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IDENTIFYING PROTEIN TARGETS OF DRUGS) อ.ที่ปรึกษาหลัก : ผศ. ดร.กิติพร 
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ในปัจจุบัน การระบุเป้าหมายโปรตีนของยาเชิงคำนวณถูกใช้อย่างแพร่หลาย  เพ่ือช่วย

ประหยัดต้นทุนและเวลาในการค้นคว้าและพัฒนายา วิธีที่มีประสิทธิภาพมากที่สุดวิธีหนึ่งคือการ
ทำนายเป้าหมายของยาตามคะแนนภาวะคล้ายระหว่างยาและเป้าหมายโปรตีน แม้จะมีข้อมูลต่างๆ 
ที่เกี่ยวข้องกับยาและเป้าหมายอย่างแพร่หลาย แต่โดยส่วนใหญ่แล้ว โครงสร้างทางเคมีและลำดับ
โปรตีนเท่านั้นที่มักจะถูกใช้เพ่ือคำนวณคะแนนภาวะคล้ายของยากับยาและเป้าหมายกับเป้าหมาย 
ตามลำดับ ในวิทยานิพนธ์นี้ นำเสนอการรวมภาวะคล้ายโดยไปข้างหน้า (Forward similarity 
integration หรือ FSI) สำหรับการรวมการวัดภาวะคล้ายอย่างเป็นระบบ เพ่ือสร้างแบบจำลอง
โครงข่ายเฮเทโรจีเนียสด้วยการรวมภาวะคล้ายที่เหมาะสมได้ โดยทำการศึกษาการวัดภาวะคล้าย
ของยาเจ็ดตัววัด การวัดภาวะคล้ายของเป้าหมายเก้าตัววัด และวิธีการรวมภาวะคล้ายทั้งหมดสี่วิธี 
ในการรวมภาวะคล้ายโดยไปข้างหน้า เป็นผลให้ได้แบบจำลองโครงข่ายเฮเทโรจีเนียสที่เหมาะสม
ที่สุด จากการรวมการวัดภาวะคล้ายระหว่างยากับยาโดยใช้วิธีการหลอมรวมโครงข่ายภาวะคล้าย 
(Similarity network fusion หรือ SNF) และการวัดภาวะคล้ายของเป้าหมายกับเป้าหมายโดยใช้
ลำดับของโปรตีน ทำให้แบบจำลองโดยการรวมภาวะคล้ายโดยไปข้างหน้านี้มีความแม่นยำถึง 
99.8% และมีประสิทธิภาพที่มากกว่าแบบจำลองการรวมภาวะคล้ายแบบสุ่ม  แบบเต็ม และ
แบบจำลองที่ไม่มีการรวมภาวะคล้าย นอกจากนี้ กรณีศึกษาของความสัมพันธ์ระหว่างยากับ
เป้าหมายที่ค้นพบใหม่ยังแสดงให้เห็นถึงการใช้งานจริงของวิธีการที่เสนอสำหรับการทำนาย
ความสัมพันธ์ระหว่างยากับเป้าหมาย 
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Currently, computational identification of drug target proteins is widely 

used to help saving cost and time for drug discovery and development. One of the 
most efficient approaches is a prediction of drug-target interactions based on 
similarity scores between drugs and target proteins. Despite various data about 
drugs and targets extensively available, only chemical structures and protein 
sequences are mostly used to compute drug-drug and target-target similarity 
scores, respectively. In this thesis, the Forward similarity integration (FSI) Framework 
is proposed for systematically integrating multiple similarity measures to construct 
a heterogeneous network propagation model with a suitable similarity integration. 
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CHAPTER I 
INTRODUCTION 

 

1.1 Background and rationales 
Identifying new interactions between drugs and target proteins is of great 

importance for discovering and developing a new drug or a novel target for drugs. 

There are several wet-lab techniques to infer drug-target interactions (DTIs), such as 

biochemical affinity purification, genetic modifications [1], and in vitro bioassay 

systems [2]. However, the discovery of new DTIs through wet labs is a complex 

process expending a lot of time and costs. To increase the potential of identifying 

new DTIs, computational inference methods were introduced for more efficiently 

discovering a plenty of new associations between drugs and targets in a shorter time 

when compared to the experimental labs. 

The computational methods for identifying DTIs can be categorized into three 

main groups [3], which are ligand-based methods, molecular docking methods, and 

chemical genomic methods. Ligand-based methods identify promising DTIs by 

calculating structural similarity between the ligands [4]. However, the prediction 

results from ligand-based methods are rather sensitive, especially when the ratio of 

known ligands per protein is low [5]. Molecular docking methods require 3D 

structures of drugs and proteins to simulate and identify structural interactions 

between drugs and proteins [6-8]. Nevertheless, not every protein have known 3D 

structures, resulting that molecular docking cannot be implemented for those 

proteins [9]. Chemical genomic methods apply various data from both drugs and 

target proteins for discovering DTIs [3]. This kind of methods is more flexible than the 

first two categories [10], since there are a variety of choices to differently use 

biological data, which are currently publicly available in many databases. 
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One of the most widely used technique in chemical genomic methods is the 

similarity-based technique, which predicts DTIs from the similarity scores between 

drugs and between targets [11]. For example, Bleakley et al. [12] designed a method 

known as the Bipartite Local Model (BLM) for predicting new DTIs using similarity 

information based on chemical and genomic data. Liu et al. [13] created a new 

matrix factorization approach for the DTI prediction, namely the Neighborhood 

Regularized Logistic Matrix Factorization (NRLMF), which calculates the drug similarity 

scores based on chemical structures of drugs and computes the target similarity 

scores based on amino acid sequences of target proteins. Wang et al. [14] proposed 

the Heterogeneous Graph Based Inference (HGBI), which constructs a heterogeneous 

drug-target network applying similarity scores based on drug chemical structures and 

protein sequences, to predict new DTIs. Liu et al. [15] the presented the Weighted k-

Nearest Neighbor with Interaction Recovery (WkNNIR), which employs neighborhood-

based similarity functions for the DTI prediction, and measured the drug similarity 

scores and target similarity scores based on chemical structures and amino acid 

sequences of proteins, respectively. Wan et al. proposed [16] NEural integration of 

neighbOr information for the DTI prediction (NeoDTI), a deep learning-based method 

combining various information from eight different sources (such as drug side effects, 

chemical structures of drugs, and protein sequences). According to the existing 

methods, it can be noticed that most of them focus on taking advantages of 

similarity scores solely based on drug chemical structures and protein sequences.  

With the technology advances in generating and storing biological data, 

massive information about drugs and target proteins is publicly available in many 

databases, such as DrugBank [17], Comparative Toxicogenomics Database (CTD) [18], 

Kyoto Encyclopedia of Genes and Genomes (KEGG) [19], and Side Effect Resource 

(SIDER) [20]. To enhance the efficiency of the DTI prediction, many researchers 

utilized multiple similarity measures based on various data of drugs and targets. For 

example, Cheng et al. [21] combined the profiles of drugs, including the drug 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3 

similarities based on drug side effects, chemical structures, and drug indications by 

using the average, geometric mean, and the maximum function to identify new DTIs. 

Ding et al. [22] applied Hilbert–Schmidt Independence Criterion-based Multiple 

Kernel Learning (HSIC-MKL), which is a linear integration similarity method for merging 

different aspects of data. They utilized various data of drugs and drug targets, such as 

drug chemical structures, the network of drug-side effect associations, gaussian 

interaction profiles for drugs, sequence information of target proteins, functional 

information of targets, protein-protein interaction data, and gaussian interaction 

profiles for target proteins. In those existing methods, distinct sets of drug and target 

data were differently fused by various integration methods. To the suitable of my 

literature review, there is still not a framework for reasonably selecting suitable 

similarity integration by comparing among distinct similarity measures and similarity 

integration methods. 

In this thesis, we propose the Forward Similarity Integration (FSI) framework to 

integrate multiple similarity measures of drugs and target proteins into a 

heterogeneous network propagation model for predicting promising links of DTIs. By 

systematically finding suitable similarity integration, this framework is developed with 

an aim to enhance the performance of a traditional heterogeneous network 

propagation model with a single similarity measure of drugs and a single similarity of 

target proteins. We firstly collected various data of drugs and drug targets to create 

different seven drug-drug similarity measures and nine target-target similarity 

measures. For the drug-drug similarity measures, structural, molecular interaction, 

and phenotypic data of drugs were used. For the target-target similarity measures, 

genomic, molecular interaction, and functional data of target proteins were utilized. 

To combine those multiple similarity measures, we considered four integration 

functions including both linear and non-linear integration functions. Also, different 

performance measures are investigated for serving as criterion of the forward 

selection of the drug and target similarity measures to integrate into a heterogeneous 
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network propagation model. The superior performance of the heterogeneous 

network model obtained from FSI was demonstrated by comparing with those of 

other models, including the conventional heterogeneous network propagation model 

and the models with full and random similarity integration. Finally, the suitable 

model obtained from FSI was used to predict new promising DTIs, and then the 

predictions were validated by searching for supporting evidence to demonstrate the 

practicality of the proposed framework. 

 

1.2 Research objectives 
1. To propose an enhanced heterogeneous network model by integrating 

multiple similarity measures of drugs and target proteins for predicting DTIs 

2. To introduce the Forward Similarity Integration (FSI) framework for 

systematically selecting suitable similarity integration 

3. To apply the improved model with the proposed framework for discovering 

potential interactions between drugs and target proteins 

 

1.3 Expected outcomes 
To predict DTIs, this research proposes the enhanced heterogeneous network 

model with the framework for systematically selecting suitable similarity integration 

from various drug-drug and target-target similarity measures and similarity integration 

methods. The sets of the considered similarity measures and integration methods 

different from those used in this thesis can be included in the proposed framework. 

In addition, the proposed framework can be deployed to preliminarily screen for 

potential drug-target interactions, which would be useful information for further 

discovering new drug target proteins, developing novel drugs, inferring drug side 

effects, and exploring drug repositioning. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II 
BACKGROUND KNOWLEDGE AND RELATED WORKS 

 

To predict DTIs, this research proposes the enhanced heterogeneous network 

model with the framework for systematically selecting suitable similarity integration 

from various drug-drug and target-target similarity measures and similarity integration 

methods. The sets of the considered similarity measures and integration methods 

different from those used in this thesis can be included in the proposed framework. 

In addition, the proposed framework can be deployed to preliminarily screen for 

potential drug-target interactions, which would be useful information for further 

discovering new drug target proteins, developing novel drugs, inferring drug side 

effects, and exploring drug repositioning. 

 

2.1 Definitions and notations  
The mathematical definitions are provided in this subsection. These 

definitions are the basic concepts mainly from graph theory [23-25]. 

Definition 2.1.1 (Graphs). A network or graph is a pair 𝐺 =  (𝑉, 𝐸), where 𝑉 is a set 

of 𝑛 nodes or vertices and 𝐸 is a set of edges linking between nodes. Each edge 

𝑒𝑖𝑗 = (𝑣𝑖, 𝑣𝑗) is associated with a weight 𝑤𝑖𝑗 ≥ 0, which mostly represents the 

strength of the relationship between 𝑣𝑖 and 𝑣𝑗 . 

Definition 2.1.2 (Bipartite graphs). A bipartite graph is a graph whose vertices can be 

divided into two independent sets, 𝑉 and 𝑈 such that every edge (𝑢, 𝑣) either 

connects a vertex from 𝑉 to 𝑈 or a vertex from 𝑈 to 𝑉. We can also say that there is 

no edge that connects vertices from the same set. 

Definition 2.1.3 (Complete Graphs). A complete graph is a graph of which any two 

distinct vertices are adjacent. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 6 

Definition 2.1.4 (Adjacency matrix). For a graph 𝐺 with a set of vertices, 𝑉 =

{𝑣1, … , 𝑣𝑛} , its adjacency matrix 𝐴 is a square 𝑛 × 𝑛 matrix such that its element 𝑎𝑖𝑗 

is one when there is an edge from vertex 𝑣𝑖 to vertex 𝑣𝑗 , and zero when there is no 

edge. 

Definition 2.1.5 (Heterogeneous network). A heterogeneous network is defined as 

𝐺 =  (𝑉, 𝐸) consisting of a set of node objects, 𝑉, and a set of edges, 𝐸, connecting 

the nodes in 𝑉. A heterogeneous network also has a node type mapping function, 

𝜙: 𝑉 → 𝑂, and an edge type mapping function defined as 𝜉: 𝐸 → 𝑅 where 𝑂 and 𝑅 

denote the set of node object types and edge types, respectively. If the total 

number of node types |𝑂|  >  1 or the total number of edge types |𝑅|  >  1, the 

network is called heterogeneous; otherwise, homogeneous. 

 

A heterogeneous network is a network containing several different types of 

nodes and links. In general, a heterogeneous network is usually utilized for describing 

a complicated system. Some common examples of such systems in the real-world 

are internet and social networks [26], citation networks [27, 28], movie networks [29, 

30], economic networks [31], and financial networks [32]. Figure 2.1 shows an 

example of heterogeneous networks which is a movie network consisting of three 

types of nodes (i.e., user, movie, and genre) and two types of links (i.e., user-movie 

links and movie-genre links). Each link type has its semantic annotation. For example, 

a link between a user node and a movie node means that the movie was watched 

by the user, and a link between a movie node and a genre node means that the 

movie is categorized in the genre.   



