𝑖|𝐶𝑘) is the probability of class 𝐶𝑘 generating the term 𝑥𝑖 . One advantage
is the ability to penalize the absence of a term. BNB was found to outperform MNB
in [19] where it did better in four out of six datasets although the improved
performance was not always statistically significant.

3.2.4. K Nearest Neighbors
 In the kNN algorithm, during the training phase, the feature vectors for the
training set and their class labels are stored in memory. During the test phase, for
each sample, the 𝑘 nearest points are selected. The label representing the majority

 12

of those 𝑘 points is then assigned to that test data point. The parameter 𝑘 is
selected by the user. The distance metric used is typically the Euclidian distance.
 Figure 3 shows an example of kNN. The green circles represent texts labeled
“Figurative” and the orange circles “Non-Figurative”. Only two dimensions appear
here but the number of dimensions can be equal to the number of features. The
green dots represent data points in the Figurative class and the orange dots for the
Non-Figurative class. The yellow dot represents a new sample to classify. If 𝑘 = 5,
the algorithm finds the labels of the nearest five points. In this case, these are four
Figurative and one Non-Figurative data points. Since the majority is Figurative, the
new sample will be classified as Figurative text.

Figure 3: kNN

It is a simple algorithm that is easy to interpret. However, it requires high
memory since it stores all of the training data in memory.

3.2.5. Decision Tree
 A decision tree is a graph tree where internal nodes are a value query and
leaf nodes are the classes. Figure 4 shows an example of a DT. In this case, the
occurrence of a word in the document is the query node. If the word “bad” and
“dog” both appear in a sentence, it is considered Figurative, but if only the word
“dog” appears, it is Non-Figurative.

 13

Figure 4: Decision Tree

The algorithm for the decision tree starts at the root node and then grows
the tree by recursively splitting the features one by one. In choosing which feature to
split, several criteria exist depending on the type of tree used.
 For the CART (classification and regression tree) algorithm [20], the split is
based on Gini impurity. The Gini impurity equation appears in (12) where 𝑝𝑖 is the
probability of a text with label 𝑖 being chosen and 1 − 𝑝𝑖 is the probability of an
error in classifying that item with 𝐽 total number of distinct events or classes. It
measures the probability a text would be incorrectly labeled if it were chosen
randomly from the distribution of labels in the training set. It results in a binary split.

𝐺𝑖𝑛𝑖 = ∑𝑝𝑖(1 − 𝑝𝑖) = ∑(𝑝𝑖 − 𝑝𝑖
2) = ∑𝑝𝑖 − ∑𝑝𝑖

2 = 1 − ∑𝑝𝑖
2

𝐽

𝑖=1

𝐽

𝑖=1

𝐽

𝑖=1

𝐽

𝑖=1

𝐽

𝑖=1

(12)

 Information gain is the other major splitting criteria used in algorithms such as
C4.5 [21]. It is calculated as the expected reduction in entropy from branching on an
attribute. Entropy represents the average level of “information” or “surprise” of a
random variable, and the equation is seen in (13) where 𝑝 is the vector [𝑝1, … , 𝑝𝐽].
The equation for information gain is seen in (14) where 𝐼𝐺 is the information gain, 𝑇
is the training set, 𝑎 is the attribute, 𝐻(𝑇) is the a priori entropy of the training set,
and 𝐻(𝑇|𝑎) is the conditional entropy.

𝐻(𝑝) = −∑𝑝(𝑥𝑖) log2 𝑝(𝑥𝑖)

𝐽

𝑖=1

(13)

 14

𝐼𝐺(𝑇, 𝑎) = 𝐻(𝑇) − 𝐻(𝑇|𝑎) (14)

3.2.6. Random Forest

Bagging averages a method’s results over many samples to reduce the
variance. Let 𝐶(𝑆, 𝑥) be a classifier given a training set 𝑆 for data point 𝑥. The
bagging procedure will draw samples 𝑆∗1, … , 𝑆∗𝐵 of size 𝑁 each with replacement
from the training set. The the output of the bagging (or bootstrap aggregation) of
classifier 𝐶 will follow:

𝐶̂𝑏𝑎𝑔(𝑥) = 𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑉𝑜𝑡𝑒{𝐶(𝑆∗𝑏 , 𝑥)}𝑏=1
𝐵 (15)

 Random forest is an improved version of bagged trees. Instead of considering
all the features when splitting, a random sample of 𝑘 features is taken where 𝑘 is
typically the square root or the log base 2 of the number of features. This reduces
the correlation of the trees. Otherwise, if a small set of features strongly predicts the
output, the trees may be correlated. The number of trees may range from a few
hundred to several thousand depending on the training set.

 15

Chapter 4. Proposed Methods

While Thai language social media sentiment analysis has been researched in
the past using traditional machine learning methods such as in [7], [17], [22], and [16],
more modern research techniques use deep learning. This includes RNN variants
such as LSTM and GRU, as in [23] , [15] and [14]. Also, in 2020-1 a small number of
sentiment analysis research includes variants of the more modern Transformer
architecture, although they are limited to simple polarity sentiment as in [14] and
[24].
 Our proposed method will test two deep learning architectures – the RNN
and the Transformer. In particular, this study will test the BiLSTM and DistilBERT
models, respectively. These models are expected to outperform the traditional,
shallow learning machine models due to better contextual representations of the
words in the input. We will compare these methods to traditional machine learning
methods similar to the ones used in Tuarob and Mitrpanont [7]. Both a binomial and
a multinomial model will be tested. The proposed method process can be seen in
Figure 5.

Figure 5: Proposed Method Process

 16

4.1. Deep Representation Learning

The machine learning models have simple representations of the input.
These models can also be referred to “shallow” learning or feature-based learning.
They take the input vector 𝑥, extract features using some function 𝜙(𝑥), and then
use these features to create a decision rule. For example, 𝜙(𝑥) could be an
algorithm function to convert words to one-hot vectors and sum the vectors for each
document. The decision rule could be 𝜙(𝑥)𝑇𝜃 ≤ 0 where 𝜃 is a vector of learned
parameters. In shallow learning, the features must be manually designed and
programmed by humans, which is a difficult task for complex inputs.

Deep learning will be defined as methods having two characteristics. First,
they take the output from one layer and use it as input to another layer. Second,
they use some form of gradient descent learning.

Deep learning, as compared to shallow learning, treats the features as
learned, free parameters rather than as hard-coded, fixed inputs. Allowing the model
to discover the representations needed for feature detection on its own is also
known as representation learning [25]. Since the features are learned automatically,
they can be represented as layers of features.

Figure 6 shows an example where a cat image is the input that is trained on
for a convolutional neural network. The first transformation, pictured as the bottom-
most arrow, transforms the image into a series of edges and curves as feature
representations. The second transformation uses the edges and curves features from
the first layer and converts them into eyes and ears feature representations in the
second layer. The third transformation converts the eyes and ears feature
representations into a face feature representation. These layers of transformations
allow the model to learn its own features as a hierarchical representation where the
lower layers are building blocks for the higher ones.

 17

Figure 6: Layers of learned representations in deep learning

The function used to transform one layer to another layer is typically a

neural network (NN). It has been shown that a single layer NN, the perceptron, has
limitations, such as the ability to learn invariants, according to the Group Invariance
Theorem for Perceptrons [26]. Hence the need for deep learning, or multiple layers.

Figure 7 illustrates an example of an NN diagram where 𝑥 is the input, 𝑊𝑙 and
𝑏𝑙 are the weight matrix and bias for layer 𝑙, and 𝑦 is the output.

Figure 7: Deep Neural Network

Each layer calculates the formulas in (16), (17), and (18), where 𝜎 is some

non-linear function known as the activation function. The presence of as little as two

 18

layers can approximate any continuous function within a reasonable accuracy, a
property known as the Universal Approximation theorem [27] [28].

𝑧𝑖+1 = 𝑊𝑖𝑎𝑖 + 𝑏𝑖 (16)

𝑎𝑖+1 = 𝜎(𝑧𝑖+1) (17)

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
exp(zi)

∑ exp (zj)
𝐾
𝑗=1

(18)

The input is transformed at each layer from left to right. This process is

known as forward propagation. At the last step of the network, a loss function is
calculated. The loss functions measure the difference between predicted output and
actual output. The algorithm is run multiple times. With each epoch, the parameters
are adjusted in the direction of the negative gradient using backpropagation until the
loss function appears to reach a minimum. In a sentiment classification task, the
argmax of the set of probabilities output by the softmax function is the prediction.

NNs have several general advantages over traditional machine learning
techniques. Non-linear relationships can be modeled due in part to the activation
functions. Various techniques exist to improve generalization to new data such as
randomized node dropout and regularization in the loss function that controls the
usage of too many parameters to prevent overfitting.

One of the largest advantages NNs have is the better input representations. [7]
used one-hot vectors that have no similarity measure. NNs, on the other hand,
encode words as dense vectors and include a similarity measure as one of their
operations. These dense vectors are referred to as word vectors, word embeddings,
or word representations.

4.1.1. Word Embeddings
An ideal word embedding should include a measure of similarity. One

instance where this is useful is when a particular word appears in the training set but
not in the test set. One possible way to do this is to maintain a list of synonyms.
However, this approach has several weaknesses. It could miss new words such as
slang. The synonym chosen is subjective and different people may disagree on what

 19

is a proper synonym. It also cannot compute a similarity measure that could have a
range rather than a Boolean.

One possible measure of similarity in meaning between two words is whether
they are used in similar sentences. The distributional hypothesis states that words
used in the same contexts are likely to have similar meanings [29]. Context refers to
the nearby surrounding words in the document. The number of words is a
hyperparameter.

