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Introduction

Problem and Motivation

While a quantum computing provider (such as IBM) allows remote access to a
real quantum computer, the developers still have to wait in a long line.
Consequently, the use of a quantum computing simulator or emulator is an

alternative tool that allows initial algorithm development to be tested and validated.

With the use of physical effects like superposition, a quantum state is able to
represent multiple states at the same time. In addition, entanglement allows a
change in the state of one qubit to immediately change the state of the associated
qubit. These properties allow a quantum computer to solve problems that are
intractable for a classical computer. Examples include solving the factorization
problem for RSA decryption using Shor's algorithm in polynomial time. Because one
part of Shor's algorithm comes from a quantum fourier transform that takes

advantage of quantum computing.

There exist several software simulations of a quantum computing on classical
computers. Unlike the parallel execution in a quantum computer, the inherent
classical computer is, however, executed in a sequence. Intuitively, the
implementation of a quantum algorithm on the classical computer would take more
time to execute comparing to those of the quantum computer. To ease the
simulation speed, parallel execution hardware, such as graphics processing units
(GPUs) and Field Programmable Gate Arrays (FPGAs), has been employed to achieve

faster simulation time.

We aim at using FPGA to improve the speed of quantum computer

simulators. This simulator allows developer to test arbitrary quantum algorithm.



Objective

To design a platform for quantum computing simulation using VerilogHDL
simulation that can simulate arbitrary quantum algorithms at a faster speed than

software simulation.

Scope
1. This research is simulated on VerilogHDL.
2. We need to focus on run time to compare with the baseline (Qiskit).
3. The Qiskit is used as a baseline for proving the correctness of

guantum circuits.

Background knowledge

Quantum Computer
A guantum computer is a type of computer that takes the advantage of
quantum phenomena, this allows the quantum computer to outperform a classical

computer. In general, there are 2 properties: superposition and entanglement.

Superposition
It is the principle of quantum superposition states that allows a quantum state to
represent more than one (classical) state at the same time. In another word, we can
represent arbitrary states by using the combination of all possible states in quantum

bits.

Entanglement
Quantum entanglement is a physical phenomenon that happens when we have 2
qubits, which can be entangled. Change in the state of one qubit will immediately
change the state of another one. The change of that qubit is easy to foretell. This
phenomenon has been true although these qubits are far away from each together.

(1]



Representing a quantum state in quantum computing

In the classical machine, a bit is used for describing the information of the
classical system. The classical bit is either 0 or 1. On another hand, the quantum
computer has a unit that can represent multiple states at the same time. it's called a
qubit. [2] A quantum bit or a qubit is a unit of information describing a two-

dimensional quantum system. A qubit can be represented by a 2"-by-1 matrix with

c
Iq>=[ 0]() (1)
Cl 1

where n is the number of qubits and |cg|* and |c,|* are the probabilities amplitude of

complex numbers.

qubit, where the measurement will result in [0> and |1> respectively. Thus, |col” +

|lcaf? = 1.[1]

Representing an operator in quantum computing

Basic quantum gate

In classical computer, logic gates are ways of managing bits. If the input bits
are passed through a gate, we will get the result bits. So, the calculation relies on
types of each gate. In the same way, quantum computer qubits are manipulated by

quantum gate.

A quantum gate is simply an operator that acts on qubits. Such operators can be
represented by unitary matrices. We can express the gate in the form of 2"-by-2"

matrix (2). Where n is number of qubits.

a b
U:[Cd] (2)



There are many types of quantum gates that are shown with their unitary

matrix in Table 1.[3]

Operator Gate Matrix
. 0 1
Pauli-X (X) I [ ]
1 0
Pauli-Y (Y) Yy [0 —i
i 0
. [1 0]
Pauli-Z (2) - 7
0 -1
I 0
] L
TE) — T by
0 em/4
S 1 1 -1
quare root of NOT -
\/E 11
NOT gate
. 1 0
Phase shift R(6) [ ]
0 e
Controlled U f 10 00
0 1 0
U 0O 0 a b
0O 0 ¢ d
When U is an arbitrary single quantum
gate.