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 7 

 

Figure 2.1 An example of a heterogeneous movie network 
 

2.2 Heterogeneous Network Propagation for DTIs 
Over the past years, heterogeneous networks are formulated and utilized in 

many various applications, such as decision making in banking and finance [32], 

movie recommendation based on user interests [29, 30], product recommendation 

based on e-commerce search [31], drug repositioning [33, 34], product-rating 

networks [35], the medical insurance fraud identification [36], and the drug-target 

interaction (DTI) prediction [34, 37]. For identifying potential DTIs, several 

computational methods have been proposed mostly based on the simple version of 

drug-target heterogeneous networks, which combines a drug-target interaction 

network, a drug-drug similarity network, and a target-target similarity network. For 

instance, Chen et al. [38] developed Network based Random Walk with Restart on 

the Heterogeneous network (NRWRH) to discover missing DTI links. This method is 

based on the heterogenous network of DTIs, drug-drug similarity, and protein-protein 

similarity. 

One of the most promising network-based methods is the Heterogeneous 

Graph Based Inference (HGBI) [14], which is based on the heterogeneous network 

consisting of drug-target interaction links, drug-drug similarity links, and target-target 

similarity links, as shown in Figure 2.2. In this network, there are two types of nodes 
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(i.e., drug and target nodes) and three types of links (i.e., links between drugs, 

between targets, and between drugs and targets). The links between drugs and the 

links between targets represent the degrees of drug-drug similarity based on 

chemical structures and target-target similarity based on protein sequences, 

respectively. Links between drug and target nodes represent known drug-target 

interactions (normal lines) and predicted drug-target interactions (dashed lines). 
 

 

Figure 2.2 A drug-target heterogeneous network 
 

According to Figure 2.2, the heterogeneous network can be decomposed into 

three network layers, including the drug similarity network layer, the target similarity 

network layer, and the drug-target bipartite network. In the drug similarity network, 

we define the set of 𝑚 drug nodes as 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑚} and the set of edges linking 

between any two drug nodes as 𝐸𝑑𝑑 . Each edge in the drug similarity network is 

represented with a weight indicating a drug-drug similarity score based on a particular 

drug property. The matrix containing the weights of all edges of this network is 

denoted as 𝑊𝑑𝑑 . In the target similarity network, we define the set of 𝑛 target 

protein nodes as 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛} and the set of edges in the target similarity 

network as 𝐸𝑡𝑡 . Based on a particular property of proteins, the weights of the edges 

of the target similarity network can be computed and contained in 𝑊𝑡𝑡. 
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In the drug-target bipartite network, we denote 𝐸𝑑𝑡 as the set of edges linking 

between drug and target nodes. 𝑊𝑑𝑡 is defined as the matrix containing the weights 

of all edges of the drug-target bipartite network. Each element in 𝑊𝑑𝑡 can be either 

one or zero, where one represents a known DTI, and zero represent an unknown DTI. 

Therefore, the drug-target heterogeneous network (𝐺𝐷𝑇) can be formulated as shown 

in Equation (2.1).  
 

𝐺𝐷𝑇 = {{𝐷, 𝑇}, {𝐸𝑑𝑑,𝐸𝑡𝑡, 𝐸𝑑𝑡}, {𝑊𝑑𝑑,𝑊𝑡𝑡,𝑊𝑑𝑡}} (2.1) 
 

The 𝐺𝐷𝑇 network is an incomplete graph where some edges between drug 

and target nodes are missing. In this heterogeneous network, the weights of all 

networks are considered as matrices, i.e., 𝑊𝑑𝑑 ∈  ℝ
𝑚×𝑚, 𝑊𝑡𝑡  ∈  ℝ

𝑛×𝑛, and 𝑊𝑑𝑡  ∈

 ℝ𝑚×𝑛, where 𝑚 and 𝑛 are the numbers of drugs and targets, respectively. To 

predict missing edges of DTIs, the algorithm of heterogeneous network propagation is 

used to iteratively update the weights in 𝑊𝑑𝑡 as shown in Equation (2.2). 
 

𝑊𝑑𝑡
𝑖+1 = 𝛼𝑊𝑑𝑑 ×𝑊𝑑𝑡

𝑖 ×𝑊𝑡𝑡 + (1− 𝛼)𝑊𝑑𝑡
0  (2.2) 

 

In Equation (2.2), 𝑊𝑑𝑡
0  is the matrix of the initial weights of edges linking 

between drugs and targets. The parameter decay factor (𝛼) is in the range of 0 and 1. 

This parameter is used to determine how much the propagation of the network’s 

weights affects the newly updated 𝑊𝑑𝑡 when compared to the effects of 𝑊𝑑𝑡
0 . The 

formulation in Equation (2.2) will converge if 𝑊𝑑𝑑 and 𝑊𝑡𝑡 are properly normalized 

[14] as shown in Equation (2.3) and (2.4). 
 

𝑤(𝑑𝑖 , 𝑑𝑗) =
𝑤(𝑑𝑖, 𝑑𝑗)

√∑ 𝑤(𝑑𝑖, 𝑑𝑘)
𝑛
𝑘=1 ∑ 𝑤(𝑑𝑘, 𝑑𝑗)

𝑛
𝑘=1

 (2.3) 

𝑤(𝑡𝑖, 𝑡𝑗) =
𝑤(𝑡𝑖, 𝑡𝑗)

√∑ 𝑤(𝑡𝑖, 𝑡𝑘)
𝑛
𝑘=1 ∑ 𝑤(𝑡𝑘, 𝑡𝑗)

𝑛
𝑘=1

 (2.4) 
 
 

where 𝑤(𝑑𝑖, 𝑑𝑗) represents a weight of edge linking between drug 𝑖 and drug 𝑗, and 

𝑤(𝑡𝑖, 𝑡𝑗) represents a weight of edge linking between target 𝑖 and target  𝑗. 
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2.3 Similarity integration for the DTI prediction  
In order to identify new DTIs, the various of drug and target related data were 

considered and used in many new approaches of the DTI prediction. Under the 

concept that structurally similar drugs or targets are likely to interact with similar 

proteins or drugs [39, 40], the structures of drugs and targets have been of an interest 

for the DTI prediction. For example, Neighborhood Regularized Logistic Matrix 

Factorization (NRLMF) [13], Heterogeneous Graph Based Inference (HGBI) [14], 

Weighted k-Nearest Neighbor with Interaction Recovery (WkNNIR) [15], and Neural 

integration of neighbor information for the DTI prediction (NeoDTI) [16] utilized the 

chemical structure of drugs and the protein sequence of targets to compute 

similarity scores between drugs and between targets for the DTI prediction, 

respectively. 

Nevertheless, drugs and target are diverse in many aspects and it's not easy 

to utilize a single similarity measure to accurately explain the relationship among 

drugs or targets [41]. Thus, several recent studies have attempted to improve the DTI 

prediction by combining multiple similarity measures from various data sources with 

chemical structures related drug data and protein sequences related target data. The 

similarity integration methods can be widely divided into two categories i.e., linear 

and non-linear integration functions. Table 2.1 and Table 2.2 shows some examples 

of similarity integration methods based on multiple drug-related data and target-

related data, respectively. 
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Table 2.1 Examples of the similarity integration method based on drug-related data 

 

Categories Drug similarity types 
Similarity integration 

methods 
References 

Linear 
integration 

Chemical structures, Drug 
side effects, and Drug 
indications 

Average, Maximum 
similarity value, and 
Geometric mean 

[21] 

Chemical structure and 
Gaussian interaction profile 
(GIP) 

Linear combination 
strategy 

[42] 

Chemical structure, Drug 
side effects, and Gaussian 
interaction profile (GIP) 

Average, Geometric 
mean, Maximum 
similarity value 

[43] 

Nonlinear 
integration 

Chemical structure and drug 
side effect 

The nonlinear fusion 
formula in Nonlinear 
integration Section 

[45] 

Molecular fingerprints, side 
effect, ATC code, gene 
expression profile, drug-
disease associations, 
pathways, and Gaussian 
interaction profile (GIP) 

Similarity network fusion 
(SNF)   

[46] 

Chemical structure and 
Gaussian interaction profile 
(GIP) 

Similarity network fusion 
(SNF)   

[47] 

Drug-structure, Drug side 

effect, Drug-protein 

interaction, Drug-drug 

interaction, Drug-disease 
association 

Nonlinear end-to-end 
learning model (NeoDTI) 

[16] 
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Table 2.2 Examples of the similarity integration method based on target-related data 

Categories Target similarity types 
Similarity integration 

methods 
References 

Linear 
integration 

Amino-acid protein 
sequence, Gene Ontology 
annotations, Protein-protein 
interaction (PPI), Gaussian 
interaction profile (GIP) 

Average, Geometric mean, 
Maximum similarity value, 
Similarity network fusion 
(SNF) 

[43] 

Genomic sequence similarity 
(GS), Gene Ontology (GO) 
similarity, Protein-protein 
interaction (PPI) network 
similarity (PPI) 

Multiple Similarities 
Collaborative Matrix 
Factorization (MSCMF) 

[44] 

Nonlinear 
integration 

Gene Ontology (GO) terms, 
Protein–protein interaction 
(PPI) network, and Gaussian 
interaction profile (GIP) 

Similarity network fusion 
(SNF)   

[46] 

G protein-coupled receptors 
(GPCRs), kinase superfamily 
(Kinases), ion channels (ICs), 
nuclear receptors (NRs) 

Nonlinear end-to-end 
learning model (NeoDTI) 

[16] 

 

According to Table 2.1 and Table 2.2, it can be noticed that many drug and 

target data were considered to combine by several integration methods to predict 

DTIs. For example, chemical structures, side effects, drug indications, drug-drug 

interactions, drug-disease associations, Gaussian interaction profile (GIP), and 

Anatomical Therapeutic Chemical (ATC) are the drug-related data. Protein sequence, 

Gene Ontology annotations, protein-protein interaction (PPI), Gaussian interaction 

profile (GIP), Genomic sequence similarity (GS), G protein-coupled receptors (GPCRs), 

kinase superfamily (Kinases), ion channels (ICs), nuclear receptors (NRs) are the target-
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related data. In addition, Table 2.1 and Table 2.2 were shown the similarity 

integration method that applied with those drug and target-related data, such as 

linear combination strategy, average function, maximum function, geometric mean, 

Multiple Similarities Collaborative Matrix Factorization (MSCMF), and SNF. 
 

2.4 Similarity network fusion (SNF)  
Similarity network fusion (SNF) [48] is a computational method for integration 

of multiple similarity data. SNF utilizes iterative non-linear approach and updates the 

global similarity network of each layer using a local k-nearest neighbors (KNN) 

approach. A similarity value between nodes is propagated to its k-nearest neighbors. 

In the beginning, SNF was proposed to combine the data of the DNA methylation, 

the mRNA expression, and the microRNA (miRNA) expression for the identification of 

cancer subtypes and predicting the survival rates of patients. After that, SNF was 

widely employed in more various applications, including multi-omics and 

microbiomes in respiratory diseases [49], the diagnosis of the liver cancer [50], the 

identification of specific biomolecular disturbances [51], high-risk bronchiectasis 

identification [52], and the classification of a chronic obstructive pulmonary 

disease[53].  

In SNF, there are three steps to fuse multiple similarity data [49], including 

creation similarity networks based on particular datasets, fusion of multiple similarity 

networks, and analysis of the integrated networks (Figure 2.3).  
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Figure 2.3 Workflow of similarity network fusion method  [49] 
 

To combine ℎ similarity networks, the weights of edges in these similarity 

networks are considered as the similarity matrices 𝑊(ℎ) ∈  ℝ𝑚×𝑚, where 𝑚 be the 

number of samples or nodes. Initially, two similarity matrices 𝑃0
(ℎ) and 𝑆(ℎ) are 

defined. 𝑃0
(ℎ) is the normalized version of similarity matrix 𝑊(ℎ) which takes the 

similarity scores of all nodes into consideration, as shown in Equation (2.5). 𝑆(ℎ) is 

another normalized matrix of 𝑊(ℎ) where considers only the similarity scores of the 

K most similar samples for each sample, as shown in Equation (2.6), where 𝑁𝑖 is a set 

of nodes 𝑖’s k-nearest neighbors in 𝑊(ℎ) matrices. 
 

 

𝑃0
(ℎ)(𝑖, 𝑗) =

{
 
 

 
 𝑊(ℎ)(𝑖, 𝑗)

2∑ 𝑊(ℎ)(𝑖, 𝑘)𝑘≠𝑖

,

1

2
,

 
𝑗 ≠ 𝑖 

 

(2.5) 

 𝑗 = 𝑖  

  
𝑆(ℎ)(𝑖, 𝑗) = {

𝑊(ℎ)(𝑖, 𝑗)

∑ 𝑊(ℎ)(𝑖, 𝑘)𝑘∈𝑁𝑖

,

0,

 
𝑗 ∈ 𝑁𝑖  

 
(2.6) 

     otherwise  

Then, 𝑃 is iteratively updated using the values transferred between the 

nearest neighbors following to Equation (2.7), where 𝑃𝑞
(ℎ) represents the normalized 

similarity matrix for the ℎ𝑡ℎ data type at iteration 𝑞, and 𝐻 is number of data types. 
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Finally, the overall status matrix at iteration 𝑡𝑡ℎ is calculated as shown in Equation 

(2.8). 

𝑃𝑞+1
(ℎ)

= 𝑆(ℎ)
∑ 𝑃𝑞

(ℎ)
𝑘≠ℎ

𝐻 − 1
𝑆(ℎ)

𝑞 (2.7) 

𝑃(𝑡) =
∑ 𝑃𝑞

(ℎ)
𝑚∈𝐻

𝐻
 (2.8) 

 

2.5 Forward selection technique 
Forward selection technique is a type of the stepwise regression [54] that 

constructs a step-by-step model by adding one variable (e.g., a similarity matrix) to 

improve the performance and finally obtains the suitable model, as shown example 

in Figure 2.4. 
 

 

Figure 2.4 Forward stepwise selection example with 5 variables  [55] 
 

According to Figure 2.4, the forward selection technique begins with a null 

model and add in variables one by one. Then, the model will keep one variable that 

is most significant variable or give the suitable model. Finally, the model stops 

adding variables when none of the remaining variables are significant or adding 
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variables can't improve the performance of the model. Note that once added, a 

variable is never removed. 