For example, assume that some hypothetical training data has the following
sentences:

• The doctor is treating patients.

• The nurse is treating patients.

• The doctor is going to the hospital.
Since “doctor” and “nurse” appear in identical contexts, it hints at the fact that

these words have similar meanings, or semantic similarity. Assume that the test set
may contain the partial sentence:

• The nurse is going to the ____
 Based on the semantic similarity of “doctor” and “nurse”, and the fact that
“doctor” has appeared in a similar context to the training set, it can be predicted
that there is a high probability that missing word is likely to be “hospital”.
 Table 1 shows an example of a possible simple word embedding. Each
column represents a different word vector with identical dimensions, with the word
at top. The rows represent an aspect of its meaning. The word “Bangkok” may be
rated high on the “Hot” dimension due to the weather but zero on the “Female”
dimension since it does not have a gender. In an actual word embedding, however,
the meaning of each dimension is learned and typically cannot be interpreted.

Table 1: Word embedding

 Bangkok Antarctica Prince Princess

Hot 0.8 -0.9 0.0 0.0

Continent 0.2 1.0 0.0 0.0

Female 0.0 0.0 -1.0 1.0

 20

In an NN, these embeddings must be learned. To do this, the task the NN will
accomplish is to predict the nearby words of a word from its embedding value.
Figure 8 illustrates the task where w is the word and t is the time step.

Figure 8: Context word prediction

The task can be described by first calculating:

𝑃(𝑜|𝑐) =
exp(𝑢𝑜

𝑇𝑣𝑐)

∑ exp(𝑢𝑤
𝑇 𝑣𝑐)𝑤∈𝑉

 (19)

where 𝑜 is the context word, 𝑐 is the center word, 𝑢 is the learned vector
representation of the word, 𝑤 is the index of the word in the vocabulary, 𝑣 is the
learned vector representation of 𝑐, and 𝑉 is the set of all possible words in the
vocabulary. The goal is to optimize:

𝑎𝑟𝑔𝑚𝑎𝑥𝑢1,…𝑢𝑛,𝑣1,…𝑣𝑛
∑log𝑃(𝑜|𝑐)

𝑐,𝑜

 (20)

for vectors 𝑢 and 𝑣 as optimization variables and sum for all possible 𝑐 and 𝑜
combinations and maximize the log likelihood which is given by the softmax
expression in (19). However, this implementation is computationally expensive due
to the denominator in (19).

 21

 The word2vec skip-gram model [30] uses a similar algorithm but is more
computationally efficient. It replaces the softmax operation with a binary
classification by replacing (19) and (20) with:

𝑃(𝑜 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑤𝑜𝑟𝑑|𝑐) = σ(uo
T𝑣𝑐) =

1

exp(−𝑢𝑤
𝑇 𝑣𝑐)

(21)

𝑃(𝑜 𝑖𝑠 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑤𝑜𝑟𝑑|𝑐) = σ(−uo
T𝑣𝑐) =

1

exp(−𝑢𝑤
𝑇 𝑣𝑐)

(22)

𝑎𝑟𝑔𝑚𝑎𝑥𝑢1,…𝑢𝑛,𝑣1,…𝑣𝑛
∑(log 𝑝(𝑜 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝑐) + ∑log 𝑝(𝑤 𝑖𝑠 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝑐))

𝑤𝑐,𝑜

(23)

where 𝜎 is the sigmoid function so the denominator is no longer required and the
output is a number between 0 and 1. In (23), 𝑤 is chosen randomly and (22) is
needed to provide contrast to words that are similar in meaning.
 While these embeddings contain more information than the one-hot vectors
in machine learning, they are local representations that do not take into account the
context in which they are used within the actual document. For example, the word
“chair” has different meanings in the phrases “office chair” and “committee chair”.

Word embeddings are non-contextual word representations. The embedding
for each word remains fixed. However, going forward the model architectures to be
discussed will be limited to ones that use contextual representations where the
same word may have more than one vector representation that changes depending
on the context. The first of these is the RNN.
4.2. Recurrent Neural Networks

An RNN is a class of variable-size NNs. This makes it naturally appropriate for
natural language processing tasks since the input, sentences and documents, are also
variable in size. The variable size architecture is illustrated in Figure 9. The first
sentence has three words where each word is 𝑥1,𝑖 where 𝑖 is the index of the word in
the sentence 1. However, the second sentence only has two words so it skips the
first layer and instead replaces it with a zero.

 22

Figure 9: Variable layer count in RNN

Each layer calculates:

ℎ̅𝑙−1 = [ℎ𝑙−1, 𝑥𝑖,𝑡] (24)

𝑧𝑙 = 𝑊𝑙ℎ̅𝑙−1 + 𝑏𝑙 (25)

ℎ𝑙 = 𝜎(𝑧𝑙) (26)

where ℎ is the hidden state layer, 𝑙 is the layer, 𝑥 is the input, 𝑖 is the index of the
input, 𝑡 is the time step or word position, ℎ̅ is the concatenation of ℎ and 𝑥, 𝑊 is
the weight matrix, 𝑏 is the bias, and 𝜎 is the activation function.

If a different weight matrix is used at each layer, as in the DNN in Figure 7,
then the later layers will end up being trained more often than others. To prevent
this, the same 𝑊 and 𝑏1 is used at each layer, as shown in Figure 10.

The input 𝑥 may start off as a one-hot vector before being transformed into a
dense word embedding. The final output of the sequence is 𝑦̂ which is equal to
𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑈ℎ(𝑡) + 𝑏2) with weight matrix 𝑈 and constant 𝑏2 applied to the final
layer. In a sentiment classification task, 𝑦̂ is the sentiment. 𝑡 and 𝑙 are similar
variables but at 𝑡 = 0 the sentence may not start processing at 𝑙 = 0 if it is not a
maximum length sequence.

 23

Figure 10: Simplified RNN

RNNs are very deep networks which causes problems during backpropagation

where the gradient from each layer is multiplied by one another. Multiplying many
gradients together will either lead to a very large number if most numbers are
greater than 1 and 0 if most numbers are less than 1. This is known as the exploding
gradient and vanishing gradient problems, respectively. In a vanishing gradient, the
gradient signal from later layers diminishes rapidly as it approaches earlier ones [31].
4.3. Long Short-Term Memory

LSTM, a variant of RNN, preserves memory by using a cell state 𝑐(𝑡)to store
long-term information, thereby remedying the gradient problem. Three gates are
used to select and discard certain information as follows at each time step 𝑡:

𝑓(𝑡) = 𝜎(𝑊𝑓ℎ

(𝑡−1) + 𝑈𝑓𝑥
(𝑡) + 𝑏𝑓) (27)

𝑖(𝑡) = 𝜎(𝑊𝑖ℎ
(𝑡−1) + 𝑈𝑖𝑥

(𝑡) + 𝑏𝑖) (28)

𝑜(𝑡) = 𝜎(𝑊𝑜ℎ
(𝑡−1) + 𝑈𝑜𝑥

(𝑡) + 𝑏𝑜) (29)

𝑐̃(𝑡) = 𝑡𝑎𝑛ℎ(𝑊𝑐ℎ
(𝑡−1) + 𝑈𝑐𝑥

(𝑡) + 𝑏𝑐) (30)

𝑐(𝑡) = 𝑓(𝑡) ∘ 𝑐(𝑡−1) + 𝑖(𝑡) ∘ 𝑐̃(𝑡) (31)

ℎ(𝑡) = 𝑜(𝑡) ∘ 𝑡𝑎𝑛ℎ(𝑐(𝑡)) (32)

where 𝑥(𝑡) is the input vector, ℎ(𝑡) is the hidden state vector, 𝑐(𝑡) is the cell state
vector, 𝑖(𝑡) is the input gate vector, 𝑓(𝑡)is the forget gate vector, 𝑐̃(𝑡) is the new cell
content vector, 𝑜(𝑡) is the output gate vector, 𝑏 is a constant, 𝑊 and 𝑈 are weight
matrices, 𝑡𝑎𝑛ℎ is the hyperbolic tangent function, and 𝜎 is the sigmoid function.

 24

 Figure 11 shows a diagram of an LSTM cell where 𝑐(𝑡) is known as the “long
term” memory and ℎ(𝑡) is known as the “short term” memory since the former has
small changes between steps while the latter changes frequently. The forget gate
𝑓(𝑡) has a range between 0 and 1 where 0 would represent forgetting the previous
value and the new value would only use the current input. The circle marked
“𝑊,𝑈, 𝑏” includes the various weights.

Figure 11: LSTM Cell

4.3.1. Bidirectional LSTM RNN
 The BiLSTM has two LSTMs. The forward LSTM processes left-to-right while
the backward LSTM processes right-to-left. The two opposite directions create
different, complementary contextual representations that can lead to better
predictions. Figure 12 shows an example. The final representation vector or hidden
state concatenates the output of the forward and backward LSTMs.

()

()

(1)

(1)

()

()

()

()

 25

Figure 12: Bidirectional LSTM

The formulas for the BiLSTM are:

ℎ⃑ (𝑡) = 𝐿𝑆𝑇𝑀𝐹𝑊(ℎ⃑ (𝑡−1), 𝑥(𝑡)) (33)

ℎ⃑⃐(𝑡) = 𝐿𝑆𝑇𝑀𝐵𝑊(ℎ⃑⃐(𝑡+1), 𝑥(𝑡)) (34)

ℎ(𝑡) = [ℎ⃑ (𝑡); ℎ⃑⃐(𝑡)] (35)

where (33) is the forward LSTM, (34) is the backward LSTM, (35) is the concatenated
hidden states, and 𝐿𝑆𝑇𝑀 represents a computation of one step of the LSTM.