Controlled NOT ? 1 0 0 0
0 1 0 0
(CX, C-NQOT) - X o 0 o0 1
0O 0 1 0
Controlled Z ? 1 0 0
0O 1 O
(C2) B 4 S— oo
I 0O 0 0 -1
SWAP X 1 0 0 0
\[ 0 0 1 0
e 0 1 0 0
0O 0 0 1
Toffoli cate 1 0 0O 0 0 0 0
0 1 0o 0 0 0 0
(CCX, CCNOT,
O 0o 1 0 0 0 0 O
TOFF) 0O 0 0 1 0O 0 O 0
X 0O 0 0 0 1 0 0O 0
O 0 0 0 o0 1 O 0
0O 0 0 0 o0 O O 1
_O 0O 0 0 0 0 1 O_

Table 1 Show the quantum gates

Quantum gate in quantum system

Each qubit in a quantum system interacts with others. To model them, a
tensor product is the mathematical expression from multiple qubits transformation.
The tensor operation on any pair of 1-qubit transformations is illustrated as

follows.[1]




A®B =

Definition of unitary matrix

When we have an n-by-n matrix U, it will be unitary matrix if and only if
U-Ut=U"-U=I (4)

when U™ is conjugate and transpose of U.

Transforming state in quantum computing
If we want to apply a quantum gate (operator) on a quantum state, a matrix-
vector multiplication can be used to describe this transformation. The example is

shown in equation 5.

Field-programmable gate arrays (FPGAs)

Field-programmable gate arrays (FPGAs) are digital devices that rely on digital
logic. There are many general-purposed logic gates on FPGA that can be used for
design the circuit using drawing logic gates or using the Verilog (or another) hardware

description language. [4]



Related Work

There are many ways to simulate or emulate quantum computing. In this
chapter, we will present the proposition of the quantum computer architecture and
the previous quantum computing simulator or emulator by software, GPUs and FPGA

respectively.

Quantum Computer Architecture

The concept and implementation of a quantum computer architecture to
allow creating a new computational device as a quantum computer accelerator are
presented by Koen Bertels et al [6]. They present the idea of a quantum accelerator
that contains the full-stack of the layers of an accelerator. The highest level is an
algorithm or application, and the next layer is quantum logic that can represent the
algorithm. This logic is translated to a common assembly language called cQASM by
OpenQL. Then, the compiler can convert cQASM to eQASM to generate an

executable on the specific device.

Moreover, this article mentions the use of a full-stack quantum accelerator.
There are 2 ways of using quantum accelerators, so it depends on the type of the
lowest layer device. If the device is quantum chip material, it is used to improve the
quality of qubits. If the device is a quantum simulator, such as a GPU or FPGA, it is

used to develop quantum algorithms.

Qiskit
Qiskit [quiss-kit] is an open-source SDK for working with quantum computers

at the level of pulses, circuits, and application modules. [5]

However, the nature of the classical computer, which processes in sequence,
causes it to take exponential time and resources, and is not suitable for simulating
the parallel processing inherent in the quantum computer. Accordingly, the usage of

devices that can process in parallel, such as GPUs and FPGAs, is interesting.



Graphic processing units (GPU)

Graphic processing units (GPU) is a device that can process in parallel. Smith
A. and Khavari K. [6] implemented quantum fourier transform (QFT) which is the
heart of many other quantum algorithms using Compute Unified Device Architecture
(CUDA) GPUs. They proposed optimization for GPU in two ways. First, Algebraic
manipulations include combining consecutive phase shift gates into one that
improves 3.8xspeedup by choosing cosf and sqrt instead of sinf and cosf (by the
knowledge that sinﬂzm in calculations. Second, Combining Kernels and
Shared Memory when they realize these methods together can achieve further

speed up.

Oumarou et al. [7] use CuPy, which is the NumPy equivalent library that
supports CUDA enabled GPUs, a general-purpose library (linear algebra) developed
specifically for CUDA-based GPUs, to simulate quantum circuits. Within the Python
ecosystem, they have to pay attention to usability, implementation, and
maintainability. They benchmarked the performance of CuPy using two types of
circuits: supremacy and arithmetic. When compared to state-of-the-art C++-based
simulators, the speedup for supremacy circuits is around 2x, and for quantum

multipliers it is nearly 22x.

Field programable gate arrays (FPGA)

Field-programmable gate arrays (FPGAs) are digital devices that rely on digital
logic. There are many general-purposed logic gates on FPGA that can be used for
designing the circuit using drawing logic gates, VerilogHDL or other hardware
description languages.[4] Moreover, FPGA which has intrinsic parallelism is a good
choice to mimic quantum computer behavior because of its properties in performing
bit-level parallelism. From the previous studies, there are 3 ways to simulate

quantum computer using FPGA.