To select the most efficient variables for constructing the model, many 

researchers take advantage of the forward selection technique, such as the financial 

distress prediction models [56], the bankruptcy prediction models [57], the predictive 

model for incisional surgical site infections [58],  the predictive model for 

hypertension risk in the Chinese population [59], and selection of the suitable natural 

fiber for automotive component applications [60]. 

 

2.6 Dependent samples t-test 
The t-test, known as t-statistic or t-distribution, is an inferential statistic 

method used to compare the means of two groups to determine if there is a 

significant difference. T-test can evaluate the difference of a mean value between a 

sample group and a known value (a one-sample t-test), the mean values between 

two independent sample groups (an independent two-sample t-test), and the mean 

values between two dependent sample groups (a paired or dependent sample t-

test) [61]. In this section, we review the dependent sample t-test that is used to 

compare the sample means from two related groups, such as the comparison of the 

effects of a drug from the same patient group before and after taking the drug.  

To apply the dependent sample t-test, the following assumptions are 

required to hold [62]:  

1) The dependent variable is normally distributed. 

2) The observations are sampled independently. 

3) The dependent variable is measured on an incremental level, such as 

ratios or intervals. 

4) The independent variables must consist of two related groups or matched 

pairs. 
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In the dependent sample t-test, there are two possible hypotheses. The first 

hypothesis is the null hypothesis (𝐻0) which states that there is no significant 

difference between the means of the two groups (𝜇1 = 𝜇2). Another hypothesis is 

the alternative hypothesis (𝐻1) mentioning that the mean of the first group is greater 

than the mean of the second group (𝜇1 > 𝜇2), the mean of the first group is less 

than the mean of the second group (𝜇1 < 𝜇2), or the means are different (𝜇1 ≠ 𝜇2). 

The null and alternative hypotheses of those three cases can be mathematically 

formulated as shown in Equation (2.9) - (2.11). Note that the variances of two groups 

are not different (σ12≠σ2
2). 

Case 1:     𝐻0 :  𝜇1 = 𝜇2,   𝐻𝑎 : 𝜇1 ≠ 𝜇2 (2.9) 

Case 2:     𝐻0 :  𝜇1 = 𝜇2,   𝐻𝑎 :  𝜇1 > 𝜇2 (2.10) 

Case 3:     𝐻0 :  𝜇1 = 𝜇2,   𝐻𝑎 :  𝜇1 < 𝜇2 (2.11) 
 

The test statistic 𝑡 is computed as 𝑡 = ∑𝐷

√𝑛∑𝐷
2−(∑𝐷)2

𝑛−1

, where 𝐷 is the mean 

difference of each sample, 𝑛 is the sample size, and the degree of freedom (𝑑𝑓) is 

equal to 𝑛 − 1. The example data illustrating how to apply the dependent sample t-

test is shown in Table 2.3. With this data, a teacher wants to know if the two exams 

are equally difficult [61]. The teacher set two exams from the same content and 

then has the same group of students to take both exams. The exam scores for all 

students are shown in Table 2.3.  

 

Table 2.3 Exam scores for each student 

Student 
Scores of 
Exam 1 

Scores of 
Exam 2 

Difference Score 
(𝐷) 

𝐷2 

Bob 63 69 6 36 

Nina 65 65 0 0 
Tim 56 62 6 36 

Kate 100 91 -9 81 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 18 

Table 2.3 Exam scores for each student (continued) 

Student 
Scores of 
Exam 1 

Scores of 
Exam 2 

Difference Score 
(𝐷) 

𝐷2 

Alonzo 88 78 -10 100 
Jose 83 87 4 16 

Nikhil 77 79 2 4 

Julia 92 88 -4 16 
Tohru 90 85 -5 25 

Michael 84 92 8 64 

Jean 68 69 1 1 
Indra 74 81 7 49 

Susan 87 84 -3 9 
Allen 64 75 11 121 

Paul 71 84 13 169 

Edwina 88 82 -6 36 
summation - - 21 763 

 

According to the teacher’s purpose, the statistical hypotheses is preliminarily 

formulated as 𝐻0 :  𝜇1 = 𝜇2 and 𝐻𝑎 : 𝜇1 ≠ 𝜇2 (Case 1). In Table 2.3, the summation 

of the difference scores between Exam 1 score and Exam 2 score (∑𝐷) and the 

summation of the squares of the difference scores (∑𝐷2) are equal to 21 and 763, 

respectively. So, 𝑡𝑐𝑎𝑙 =
∑𝐷

√𝑛∑𝐷
2−(∑𝐷)2

𝑛−1

=
21

√(16)(763)−(21)
2

16−1

= 0.75, where the sample size is 

16, and 𝑑𝑓=16-1=15. Based on the table of t-statistic, the value of t with 𝛼 =  0.05 

and 𝑑𝑓 = 15 is 2.131. Thus, the teacher will reject the null hypothesis 𝐻0 if 𝑡𝑐𝑎𝑙  > 

2.131, otherwise the teacher will accept the null hypothesis. Since tcal = 0.750 < 

2.131, the teacher cannot reject the null hypothesis 𝐻0. This means that the mean 

scores are not different (𝜇1 = 𝜇2), or the two exams are equally difficult. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III 
MATERIALS AND METHODS 

 

In this chapter, the data sets and the proposed methodology used in this 

thesis are provided. The methodology of the thesis includes data collection and 

preparation, the measurement of drug and target similarity, construction of the drug-

target heterogeneous network, similarity integration methods, and the Forward 

Similarity Integration method (FSI) framework. The overview of the methodology is 

illustrated in Figure 3.1. 

 

 

Figure 3.1 The schematic diagram illustrating an overview of this thesis 
 

According to Figure 3.1, the relevant information including drug related data 

(i.e., structural, molecular interaction, and phenotypic data of drugs), target related 

data (i.e., genomic, molecular interaction, and functional data of drug target 

proteins), and interaction data between drugs and targets were firstly collected from 

various databases. Next, the drug and target similarity matrices were constructed 

based on those collected data. Seven drug-drug similarity matrices and nine target-
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target similarity matrices are introduced with the drug-target interaction matrix into 

the framework of Forward Similarity Integration (FSI) to obtain the most suitable 

heterogeneous network propagation model. In the FSI framework, several integration 

functions, both linear (i.e., average, maximum, and minimum) and non-linear 

integration functions (i.e., SNF), were considered. Furthermore, various performance 

measures (i.e., AUC, AUPR, and F1) were investigated for serving as the FSI criteria to 

select the similarity matrices fused into the model. After obtaining the FSI model, 

this model was deployed to predict promising links between drugs and target 

proteins.  
 

3.1 Data collection and preparation 
Data collection and preparation include the processes of collecting, cleaning, 

and manipulating the raw data prior to use for creating the drug-drug and target-

target similarity matrices. In this work, there are three groups of the required data, 

including drug data sets, target protein data sets, and known interactions between 

drugs and target proteins. 

3.1.1 Drug data sets 
The drug data sets used in this thesis and the databases where these data are 

collected as shown in Table 3.1. To take advantages of multiple aspects of the drug 

data, various information about drugs (i.e., chemical, molecular interaction, and 

phenotypic information) is utilized. However, only drugs that have all those data are 

included in this work to avoid problems in data integration for creating an integrated 

version of drug-drug similarity measures. 
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Table 3.1 Drug data sets and their sources 

Drug data sets Data sources 
Chemical structures DrugBank [17] 

Drug-drug interactions  DrugBank [17] 

Drug-disease associations CTD [18] 
Drug side effects SIDER [20] 

 

According to Table 3.1, the first data set about drugs is the chemical 

structures. The chemical structures of drugs in the form of the simplified molecular-

input line-entry system (SMILES) [63] were downloaded from the DrugBank database 

(version 5.0) [17]. In this data set, there are 2,635 drugs in total with different 

DrugBank IDs. 183 drugs were initially removed due to lack of SMILES data. 

Furthermore, 1,590 drugs that have not all required drug data been also removed. 

Finally, there are 862 drugs of DrugBankIDs in total with the structural data available. 

The second drug data set is about the molecular interactions about drugs or a 

data set of drug-drug interactions. Drug-drug interactions (DDIs) are the situations in 

which one drug affect the activity of another when they are used together. For 

example, one drug may delay, decrease, or enhance the absorption of other drugs 

[64]. The data of DDIs were downloaded from the DrugBank database (version 5.0) 

[17]. There are 4,294 drugs and 2,682,157 drug-drug interactions. However, 3,432 

drugs were removed because they did not have all required drug data. 

Consequently, there are 862 drugs of DrugBank IDs and 924,819 drug-drug 

interactions remaining.  

The third drug data set is about drug-disease associations (DDAs), a 

phenotypic property of drugs. DDAs are the events in which drugs exert the effect on 

diseases [65]. The data set of DDAs was extracted from Comparative Toxicogenomics 

Database (CTD) [18]. This data set contains 3,156 Chemical IDs, 2,425 Disease IDs, and 

27,282 chemical-disease associations. To enable linking this data set to other drug 

data sets, all chemicals in CTD were mapped to the corresponding DrugBank IDs. 
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After the mapping and removing drugs with lack of some drug data, there are 862 

drugs of DrugBank IDs, 2,287 diseases of Disease IDs, and 23,201 drug-disease 

associations remaining.   

The fourth drug data set is about drug side effects (SEs), another phenotypic 

information of drugs. A drug side effect refers to an undesirable secondary effect 

which appears in addition to the purposed therapeutic effect of a drug. The data of 

SEs were received from the SIDE effect Resource (SIDER) database (version 4.1) [20]. 

In this data set, there are 1,430 drugs of STITCH IDs (Search Tool for Interactions of 

Chemicals [66]), 5,868 SE terms of UMLS IDs (Unified Medical Language System [67]), 

and 139,756 drug-SE associations. UMLS is a set of health and biomedical 

vocabularies compiled to promote and create the interoperable biomedical 

information systems and services [67]. To enable connecting this data set to other 

data sets, the drugs of STITCH IDs were mapped to their corresponding DrugBankIDs. 

As a result, there are 862 drugs of DrugBank IDs, 5,280 drug side effects, and 140,682 

drug-SE associations remaining based on side effect related drug data. 
 

 

3.1.2 Target data sets 
The summary of all required data sets about target proteins and the 

databases where the data sets were downloaded is shown in Table 3.2. 
 

Table 3.2 Target data sets and their sources 

Target data sets Data sources 
Protein sequences  DrugBank [17] 

GO annotations  GOA [68] 

Protein-protein interactions STRING [69] 
Protein pathways KEGG [19] 

 

The first data set of target proteins is about protein sequences, the orders of 

amino acids in a polypeptide chain [70]. The protein sequences of target proteins 
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were extracted from the DrugBank database (version 5.0) [17]. In total, there are 

2,695 target proteins that have their own protein sequences. After that, 1,178 target 

proteins were removed due to lack of some required data. Consequently, there are 

1,517 target proteins remaining with their available protein sequences. 

The second data set of target proteins is about Gene Ontology (GO) 

annotations, providing functional information of target proteins. GO is a set of the 

hierarchically structured vocabularies which describe the cellular functions of genes 

and proteins. GO terms can be split into three domains: Biological Process (BP), 

Molecular Function (MF), and Cellular Component (CC) [71, 72]. All GO terms are 

structured in a hierarchical graph, where nodes represent the GO terms, and edges 

represent the relationships between the GO terms (Figure 3.2). Each edge in the GO 

graph is assigned a role in the parent-child relationships, such as “is a” and “a part 

of” relationships. An example of a GO graph is shown in Figure 3.2. In this example, 

BP term “menaquinone metabolic process” has one parent (i.e., “vitamin K 

metabolic process”). This means that “menaquinone metabolic process” is a 

“vitamin K metabolic process”. 
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Figure 3.2 An example of a GO graph 
 

The GO annotation data of human proteins were obtained from Gene 

Ontology Annotation (GOA) database [68], In total, there are 19,755 UniProt IDs and 

18,346 GO IDs. However, 18,238 proteins of UniProt IDs were removed due to lack of 

some protein data. Finally, there are 1,517 target proteins, 8,924 GO terms and 

45,866 interactions remaining with some their annotated GO terms.   

The third data set of target proteins is about protein-protein interactions (PPIs) 

in human. These are the molecular interactions between drug target proteins and 

other proteins, which can describe the physical or functional interactions between 

proteins [73].  The PPI network was downloaded from the Search Tool for the 

Retrieval of Interacting Genes/Proteins (STRING) database (version 11.0) [69]. In this 

network, there are 19,354 proteins of STRING IDs and 11,759,454 PPIs. The STRING 

database provides the interactions between proteins with their confidence scores 

ranging from 150 to 999. To avoid false positive interactions, 540 proteins of STRING 
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IDs and 10,415,577 PPIs were removed because they have the confidence scores 

lower than 500. The remaining proteins of STRING IDs were mapped to their 

corresponding UniProt IDs. After the mapping and removing some proteins with lack 

of some required data, there are 1,517 proteins of UniProt IDs and 218,721 

interactions remaining with their PPIs.   

The fourth data set of target proteins is about protein pathways, the 

biological pathways in where proteins involve. This data set was received from the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) [19] database. Initially, there are 

6,471 NCBI-Gene IDs, 283 protein pathways, and 21,008 interactions. To link these 

proteins of NCBI IDs to other protein data, these proteins were mapped to their 

corresponding UniProt IDs, and some proteins with lack of some required data of 

target proteins were removed. Consequently, there are 1,517 proteins, 283 protein 

pathways, and 7,988 interactions remaining with their protein pathway information.   

 

3.1.3 Drug-target data set 
This data set is a list of known drug-target interactions (DTIs), the connections 

between drugs and target proteins that can lead to some therapeutic effects of drugs 

[10]. The data of DTIs were downloaded from the DrugBank database (version 5.0) 

[17]. Initially, there are 2,452 drugs of DrugBank IDs, 2,695 target proteins, and 11,051 

DTIs. Some data were removed because these proteins have not all required data. 