4.3.2. Stacked LSTM RNN
 RNNs can have many layers, as in Figure 13. The output from one layer is
used as input for another layer. These are known as stacked layer RNNs (or LSTMs).
This allows for greater model complexity. Sutskever et al [32] found that four layers
significantly outperformed single layer LSTMs in their sequence-to-sequence learning
models.
 In the experiments a four-layer stacked BiLSTM is used.

 26

Figure 13: RNNs with multiple layers

4.4. Transformers
 The recurrence mechanism in the LSTM makes parallelization difficult.
Transformers fixed this problem using attention mechanisms. One example is in
sequence-to-sequence (seq2seq) [32] machine translation models, where the first
sequence is a sentence in one language to be translated to a different language in
the second sequence. The source language is used as input for the first RNN where
the RNN is referred to as the encoder. The output of the encoder is used as input to
a second RNN that is referred to as the decoder which translates the input into a
second language. Figure 14 shows an example:

 27

Figure 14: Sequence to sequence model

where 𝑥 is the source sentence, 𝑥𝑡 is the input word vector for 𝑥 at time step 𝑡, 𝑦 is
the target sentence, <START> is a token indicating the start of a sentence, <EOS> is a
token indicating the end of a sentence, and 𝑦𝑡̂ is the output of each layer in the
decoder RNN. The neural machine translation (NMT) model calculates:

𝑃(𝑦|𝑥) = 𝑃(𝑦1|𝑥)𝑃(𝑦2|𝑦1, 𝑥)𝑃(𝑦3|𝑦1, 𝑦2, 𝑥) …𝑃(𝑦𝑇|𝑦1, … , 𝑦𝑇−1, 𝑥) (36)

The task of the NMT is to predict the next word given the previous words,

which is known as the neural language model. One problem with this architecture is
that the decoder only has access to the information from the final layer and cannot
access previous layer outputs of the encoder. This problem is also known as the
bottleneck problem.

4.4.1. Model architecture
The Transformer takes the encoder and decoder RNNs and replaces it with a

series of encoder and decoder modules. Attention mechanisms replace the recurrent
mechanisms, allowing for greater parallelization.

 28

Attention as a mechanism simply takes a weighted sum of the encoder
hidden states of the input word vectors to use when decoding. The weights depend
on the query. In other words, the decoder has access to every hidden state in the
original input sequence, rather than simply the final hidden state.

A simple seq2seq model on the other hand cannot choose selectively which
word vectors to weight since it cannot go back to the refer to the original input as it
is processing. Thus, the attention mechanism solves the bottleneck problem. Several
variations of attention exist. The Transformer uses self-attention, also more
descriptively referred to as scaled dot product attention, which will be described
later.

4.4.2. Encoder Stack
Each encoder layer is made up of two sub-layers which are the self-attention

layer followed by a feed-forward network. A residual connection [33] is also used for
each of the two sub-layers, and then goes to a layer normalization [34]. The outputs
of each of these sub-layers as well as the embedding layer at the start have the
same dimension output of 𝑑𝑚𝑜𝑑𝑒𝑙 = 512. One encoder layer can be seen in Figure
15. Encoder layers are repeated six times.

Figure 15: Encoder architecture

 29

4.4.2.1 Residual connection

 In a typical NN, the input 𝑥 gets transformed into 𝐹(𝑥) in one layer, whose
output is then used as an input for the next layer. A residual connection is shown in
Figure 16. Here the output to the feed-forward network layer is 𝐹(𝑥) which is then
added to the original input 𝑥 to get 𝐻(𝑥) = 𝐹(𝑥) + 𝑥. 𝐻(𝑥) is used as input for the
next layer. Intuitively, the reason for this is to not lose any information. Rather than
using an entirely new input, the layer uses the previous input as well as a new input.

Figure 16: Residual connection

 A residual connection, also known as a skip connection, can make deeper
networks easier to train [33]. In a typical network, in order to back propagate, the
derivative of many functions must be calculated and multiplied together due to the
chain rule. This leads to either 0 if all the derivatives are small or infinity if they are
all large. However, if they are close to 1, then they are less likely to converge to
these two extremes. In a typical network, the Jacobian of a layer is 𝑑𝐻

𝑑𝑥
. In a residual

connection, the Jacobian is 𝑑𝐻

𝑑𝑥
=

𝑑𝐹

𝑑𝑥
+ 𝐼 where 𝐼 is the identity matrix. Thus, if the

value of 𝑑𝐹

𝑑𝑥
 is small, the Jacobian will be close to 1, leading to more usable value

when applying the chain rule to these values.
4.4.2.2. Layer Normalization

 Typical normalization standardizes the inputs by computing a new
standardized mean and standard deviation for each dimension of the input vectors.
Batch normalization does this for the layer inputs before activations (the summed

 30

inputs to each hidden unit) on each training mini-batch [35]. However, in an RNN the
sequences have different lengths so batches can vary in size depending on the
length of the sentences.
 Rather than calculating based on a mini-batch, layer normalization calculates
the new standardized numbers by including all of the hidden layers on a single
training data point, thereby making it more applicable for RNN models [34]. The
calculations are:

𝜇 =
1

𝑑
∑𝑎𝑗

𝑑

j=1

(37)

𝜎 = √
1

𝑑
∑(𝑎𝑗 − 𝜇)2

𝑑

𝑗=1

 (38)

𝑎̅ =
𝑎 − 𝜇

𝜎
𝛾 + 𝛽 (39)

where 𝜇 is the mean, 𝑗 is the index for each dimension of 𝑎, 𝜎 is the standard
deviation, 𝑎 is the activation vector, 𝑑 is the dimension, 𝑎̅ is the transformed
activation, 𝛾 is a learned scale, and 𝛽 is the bias. Using these formulas, there are no
dependencies between training cases, so information does not have to be shared
across the batch.
 Layer normalization is applied in a Transformer as follows:

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥 + 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑥)) (40)

where 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 is the function, 𝑥 is the input, and 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟 is either the
attention layer or the feed-forward network layer.

4.4.3. Scaled dot-product attention
The self-attention layer operation is also known as scaled dot-product

attention. An illustration can be seen in Figure 17.

 31

Figure 17: Simplified self-attention operation

Attention represents the weight assigned to each word in the sequence. The
formula for it is:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

)𝑉 (41)

where multiple queries are combined in a single matrix Q. The K and V matrices also
represent multiple keys and values. The queries and keys have dimension 𝑑𝑘 and
the values have dimension 𝑑𝑣.

The variables in Figure 17 are calculated as follows:

ℎ𝑡 = 𝜎(𝑊𝑥𝑡 + 𝑏) (42)

𝑞𝑡 = 𝑞(ℎ𝑡) (43)

𝑘𝑡 = 𝑘(ℎ𝑡) (44)

𝑣𝑡 = v(ℎ𝑡) (45)
𝑒𝑙,𝑡 = ql ∙ 𝑘𝑡 (46)

𝛼𝑙,𝑡 = 𝑒𝑥𝑝(𝑒𝑙,𝑡)/(∑exp(𝑒𝑙,𝑡′)

𝑡′

(47)

𝑎𝑙 = ∑𝛼𝑙,𝑡

𝑡

𝑣𝑡 (48)

 1

 1

 1

 1

 2,1

 2,2

 2,3

 2 = 2,

 1

 2,1

 2

 2

 2

 2

 2

 2,2

 3

 3

 3

 3

 3

 2,3

 32

where ℎ𝑡 is the hidden state for word 𝑥𝑡 which uses weight matrix W, activation
function 𝜎, and bias b, to output a key vector 𝑘𝑡, a query vector 𝑞𝑡, and a value
vector 𝑣𝑡 at time step (position) 𝑡 in the sentence.

𝑘𝑡, 𝑞𝑡, and 𝑣𝑡 are linear functions of ℎ𝑡 while ℎ𝑡 is a non-linear function of 𝑥𝑡.
When using a seq2seq model, the queries are derived from the decoder while the
keys are derived from the encoder, but in Self-Attention, 𝑘, 𝑞 and 𝑣 are generated
from the same input. In Figure 17, word 𝑥2 conducts a query 𝑞2 to find the “who”,
or subject, of a sentence. 𝑞2 finds a key 𝑘𝑡 that is most similar to itself by executing
a dot product operation with each 𝑘𝑡. The sums of these dot product operations are
converted to a probability measure through the softmax operation and multiplied by
the respective values 𝑣𝑡 to arrive at an attention output 𝑎2. The softmax operation is
used in (47) rather than 𝑎𝑟𝑔𝑚𝑎𝑥 since it is differentiable which is needed during
backpropagation.

The multiple keys, queries, and value vectors from different time steps are
combined into single matrices. By combining multiple calculations into a single
matrix, there is a single multiplication per layer which leads to efficiency on the
Tensor Processing Unit (TPU). The batch size is based on number of words and not
limited to the number of sequences.

In the Transformer, since the operation is a single multiplication per layer, it
can process 3 sentences of 4 words each in a single batch size of 12, where each row
represents a different sentence and each column a different word. In the LSTM, only
one word at a time can be processed. Thus, for 3 sentences, the batch size is limited
to 3. TPUs can process large matrix multiplications which the Transformer can take
advantage of.

The attention output 𝑎2 in Figure 17 is an example of a contextualized
representation of input 𝑥2. In a word2vec embedding, each word has only one
representation vector. However, in many instances a word can have more than one
meaning. To give an instance, the word “bank” may be used to either represent a
place to store money or a geographic entity. A contextualized representation outputs
a different word vector depending on the words surrounding it, so the single word

 33

“bank” can have multiple word vectors which allows for more accurate
interpretations of the meanings of the sentences in which it is used. More accurate
interpretations allow for better sentiment classifications.