From the architectural point of view, C. Conceicdo and R. Reis [8] proposed a
processor architecture based on single instruction multiple data (SIMD) which is
capable of efficiently emulate quantum circuit. Lee et al. [9] presented serial-parallel
architecture with efficient resource utilization. Their work has two advantages: serial
architecture uses fewer resource comparing to those of others and the pipeline
architecture yield higher throughput. This work can achieve a linear reduction of
resource utilization when compared to pipeline architecture. Furthermore, this work
chooses a suitable number of fixed-point representations for balancing between

precision error and resource utilization.

From the circuit point of view, N. Mahmud, E. El-Araby, and D. Caliga [10]
inspected the approach for emulating quantum computing instead of emulating gate-
based quantum circuit. Scalability was their goal. There were 2 models of emulation
depending on the type of matrix representing the quantum algorithm. The first
model is suitable for the dense quantum algorithm matrix. Reducing the quantum
circuit to arithmetic operation (complex multiplication-and-accumulation CMAC) is a
key of this model. Moreover, they can optimize this model by combining two types
of computation consisting of lookup and dynamic generation. Lookup needs to pre-
compute and store value in memory for speed optimization. Dynamic generation
causes space optimization. The second model is appropriate for the sparse quantum
algorithm matrix. The core operations of that matrix are extracted as a kernel. It is

then applied iteratively across all groups of input states.

From the coprocessor point of view, A. U. Khalid et. al. [11] represents the
approach for emulating the quantum circuit using the ability of FPGA to emulate the
parallelism of quantum computing and to resolve the bottleneck in software
simulation. Besides, the code-generation, which is a capability of VHDL language,
constructs the n-input gates from 1-input gates (from software quantum circuit
package) instead of keeping the multiple-input gate in large matrix form. Regarding

the evolution, the quantum circuit have quantum state register (QSR) for holding
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amplitude of every state after each transformation. For the quantum measurement,
simulator from the software part is used. The universal and scalable quantum
emulator using the FPGA to emulate the behavior of a real quantum system is
proposed in [12]. This emulator was user, so it focuses on the ease of use and
reflects on the behaviors of real-quantum computer by using advantage of FPGA that
can operate the instruction in one clock tick. Hence, there are parts of software and
hardware that can communicate together. Moreover, it can run the entire quantum
algorithm, contains state initialization, transformation, and measurement. However,
the resource optimization is not their goal. Hence, this work can emulate only two

qubits, which is not enough for general quantum algorithms.
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Design and Methodology

In this chapter, we will describe the system design and methodology of our
simulation. To understanding more, let’s start with the example. If we want to run
Quantum Fourier transform (QFT) for 5 qubits, we begin the process by generating
quantum state or vector of complex number and quantum circuit that is the matrix
of operator. Next, to transforming quantum state the vector is multiplied with that
matrix. The process is repeated until all operators have been used. Lastly, the
measurement step is performed on a final result of quantum state. The details of

this process are described following this.

qo — H

q1 H

qz H

qs H

Figure 1 Quantum circuit of Quantum Fourier Transform (QFT) for 5 qubits.
First, we will explain generating quantum state step. This step produces the
vector of complex number size 2"-by-1 is show as in (6) when n is a number of

qubits and 2" is all possible quantum state in our system.

1 000
001
010
011

o O O

100
101
110
| 1 c2n

o o o O

After that, generating quantum circuit as the matrix size 2"-by-2" is performed.

For the circuit is shown as in figure 1, all matrix operator that represent the circuit at
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each layer can be creating using directly calculating the tensor product. Its layer is

presented by equation (7) — (21)
13 layer
2nd [gyer

31 Jgyer

4™ [gyer

5% layer

6 layer

7 layer

84 [ayer

IVIRIRIRH

IRIQI® CR(%)

]®]®SWAP(2’1)®I

T

I® I®I®CR(4]
IQIQ SWAP | , ®1

IQ SWAP ,, ® I® 1
AQIQ SWAP , | @1

¥

I® ]®I®CR(8)
AR IQ SWAP |, ®1
- IQ SWAP ,  ®I® 1
SWAP , , ®I®IRQ]
- I@ SWAP , , ®I®
1@ IQ SWAP , | ®1
b3
- I® I®1® CR|—
I IQ SWAP |, ®1
L IQ SWAP , . ®@I®1
L SWAP , , ®IRI® I
IRIQIQH®I
T