Finally, there are 862 drugs, 1,517 target proteins, and 3,583 drug-target interactions. 

 

3.2 Measurements of drug-drug and target-target similarities 
After obtaining all required data sets, the different drug-drug and target-target 

similarities were measured based on those collected data. In this thesis, seven drug-

drug similarity measures and nine target-target similarity measures are formulated 

and investigated. In this section, how each drug-drug and target-target similarity 

measure is computed based on each data set is described. 
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3.2.1 Drug-drug similarity measures 
Based on four drug data sets, different drug-drug similarity measures can be 

created. In this subsection, the method to compute each drug-drug similarity 

measure is described following to the drug data sets used. 

▪ Similarity measurement based on the drug chemical structures 

The similarity scores between drugs based on the chemical structures, 

abbreviated as Structures, are calculated from the structural data of drugs in the 

simplified molecular-input line-entry system (SMILES) [63]. By using the Chemical 

Development Kit (CDK) [74], those SMILES data of a drug can be encoded its 

structural information into a binary string of 2D chemical fingerprints of drugs. After 

that, the similarity score between two drugs can be calculated based on their binary 

strings by using the Tanimoto index [75].  

 

▪ Similarity measurement based on DDIs 

The DDI data can be represented in the form of matrix 𝐷𝐷𝐼 ϵ ℝ𝑛𝑟 ×𝑛𝑟 , where 

𝑛𝑟 is the number of all drugs in the DDI network. Each element in this matrix can be 

either one (if DDI is present) or zero (if DDI is absent). The similarity measures based 

on DDIs are defined by using the Jaccard and the Cosine index, abbreviated as 

DDI_Jac and DDI_Cos, respectively. The Jaccard and Cosine index are the common 

techniques used to measure similarity between two objects and frequently applied 

to measure drug-drug similarity in many studies [76-79]. The Jaccard and Cosine 

similarity indices are generally defined in Equation (3.1) and (3.2), where 𝑢 and 𝑣 are 

binary vectors, and ‖∙‖ represents the length of a binary vector. To compute DDI_Jac 

and DDI_Cos, 𝑢 is the binary vector of the interactions between drug 𝑢 to all other 

drugs, and 𝑣 is the binary vector of the interactions between drug 𝑣 to all other 

drugs. The similarity scores based on DDIs can indicate how much two drugs interact 

with the same drugs. 

𝑆𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑢, 𝑣) =
𝑢 ∙ 𝑣

‖𝑢‖2 + ‖𝑣‖2 − 𝑢 ∙ 𝑣
 (3.1) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 27 

 

 

▪ Similarity measurement based on DDAs 

The DDA data can be represented in the form of matrix 𝐷𝐷𝐴 ϵ ℝ𝑚 ×𝑛𝑑 , 

where 𝑚 is the number of drugs, and 𝑛𝑑  is the number of all diseases in the DDA 

network. In 𝐷𝐷𝐴, each element can be one (if DDA is present) or zero (if DDA is 

absent). The Jaccard index (3.1) and Cosine index (3.2) are also used to compute the 

drug-drug similarity measures based on DDAs. These similarity measures are 

abbreviated as DDA_Jac for that uses the Jaccard index and DDA_Cos for that uses 

the Cosine index. For DDA_Jac and DDA_Cos, 𝑢 and 𝑣 are binary vectors with the 

length of 𝑛𝑑 . The similarity scores based on DDAs can indicate that how much two 

drugs are associated with the same diseases. 
 

▪ Similarity measurement based on drug side effects 

The data of drug side effects can be represented in the form of matrix 

𝑆𝐸 ϵ ℝ𝑚×𝑛𝑠𝑒 , where 𝑚 is the number of drugs, and 𝑛𝑠𝑒 is the number of all side 

effect terms in the drug-side effect network. Similarly, each element in 𝑆𝐸 can be 

either one (if drug side effect is present in that drug) or zero (if drug side effect is 

absent in that drug). Both the Jaccard and the Cosine index, shown in Equation (3.1) 

and (3.2) are utilized for computing the drug-drug similarity scores based on drug side 

effects. These similarity measures are defined as SE_Jac for that uses the Jaccard 

index and SE_Cos for that uses the Cosine index. To compute those similarity 

measures, 𝑢 and 𝑣 are binary vectors or two rows obtained from matrix 𝑆𝐸. The 

similarity scores based on SEs can indicate how much two drugs have similar drug 

side effects. 

 In terms of drug similarities, there are seven drug-drug similarity measures 

defined in this thesis. The drug data sets, methods for similarity measurement, and 

𝑆𝐶𝑜𝑠𝑖𝑛𝑒(𝑢, 𝑣) =
𝑢 ∙ 𝑣

‖𝑢‖ ∙ ‖𝑣‖
 (3.2) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 28 

the abbreviations of the similarity measures are summarized in Table 3.3. The values 

of all drug-drug similarity measures are in the range of 0 and 1. 
 

Table 3.3 Seven drug-drug similarity measures and their abbreviations 

Types of data 
Methods for similarity 

measurement 
Defined abbreviations 

Chemical structures Tanimoto index Structures 

Drug-drug interactions Jaccard index DDI_Jac 

Cosine index DDI_Cos 

Drug-disease 

associations 

Jaccard index DDA_Jac 

Cosine index DDA_Cos 

Drug side effects 
Jaccard index SE_Jac 

Cosine index SE_Cos 

 
 
 

3.2.2 Target-target similarity measures 
Based on four data sets of target proteins, different target-target similarity 

measures can be defined and computed by using various methods for similarity 

measurement. The methods how to calculate the target-target similarity measures 

are described according to the data sets used. 

▪ Similarity measurement based on protein sequences 

To measure the similarity between two targets based on protein sequences, 

we applied the Smith-Waterman algorithm [80] and the Needleman-Wunsch 

algorithm [81]. The Smith-Waterman algorithm performs the local alignment between 

two amino acid sequences by comparing segments of all possible lengths. The 

similarity measure based on the local sequence alignments is abbreviated as 

Seq_Loc. The similarity scores between two strings of protein sequences were 

calculated and normalized to be in the range of 0 and 1 by the formula suggested in 
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[12], as shown in Equation (3.3). In this equation, 𝑆𝑊(𝑡𝑖, 𝑡𝑗) is the Smith–Waterman 

score between amino acid sequences 𝑡𝑖 and amino acid sequences 𝑡𝑗 . 
 

𝑆𝑆𝑊(𝑡𝑖, 𝑡𝑗) =
𝑆𝑊(𝑡𝑖, 𝑡𝑗)

√𝑆𝑊(𝑡𝑖, 𝑡𝑖)√𝑆𝑊(𝑡𝑗 , 𝑡𝑗)
 (3.3) 

 

The Needleman-Wunsch algorithm serves the global alignment between two 

amino acid sequences by aligning all sequence segments from beginning to end. The 

abbreviation of the target-target similarity measure based on the global sequence 

alignment is Seq_Glo. The similarity between two strings of protein sequences were 

computed and normalized to be in the range of 0 and 1 by the formula suggested in 

[82], as shown in Equation (3.4). In this equation, 𝑁𝑊(𝑡𝑖, 𝑡𝑗) is the Needleman-

Wunsch score between amino acid sequences 𝑡𝑖 and amino acid sequences 𝑡𝑗 .  
 
 

𝑆𝑁𝑊(𝑡𝑖 , 𝑡𝑗) =
𝑁𝑊(𝑡𝑖 , 𝑡𝑗) − min( min

1≤𝑖≤𝑛
𝑁𝑊(𝑡𝑖 , 𝑡𝑗) , min

1≤𝑗≤𝑚
𝑁𝑊(𝑡𝑖 , 𝑡𝑗))

max(max
1≤𝑖≤𝑛

𝑁𝑊(𝑡𝑖 , 𝑡𝑗) , max
1≤𝑗≤𝑚

𝑁𝑊(𝑡𝑖 , 𝑡𝑗)) −min(max
1≤𝑖≤𝑛

𝑁𝑊(𝑡𝑖 , 𝑡𝑗) , max
1≤𝑗≤𝑚

𝑁𝑊(𝑡𝑖 , 𝑡𝑗)))
 (3.4) 

 

 

Both local and global alignment techniques were computed by using an R 

package named Biostrings version 3.15 [83] based on the BLOSUM62 substitution 

matrix with a gap opening of 10 and a gap extension of 0.5. These parameters are the 

same as the default values in the EMBOSS water tool option from the European 

Bioinformatics Institute. 
 

▪ Similarity measurement based on GO annotations 

To create the target-target similarity matrices based on the semantic similarity 

of GO annotations, we applied the Wang's method [84] and the Jiang's method [85] 

by using an R package named GoSemSim version 1.30.2 [86]. The output values of 

the methods are between 0 and 1. The target-target similarity measures using the 

Wang's method and Jiang's method are abbreviated as GO_Wang and GO_Jiang, 

respectively. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 30 

As the Jiang's method focuses on the property of nodes on the network, the 

semantic similarity is represented in the form of the Information Content (IC) [87]. 

The IC value for term 𝑡 is define as Equation (3.5), where 𝑝(𝑡) is the probability of 

the presence of GO term 𝑡 and its descendants in a certain corpus. 
 

𝐼𝐶(𝑡) = −log (𝑝(𝑡)), (3.5) 
 

To calculate the semantic similarity between term 𝑡1 and 𝑡2, we firstly define 

the most information common ancestor (MICA) of 𝑡1 and 𝑡2, an ancestor term of 

both 𝑡1 and 𝑡2 that has the maximum IC among common ancestors of the terms. 

Then, the semantic similarity based on the Jiang's method can be calculated as 

shown in Equation (3.6). 
 

 

𝑠𝑖𝑚𝐽𝑖𝑎𝑛𝑔(𝑡1, 𝑡2) = 1 −min(1, 𝐼𝐶(𝑡1) + 𝐼𝐶(𝑡2) − 2 × 𝐼𝐶(MICA)) (3.6) 
 

To measure the semantic similarity by using the Wang's method [84, 87-90], 

the directed acyclic graph (DAG) of GO term 𝐴 and its ancestors are represented as 

𝐷𝐴𝐺𝐴 = (𝐴, 𝑇𝐴, 𝐸𝐴), where 𝑇𝐴 is the set of GO terms including 𝐴 and its ancestors, 

and 𝐸𝐴 is the set of links among nodes of 𝑇𝐴 in 𝐷𝐴𝐺𝐴. Each GO term 𝑡 in 𝐷𝐴𝐺𝐴 has 

the semantic contribution (S-value) to target term 𝐴 or (𝑆𝐴(𝑡)), which was defined in 

Equation (3.7). In this formula, 𝑤𝑒 is the semantic contribution factor for edge 𝑒 ∈ 𝐸𝐴 

linking term 𝑡 with its child term 𝑡′. After that, the semantic value of GO term 𝐴 was 

defined in Equation (3.8). 
 

 

𝑆𝐴(𝑡) = 1 if 𝑡 = 𝐴  and  𝑆𝐴(𝑡) = max
𝑡′∈children of 𝑡

𝑤𝑒 × 𝑆𝐴(𝑡′)  if 𝑡 ≠ 𝐴, (3.7) 

𝑆𝑉(𝐴) = ∑(𝑆𝐴(𝑡))

𝑡∈𝑇𝐴

 (3.8) 

 

Formally, let 𝐷𝐴𝐺𝐴 = (𝐴, 𝑇𝐴, 𝐸𝐴) of GO term 𝐴, and 𝐷𝐴𝐺𝐵 = (𝐵, 𝑇𝐵, 𝐸𝐵) of 

GO term 𝐵. The semantic similarity between GO term 𝐴 and GO term 𝐵 by using the 

Wang's method is defined in Equation (3.9), where 𝑆𝐴(𝑡) and  𝑆𝐵(𝑡) are the S-values of 

GO term 𝑡 related to term 𝐴 and term 𝐵, respectively.  
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𝑠𝑖𝑚𝑊𝑎𝑛𝑔(𝐴, 𝐵) =
∑ (𝑆𝐴(𝑡) + 𝑆𝐵(𝑡))𝑡∈𝑇𝐴∩𝑇𝐵

𝑆𝑉(𝐴) + 𝑆𝑉(𝐵)
 (3.9) 

 

▪ Similarity measurement based on PPI information 

Based on PPI information, the similarity scores between target proteins are 

computed by using a PPI network. Three methods are used to define different 

similarity measures based on PPI information, including the methods of inverse 

shortest paths, the Jaccard index, and the Cosine Index. 

To compute the similarity scores using the inverse shortest paths, abbreviated 

as PPI_ISP, Dijkstra's algorithm [91] was utilized to find the distances of the shortest 

paths linking between any two proteins in the PPI network. Then, the distances were 

transformed to the similarity scores using the formula described in [79], as shown in 

Equation (3.10). In this equation, 𝑆(𝑝, 𝑝′) is a computed similarity value between two 

proteins, and 𝐷(𝑝, 𝑝′) is the distance of the shortest path between those proteins in 

the PPI network. According to [79], 𝐴 and 𝑏 were selected to be 0.9 and 1, 

respectively.  
 