4.4.4. Multi-head attention
The equation for multi-head attention is:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊
𝑂 (49)

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) (50)

where 𝑊𝑖

𝑄 is the query weight matrix for attention head 𝑖, 𝑊𝑖
𝐾 is the key weight

matrix, 𝑊𝑖
𝑉 is the value weight matrix, and 𝑊𝑂 is the output weight matrix. 𝑄,𝐾 and

𝑉 represent the query, key, and value matrices.
 An illustration of multi-head attention appears in Figure 18. Each row is made
up of a different attention head. The queries, keys, and values are not the result of
functions provided by the model but rather learned functions. Each attention head
focuses on a different representation subspace. In the illustration, the subspaces
focus on the “who”, “did what”, and “to whom” aspects of the sentence. The
output of each layer is concatenated in a final 𝑎2 attention output. The utilization of
multiple dedicated attention head outputs should create a better representation
than the output of a single attention head that averages the different aspects.

Figure 18: Multi-head attention

 34

The functions for computing multi-head attention are:

𝑒𝑙,𝑡,𝑖 = 𝑞𝑙,𝑖 ∙ 𝑘𝑙,𝑖 (51)

𝛼𝑙,𝑡,𝑖 =
exp(𝑒𝑙,𝑡,𝑖)

∑ exp(𝑒𝑙,𝑡′,𝑖) 𝑡′

 (52)

𝑎𝑙,𝑖 = ∑𝛼𝑙,𝑡,𝑖𝑣𝑡,𝑖

𝑡

(53)

where 𝑒 is the attention score, 𝑙 is the position where the position is being
computed, 𝑡 is the time step (the position for the values), 𝑖 is the attention head
index, 𝛼 is the attention weight, 𝑣 is the value vector, 𝑞 is the query vector, and 𝑎 is
the attention.

4.4.5. Feed-forward network
 The key, query, values, and attentions are linear functions. This can be seen
in:

𝑎𝑙 = ∑𝛼𝑙,𝑡𝑣𝑡 = ∑𝛼𝑙,𝑡𝑊𝑣ℎ𝑡 = 𝑊𝑣 ∑𝛼𝑙,𝑡ℎ𝑡

𝑡𝑡𝑡

(54)

where each subsequent self-attention layer is a linear transformation of the previous
self-attention layer (not including the non-linear weights). The purely linear
transformations limit the types of functions that can be approximated.
 The other sub-layer in the encoder in addition to the attention layer is a fully
connected feed-forward network for each position in the sequence. It is a simple
network with the function given in (55) where the 𝑅𝑒𝐿𝑈(𝑥):= max (0, 𝑥), 𝑥 is the
input, 𝑊𝑖 are the weight matrices, and 𝑏𝑖 are the biases.

𝐹𝐹𝑁(𝑥) = max(0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (55)

Within the layer, the same parameters are used for each position of the

sentence but are different from layer to layer. The feed-forward network adds more
expressiveness to the representations.

 35

4.4.6. Positional encoding
As the Transformer does not use recurrence to process information as the

LSTM does, positional information is not included in the encoding, which can be
important to the meaning of a sentence. For example, “The condo is horribly good”
has a positive sentiment while “The ‘good’ condo is horrible” has a negative
sentiment, despite using nearly the same words, due to the relative position of the
words. The position embedding is added to the input word embedding early in the
Transformer before the encoder stack.

A naïve position embedding could simply concatenate the absolute position
with the word embedding. However, relative position is better. For example, in the
sentences “I went to campus every Monday” and “Every Monday I went to
campus”, the position of “to campus” coming after “I went” is more important than
the absolute position of “to campus” in the sentence.

Therefore, a relative position encoding is added to the original word
embedding. The positional encodings have a dimension size of 𝑑𝑚𝑜𝑑𝑒𝑙 so they can
be summed with the word embeddings. Sine and cosine functions with varying
frequencies are used:

𝑝(𝑡,2𝑖) = sin(
𝑡

10000
2𝑖
𝑑

) (56)

𝑝(𝑡,2𝑖+1) = cos (
𝑡

10000
2𝑖
𝑑

) (57)

where 𝑡 is the position of the word, 𝑖 the index of the dimension of the position
vector 𝑝𝑡, 𝑑 the size of the word vector, and 10,000 an arbitrary constant which can
be made smaller if 𝑑 is smaller than the 512 used in the original paper. The position
encoding vector 𝑝𝑡 alternates between using a sine and cosine function.

Figure 19 illustrates the construction of a position embedding. The curves are
sine waves for different values of 𝑖 using 𝑑 = 128. The 𝑦 axis is the value of the sine
curve and the 𝑥 axis is the word index in the sequence. The sine wave is only used

 36

for the even-numbered dimensions of the position embedding while a cosine one is
used for the odd-numbered ones.

Figure 19: Position embeddings

Let 𝑝𝑡,𝑖 represent the position embedding vector dimension index where 𝑡 is

the word index and 𝑖 is the dimension of the vector. For the word at position 0, 𝑝0,0,
𝑝0,2 and 𝑝0,4 all have values of 0. For the word at position 8, 𝑝8,0, 𝑝8,2 and 𝑝8,4 have
values of 0.99, -0.28, and -0.98.

4.4.7. Masked Attention in Decoder Stack
Once the encoder layers process their inputs, the outputs are used as input for

the decoder stack. This thesis will use a pre-trained model for machine translation to
compute the initial word embeddings so it can be helpful to understand the basic
mechanics. Additionally, it will serve as relevant background to the development of
the BERT model.

For the decoder, self-attention is modified to turn it into masked attention.
Since the decoder must predict the next word in a sentence using only the previous

 37

words, the words following the target word must be omitted from the calculation.
Thus, the attention score 𝑒 for layer 𝑙 at time step 𝑡 is calculated from query vector
𝑞 and key vector 𝑘 as follows:

𝑒𝑙,𝑡 = {
𝑞𝑙 ∙ 𝑘𝑡 𝑖𝑓 𝑙 ≥ 𝑡
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(58)

However, since the primary task is sentiment classification, a decoder is not

required. Thus, a variant of the Transformer was used, the BERT, whose architecture
allows it to be used in a wider range of tasks.
4.5. Bidirectional Encoder Representations from Transformers

BERT extends the Transformer architecture to tasks other than language
modeling [36]. The language modeling task is used to create a pre-trained model
whose word representations can then be used for further processing for tasks such as
sentiment classification.

4.5.1. Pre-trained language model
Natural language modeling is a task to predict the next word in a sentence,

given the previous words. Mathematically, this probability is:

𝑃(𝑦𝑡|𝑦1, … , 𝑦𝑡−1) (59)

where 𝑦 is a word and 𝑡 is the position in the sentence. The language model is a
system to generate the probability distribution in (59).

BERT uses a pre-trained language model, which means it was trained on a
corpus different from the one that will actually be tested. Using a pre-trained model
is also known as transfer learning, where the learned representations from one
model can be transferred, or used as input, to another.

Transfer learning is especially useful for a small corpus that has a model which
has relatively many parameters. For example, our corpus has a few thousand texts as
compared to Wikipedia which for English has around 2.5B words. For smaller models,
in terms of number of parameters, such as LSTM, it may not be necessary to use a
pre-trained model.

 38

4.5.2. Masked language modeling
In typical language modeling, only the previous words in a sentence are used

to predict the next word, as in (59). This is also the mechanism used for masked
attention in the Transformer. However, BERT does something different it refers to as
masked language modeling (MLM).

An illustration of BERT appears in Figure 20. The input starts at the left. An
extra token [CLS] is added to the beginning, known as the classification token. One or
more words is replaced with a [MASK] token to identify which words will be
predicted during the language modeling task. The [SEP] token separates sentences.

Figure 20: BERT model

The Transformer encoder stack executes the language modeling task. The

Transformer’s masked attention model predicts the following word to the right, given
the previous words on the left, or uni-directionally. However, BERT’s approach is to
randomly mask a certain percentage of the words, typically 15%, and predicts these
words. BERT refers to this as a bidirectional approach, although it could also be
called non-directional. The output is a set of contextual representations of the
words.

4.5.3. Task specific module
Several task-specific modules exist. This flexibility is one of the reasons why

BERT is popular. BERT is pre-trained as a language model first in the encoder stack, as
seen in Figure 20. Each encoder module outputs a different representation of the

 39

sequence. Each of these layer outputs can be used as an input into the task specific
module in different ways including first layer only (the embedding), last layer only,
sum all of the layers, sum certain layers, or concatenate certain layers.

The output from the language model is then used as input for the task-specific
module. For the sentiment classification task, it can be a simple feedforward network
that predicts the [CLS] token.

4.5.4. Fine tuning
 Rather than simply tuning the task-specific module parameters, the
parameters of the entire model are adjusted. Thus, if the pre-trained language model
had 200M parameters and the classification head had 200k parameters, the fine-
tuning could adjust 200.2M parameters, although the actual fine tuning would only
impact the relevant parameters and thus possibly number only slightly above 200k.

4.5.5. Segment embeddings
In addition to position embeddings, BERT also has segment embeddings as

seen in Figure 21. A segment (or type) embedding can detect the “type” of word. For
example, in a web search, one segment could be the URL and another could be the
query. Segment embeddings are learned. In the example in Figure 21, the segment
embeddings represent two different sentences.

Figure 21: Embeddings

BERT is expected to outperform both the machine learning models and

BiLSTM due to its better contextual representations due to the various architecture

 40

improvements including the multi-head self-attention mechanism and masked
language modeling.