1®I® CR(;)@I
I1Q SWAP , , ®I®1

T
I® I® CR[Z]@)]

- I®SWAP(2’3)®I®I

(7)

(8)

9)

(10)

(11)

(12)

(13)

(14)



9™ layer

104 layer

11 lgyer

124 lgyer

13 [gyer

14 lgyer

15 [gyer

SWAP(4.3)®I®I®I
. I®SWAP(372)®I®I
n

- I® ]®CR(8)®I

. I®SWAP(2,3)®I®I

. SWAP(3,4)®[®I®1
IQIQH®IQI
i
I® CR[E)®I®]
SWAP , , ® IR IR
¥/
-I® CR(Z)®I®I

; SWAP(3,4)®I®I®I

IHRIQIRI
n
CR(;)@I@I@I

ARQRIRIRQIRI

13

(15)

(16)

(17)

(18)

(19)

(20)

(21)

From these equations, we notice that in case of equation (7), (8), (12), (13),

(16), (17) (19), (20), (21). We can directly find the tensor product of these by operating

quantum gate for target qubit and identity gate (I) for others. On the other case for

the rest equations, Since the CR(theta) gate must be acted on 2-closed-qubits,

therefore these layers are consisted of SWAP gate before and after a desired gate CR

(theta) for switching 2-target-qubit to close each other.

Next, matrix-vector multiplication, which is the executing of each layer

operator on qubits, is performed for transforming quantum state. Finally, if all

operators have been used, we will measure a final vector from this process.

As an above example, in the latter case of generating quantum circuit by

using tensor product at each layer uses a lot of operations of switching qubits.
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Moreover, if the 2-target-qubit are more far, the number of operations for switching
are larger. Therefore, we propose an optimization proposition for calculating tensor
product step to improve the speed of quantum computing simulation with an

implementation using FPGA. We will explain it in the next section.

Moreover, for the quantum gate that involved with angle such as R gate, CR
gate. It must use sine and cosine value in calculating tensor product step. CORDIC
algorithm was introduced for the computation of Trigonometric functions,
Multiplication, Division, Data type conversion, Square Root and Logarithms in FPGA as

mention in [13].

Criteria CORDIC ROM
Time 4
Space v
Accuracy v

Table 2 Comparison of CORDIC and ROM

In table 2, we compared 2 methods that are used to compute sine and

cosine values in 3 aspects.

First, in the time aspect, ROM can overcome CORDIC. Because ROM uses the
pre-compute of sine and cos values, this allows the ROM to directly use the sine and
cos values. While CORDIC is an iterative algorithm, this can compute trigonometric

values. For this reason, it spends more time computing each iteration than ROM.

Next, in view of space, CORDIC can overcome ROM. Because CORDIC collect a
group of initial values that is used to compute other values. On another hand, the
space for collecting value in ROM is depend on the number of values that we want
to use. For example, suppose that we want to use sine in range 0 — 90 degrees. If we
use CORDIC, it will spend 30 units to collect initial value then it will use that value to

compute others. But, if we use ROM, it will spend 91 unit to collect all values.
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Finally, in terms of accuracy, ROM can outperform CORDIC. Because ROM
outputs the exact values, whereas CORDIC outputs the approximate values by using
the group of initial values. Furthermore, the CORDIC requires more iteration for

calculating sine and cosine value to achieve higher accuracy.

For the reasons stated above, ROM can outperform CORDIC in terms of speed
and accuracy. As a result, the ROM is chosen for collecting sine and cosine values

rather than directly calculating them (CORDIC).

Propositions

From the example above, there are two steps to simulate quantum
computing using the matrix method: calculating the tensor product of quantum
operators, which creates operators that act on all qubits, and matrix-vector
multiplication, which is the operation of operator on qubits. In this work, we propose
an optimization proposition for calculating tensor product step to improve the speed
of quantum computing simulation with an implementation using VerilogHDL

simulation.

Proposition I: Describes the relationship within the operator's matrix rather

than directly calculating the tensor product

From usage this proposition, the matrix operator can be created without the
need for any calculation operations. Because this method simply compares the
desired qubit's index in the matrix using a comparison operation instead of
calculation. Therefore, this method uses (22”) operations for generating the operator.
The algorithm for use of this method is shown in algorithm 1 for single-qubit gate
and 2 for multiple-qubits gate. In these algorithms, the initial state is the row index in
the binary form of the matrix, and the final state is the column index in the binary

form of the matrix. And each qubit is equivalent to a binary index bit.