𝑆(𝑝, 𝑝′) = 𝐴𝑒−𝑏𝐷(𝑝,𝑝′) (3.10) 
 

In addition to PPI_ISP, the PPI information of each target protein is used to 

compute the similarity scores between target proteins by using the Jaccard and the 

Cosine index, as shown in Equation (3.1) and (3.2). These similarity measures are 

defined as PPI_Jac for that uses the Jaccard index and PPI_Cos for that uses the 

Cosine index. To compute both PPI_Jac and PPI_Cos, the adjacency matrix of the PPI 

network, 𝑃𝑃𝐼 ϵ ℝ𝑛𝑝×𝑛𝑝 , is used, where 𝑛𝑝 is the number of all proteins in the PPI 

network. According to Equation (3.1) and (3.2), 𝑢 and 𝑣 are binary vectors or two rows 

obtained from matrix 𝑃𝑃𝐼. Both PPI_Jac and PPI_Cos can indicate how much two 

target proteins have similar neighboring proteins or interact with similar proteins. 
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▪ Similarity measurement based on protein pathways 

The data of protein pathways can be represented in the form of matrix 

𝑃𝑊 ϵ ℝ𝑛×𝑛𝑝𝑤 , where 𝑛 is the number of target proteins, and 𝑛𝑝𝑤 is the number of 

all pathways. In the matrix, each element can be either one (if a protein involves 

with a particular pathway) or zero (if a protein does not involve with a pathway). 

Denote that 𝑢 and 𝑣 are binary vectors or two rows obtained from matrix 𝑃𝑊. The 

similarity scores between target protein 𝑢 and 𝑣 can be computed by using the 

Jaccard index (PW_Jac) and the Cosing index (PW_Cos). Both similarity scores can 

indicate how much two target proteins share their pathways or involve in the similar 

pathways. 

In summary, nine target-target similarity measures can be defined based on four 

data sets of target proteins. The methods to measure similarity between targets for 

each similarity measure and the abbreviations of all target-target similarity measures 

are summarized in Table 3.4. The values of all target-target similarity measures are in 

the range of 0 and 1. 
 

Table 3.4 Nine target-target similarity measures and their abbreviations 

Types of data 
Methods for similarity 

measurement 
Defined abbreviations 

Protein sequences 
Smith-Waterman algorithm Seq_Loc 

Needleman-Wunsch algorithm Seq_Glo 

GO annotations 
GOSemsim: Wang method GO_Wang 

GOSemsim: Jiang Method GO_Jiang 

Protein-protein  

interactions 

Inverse shortest path similarity PPI_ISP 

Jaccard index PPI_Jac 

Cosine index PPI_Cos 

Protein pathways 
Jaccard index PW_Jac 

Cosine index PW_Cos 
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3.3 Construction of the drug-target heterogenous network 
The drug-target heterogeneous network constructed in this work consists of a 

drug similarity network layer, a target similarity network layer, and a layer of a 

bipartite network of drug-target interactions. According to Figure 3.3, seven drug 

similarity measures and nine target similarity measures were defined based on four 

drug-related and four target-related data sets. These similarity measures can also be 

noticed as seven drug-drug similarity matrices and nine target-target similarity 

matrices, illustrated in Section 3.2. Some or all of them are integrated together to 

create an integrated drug-drug similarity matrix and an integrated target-target 

similarity matrix by using a particular similarity integration method (described in 

Section 3.4). For the selection of drug-drug and target-target similarity measures to be 

integrated, this research introduces the Forward Similarity Integration (FSI) framework 

(described in Section 3.5). As a result, the integrated drug similarity matrix, the 

integrated target similarity matrix, and the drug-target interaction matrix were 

integrated to construct the drug-target heterogeneous network. To predict 

undiscovered links between drugs and target proteins, the network propagation 

algorithm [14] was applied on the constructed heterogeneous network. 
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Figure 3.3 The process of constructing the drug-target heterogeneous network by 
combining multiple similarity networks 
 

3.4 Similarity integration methods 
Based on a particular similarity integration method, Algorithm 1 illustrates 

how to combine multiple drug-drug or target-target similarity measures. Let 𝑆𝑀 =

 {𝑠1, 𝑠2, … , 𝑠𝑝} be a subset of given similarity measures which are arrayed according 

to the order of integration, 𝑋𝑠𝑖 be a matrix containing the similarity scores based on 

similarity measure 𝑠𝑖, and 𝑓 represents a function to combine two similarity matrices 

together. The output of Algorithm 1 is an integrated similarity matrix (IntSimMat) 

based on a set of given similarity measures (𝑆𝑀) and an integration function 𝑓. In this 

algorithm, ‖∙‖ is the number of elements in a set. According to Algorithm 1, 𝑋𝑠𝑖 can 

be either a drug-drug similarity matrix (i.e., 𝑋𝑠𝑖 ∈ ℝ𝑚×𝑚) or a target-target similarity 

matrix (i.e., 𝑋𝑠𝑖 ∈ ℝ𝑛×𝑛). 
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Algorithm 1: Integrating multiple similarity matrices 

Input: A set of given similarity measures (𝑆𝑀) and a function of an integration 
method (𝑓) 
Output: An integrated similarity matrix (𝐼𝑛𝑡𝑆𝑖𝑚𝑀𝑎𝑡) 
1. for  𝑖 =  1 to 𝑖 =  |𝑆𝑀|  −  1 
2.     if 𝑖 ==  1 then 
3.           𝐼𝑛𝑡𝑆𝑖𝑚𝑀𝑎𝑡 =  𝑓(𝑋𝑠𝑖 , 𝑋𝑠𝑖+1) 
4.     else 
5.          𝐼𝑛𝑡𝑆𝑖𝑚𝑀𝑎𝑡 =  𝑓(𝐼𝑛𝑡𝑆𝑖𝑚𝑀𝑎𝑡, 𝑋𝑠𝑖+1) 
6.     end if 
7. end for 
 

In this thesis, we include both linear and non-linear functions for integrating 

multiple similarity matrices. We consider four functions which are average (𝐴𝑉𝐺), 

maximum (𝑀𝐴𝑋), minimum (𝑀𝐼𝑁), and similarity network fusion (SNF) [48]. The SNF 

method is previously described in Section 2.4. The 𝐴𝑉𝐺, 𝑀𝐴𝑋, and 𝑀𝐼𝑁 are defined 

in Equation (3.11) to (3.13), where 𝐴 = [

𝑎11 𝑎12 ⋯ 𝑎1𝑚
𝑎21 𝑎22 … 𝑎2𝑚
⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑚

]   and 𝐵 =

[

𝑏11 𝑏12 ⋯ 𝑏1𝑚
𝑏21 𝑏22 … 𝑏2𝑚
⋮ ⋮ ⋱ ⋮
𝑏𝑚1 𝑏𝑚2 … 𝑏𝑚𝑚

] are 𝑚 ×𝑚 two different similarity matrices based on 

different similarity measures. According to matrix 𝐴, 𝑎𝑖𝑗 is a similarity score between 

drug (or target) 𝑖 and drug (or target) 𝑗 when there are 𝑚 drugs (or targets). Similar to 

matrix 𝐵, 𝑏𝑖𝑗 is a similarity score between drug (or target) 𝑖 and drug (or target) 𝑗 when 

there are 𝑚 drugs (or targets). 

𝐴𝑉𝐺(𝐴, 𝐵) = (
1

2
) [

𝑎11 + 𝑏11 𝑎12 + 𝑏12 ⋯ 𝑎1𝑚 + 𝑏1𝑚
𝑎21 + 𝑏21 𝑎𝑖𝑗 + 𝑏𝑖𝑗 … 𝑎2𝑚 + 𝑏2𝑚

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 + 𝑏𝑚1 𝑎𝑚2 + 𝑏𝑚2 … 𝑎𝑚𝑚 + 𝑏𝑚𝑚

] (3.11) 
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3.5 Forward similarity method (FSI) Framework 
To enhance the heterogeneous network model by integrating multiple similarity 

measures of drugs and target proteins for predicting DTIs, we proposed the Forward 

Similarity Integration (FSI) algorithm, which systematically selects suitable similarity 

integration using the forward selection technique (described in Section 2.5).  

Suppose that there are 𝑘 different drug-drug similarity measures in set 𝐴𝐷 =

 {𝑑𝑑1, 𝑑𝑑2, … , 𝑑𝑑𝑘} and 𝑙 different target-target similarity measures in set 𝐴𝑇 =

 {𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑙}. To create an integrated similarity measure by function 

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑆𝑖𝑚 based on a particular performance measure, the FSI algorithm 

stepwise finds the suitable subsets of drug-drug and target-target similarity measures, 

denoted as 𝑂𝐷 and 𝑂𝑇, respectively. The pseudocodes explaining the FSI algorithm 

is shown in Algorithm 2. 

 

 

 

 

 

 

𝑀𝐼𝑁(𝐴, 𝐵) = [

𝑚𝑖𝑛(𝑎11, 𝑏11) 𝑚𝑖𝑛(𝑎12, 𝑏12) ⋯ 𝑚𝑖𝑛(𝑎1𝑚, 𝑏1𝑚)
𝑚𝑖𝑛(𝑎21, 𝑏21) 𝑚𝑖𝑛(𝑎𝑖𝑗, 𝑏𝑖𝑗) … 𝑚𝑖𝑛(𝑎2𝑚, 𝑏2𝑚)

⋮ ⋮ ⋱ ⋮
𝑚𝑖𝑛(𝑎𝑚1, 𝑏𝑚1) 𝑚𝑖𝑛(𝑎𝑚2, 𝑏𝑚2) … 𝑚𝑖𝑛(𝑎𝑚𝑚, 𝑏𝑚𝑚)

] (3.12) 

𝑀𝐴𝑋(𝐴, 𝐵) = [

𝑚𝑎𝑥(𝑎11, 𝑏11) 𝑚𝑎𝑥(𝑎12, 𝑏12) ⋯ 𝑚𝑎𝑥(𝑎1𝑚, 𝑏1𝑚)
𝑚𝑎𝑥(𝑎21, 𝑏21) 𝑚𝑎𝑥(𝑎𝑖𝑗, 𝑏𝑖𝑗) … 𝑚𝑎𝑥(𝑎2𝑚, 𝑏2𝑚)

⋮ ⋮ ⋱ ⋮
𝑚𝑎𝑥(𝑎𝑚1, 𝑏𝑚1) 𝑚𝑎𝑥(𝑎𝑚2, 𝑏𝑚2) … 𝑚𝑎𝑥(𝑎𝑚𝑚, 𝑏𝑚𝑚)

] (3.13) 
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Algorithm 2: Forward Similarity Integration (FSI) 

Input: A set of all drug-drug similarity measures (𝐴𝐷) and target-target similarity 
measures (𝐴𝑇) 
Output: A suitable subset of drug-drug similarity measures (𝑂𝐷) and target-target 
similarity measures (𝑂𝑇), which are orderly integrated to obtain the most suitable 
combined drug-drug and target-target similarity measures.  
1. Initialize 𝑘 =  0, 𝑂𝐷0, 𝑂𝑇0  =  , 𝑅𝐷0  =  𝐴𝐷, 𝑅𝑇0   =  𝐴𝑇, 𝑃𝑅𝐹0  =  0. 
2. repeat 
3.      𝑘 =  𝑘 +  1 

4.      𝑥∗, 𝑦∗  = argmax
𝑥∈ 𝑅𝐷𝑘 −1,   𝑦∈𝑅𝑇𝑘−1 

[𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑃𝑅𝐹(𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑆𝑖𝑚(𝑂𝐷𝑘 −1 ∪ {𝑥}),     

                   𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑆𝑖𝑚(𝑂𝑇𝑘−1 ∪ {𝑦})))] // Add both drug and target similarity 
5.     Denote the suitable performance as 𝑃𝑅𝐹𝑏𝑜𝑡ℎ, 𝑋∗  =  {𝑥∗}, 𝑎𝑛𝑑 𝑌∗  =  {𝑦∗} 
6.     if 𝑘 ==  1 then 
7.          𝑃𝑅𝐹𝑘  =  𝑃𝑅𝐹𝑏𝑜𝑡ℎ 
8.     else   // Also consider adding only drug or target similarity 
9.          𝑥𝑑∗   =  argmax

 𝑥  𝑅𝐷𝑘−1 
[𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑃𝑅𝐹(𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑆𝑖𝑚(𝑂𝐷𝑘−1  ∪ {𝑥}),  

               𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑆𝑖𝑚(𝑂𝑇𝑘−1)))] and denote the suitable performance as 𝑃𝑅𝐹𝑑𝑟𝑢𝑔  
10.          𝑦𝑡∗  =  argmax

𝑦 𝑅𝑇𝑘−1 
 [𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑃𝑅𝐹(𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑆𝑖𝑚(𝑂𝐷𝑘−1),  

           𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑆𝑖𝑚(𝑂𝑇𝑘−1 ∪ {𝑦})))] and denote the suitable performance as 
 𝑃𝑅𝐹𝑡𝑎𝑟𝑔𝑒𝑡  

11.         𝑃𝑅𝐹𝑘  =  max(𝑃𝑅𝐹𝑏𝑜𝑡ℎ, 𝑃𝑅𝐹𝑑𝑟𝑢𝑔, 𝑃𝑅𝐹𝑡𝑎𝑟𝑔𝑒𝑡) 
12.         if 𝑃𝑅𝐹𝑘  ==  𝑃𝑅𝐹𝑑𝑟𝑢𝑔 then 
13.              𝑋∗  =  {𝑥𝑑∗ } and 𝑌∗  =  ∅ 
14.         else if 𝑃𝑅𝐹𝑘  ==  𝑃𝑅𝐹𝑡𝑎𝑟𝑔𝑒𝑡 then 
15.               𝑋∗  =  ∅ and 𝑌∗  =  {𝑦𝑡∗} 
16.          end if 
17.     end if 
18.      if 𝑃𝑅𝐹𝑘  >  𝑃𝑅𝐹𝑘−1 then 
19.          Update 𝑂𝐷𝑘 = 𝑂𝐷𝑘−1 ∪ 𝑋∗, 𝑂𝑇𝑘 = 𝑂𝑇𝑘−1 ∪ 𝑌∗, 𝑅𝐷𝑘 =  𝑅𝐷𝑘−1  −  𝑋∗, 𝑅𝑇𝑘 = 𝑅𝑇𝑘−1 − 𝑌∗ 
20.     end if 
21. until (𝑃𝑅𝐹𝑘  𝑃𝑅𝐹𝑘−1 𝑜𝑟 |𝑅𝐷𝑘|  ==  0 𝑜𝑟 |𝑅𝑇𝑘|  ==  0) 
22. return the latest 𝑂𝐷 and 𝑂𝑇 
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According to Algorithm 2, the FSI begins with the empty suitable models i.e., 

𝑂𝐷 = ∅ and 𝑂𝑇 = ∅. In each step, a drug-drug and a target-target similarity measure 

(𝑑𝑑𝑖 ∈ 𝐴𝐷 and 𝑡𝑡𝑗 ∈ 𝐴𝑇) are added into sets 𝑂𝐷 and 𝑂𝑇, respectively, to form 

different heterogeneous network models. These models were compared their 

performance (𝑃𝑅𝐹) to select the suitable one which would be added into sets 𝑂𝐷 

and 𝑂𝑇. Then, the drug-drug and target-target similarity measure recently added to 

the suitable subsets would be removed from the remaining sets of drug-drug and 

target-target similarity measures, denoted as 𝑅𝐷 and 𝑅𝑇, respectively. To avoid 

combining some correlated similarity measures together, the similarity measures 

derived from the same data set (e.g., DDI_Jac and DDI_Cos) will be removed from 𝑅𝐷 

and 𝑅𝑇 when one of them is selected to be integrated. 