Sentences in the figurative language classification class in particular can be
considered a good test of the contextual representations. In this category the Thai
word for certain animals or animals in general can be either treated literally or
figuratively depending on the surrounding contextual words. For example, the

appearance of the word “ไอ”้ in a sentence connotes the animal words as being
figurative and abusive.
4.6. DistilBERT
 While a larger BERT model such as RoBERTa [37] could have been used in
order to obtain higher accuracy levels, it would require the use of large
computational resources and thus may process information with large latencies.
However, in highly regulated countries where website owners can be liable for the
abusive speech of users, real time detection with low latency is a priority.
Additionally with social networks serving many users simultaneously, the amount of
computation that can be used is a constraint.
 Hence DistilBERT, a compressed version of BERT, was chosen over other
variations of BERT. On a General Language Understanding Evaluation (GLUE)
sentiment analysis task, DistilBERT finished 60% faster than BERT while scoring 97% of
BERT’s performance on the GLUE benchmark despite using 40% less parameters [6].
DistilBERT reduced the number of layers used by half. It also removed the token-
type embeddings and the pooler.

4.6.1. Teacher-Student Training
 Distillation is one method of model compression [38] [39]. The idea can be
seen in Figure 22. The Teacher is the full model trained to optimize for maximum
accuracy, training on the actual dataset and labels. The Student is a smaller model,
possibly 50x smaller, that instead of training on the original dataset, trains on the
labels predicted by the Teacher, also known as pseudo-label data.

 41

Figure 22: Distillation

In theory the Teacher builds a simpler function approximation of the actual
generating function, and thus can be represented using a simpler, more compact
model. Language modeling may be considered the “ultimate” NLP task since it can
be used in other tasks. In the process of language modeling it learns many latent
features. The specific task then only emphasizes the latent features relevant for its
own objective, so it is only learning a subset of the original features. The alternative
would be to simply skip the Teacher step and just use a smaller model but this was
shown to have worse results [40].

4.6.2. Distillation
 One naïve solution is to simply use the labels of the Teacher model as the
true labels and have the Student maximize the log probability of predicting these
labels. However, this leaves out the important information of the relative
probabilities of the wrong answers. For example, the word “dog” is more similar to
“cow” than it is to “car”. This information could be useful in the classification of
sentences.
 One solution to retaining the information contained in the probability
distribution while compressing the model was introduced in 2006 [38]. In the softmax
formula, the output of the final layer is 𝑧𝑖(𝑥), also known as the logit or model

 42

score, where 𝑖 is the class from all classes 𝑗 of input 𝑥. The logit is then converted
into a probability 𝑝.

𝑝𝑖(𝑥) =
exp(𝑧𝑖(𝑥))

∑ exp(𝑧𝑖(𝑥))𝑗

(60)

 Rather than pass parameter 𝑝 to the Student model, the predecessor logits 𝑧
are transferred instead. The objective function is then set to minimize the squared
difference between the logits of the Teacher and the Student.
 Distillation is a refinement of the preceding model compression method that
was introduced by Hinton in 2015 [39]. One weakness of the softmax function is that
the exponential function produces extreme probabilities where small probabilities
are transformed into being close to zero, making similarities more difficult to detect.
Distillation remedies this by modifying the softmax with an additional
hyperparameter referred to as “temperature” 𝑇 in the formula below to create a
smoother probability distribution. This function is referred to as the softmax-
temperature.

𝑝𝑖(𝑥) =
exp (

𝑧𝑖(𝑥)
𝑇

)

∑ exp (
𝑧𝑖(𝑥)

𝑇
)𝑗

(61)

The same softmax temperature parameter value is used in both the Teacher

and Student models for training. During inference the temperature is reset to 1.
 Cross entropy is often used as a measure of the difference between two
probability distributions. In distillation, the cross-entropy training loss used by the
Student is:

𝐿𝑐𝑒 = ∑𝑡𝑖 ∙ log(𝑠𝑖)

𝑖

(62)

 43

where 𝑡𝑖 is the Teacher’s probability estimation for the target label and 𝑠𝑖 is the
Student’s probability estimation of sample 𝑖.
 In the equation below, 𝐿𝑚𝑙𝑚 is the typical cross entropy loss function used as
an objective function in the masked language modeling task where the identity of
the masked words is predicted given the other words in the sentence. The variable 𝑝
refers to the actual probability distribution and 𝑞 the estimated distribution of
sample 𝑖.

𝐿𝑚𝑙𝑚 = −∑ 𝑝i log2 𝑞𝑖
𝑖

(63)

 These two loss functions, 𝐿𝑐𝑒 and 𝐿𝑚𝑙𝑚, are combined linearly to be used as
the final objective function. To ensure correct alignment between the Teacher and
Student hidden state vectors, a cosine embedding loss is also used, calculated as
follows:

𝐿𝑐𝑜𝑠 (𝑥, 𝑦) = {
1 − cos (𝑥𝑡, 𝑥𝑠), 𝑦 = 1

max (0, cos(𝑥𝑡, 𝑥𝑠) − margin), 𝑦 = −1
(64)

where 𝑥 is the hidden state vector of the Student 𝑠 or Teacher 𝑡, 𝑦 is a tensor label
containing 1 or -1, and margin is a number from -1 to 1.

 44

Chapter 5. Experiments and Results
Regulations for social media content differ from country to country. To

account for this, two scenarios are envisioned. In a strict scenario, all abusive content
is regulated and for this a binomial model is developed. In a less strict scenario, only
certain types of abusive content are regulated and for this a multinomial model is
developed.
5.1. Dataset

In order to replicate the methodology of [7], abusive comments were
collected from Facebook public pages. The data were manually retrieved as
automated scraping is no longer permitted. The same five classes as [7] were used:
Figurative, Rude, Dirty, Offensive, and Non-Abusive. Rude texts will contain at least

one rude word including มึง or กู. No hostile intent is required. Figurative text is
defined as metaphorical and departing in meaning from the literal sense. Examples

of figurative words include ควาย and สัตว ์which can have abusive meanings
depending on how they are used. Context can be used to discern the intention of
the sentence. Offensive texts are intended to attack, annoy, or harass an individual
or group of people. Sarcasm is included in this category. Harsh language is not
required. Dirty texts have sexual undertones and typically have explicit sexual
wording. If none of these categories apply, the text is labeled Non-Abusive.

A new dataset was created since no public dataset of this type exists. Since
the categories can be difficult to interpret, undergraduate linguistic major students
from Chulalongkorn university were hired. Offensive public Facebook pages were
chosen as the data source and comments from 2018 to 2021 were collected. The
initial labels were verified by a second student and if there was a disagreement, the
researcher would decide the final labels. Neutral sentiment texts from the Wisesight
Sentiment dataset [41], which also has Facebook comments as its sources, were
used for the Non-Abusive texts. Tokenization, the process of dividing the sentences
into individual words, was accomplished using PyThaiNLP [42]

A total of 6,770 texts in the Abusive category were gathered and 14,561 Non-
Abusive texts were used. Within the Abusive category there were 5,617 Rude; 2,661

 45

Figurative; 1,565 Dirty; and 1,224 Offensive comments, and each of these comments
can have multiple labels. The range of the length of the texts was wide, ranging from
one to 556 words. The dataset was unbalanced but oversampling and undersampling
methods did not improve results.
5.2. Performance Measurement
 Several performance measurements were available. The most obvious one to
use may be accuracy. The formula is:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
(65)

where TP is True Positive, FP is False Positive, TN is True Negative, and FN is False
Negative. The categories can be more easily seen in the table below:

Table 2: Confusion Matrix

 Actual values

 Positive Negative
Predicted
Values

Positive True
Positive

False
Positive

Negative False
Negative

True
Negative

A Positive result is a text classified as Abusive or in one of the Abusive sub-

categories. However, in the case of unbalanced data, it could be a misleading
statistic. For example, if 99.9% of the text on social media is not abusive and the
model simply guessed all Negative, it would have a high accuracy statistic but would
not detect any actual abusive text. To get better granularity and to account for
unbalanced data, Precision and Recall are better statistics. Precision, also known as
positive predictive value, measures the proportion of correct positive predictions to
total positive predictions, as seen in the equation:

 46

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(66)

 Recall, also known as sensitivity, measures the correct positive predictions as
a proportion of the number of samples that should have been marked positive,
calculated as:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(67)

 Since both Precision and Recall are both desirable yet measure different
aspects, the harmonic mean of these two statistics, known as F1, is often used:

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
(68)

 Precision is more desired than recall when the cost of false positives is high,
such as in the detection of cancer which would cause unnecessary stress to a
misdiagnosed patient. Recall is more appropriate when the cost of false negatives is
high, such as in the detection of illegal content on a social media site. Hence greater
importance is placed on Recall.
5.3. Binomial model

Scikit-learn [43] software libraries were used for the traditional machine
learning models. Feature extraction was done using the count vectorizer which
transforms each sentence into a vector of word counts. MNB and BNB are used in
both the multinomial and binomial models since the difference in the two methods
is that MNB uses frequency counts of each feature while BNB uses a Boolean for
each feature. The deep learning models used PyTorch [44] for implementation.

The experiments were run on Google Colab using an Nvidia Tesla P100 16GB
GPU, Intel 2-core Xeon CPU at 2.00GHz, and 27GB of RAM.

The major parameter settings are listed in Table 3. A Gaussian Error Linear
Unit (GELU) [45] was used for the activation for DistilBERT. The dataset is divided into
training, validation, and test sets to prevent overfitting in the deep learning models.