Algorithm 1 Proposition 1 for single-qubit gate

if The state of other qubits, which are not the target qubit,
at the initial is not equal to the state at the final. then
claddress| < 0
else
Assign a value to that address in accordance with the
definition of a quantum gate.
if The state of the target qubit at initial and final are both
equal to O then
claddress| < a
else if The state of the target qubit at initial is equal to
0 and final is equal to | then
claddress| < b
else if The state of the target qubit at initial is equal (o
1 and final is equal to O then
claddress| + ¢
else if The state of the target qubit at initial and final are
both equal to | then
claddress| + d
end if
end if

Figure 2 Algorithm for creating matrix operator of single-qubit gate
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Algorithm 2 Proposition 1 for multiple-qubit gate

if The state of the control qubit at the initial is not equal to
the state at the final then
claddress] < 0
else
if The state of other qubits, which are not the target qubit,
at the initial is not equal to the state at the final. then
claddress] < 0
else
if The control qubit is equal to 0. then
claddress| < 1
else
Assign a value to that address in accordance with
the definition of a quantum gate.
if The state of the target qubit at initial and final are
both equal to 0 then
claddress| < a
else if The state of the target qubit at initial is equal
to 0 and final is equal to 1 then
claddress| < b
else if The state of the target qubit at initial 1s equal
to 1 and final is equal to O then
claddress| < ¢
else if The state of the target qubit at initial and final
arc both equal to | then
claddress| < d
end if
end if
end if
end if

Figure 3 Algorithm for creating matrix operator of multiple-qubit gate

Proposition II: Use a lookup table to collect sine and cosine values instead of

calculating them directly

By implementing our propositions on FPGAs, we hope to speed up the

quantum computing simulation in the calculation the tensor product step.



18

Instruction set architecture
In this section, we will explain about an instruction format that is used to
command the system. Moreover, the representation of data, which is quantum state

and quantum gate, and involved signal of our system are also described.

Instruction format
In our system, we designed the instruction format have a length of 32 bits. It

contains the following data that is required to simulate a quantum circuit:

1. Opcode is interpreted as the type of operator that a user wants to simulate.

There are 7 types of opcodes as shown in Table 3.

Type Opcode Operation
Gen_vec 101000 Generate quantum state
as vector of complex
number by gen vec
module.
1Q-type 000xxx Generate quantum gate by
1 target qubit gate using opcode and target as
input
000000 X gate
000001 Y gate
000010 Z gate
000110 H gate
1Q1C-type 001000 Generate P gate by using
1 target qubit with 1 opcode, target and angle
constant (an angle). as input.
2Q-type 010xxx Generate quantum gate by
1 target qubit and 1 using opcode, target and
control qubit. control as input
010000 CX gate
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010001 CY gate
010010 CZ gate
2Q1C-type 011000 Generate CP gate by using
opcode, target control and
angle as input.
3Q-type 100000 Generate CCX gate by

using opcode, target and 2

control as input

Table 3 Type of opcode in our system

2. Target is a position of target qubit that a user wants to perform quantum gate

on it.

3. Ctrl0 and Ctrl1 are the position of control qubit. The CtrlO is used in case that

quantum gate what we perform has 1 control qubit but in case it has 2

control qubits the both Ctrl0 and Ctrl1 are used.

4. Angle is interpreted as the angle that is used to rotate the qubit for the

quantum gate that is involved with angle. In our work, it can use angle from 0

to 90 degree because it has 7 bits which represents this part.

5. Nis a number of qubits of the quantum circuit that user want to simulate.

The instruction format of our system can be represented as below.

gen_vec-type

Opcode (6 bits) Reserved (22 bits) N (4 bits)
1Q-type

Opcode (6 bits) | Target (5 bits) Reserved (17 bits) N (4 bits)
1Q1C-type

Opcode (6 bits) | Target (5 bits) Reserved (10 bits) Angle (7 bits) N (4 bits)
2Q-type

Opcode (6 bits) | Target (5 bits) | Ctrl0 (5 bits) Reserved (12 bits) N (4 bits)
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2Q1C-type

Opcode (6 bits) | Target (5 bits) | Ctrl0 (5 bits) | Reserved (5 bits) | Angle (7 bits) | N (4 bits)

3Q-type

Opcode (6 bits) | Target (5 bits) | Ctrl0 (5 bits) | Ctrll (5 bits) | Reserved (7 bits) | N (4 bits)

Representation of data in our system

In general, data representation of a quantum state is represented by vector of
complex number and a quantum gate is represented by matrix of complex number.
However, in hardware it cannot represent data as 2 dimensions and complex
number. Hence, these data must be represented by 1 dimension of fixed-point

number of real part and imaginary part stick together as in figure 4.