The FSI algorithm iteratively updates 𝑂𝐷 and 𝑂𝑇 by adding a drug-drug and 

target-target similarity measure until no more performance improvement from the 

adding of similarity measures or no similarity measures remaining in 𝑅𝐷 or 𝑅𝑇. 

Therefore, a heterogeneous network model formed with the integrated similarity 

measures obtained by the FSI algorithm are expected to show the suitable 

performance in predicting DTIs. Additionally, the suitable subsets of similarity 

measures obtained by FSI (𝑂𝐷 and 𝑂𝑇) may depend on the performance measure 

used to evaluate heterogeneous network models and the integration method 

applied. In this thesis, we thus consider several performance measures used in FSI 

and several integration functions to create an integrated similarity matrix from 

multiple similarity measures. 

 

3.6 Performance measurement 
To evaluate the performance of all heterogeneous network models, we 

performed a ten-folds cross-validation technique. All drug-target interactions were 

classified into the positive class (known DTIs) and negative class (unknown DTIs). 

Then, we randomly divided both positive and the negative interactions into ten 
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equal parts which each part treated as the test data in turn, and the remaining nine 

parts are used as the training data. To compare the predicted and the actual classes, 

a confusion matrix of binary classes was used, as shown in Table 3.5.  

 

Table 3.5 A confusion matrix 
 

 

 

 

 

 
 

 

Generally, there are some frequently used metrics in classification, including 

precision (PRE), recall (REC), Accuracy (ACC), Matthews Correlation Coefficient (MCC), 

F1-measure (F1), area under a precision-recall curve (AUPR), and area under a 

receiver operating characteristic curve (AUC), which the values range from 0 to 1. The 

higher of the values, the better the classifier is. The performance measures used in 

this work are shown as follows and can be calculated by Equation (3.14) - (3.18).  

 

𝑃𝑅𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3.14) 

𝑅𝐸𝐶 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(3.15) 

𝐹1 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∙ 𝑃𝑅𝐸 ∙ 𝑅𝐸𝐶

𝑃𝑅𝐸 + 𝑅𝐸𝐶
 (3.16) 
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𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3.17) 

𝑀𝐶𝐶 =
𝑇𝑃 ∙ 𝑇𝑁 − 𝐹𝑃 ∙ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃) ∙ (𝑇𝑃 + 𝐹𝑁) ∙ (𝑇𝑁 + 𝐹𝑃) ∙ (𝑇𝑁 + 𝐹𝑁)
 (3.18) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV 
RESULTS AND DISCUSSION 

 

In this chapter, the results of the preliminary data analysis are shown and 

discussed. Next, the results of creating the heterogeneous network model with 

integration of multiple similarity measures (i.e., parameter settings and the selection 

of similarity integration using the FSI framework) are provided. After obtaining the 

model with the suitable similarity integration or the FSI model, the results of the 

performance evaluation of the FSI model are shown and discussed. Finally, the FSI 

model is utilized to identify new DTIs, and the predictions are then verified by 

searching for supporting evidence.  

 

4.1 Preliminary data analysis 
4.1.1 Data summarization 

In this thesis, four data sets of drugs (i.e., chemical structures, DDIs, DDAs, and 

SEs) and four data sets of target proteins (i.e., protein sequences, GO annotations, 

PPIs, and PWs) were used to generate different similarity measures of drugs and 

target proteins. To avoid problems in integrating multiple similarity measures of drugs 

and target proteins, only drugs and target proteins that have all required data are 

included in this thesis. As a result, there are 862 drugs, 1,517 target proteins, and 

there are 3,583 known DTIs. The summarization of drug and target data are shown in 

Table 4.1. 

All 862 drugs have their own chemical structures. For DDIs, those 862 drugs 

interact to 4,014 unique drugs with 924,819 drug-drug interactions. In the data set of 

DDAs, 862 drugs are associated with 2,287 unique diseases, and there are 23,201 

drug-disease associations. Moreover, those 862 drugs have 5,280 unique SE terms 

with 140,682 links between drugs and their SE terms. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 42 

In terms of target proteins, 1,517 targets also have their own protein 

sequences. Those proteins are annotated by 8,924 unique GO terms of any aspects, 

and there are 45,866 links between target proteins and their annotated GO terms. 

Moreover, those 1,517 target proteins interact with 14,202 unique proteins in the PPI 

network of 218,721 PPIs. 1,517 target proteins are also involved in 283 unique 

pathways, and there are 7,988 links between target proteins and their involved 

pathways. 

 

Table 4.1 Summary information of all drug and target data 

Data type Data name 
Number of 

unique entities 

Number of 

Interactions 

Drug data 

(862 drugs) 

Structures 862 structures - 

DDIs 4,014 drugs 924,819 

DDAs 2,287 diseases 23,201 

SEs 5,280 SE terms 140,682 

Target data 

(1,517 target proteins) 

Seqs 1,517 sequences - 

GOs 8,924 GO terms 45,866 

PPIs 14,202 proteins 218,721 

PWs 283 pathways 7,988 

DTI data DTIs - 3,583 

 

4.1.2 Degree distributions of the DTI network 
As the DTI data can be considered as the drug-target bipartite network, the 

degree distributions of this network are observed to analyze all known DTIs in hands. 

The degree distributions of the drug-target bipartite network are shown in Figure 4.1. 

Based on the known drug-target interactions, this figure describes how many target 

proteins are associated with a drug and how many drugs are associated with a target 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 43 

protein. In this figure, x-axis represents the degree of a node, and y-axis represents 

the fraction of nodes having degree k.  

 

 

(a) The degree distribution of drugs 

 

(b) The degree distribution of target proteins 

Figure 4.1 Degree distributions of the drug-target bipartite network 
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According to Figure 4.1, it's clear that most drugs and target proteins are 

associated with few target proteins and drugs, respectively. There are 80.97% of the 

drugs and 91.76% of the target proteins that have the node degrees less than 5. This 

means that more than 80% of the drugs and more than 90% of the target proteins 

interact with less than 5 target proteins and drugs, respectively. The maximal degrees 

of the drug and target nodes are 61 and 40, respectively. In addition, only 0.14% of 

the drugs have degrees over 40. A drug can bind approximately four target proteins 

on average, and a target protein can interact with approximately two drugs on 

average. Additionally, it is observed that the majority of nodes are rarely connected 

to another while only a few nodes have their own dense links. This suggests that 

there would be many undiscovered links between drugs and target proteins in the 

drug-target bipartite network. 

 

4.1.3 Correlation analysis 
To preliminary evaluate the relationship among the defined similarity 

measures, we performed the Pearson correlation analysis between seven drug-drug 

similarity measures and between nine target-target similarity measures. A Pearson 

correlation coefficient (𝜌) is a measure of linear correlation between two data sets 

that assigns a value between -1 and 1, where 0 is no correlation, 1 is total positive 

correlation, and -1 is total negative correlation. The Pearson correlation coefficients 

that we calculate for all pairs of drug-drug and target-target similarity measures are 

shown in Figure. 4.2, where the darker the color, the greater the correlation. 
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(a) Drug similarity measures 

 
(b) Target similarity measures 

Figure 4.2 Heatmaps of the Pearson correlation coefficients of drug and target 
similarity measures. 

 

According to Figure 4.2, most of drug-drug similarity matrices and target-target 

similarity matrices are slightly positively correlated with one another. This suggests 

that most drug and target similarity measures tend to provide information 
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complement that of one another. Nevertheless, the similarity measures based on the 

same data sets, such as DDI_Cos and DDI_Jac, are highly positive relationship 

together (𝜌 > 0.8), as shown in Figure 4.2a. This suggests that these similarity 

measures are very similar and almost an identical similarity measure. To avoid unfair 

and useless integrating of multiple drug or target similarity measures, we do not 

combine the similarity measures based on the same data set in the FSI algorithm. 

Interestingly, the target similarity measures based on PPIs, protein sequences, 

and pathway information are slightly to moderately positively correlated together (𝜌 

< 0.5), as shown in Figure 4.2b. This may be because the target-target similarity based 

on protein sequences and PPIs could infer to the similarity based on pathways that 

proteins involve with. Furthermore, the drug similarity measures based on DDIs, 

structures, and DDAs, and the target similarity measures based on GOs, PPI, and Seq 

are negligibly positively correlated together (𝜌 < 0.3). However, the values of the 

correlation coefficients of all similarity measures, except the similarity measures 

based on the same data sets, are slightly positive. This could infer that these 

similarity measures are good complements for being integrated, and combining the 

different similarity measures in constructing a drug-target heterogeneous network 

model may improve the DTI prediction.  

 

4.2 Parameter setting  
In a process of the heterogeneous network propagation, there is a parameter 

required to be suitably adjusted, i.e., the decay factor. This parameter indicates how 

much the propagation from the edges’ weights affects the weight updates of the 

drug-target links relative to the initial weights of the drug-target links. Most studies, 

such as [33, 41], set the value of the decay factor at 0.4 because this value was 

suggested by [14]. Nevertheless, we used diverse data sets and different integration 

methods to construct numerous heterogenous network models for finding the 

suitable model with a suitable similarity integration by FSI. Those models with 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 47 

different similarity integration may have distinct suitable values of the decay factor. 

To reduce model variables, this experiment aims to preliminarily specify an 

estimated value of the decay factor for all heterogeneous network models. 

With seven drug-drug similarity measures and nine target-target similarity 

measures, we can congregate 5,671 possible combinations of drug and target 

similarity measures. The possible combinations of the drug and target similarity 

measurements are summarized in Table 4.2, where columns and rows of the table 

represent the numbers of drug and target similarity measures used for constructing a 

heterogeneous network propagation model. Among those 5,671 combinations of the 

similarity measures, there is not any combination that integrates the similar similarity 

measures generated from the same data sets together. 

 

Table 4.2 The possible combinations of drug and target similarity measures 

  Number of drug similarity measures used 

  1 2 3 4 

Nu
m

be
r o

f t
ar

ge
t 

sim
ila

rit
y 

m
ea

su
re

s u
se

d 1 63 210 308 168 

2 162 540 792 432 

3 180 600 880 480 

4 72 240 352 192 

  Sum 5,671 
 

In this experiment, we perform a stratified random of 10% of all possible 

combinations, shown in Table 4.2. This results in 567 combinations of drug and target 

similarity measures. For each combination with multiple drug and target similarity 

measures, we integrate the drug and target similarity measures by using all 
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integration functions (i.e., AVG, MAX, MIN, and SNF) to create the heterogeneous 

network models. Thus, we have 567 different heterogeneous network models with 

four integration functions. 

To find suitable values of the decay factor, we varied the values of the decay 

factor from 0.1 to 1 with the step of 0.1 in the network propagation for each model. 

Then, ten-fold cross validation was conducted to evaluate the model performance 

when using each value of the decay factor. For each model, we investigated the 

AUC, AUPR, and F1 values and used each of these metrics to select the suitable 

value of the decay factor. To compare among all values of the decay factor, we 

counted numbers of the models that select each value of the decay factor based on 

AUC, AUPR, and F1, as shown in Figure 4.3. 

 

 

Figure 4.3 The distributions of the selected values of the decay factor. (a) The 

number of models with the maximum AUC values (%). (b) The number of models 
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with the maximum AUPR values (%). (c) The number of models with the maximum 

F1 values (%). (d) The number of models with the maximum AUC/AUPR/F1 values 

(%). 
 

According to Figure. 4.3a, most of the models accounted for 85.23% reach the 

maximum AUC values when the decay factor is 0.1. Meanwhile, Figure 4.3b shows 

that 42.02% and 34.35% of the sampled models achieve the maximum AUPR values 

when the decay factor of 0.9 and 0.1 are used, respectively. Moreover, when we 

exploit the decay factor of 0.9 and 0.1, most of the models, 38.67% and 26.37% of 

the sampled models, obtain the maximum F1 scores, as shown in Figure 4.3c. To 

select a value of the decay factor that would provide the approximately suitable 

AUC, AUPR, and F1 values, we investigate the overall results based on AUC, AUPR, 

and F1, as shown in Figure 4.3d. As the result, it clearly shows that the decay factor 

of 0 .1  gives the highest coverage of the sampled models with the maximum AUC, 

AUPR, and F1 values. Therefore, we specified the value of the decay factor as 0.1 in 

the network propagation for all heterogeneous network models. 