 47

Table 3: Binomial model parameter settings

Classifier Parameter setting
SVM Loss: Hinge (linear SVM)

MNB Smoothing prior alpha: 1.0
(Laplace smoothing)

BNB Smoothing prior alpha: 1.0

kNN Number of neighbors: 5
Weight function: Uniform

RF Number of trees: 100
Splitting criterion: Gini impurity

DT Algorithm: CART
Splitting criterion: Gini impurity

BiLSTM Train Batch size: 64
Test Batch size: 64
Learning rate: 5e-4
Embedding dimension: 50
Hidden state dimension: 64
Number of stacked recurrent layers: 4
Epochs: 5
Dropout: 30%
Maximum length of input: 80
Optimizer: Adam

 48

Table 3 (continued)

Classifier Parameter setting
DistilBERT Train Batch size: 32

Test Batch size: 64
Learning rate: 5e-5
Epochs: 1
Maximum length of input: 80
Positional embeddings: False
Number of hidden layers in Transformer encoder: 6
Number of attention heads for each attention layer: 12
Dimension of encoder layers and pooler layer: 768
Hidden layer dimension: 3072
Dropout in fully connected layers in the encoder,
embeddings, and pooler: 10%
Dropout for attention probabilities: 10%
Dropout for sequential classification model: 20%
Activation: GeLU
Pretrained Model: “distilbert-base-multilingual-cased”
Optimizer: Adam

On F1 score, the DistilBERT performed best at 0.8510 while the BiLSTM was

next at 0.8403, as seen in Table 4. The two deep learning models beat all of the
machine learning models as predicted, with the best one being SVM at 0.7452.

 49

Table 4: Binomial Model Results

Classifier F1 Precision Recall Accuracy

BiLSTM 0.8403 0.8761 0.8074 0.9040
BNB 0.6232 0.4690 0.9282 0.6488

DistilBERT 0.8510 0.8336 0.8690 0.9048

DT 0.6477 0.6483 0.6471 0.7798
kNN 0.4901 0.7271 0.3696 0.7594

MNB 0.7029 0.6022 0.8439 0.7768

RF 0.7236 0.8344 0.6388 0.8473
SVM 0.7452 0.8098 0.6902 0.8524

For precision BiLSTM performed the best while in recall DistilBERT did best.

Both had similar accuracy scores. Since abusive language detection could be
regulated by the government, the cost of an abusive false negative is likely greater
than that of a false positive, thereby making recall the most important statistic for
this task. BNB performed the best of all the models in recall at 0.9282 but at the
cost of being the worst in precision at 0.4690 since it made the most positive
predictions.
5.4. Multinomial model
 Five categories will be classified by the multinomial model. While [7] also had
five labels, only a binomial classifier was developed. Since a single text can have
multiple labels, a prediction was considered correct if it was in the set of correct
labels.

The major parameter setting changes from the binomial model are listed in
Table 5.

 50

Table 5: Multinomial model parameter changes

Classifier Parameter setting

BiLSTM Epochs: 2
DistilBERT Epochs: 2

Learning rate: 5e-5
Dropout in fully connected layers in the encoder,
embeddings, and pooler: 20%
Dropout for attention probabilities: 20%
Dropout for sequential classification model: 40%

Testing the same models as in the binomial classification task, the DistilBERT

again performed best on F1 score at 0.9067 and BiLSTM was second with 0.8969, as
seen in Table 6. The deep learning models outperformed the machine learning
models with the closest one being SVM at 0.8090.

Table 6: Multinomial Model Results

Classifier F1 Precision Recall Accuracy
BiLSTM 0.8969 0.9039 0.8900 0.8862

BNB 0.7092 0.7151 0.7034 0.6628

DistilBERT 0.9067 0.9128 0.9006 0.8965
DT 0.7383 0.7606 0.7174 0.7283

kNN 0.7163 0.7529 0.6830 0.7304

MNB 0.7786 0.7897 0.7679 0.7539
RF 0.7953 0.8240 0.7685 0.8026

SVM 0.8090 0.8339 0.7855 0.8112

Since the figurative class is the one most likely to contain texts with words
that have more than a single meaning, it can better highlight the difference in the

 51

effectiveness of different contextual representations between models. DistilBERT
performed significantly better at 81.83% recall as seen in Table 7.

Table 7: Figurative Recall in Multinomial Model

Classifier BiLSTM BNB DistilBERT DT

Recall % 67.95 70.01 81.83 64.11

Classifier kNN MNB RF SVM

Recall % 42.39 70.75 56.13 61.45

 The maximum recall rates for Rude, Figurative, Offensive, and Dirty was 91%,
82%, 72% and 87%, respectively. The Offensive category was the most difficult to
predict potentially due to comprising only 18% of the total Abusive category while
having a large set of possibly affiliated words in its category.
 The BiLSTM did not use a pre-trained model as in [12] as the results did not
improve in that study and is not considered fundamental to that particular
architecture as the pre-trained model cannot be fine-tuned. DistilBERT used
significantly more parameters with 135M compared to BiLSTM only using 1.7M. When
positional encoding was tested, in some cases it improved performance and in others
made it worse and therefore was not used.
5.5. Discussion
 For both the binomial and multinomial models, DistilBERT performed best.
While parallelization is often cited as the reason to use the Transformer architecture,
it is unlikely to be the reason for the consistent outperformance. Rather the multi-
head self-attention mechanism appeared to be the biggest contributor.
 One weakness with traditional learning models is the absence of contextual
representations since one-hot vectors are used. BiLSTM is an improvement in that it
does offer contextual representations. However, it has a locality bias. The nearby
words will be weighted heavier than the ones that are further away.

 52

 Due to the complete reliance on self-attention mechanisms and foregoing
any recurrence mechanism, DistilBERT can assign any weight to any other word in the
sentence without any distance restriction.
 In addition to being limited by distance, the LSTM contextual representations
are also limited by the position of the words. For example, in a uni-directional LSTM,
only the context words left of the target word are used for encoding. By adding a
backwards LSTM and stacking multiple LSTMs, the BiLSTM can overcome this
limitation somewhat. However, when encoding, the target word can “see itself” [36],
as seen in Figure 23. When predicting and encoding the word “tastes” using a simple
backward LSTM, the only input is the word “delicious”. When using the stacked
BiLSTM, the input also includes the forward LSTM representation of “tastes” and
thus the target word can “see itself”.

Figure 23: Stacked BiLSTM
 Rather than the uni-directional approach, DistilBERT uses the MLM to
randomly select words to predict. This non-directional approach has more degrees of
freedom.
 To highlight the effectiveness of the different models’ word representations,
the Figurative class was highlighted since the type of words appearing within this
category have a higher probability of having more than a single meaning. The
intention and meaning of the figurative words could be inferred through better

 53

contextual representations. For example, if other abusive words appeared in the
sentence, the figurative word is likely being used as slang. The multiple attention-
head approach could lead to one of the attention heads specializing in figurative
texts as well.

 54

Chapter 6. Conclusion
 In this thesis, we compared six traditional machine learning classifiers to two
deep learning models. The machine learning classifiers include the SVM, MNB, BNB,
kNN, RF, and DT and the deep learning models include variants of the RNN and
Transformer architectures, the BiLSTM and DistilBERT. Both a binomial and
multinomial model were developed for five categories of abusive content detection
in social media that include Rude, Figurative, Dirty, Offensive and Non-Abusive. The
experiments demonstrated that DistilBERT achieved the highest F1 score with 0.8510
for the binomial model and 0.9067 for the multinomial model. BiLSTM performed
second best with an F1 score of 0.8403 and 0.8969 for the binomial and multinomial
models, respectively. Both deep learning models outperformed the traditional
machine learning classifiers’ highest F1 score of 0.7452 and 0.8090 for the binomial
and multinomial models, respectively. The deep learning architectures allow for
better contextual representations of the words with the DistilBERT enabling better
modeling of long-range dependencies between words.
 For future work, a larger variant of BERT such as RoBERTa can be used.
However, we believe a compressed model such as DistilBERT remains a better choice
for real-time applications with many simultaneous users such as a social network due
to its better speed and lower computational requirements. Also, more abusive
classes can be included such as Bullying and Harassment, Violent Content, and
Regulated Goods. Content from other social media platforms such as Twitter or
YouTube can also be tested.

 55

APPENDIX
Table 8: SVM Binomial Confusion Matrix

 Predicted class

 Non-Abusive Abusive

Ac
tu

al

cla
ss

 Non-Abusive 92.6% 7.4%

Abusive 31.0% 69.0%

Table 9: MNB Binomial Confusion Matrix

 Predicted class

 Non-Abusive Abusive

Ac
tu

al

cla
ss

 Non-Abusive 74.6% 25.4%
Abusive 15.6% 84.4%

Table 10: BNB Binomial Confusion Matrix

 Predicted class

 Non-Abusive Abusive

Ac
tu

al

cla
ss

 Non-Abusive 52.2% 47.8%
Abusive 7.2% 92.8%

Table 11: kNN Binomial Confusion Matrix

 Predicted class

 Non-Abusive Abusive

Ac
tu

al

cla
ss

 Non-Abusive 93.7% 6.3%

Abusive 63.0% 37.0%

 56

Table 12: RF Binomial Confusion Matrix

 Predicted class

 Non-Abusive Abusive

Ac
tu

al

cla
ss

 Non-Abusive 93.9% 6.1%
Abusive 36.1% 63.9%

Table 13: DT Binomial Confusion Matrix

 Predicted class

 Non-Abusive Abusive

Ac
tu

al

cla
ss

 Non-Abusive 84.0% 16.0%
Abusive 35.3% 64.7%

Table 14: BiLSTM Binomial Confusion Matrix

 Predicted class

 Non-Abusive Abusive

Ac
tu

al

cla
ss

 Non-Abusive 94.8% 5.2%

Abusive 19.3% 80.7%

Table 15: DistilBERT Binomial Confusion Matrix

 Predicted class

 Non-Abusive Abusive

Ac
tu

al

cla
ss

 Non-Abusive 92.1% 7.9%

Abusive 13.1% 86.9%

 57

Table 16: SVM Multinomial Confusion Matrix
 Predicted class
 Rude Figurative Offensive Dirty Non-Abusive