 

4.3 Selection of the suitable similarity integration using FSI 
Based on a given method of similarity integration, we introduced the FSI 

framework for building the heterogeneous network model with the suitable similarity 

integration. The FSI framework systematically discovers the suitable sets of drug and 

target similarity measures combined by a particular similarity integration method. In 

the FSI framework, several similarity integration methods (i.e., AVG, MAX, MIN, and 

SNF) are also compared to select the suitable method. Three comprehensive 

evaluation metrics, i.e., AUC, AUPR, and F1, are used to serve as the criteria for 

selecting a similarity measure integrated into a model at each time in FSI. Ten-folds 

cross validation was executed to evaluate the model performance of different 

similarity integration and select the suitable one. For each similarity integration 
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method and each selecting criteria, the suitable models selected by FSI are shown in 

Table 4.3. 

 

Table 4.3 The FSI models based on different similarity integration methods and 
selecting criteria 

Similarity integration 
method 

Performance measure for selecting drug/target similarities 

AUC AUPR F1 

AVG 
Model 1 

{DDA_Jac, PPI_Jac} & 
{Seq_Loc} 

Model 2 
{DDA_Jac} & {Seq_Loc} 

MAX 
Model 3 

{DDA_Jac} & {PPI_Jac} 

MIN 

Model 4 
{DDA_Jac, Structures, 

DDA_Cos} & 
{PPI_Jac, Seq_Loc} 

Model 5 
{DDA_Jac, SE_Jac, Structures, DDI_Jac} & 

{Seq_Loc} 

SNF 

Model 6 
{DDA_Jac, DDI_Jac, 

PPI_Jac} &  
{Seq_Loc, PW_Jac} 

Model 7 
{DDA_Jac, DDI_Cos, 

Structures} & 
{Seq_Loc} 

Model 8 
{DDA_Jac, DDI_Jac, 

Structures} & 
{Seq_Loc} 

 

According to Table 4.3, the FSI algorithm selects the models formed by 

different combinations of drug and target similarities when we used distinct 

integration methods and performance measures. Nevertheless, when AUPR or F1 are 

used as the selecting criteria for FSI, the same integrated models are usually 

obtained (i.e., Model 2 and Model 5). For example, Model 2 uses only a single drug-

drug similarity measure (i.e., DDA_Jac) and a single target-target similarity measure 

(i.e., Seq_loc), when AVG or MAX is specified as the selected similarity integration 

method. Similarly, the FSI algorithm selects Model 5, which integrates DDA_Jac, 

SE_Jac, Structures, and DDI_Jac into a single drug similarity measure by MIN and 

utilizes Seq_Loc as a target similarity measure, whether we used AUPR or F1 as the 
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selecting criteria. This suggests that AUPR or F1 may be used interchangeably in 

certain situations.  

Moreover, we notice that most models obtained by the FSI algorithm always 

use DDA_Jac and Seq_Loc because these similarity measures are preliminarily 

identified as the suitable similarity measures at the initial iteration of the FSI 

algorithm. This implies that the therapeutic effects of drugs and the local sequence 

alignments of proteins are relatively important similarity measures for predicting DTIs. 

This is consistent with several recent studies using therapeutic effects of drugs and 

the local sequence alignments to predict new DTIs [46, 92-95]. Then, the FSI 

algorithm additionally selects other drug and target similarities to combine with them 

in the next iterations. From eight different models obtained, we estimated the 

performance of each model by performing ten-fold cross validation and calculated 

four evaluation metrics in addition to AUC, AUPR and F1, i.e., precision, recall, ACC, 

and MCC. The mean values of all evaluation metrics of each model are shown in 

Table 4.4. Those values are then compared by performing t-tests at a significance 

level of 0.05.  
 

Table 4.4 Performance of eight FSI models and results of t-tests 

Model 
no. 

AUPR AUC PRE REC F1 ACC MCC 

1 0.227 0.951 0.342 0.333 0.333 0.996 0.334 

2 0.267a, b 0.935 0.389a, b 0.373a, b 0.379a, b 0.997a, b 0.378a, b 
3 0.140 0.947 0.192 0.284 0.221 0.994 0.226 

4 0.233 0.953 0.310 0.400 0.348 0.996 0.349 
5 0.335c 0.926 0.426c 0.443c 0.434c 0.997c 0.433c 

6 0.294 0.958 0.334 0.422 0.367 0.996 0.370 

7 0.481d, e 0.933e 0.578d 0.508d 0.539d, e 0.998d 0.540d, e 
8 0.481 0.933 0.564 0.515 0.538 0.998 0.537 

The maximum value is shown in bold. 
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a Significantly greater than a mean value of Model 1 at a significance level of 0.05 
b Significantly greater than a mean value of Model 3 at a significance level of 0.05 
c Significantly greater than a mean value of Model 4 at a significance level of 0.05 
d Significantly greater than a mean value of Model 6 at a significance level of 0.05 
e Significantly greater than a mean value of Model 8 at a significance level of 0.05 
 

According to Table 4.4, we found that Model 2 significantly performs better 

than other models based on AVG and MAX (i.e., Model 1 and Model 3) at a 

significance level of 0.05. When compared among the models based on MIN, Model 

5 significantly outperforms Model 4 at a significance level of 0.05. For the models 

based on SNF, the overall performance of Model 7 is significantly greater than that of 

Model 6 and 8 in most evaluation metrics, such as AUPR, F1, and MCC, at a 

significance level of 0.05. After the different models with the similar integration 

method were compared, we can recommend that using AUPR as a performance 

measure for selecting drug and target similarities to integrate into a model produces 

the models with better performance than those of using AUC or F1. 

In addition, it is noticeable from Table 4.4 that the maximum performance 

values mostly are of the models using SNF as a similarity integration method (Model 

6, 7, and 8). This may be because the linear integration methods (i.e., AVG, MIN, and 

MAX) are somewhat sensitive to outliers of some similarity scores whereas SNF is 

able to reduce noise of weak similarity values and can increase the significance of 

interactions very confusing values between drugs or targets to the other similarity 

measures [48]. Currently, SNF is an effective method widely exploited for aggregating 

multi-omics data in several biological applications, such as DTI prediction [47, 96] and 

DDA inference [97, 98]. 

To finally select the suitable model with the most suitable similarity 

integration, Model 6, 7, and 8 are compared their performance values. By performing 

t-tests, the mean values of almost evaluation metrics, except that of AUC, of Model 
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7 are significantly greater than those of Model 6 at a significance level of 0.05. When 

compared between Model 7 and 8, the mean values of AUPR, AUC, F1, and MCC of 

Model 7 is significantly higher than those of Model 8 at a significance level of 0.05. 

Therefore, Model 7, which integrates DDA_Jac, DDI_Cos, and Structures into a drug 

similarity network by SNF and uses Seq_Loc as a target similarity, is selected as the 

suitable FSI model. This implies that the therapeutic effects of drugs, drug-drug 

interactions, chemical structures of drugs, and protein sequences are useful similarity 

measures for predicting DTIs. This corresponds to several recent studies that also 

utilize those properties of drugs and targets to predict new DTIs [99, 100].  

Moreover, it was reported that the therapeutic effects of drugs are associated 

with the abilities to modulate drug targets in the molecular level and could promote 

the relationships between drugs and targets [96]. Furthermore, the high similarity 

scores based on DDIs could infer to highly similar targets or processes that drugs 

involve. Importantly, two molecules with similar chemical structures can likely relate 

to same target, and two targets with similar sequence structures are likely to interact 

with same drugs [4, 39, 101-103]. In addition, SNF which is a non-linear integration 

method, is suitable to be used to combine the drug-drug similarity measures based 

on DDA_Jac, DDI_Cos, and Structures because the Pearson correlation coefficient of 

these similarity measures are slightly positive, according to Figure 4.2. 

 

4.4 Performance evaluation of the FSI model 
In this section, the heterogeneous network model with the drug and target 

similarity integration selected by the FSI algorithm outperformances other models. 

This selected model is termed as the FSI model. By FSI, the selected model 

combines DDA_Jac, DDI_Cos, and Structures as an integrated drug similarity by using 

SNF and employs Seq_Loc as a target similarity. In this section, the experiment to 

demonstrate the FSI efficiency is conducted. In this experiment, the performance of 

the FSI model is compared with those which fully combines all similarity measures, 
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randomly integrate similarity measures, and conventionally integrate similarity 

measures from chemical structures of drugs and protein sequences of targets. Next, 

the integration of additional drugs’ properties (i.e., DDA_Jac and DDI_Cos) are verified 

and discussed their useful information for predicting DTIs. 

4.4.1 Verification of the FSI efficiency 
To demonstrate the superior efficiency of the FSI algorithm, we compare the 

performance of the FSI model with the full integration model, the random 

integration models, and the conventional model, which uses only Structures and 

Seq_Loc. Ten-fold cross validation was executed to evaluate the performance of 

each model.  
 

▪ Comparing with the full integration model  

The full integration model is a model which combines all existing similarity 

measures of drugs and targets considered in this thesis. The comparison of the 

performance of the FSI model and the full integration model are shown in Figure 4.4. 

Noticeably, the FSI model performs better than the full integration model. By t-tests, 

the mean values of all evaluation metrics of the FSI model, except AUC, are 

significantly greater than those of the full integration model at a significance level of 

0.01. This means that a model formed by selecting only some advantageous drug 

and target similarities by FSI is more efficient than a model integrating all existing 

drug and target similarities without cautious consideration. Moreover, it can be 

noticed that the mean values of AUC and ACC of the FSI model is close to full 

integration model. This could be because the information of DTIs in the thesis is an 

imbalanced problem, the present DTIs less than the absent DTIs, the mean values of 

AUC and ACC. 
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Figure 4.3 Performance comparison of the full integration model and the FSI model 
 

▪ Comparing with the random integration models 

In the random integration models, drug and target similarities were randomly 

selected 100 times to combine by using SNF and then construct different 100 

models. To cover all models with different numbers of drug and target similarity 

measures integrated, those 100 integrated models are randomly selected from all 

possible combinations of the numbers of drug and target similarity measures 

integrated.    

To demonstrate that the performance of the FSI model is better than those 

of 100 random integration models, the results of the t-tests that compare the mean 

value of each evaluation metric of the FSI model with that of each random 

integrating model are presented in Figure 4.5. 
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Figure 4.4 Performance comparison between 100 random integration models and 
the FSI model 
 

In Figure 4.5, the light blue bars are showed with the numbers of t-tests 

where the mean value of an evaluation metric of the FSI model is greater than that 

of a random integrating model at a significance level of 0.05. The labeled numbers in 

the light-yellow bars and light green bars are the numbers of t-tests resulting that the 

mean value of an evaluation metric of the FSI model is equal to or lower than that 

of a random integration model at a significance level of 0.05. From Figure 4.5, it is 

showed that the mean values of all evaluation metrics of the FSI model, except AUC 

and REC, are significantly greater than those of the 100 random integrating models at 

a significance level of 0.05. This implies that the model formed by systemically 

selecting drug and target similarities using FSI is more efficient than a model 

randomly selecting drug and target similarities to integrate into the model. 

 

▪ Comparing with the conventional model  

The conventional model is a model that were commonly used to predict 

DTIs based on the similarity-based methods (e.g., [12-15]) This model applies only 
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drug chemical structures to prepare a drug similarity measure and uses only local 

sequence alignments of target proteins for computing a target similarity measure. To 

demonstrate the superior performance of the FSI model, we compared the efficiency 

of the FSI model with that of the conventional model as shown in Figure 4.6. 
 

  

Figure 4.5 Performance comparison of the conventional model and the FSI model 
 

According to Figure 4.6, we found that the FSI model performs better than 

the conventional model at a significance level of 0.01. This means that integrating 

DDA_Jac and DDI_Cos into a drug similarity measure in addition to drug chemical 

structures can greatly improve the performance of the conventional model in 

predicting DTIs. Next, both DDA_Jac and DDI_Cos are verified their significance in 

improving DTI predictions.  
 

4.4.2 Significance of the integrated drug similarities 
By using FSI, we obtained the suitable heterogeneous model, which combines 

DDA_Jac, DDI_Cos, and Structure into a drug similarity measure by SNF and uses 

Seq_Loc as a target similarity measure. In addition to the conventional model, the 

FSI model additionally integrates DDA_Jac and DDI_Cos into the model and can 
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highly improve DTI predictions. To verify the importance of those additional drug 

similarity measures in predicting DTIs, we compared the performance of the FSI 

model with those of the models removing DDA_Jac (the DDA_Jac reduced model) 

and removing DDI_Cos (the DDI_Cos reduced model). Furthermore, we compared the 

performance of the FSI model with those of the models permuting the DDA matrix 

(the DDA permuted model) and the DDI matrix (the DDI permuted model). The mean 

AUPR, AUC, and F1 values of each model and the results of the t-tests are shown in 

Table 4.5. 

 

Table 4.5 Performance comparison of the FSI model and the reduced models 

Model 
AUC AUPR F1 

mean p-value mean p-value mean p-value 

The FSI model 0.9325 - 0.4811 - 0.5392 - 

DDA_Jac reduced model 0.9221a 6.46x10-8 0.4724a 3.65x10-6 0.5310a 3.91x10-5 

DDI_Cos reduced model 0.9241a 2.47x10-7 0.4711a  1.43x10-6 0.5278a 1.36x10-6 

DDA permuted model 0.9324a  0.0099 0.4809b 0.0282 0.5384ns 0.0784 

DDI permuted model 0.9137a 5.19x10-9 0.4693a 1.13x10-6 0.5240a 1.03x10-5 

The permuted model of 
both DDAs and DDIs  

0.9137a  5.20x10-9 0.4693a 1.11x10-6 0.5239a 8.76x10-6 

a The mean value of the FSI model is significantly greater than the compared model 

at a significance level of 0.01 
 b The mean value of the FSI model is significantly greater than the compared model 

at a significance level of 0.05 
ns The mean value of the FSI model is not significantly different with that of the 

compared model at a significance level of 0.05 
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According to Table 4.5, we found that the mean AUC, AUPR, and F1 values of 

the FSI model, i.e., 0.9325, 0.4811, and 0.5392, respectively, are greater than those of 

both DDA_Jac reduced model and DDI_Cos reduced model at a significance level of 

0.01. This clearly demonstrates the advantages of both DDA_Jac and DDI_Cos for 

predicting DTIs. To construct the suitable model, we thus cannot remove both 

DDA_Jac and DDI_Cos from the heterogeneous network model.  

Moreover, we further investigated the significance of the DDA_Jac and 

DDI_Cos by randomly shuffling the existing edges in the DDA and DDI matrices. Then, 

we reconstructed the heterogeneous network models with the DDA_Jac permuted 

and DDI_Cos permuted matrices. For both cases, SNF is still used as a similarity 

integration method. Therefore, there are three possible permuted models, including 

the DDA permuted model, the DDI permuted model, and the permuted model of 

both DDAs and DDIs. 

According to Table 4.5, it is noticed that the mean AUC, AUPR, and F1 values 

of the FSI model are greater than those of the permuted model at a significance 

level of 0.01, except the mean AUPR and F1 values of the DDA permuted model. 

The mean AUPR value of the FSI model are greater than that of the DDA permuted 

model at a significance level of 0.05, whereas the mean F1 value of the FSI model is 

not significantly different from that of the DDA permuted model. Therefore, it cannot 

be statistically concluded that the FSI model performs the DDA permuted model, 

especially when considering the mean F1 values. This may be due to the large 

sparsity of the DDA matrix, resulting that permuting this matrix does not change 

DDA_Jac from the original one. In summary, the FSI model, which combines DDA_Jac, 

DDI_Cos, and Structures into a drug similarity network by SNF and takes Seq_Loc as a 

target similarity, is the model with the suitable similarity integration for predicting 

new DTIs, based on the available datasets and the similarity integration methods 

considered in this thesis.  
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4.5 Identification of new drug-target interactions 
In this section, the FSI model is demonstrated its efficacy in the new DTI 

prediction, besides the performance evaluation by the ten-fold cross-validation. In 

this section, two types of case studies are considered. The first type is the prediction 

of new drugs for a target protein with only one known drug, and the second type is 

the prediction of new target proteins for a drug with only one known target.  

4.5.1 Predicted drugs for target proteins with one known drug 
There are three selected target proteins including tubulin beta-3 chain 

(Q13509), nicotinic acetylcholine receptor alpha-1 (P02708), and calcium/calmodulin-

dependent 3',5'-cyclic nucleotide phosphodiesterase 1C (Q14123). Their top five 

predicted drugs are shown in Table 4.6.  
 

 

Table 4.6 The top 5 predictions for three selected target proteins. 

Targets Known Drug 
Predicted Drug  
(DrugBank ID) 

Tubulin beta-3 chain (Q13509) 
Lxabepilone 
(DB04845) 

DB00541, DB00570, 
DB11641, DB00518, 
DB00643 

Nicotinic acetylcholine receptor 
alpha-1 (P02708) 

Lamotrigine 
(DB00555) 

DB00184, DB00657, 
DB01273, DB00514, 
DB00333 

Calcium/calmodulin-dependent 
3',5'-cyclic nucleotide 

phosphodiesterase 1C (Q14123) 

Caffeine  
(DB00201) 

DB01023, DB01244, 
DB00622, DB01656, 
DB00651 

Note that the drugs found on publications are shown in bold. 
 

The first case of the selected target proteins with one known drug is tubulin 

beta-3 chain (Q13509). A drug binding to this protein is lxabepilone (DB04845), which 

can reduce improper cell division caused by several types of cancer, such as breast 
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cancer, lung cancer, and lymphoma. Based on top five predicted drugs of beta-3 

tubulin, three drugs have been reported that they are associated with tubulin, i.e., 

vincristine (DB00541), vinblastine (DB00570), and vinflunine (DB11641). Moreover, 

those drugs have been reported in many studies that they interact to tubulins, such 

as [104, 105] for  vincristine, [105, 106] for vinblastine, and [105, 107] for vinflunine. In 

addition, beta-3 tubulin is also predicted to involve with albendazole (DB00518) and 

mebendazole (DB00643), drugs for helminth infections. It has been revealed that 

both drugs interact to the alpha-1A and beta-4B tubulins [108-111]. Therefore, both 

albendazole and mebendazole could bind to the highly similar protein beta-3 

tubulin.  

The second case of the selected target proteins is nicotinic acetylcholine 

receptor alpha-1 or nAChRα1 (P02708). It has been reported that this target protein 

only interacts with lamotrigine (DB00555), an antiepileptic drug approved for the 

treatment of epilepsy and bipolar disorder [112, 113]. Interestingly, binding 

lamotrigine to nAChRs results in blocking of voltage-dependent sodium channels on 

this protein and preventing the release of excitatory neurotransmitters. This causes 

the prevention of seizures [112, 114]. As the DTI prediction, nAChRα1 could be 

associated to other drugs that play roles in voltage-dependent ion channels of 

nAChRα1, including nicotine (DB00184), and mecamylamine (DB00657), 

corresponding to several literature, such as [115, 116] for nicotine, and [116, 117] for 

mecamylamine. In general, nicotine is a stimulant drug that acts as an agonist at 

nicotinic acetylcholine receptors [118, 119]. The binding of this protein to nicotine 

activates voltage-gated calcium channels causing the channel to open and allows 

conductance of sodium, calcium, and potassium [17].  Moreover, nicotine is often 

used to relieve nicotine withdrawal symptoms and aided to smoke cessation. 

Meanwhile, mecamylamine is a nicotine antagonist used to treat hypertension and 

uncomplicated malignant hypertension. By binding to this protein, mecamylamine 

can act as a nicotinic acetylcholine receptor (nAChR) antagonist, inhibiting all known 
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nAChR subtypes [120]. Furthermore, nAChRα1 is predicted to involve with varenicline 

(DB01273), dextromethorphan (DB00514) and methadone (DB00333), drugs for the 

relief of pain [121-123] and treatment of addiction [124-126]. Although there is no 

clear report that nAChRα1 can directly bind to these drugs, there are some 

publications supporting that these drugs interact to the nAChRα4, nAChRα7, and 

nACh2 [127-132]. Thus, varenicline, dextromethorphan, and methadone could bind 

to the highly similar protein nAChRα1.  

The third case of the selected target proteins is Calcium/calmodulin-

dependent 3',5'-cyclic nucleotide phosphodiesterase 1C or PDE1C (Q14123). 

Ordinarily, the approved drug interacting to target PDE1C is caffeine (DB00201) which 

is a stimulant present in tea, coffee, and analgesic drugs. By binding to this protein, 

caffeine can cause vasodilation [133]. According to the DTI predictions obtained from 

the FSI model, PDE1C could be associated with felodipine (DB01023), bepridil 

(DB01244), nicardipine (DB00622), and roflumilast (DB01656), the drugs used in 

chemotherapy for cancer. Despite no clear evidence about those interactions, it has 

been revealed that those four drugs are related to vasodilation, angina, and ischemic 

heart disease [134-137]. Furthermore, PDE1C is predicted to interact with dyphylline 

(DB00651), a drug approved for asthma, bronchospasm, and chronic obstructive 

pulmonary disease (COPD) [17, 138, 139]. Interestingly, dyphylline and caffeine are in 

a class of methylxanthines, a purine-derived group of pharmacologic agents used for 

bronchodilation and stimulation [140, 141]. 

 

4.5.2 Predicted target proteins of drugs with one known target protein 
Herein, there are two selected drugs that consists of nicorandil (DB09220) and 

plerixafor (DB06809). Their top five predicted targets are shown in Table 4.7. The first 

case of the selected drug is nicorandil (DB09220), which is a vasodilatory drug used 

for patients with angina [142]. ATP-binding cassette sub-family C member 9 or ABCC9 

(O60706) is the only one known protein interacting with nicorandil. Binding of this 
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drug to ABCC9 can activate vasodilation of arterioles and large coronary arteries [17, 

143]. According to the DTI prediction, nicorandil could be associated with some 

target proteins in ABCC subfamily, including ATP-binding cassette sub-family C 

member 8 or ABCC8 (Q09428), cystic fibrosis transmembrane conductance regulator 

or ABCC7 (P13569), ATP-binding cassette sub-family C member 5 or ABCC5 (O15440), 

ATP-binding cassette sub-family C member 2 or ABCC2 (Q92887), and ATP-binding 

cassette sub-family C member 1 or ABCC1 (P33527). From searching for supporting 

literatures, we found that nicorandil can reduce an excess of insulin secretion in 

ABCC8-deficient insulin-producing cells [144]. Interestingly, the predicted ABCCs 

proteins and ABCC9 are in same subfamily, which are rather structurally conserved. 

Additionally, the predicted ABCCs proteins overlap some known drugs of ABCC9 [17], 

i.e., adenosine triphosphate (DB00171) and glyburide (DB01016). Thus, the predicted 

ABCCs proteins could bind to nicorandil as well [145].  

 

Table 4.7 The top 5 predictions for two selected target proteins 

Drugs Known Target 
Predicted Target  

(Uniprot ID) 

Nicorandil (DB09220) 
ATP-binding cassette 

sub-family C member 9 
(O60706) 

Q09428, P13569, 
O15440, Q92887, 
P33527 

Plerixafor (DB06809) 
C-X-C chemokine 
receptor type 4  

(P61073) 

P35348, P08913, 
P35368, P18825, 
P18089 

Note that the targets found on publications are shown in bold. 
 

The second case of the selected drugs is plerixafor (DB06809), an anti-HIV 

agent specifically active against the T4-lymphotropic HIV strains [146]. The only one 

known target protein interacting to this drug is C-X-C chemokine receptor type 4 or 

CXCR4 (P61073). It has been reported that blocking the interaction between C-X-C 
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motif chemokine 12 or CXCL12 (P48061) and C-X-C chemokine receptor type 4 or 

CXCR4 (P61073) by plerixafor stimulation results in mobilize stem cells [17, 147, 148]. 

According to the DTI predictions, plerixafor could be connected with some target 

proteins in a group of adrenoceptors, including alpha-1A adrenergic receptor or 

ADRA1A (P35348), alpha-2A adrenergic receptor or ADRA2A (P08913), alpha-1B 

adrenergic receptor or ADRA1B (P35368), alpha-2C adrenergic receptor or ADRA2C 

(P18825), and alpha-2B adrenergic receptor or ADRA2B (P18089). Despite no clear 

evidence showing the associations between plerixafor and those proteins, some 

proteins in the adrenoceptor group have been revealed that they can induce 

mobilization of stem cells and progenitor cells [149-152]. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V 
CONCLUSION AND FUTURE WORK 

 

In this chapter, we provide conclusion and the future direction of this 

research work for further improvement of the DTI prediction method based on the 

heterogeneous network propagation and the integration of multiple drug and target 

similarity measures. 

 

5.1 Conclusion 
This thesis aims to enhance the heterogeneous network model by integrating 

multiple drug-drug and target-target similarity measures for identifying protein targets 

of drugs. The Forward Similarity Integration (FSI) framework is newly introduced 

heterogeneous network for systematically selecting drug and target similarity 

measures integrated into a model. Different drug and target similarity measures are 

generated based on various properties of drugs and target proteins. There are four 

data sets of drugs (i.e., chemical structures, DDAs, DDIs, and SEs) and four data sets of 

target proteins (i.e., protein sequences, PPIs, GO annotations, and protein pathways) 

used to create seven drug-drug similarity matrices and nine target-target similarity 

matrices, respectively. Moreover, several similarity integration methods and different 

selecting criteria are also investigated in this thesis. To find the suitable model with 

the suitable similarity integration, the FSI algorithm is applied.   

As the result, the FSI model is derived from combining the Jaccard index of 

DDAs (DDA_Jac), the Cosine index of DDIs (DDI_Cos), and chemical structures of drugs 

(Structures) into a drug similarity by using the similarity network fusion (SNF) method. 

Additionally, the FSI model uses the local alignments of target protein sequences 

(Seq_Loc) as a target similarity measure. According to the FSI model, AUPR is used as 

the criteria for selecting the most suitable similarity measure and integration method. 

To show the superior efficiency of the FSI model, it was compared with the 
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conventional model and the models with full and random similarity integration. 

Obviously, the FSI model significantly outperforms those models. According to the 

case studies, it can be concluded that the FSI framework can be practically used for 

predicting new DTIs. 

According to all results, it can be concluded that the heterogeneous network 

model with ensemble similarities can improve the DTI predictions. Furthermore, the 

FSI framework can efficiently construct the heterogeneous network propagation 

model with the suitable similarity integration. The FSI framework is not limited with 

only the similarity measures or integration methods used in this thesis. Other data 

sets of drugs (e.g., gaussian interaction profile and drug-protein interaction) and target 

proteins (e.g., G protein-coupled receptors, kinase superfamily, and nuclear receptors) 

can be used as choices of similarity measures in the FSI framework. Furthermore, 

other similarity integration methods (e.g., Nonlinear end-to-end learning model, and 

Multiple Similarities Collaborative Matrix Factorization) and selecting criteria (e.g., ACC 

and MCC) can be introduced into the FSI framework. The FSI framework can also be 

applied for other applications, apart from the DTI prediction, which require 

integration of multiple similarity measures. 

 

5.2 Future work 
 The FSI framework proposed in this thesis is based on the heterogeneous 
network of two layers, a drug-drug similarity layer and a target-target similarity layer 
connecting together by the links of known drug-target interactions. To extend this 
work, other useful network layers, such as a protein-protein interaction network and 
a drug-drug interaction network, can be integrated into the drug-target 
heterogeneous network. Furthermore, other drug-drug similarity measures and target-
target similarity measures can be derived based on new data sets and introduced 
into the FSI framework. Also, other similarity integration methods can be included in 
the FSI framework. 
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