Ac
tu

al
 c

la
ss

Rude 57.1% 1.1% 2.2% 1.1% 38.5%
Figurative 4.9% 61.5% 3.3% 1.0% 29.4%

Offensive 9.6% 1.4% 63.9% 0.4% 24.6%
Dirty 2.5% 0.5% 2.2% 45.8% 49.0%

Non-Abusive 4.6% 0.6% 0.2% 0.1% 94.6%

Table 17: MNB Multinomial Confusion Matrix
 Predicted class
 Rude Figurative Offensive Dirty Non-Abusive

Ac
tu

al
 cl

as
s

Rude 80.8% 0.5% 0.1% 0.2% 18.4%
Figurative 18.8% 70.8% 0.0% 0.3% 10.2%

Offensive 21.8% 0.4% 70.4% 0.0% 7.5%

Dirty 8.2% 0.0% 0.0% 64.7% 27.1%
Non-Abusive 20.9% 0.4% 0.1% 0.4% 78.2%

Table 18: BNB Multinomial Confusion Matrix
 Predicted class
 Rude Figurative Offensive Dirty Non-Abusive

Ac
tu

al
 c

la
ss

Rude 88.8% 0.0% 0.6% 0.1% 10.6%

Figurative 23.8% 70.0% 0.6% 0.0% 5.6%
Offensive 25.7% 0.0% 69.6% 0.0% 4.6%

Dirty 10.2% 0.0% 0.0% 78.6% 11.2%
Non-Abusive 36.5% 0.1% 0.8% 0.1% 62.5%

 58

Table 19: kNN Multinomial Confusion Matrix
 Predicted class
 Rude Figurative Offensive Dirty Non-Abusive

Ac
tu

al
 c

la
ss

Rude 30.3% 2.6% 0.6% 2.2% 64.3%

Figurative 2.4% 42.4% 0.6% 1.9% 52.7%
Offensive 3.9% 2.5% 39.6% 2.9% 51.1%

Dirty 0.5% 1.5% 0.0% 37.1% 61.0%

Non-Abusive 3.0% 1.6% 0.2% 2.1% 93.1%

Table 20: RF Multinomial Confusion Matrix
 Predicted class
 Rude Figurative Offensive Dirty Non-Abusive

Ac
tu

al
 cl

as
s

Rude 48.4% 1.1% 0.1% 0.1% 50.2%

Figurative 5.3% 56.1% 0.2% 0.0% 38.4%
Offensive 8.9% 1.8% 50.7% 0.0% 38.6%

Dirty 2.2% 0.3% 0.0% 48.0% 49.5%

Non-Abusive 2.3% 0.8% 0.0% 0.2% 96.7%

Table 21: DT Multinomial Confusion Matrix
 Predicted class
 Rude Figurative Offensive Dirty Non-Abusive

Ac
tu

al
 cl

as
s

Rude 49.9% 6.9% 2.8% 6.2% 34.3%

Figurative 3.4% 64.1% 2.1% 5.2% 25.3%

Offensive 4.3% 5.4% 59.3% 6.1% 25.0%
Dirty 1.5% 4.5% 1.2% 61.4% 31.3%

Non-Abusive 6.5% 3.6% 1.0% 5.5% 83.6%

 59

Table 22: BiLSTM Multinomial Confusion Matrix
 Predicted class
 Rude Figurative Offensive Dirty Non-Abusive

Ac
tu

al
 c

la
ss

Rude 90.5% 0.0% 0.0% 0.0% 9.5%
Figurative 19.2% 68.0% 0.0% 0.0% 12.9%

Offensive 24.3% 0.0% 65.7% 0.0% 10.0%
Dirty 7.0% 0.0% 0.0% 85.1% 8.0%

Non-Abusive 5.5% 0.0% 0.0% 0.0% 94.5%

Table 23: DistilBERT Multinomial Confusion Matrix
 Predicted class
 Rude Figurative Offensive Dirty Non-Abusive

Ac
tu

al
 c

la
ss

Rude 85.5% 2.8% 0.1% 0.1% 11.5%
Figurative 4.0% 81.8% 0.0% 0.0% 14.2%

Offensive 9.3% 3.2% 71.8% 0.0% 15.7%

Dirty 4.5% 0.8% 0.0% 87.1% 7.7%
Non-Abusive 4.3% 0.4% 0.0% 0.3% 95.1%

REFERENCES

REFERENCES

[1] M. Mondal, L. A. Silva, and F. Benevenuto, “A Measurement Study of Hate
Speech in Social Media,” presented at the Proceedings of the 28th ACM
Conference on Hypertext and Social Media, Prague, Czech Republic, 2017.
[Online]. Available: https://doi.org/10.1145/3078714.3078723.

[2] U.S. House Committee on Energy & Commerce. 117th Congress, (2021).
Hearing on “Disinformation nation: social media’s role in promoting
extremism and misinformation”. [Online] Available:
https://energycommerce.house.gov/committee-activity/hearings/hearing-on-
disinformation-nation-social-medias-role-in-promoting

[3] “Facebook users in Thailand.” NapoleonCat.
https://napoleoncat.com/stats/facebook-users-in-thailand/2021/02 (accessed
April 19, 2021).

[4] M. Schroepfer. “Update on our progress on AI and hate speech detection.”
https://about.fb.com/news/2021/02/update-on-our-progress-on-ai-and-hate-
speech-detection/ (accessed April 14, 2021).

[5] A. Vaswani et al., “Attention is all you need,” presented at the Proceedings of
the 31st International Conference on Neural Information Processing Systems,
Long Beach, California, USA, 2017.

[6] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “DistilBERT, a distilled version of
BERT: smaller, faster, cheaper and lighter,” ArXiv, vol. abs/1910.01108, 2019.

[7] S. Tuarob and J. L. Mitrpanont, “Automatic discovery of abusive Thai language
usages in social networks,” in Proceedings of the 19th International
Conference on Asia-Pacific Digital Libraries (ICADL), Bangkok, Thailand, in
Lecture Notes in Computer Science, vol. 10647, S. Choemprayong, F. Crestani,
and S. J. Cunningham, Eds., Springer, 2017, pp. 267-278.

[8] D. Q. Nguyen and A. Tuan Nguyen, “PhoBERT: Pre-trained language models for
Vietnamese,” in Proceedings of the, Online, in Findings of the Association for
Computational Linguistics: EMNLP 2020, Association for Computational
Linguistics, nov 2020, pp. 1037-1042.

[9] Q. H. Pham, V. Anh Nguyen, L. B. Doan, N. N. Tran, and T. M. Thanh, “From
universal language model to downstream task: improving RoBERTa-based

https://doi.org/10.1145/3078714.3078723
https://energycommerce.house.gov/committee-activity/hearings/hearing-on-disinformation-nation-social-medias-role-in-promoting
https://energycommerce.house.gov/committee-activity/hearings/hearing-on-disinformation-nation-social-medias-role-in-promoting
https://napoleoncat.com/stats/facebook-users-in-thailand/2021/02
https://about.fb.com/news/2021/02/update-on-our-progress-on-ai-and-hate-speech-detection/
https://about.fb.com/news/2021/02/update-on-our-progress-on-ai-and-hate-speech-detection/

 62

Vietnamese hate speech detection,” in Proceedings of the 2020 12th
International Conference on Knowledge and Systems Engineering (KSE), Can
Tho, Vietnam, 2020, pp. 37-42.

[10] O. M. Singh, S. Timilsina, B. K. Bal, and A. Joshi, “Aspect based abusive
sentiment detection in Nepali social media texts,” in Proceedings of the 2020
IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining (ASONAM), The Hague, Netherlands, 2020, pp. 301-308.

[11] M. O. Ibrohim and I. Budi, “Multi-label Hate Speech and Abusive Language
Detection in Indonesian Twitter,” in Proceedings of the, Florence, Italy, in
Proceedings of the Third Workshop on Abusive Language Online, Association
for Computational Linguistics, Aug 2019, pp. 46-57.

[12] R. Hendrawan, Adiwijaya, and S. Al Faraby, “Multilabel classification of hate
speech and abusive words on Indonesian Twitter social media,” in
Proceedings of the 2020 International Conference on Data Science and Its
Applications (ICoDSA), Bandung, Indonesia, August 2020, pp. 1-7.

[13] J. Chiu, E. Grave, and A. Joulin. “Building an efficient neural language model
over a billion words.” https://research.fb.com/building-an-efficient-neural-
language-model-over-a-billion-words/ (accessed April 15, 2021).

[14] K. Pasupa and T. Seneewong Na Ayutthaya, “Hybrid Deep Learning Models for
Thai Sentiment Analysis,” Cognitive Computation, 2021/03/04 2021, doi:
10.1007/s12559-020-09770-0.

[15] P. Vateekul and T. Koomsubha, “A study of sentiment analysis using deep
learning techniques on Thai Twitter data,” in Proceedings of the 2016 13th
International Joint Conference on Computer Science and Software Engineering
(JCSSE), 13-15 July 2016 2016, pp. 1-6.

[16] S. Sangsavate, S. Tanthanongsakkun, and S. Sinthupinyo, “Stock Market
Sentiment Classification from FinTech News,” in Proceedings of the 2019 17th
International Conference on ICT and Knowledge Engineering (ICT&KE), 20-22
Nov. 2019 2019, pp. 1-4.

[17] R. Arreerard and T. Senivongse, “Thai Defamatory Text Classification on Social
Media,” in Proceedings of the 2018 IEEE International Conference on Big Data,

https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/
https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/

 63

Cloud Computing, Data Science & Engineering (BCD), 12-13 July 2018 2018,
pp. 73-78.

[18] V. Metsis, I. Androutsopoulos, and G. Paliouras, “Spam Filtering with Naive
Bayes - Which Naive Bayes?,” in Proceedings of the CEAS, 2008,

[19] K.-M. Schneider, “A comparison of event models for Naive Bayes anti-spam e-
mail filtering,” presented at the Proceedings of the tenth conference on
European chapter of the Association for Computational Linguistics - Volume 1,
Budapest, Hungary, 2003. [Online]. Available:
https://doi.org/10.3115/1067807.1067848.

[20] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and
Regression Trees. Wadsworth, 1984.

[21] J. R. Quinlan, C4.5: programs for machine learning. Morgan Kaufmann
Publishers Inc., 1993.

[22] C. Apichai, K. Chan, and Y. Suzuki, “Classification of Thai Tweets: Mining
Treasures from Tweet Heap,” in Proceedings of the 2018 5th International
Conference on Systems and Informatics (ICSAI), 10-12 Nov. 2018 2018, pp.
311-315.

[23] C. Piyaphakdeesakun, N. Facundes, and J. Polvichai, “Thai Comments
Sentiment Analysis on Social Networks with Deep Learning Approach,” in
Proceedings of the 2019 34th International Technical Conference on
Circuits/Systems, Computers and Communications (ITC-CSCC), 23-26 June
2019 2019, pp. 1-4.

[24] P. Thiengburanathum and P. Charoenkwan, “A Performance Comparison of
Supervised Classifiers and Deep-learning Approaches for Predicting Toxicity in
Thai Tweets,” in Proceedings of the 2021 Joint International Conference on
Digital Arts, Media and Technology with ECTI Northern Section Conference on
Electrical, Electronics, Computer and Telecommunication Engineering, 3-6
March 2021 2021, pp. 238-242.

[25] Y. Bengio, A. Courville, and P. Vincent, “Representation Learning: A Review
and New Perspectives.” [Online]. Available:
https://ui.adsabs.harvard.edu/abs/2012arXiv1206.5538B

https://doi.org/10.3115/1067807.1067848
https://ui.adsabs.harvard.edu/abs/2012arXiv1206.5538B

 64

[26] M. Minsky and S. A. Papert, Perceptrons: An Introduction to Computational
Geometry. The MIT Press, 2017.

[27] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of Control, Signals and Systems, vol. 2, no. 4, pp. 303-314,
1989/12/01 1989, doi: 10.1007/BF02551274.

[28] K. Hornik, “Approximation capabilities of multilayer feedforward networks,”
Neural Netw., vol. 4, no. 2, pp. 251–257, 1991, doi: 10.1016/0893-
6080(91)90009-t.

[29] Z. S. Harris, “Distributional Structure,” WORD, vol. 10, no. 2-3, pp. 146-162,
1954/08/01 1954, doi: 10.1080/00437956.1954.11659520.

[30] T. Mikolov, W.-t. Yih, and G. Zweig, “Linguistic Regularities in Continuous
Space Word Representations,” in Proceedings of the, Atlanta, Georgia, in
Proceedings of the 2013 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,
Association for Computational Linguistics, jun 2013, pp. 746-751.

[31] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with
gradient descent is difficult,” IEEE Transactions on Neural Networks, vol. 5, no.
2, pp. 157-166, March 1994.

[32] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with
Neural Networks.” [Online]. Available:
https://ui.adsabs.harvard.edu/abs/2014arXiv1409.3215S

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition.” [Online]. Available:
https://ui.adsabs.harvard.edu/abs/2015arXiv151203385H

[34] J. Lei Ba, J. R. Kiros, and G. E. Hinton, “Layer Normalization.” [Online].
Available: https://ui.adsabs.harvard.edu/abs/2016arXiv160706450L

[35] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift.” [Online]. Available:
https://ui.adsabs.harvard.edu/abs/2015arXiv150203167I

https://ui.adsabs.harvard.edu/abs/2014arXiv1409.3215S
https://ui.adsabs.harvard.edu/abs/2015arXiv151203385H
https://ui.adsabs.harvard.edu/abs/2016arXiv160706450L
https://ui.adsabs.harvard.edu/abs/2015arXiv150203167I

 65

[36] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep
bidirectional transformers for language understanding,” CoRR, vol.
abs/1810.04805, 2018. [Online]. Available: http://arxiv.org/abs/1810.04805.

[37] Y. Liu et al., “RoBERTa: A Robustly Optimized BERT Pretraining Approach.”
[Online]. Available: https://ui.adsabs.harvard.edu/abs/2019arXiv190711692L

[38] C. Bucilua, R. Caruana, and A. Niculescu-Mizil, “Model compression,”
presented at the Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, Philadelphia, PA, USA,
2006. [Online]. Available: https://doi.org/10.1145/1150402.1150464.

[39] G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge in a Neural
Network.” [Online]. Available:
https://ui.adsabs.harvard.edu/abs/2015arXiv150302531H

[40] I. Turc, M.-W. Chang, K. Lee, and K. Toutanova, “Well-Read Students Learn
Better: On the Importance of Pre-training Compact Models.” [Online].
Available: https://ui.adsabs.harvard.edu/abs/2019arXiv190808962T

[41] A. Suriyawongkul, E. Chuangsuwanich, P. Chormai, and C. Polpanumas.
PyThaiNLP/wisesight-sentiment: First release, September 22, 2019. [Online].
Available: https://doi.org/10.5281/zenodo.3457447

[42] PyThaiNLP/pythainlp: PyThaiNLP 2.2.3. (2020). [Online]. Available:
https://doi.org/10.5281/zenodo.3969544

[43] F. Pedregosa et al., “Scikit-learn: machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825-2830, 2011.

[44] A. Paszke et al., “PyTorch: an imperative style, high-performance deep
learning library,” in Advances in Neural Information Processing Systems 32, H.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett
Eds., Curran Associates, Inc., 2019, pp. 8024-8035.

[45] D. Hendrycks and K. Gimpel, “Gaussian Error Linear Units (GELUs).” [Online].
Available: https://ui.adsabs.harvard.edu/abs/2016arXiv160608415H

http://arxiv.org/abs/1810.04805
https://ui.adsabs.harvard.edu/abs/2019arXiv190711692L
https://doi.org/10.1145/1150402.1150464
https://ui.adsabs.harvard.edu/abs/2015arXiv150302531H
https://ui.adsabs.harvard.edu/abs/2019arXiv190808962T
https://doi.org/10.5281/zenodo.3457447
https://doi.org/10.5281/zenodo.3969544
https://ui.adsabs.harvard.edu/abs/2016arXiv160608415H

VITA

VITA

NAME Ruangsung Wanasukapunt

PLACE OF BIRTH Illinois, USA

INSTITUTIONS ATTENDED - Chulalongkorn University, Thailand
- University of Chicago, USA
- University of California at Berkeley, USA

HOME ADDRESS Sky Villas at The Ascott Sathorn, Unit 2102
187 South Sathorn Road
ช่องนนทรี ยานนาวา กรุงเทพมหานคร 10120

	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	Chapter 1. Introduction
	1.1. Statement of the problem
	1.2. Objective
	1.3. Scope of thesis and constraints
	1.4. Expected outcome

	Chapter 2. Related Works
	2.1. Thai Abusive Facebook Text using Traditional Machine Learning
	2.2. Hate, Offensive, and Clean Speech Detection in Vietnamese
	2.3. Nepali YouTube
	2.4. Indonesian Twitter
	2.5. Facebook

	Chapter 3. Theoretical Background
	3.1. Thai abusive speech detection
	3.2. Traditional machine learning models
	3.2.1. One-hot encoding
	3.2.2. Support Vector Machine
	3.2.3. Naïve Bayes
	3.2.3.1. Multinomial Naïve Bayes
	3.2.3.2. Bernoulli Naïve Bayes

	3.2.4. K Nearest Neighbors
	3.2.5. Decision Tree
	3.2.6. Random Forest

	Chapter 4. Proposed Methods
	4.1. Deep Representation Learning
	4.1.1. Word Embeddings

	4.2. Recurrent Neural Networks
	4.3. Long Short-Term Memory
	4.3.1. Bidirectional LSTM RNN
	4.3.2. Stacked LSTM RNN

	4.4. Transformers
	4.4.1. Model architecture
	4.4.2. Encoder Stack
	4.4.2.1 Residual connection
	4.4.2.2. Layer Normalization

	4.4.3. Scaled dot-product attention
	4.4.4. Multi-head attention
	4.4.5. Feed-forward network
	4.4.6. Positional encoding
	4.4.7. Masked Attention in Decoder Stack

	4.5. Bidirectional Encoder Representations from Transformers
	4.5.1. Pre-trained language model
	4.5.2. Masked language modeling
	4.5.3. Task specific module
	4.5.4. Fine tuning
	4.5.5. Segment embeddings

	4.6. DistilBERT
	4.6.1. Teacher-Student Training
	4.6.2. Distillation

	Chapter 5. Experiments and Results
	5.1. Dataset
	5.2. Performance Measurement
	5.3. Binomial model
	5.4. Multinomial model
	5.5. Discussion

	Chapter 6. Conclusion
	APPENDIX
	REFERENCES
	VITA