32 bit

‘ 1 bit Sign ‘ 1 bit Integer 14 bits Fraction | [ 1 bit Sign ‘ 1 bit Integer 14 bits Fraction

T ’ ¥

16 bit for real part 16 bit for imaginary part

Figure 4 Fixed-point number that represent complex number

In fixed-point number, 1 bit is used to represent sign of the value and 1 bit is
used to represent an integer because the amplitude of quantum state and the value
in quantum gate is not over 1. And the rest of fixed-point (14 bits) are enough for
using to represent the fraction part. So, the 16 bits fixed-point number is sufficient to

represent the value of each part.




System design

Our system design contains 3 main parts that is processor, generator and co-
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processor. Overall, of our system can be shown as figure 5.

Text file that has a
format lke the

picture above

Signal

- Processor

Centrol the overall system's workflow.

- Generator

Generate a quantum state or

- Co-processor

Get input matrix and vector,
quanturn circuit that coresponds then operate the instruction

to the instruction. accordingly until done.

State Machine

Vector

and

Matrix

Generator Multiplication unit

i
I

RAM

Instruction is used to specify the quantum gate Final Result Vector

and qubit that want to operate them.

Instructicon is used to specify .
Measurement unit

which qubit that want to measure.

-

Collect the program (all instructions) from
the user and fetch it to the other parts.

Measure qubit.

Figure 5 System design of our work

Before we get into the details of each module, these modules have the

relevant signals that are used commonly for controlling it. As shown in this table 4.

Result

Signal Function
clock Determine the timing of each module.
nreset Determine the non-reset (nreset=1) or
reset (nreset=0) of each module.
start_flag Determine the starting of each module.
done flag Determine the completion of each

module.

Table 4 Relevant signal of our system
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Processor
Processor is a part that put the state machine and memory together. It
controls and manages overall of system. Function of each part can be delineated as

follows.

State machine
State machine is a heart for controlling workflow of our system. In our work,
there is a state machine that is different type depends on the functionality of each

module in our system.

For the first module is a system module is shown as in figure 6. It has seven
states:” IDLE”,” FETCH”,” GENVEC”,” MEASURE”,” GENMAT”,” CALCULATE” and”
DONE”. If this module receives a system-start signal from user, it will change its state
from” IDLE” to” FETCH.” After that, an instruction from memory is read and checked
its opcode. If it equal to 6’b101100 a next state is assigned as” GENVEC” then the
generator vector module will start. But if the opcode is 6’b110000 the next state is
assigned as” MEASURE” then the measure module will start. Otherwise, If the
opcode equal to other values the next state is assigned as” GENMAT” then the
generator matrix module will start. Afterwards, when it’s done, the next state is
changed to” CALCULATE” for starting vector-matrix multiplication. Finally, when”
GENVEC” or” MEASURE” or” CALCULATE” are finished, it sends a signal to the
system’s state machine telling it to change the state to” done,” and then it returns

to” idle.”
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[opcode==6'0101000] [[opcode==6'b110000]

{ GENMAT |

p vy

[opcode==others]

p

( GENVEC MEASURE )
S k y

s

CALCULATE |
)

Figure 6 State machine of system module

Second module is a group of generator matrix module. The word “group”
refers to, there are five types that depend on the input of these modules. These
differences are discussed in the section of instruction format. Although these
modules have differences, they have the same workflow. Hence, there are the same
state machine. It has three states:” idle,”” busy,” and” done” that is shown as in
figure 7. If this module receives a system-start signal, it will change its state from”
idle” to” busy.” This module generating matrix follows proposition | when the state
is” busy.” When it is finished, it sends a signal to the state machine telling it to

change the state to” done,” and then it returns to” idle.”
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Figure 7 State machine of generator matrix module and vector-matrix
multiplication module

Next module is a vector-matrix multiplication module. It has three states is
same as the state machine of generator matrix module. For working of this state
machine looks as follows. If this module receives a system-start signal, it will change
its state from” idle” to” busy.” Then, this module starts to multiply matrix and
vector input. When it has finished, it sends a signal to the state machine to change

the state to” done,” and then it returns to” idle.”

Last module is measurement module as shown in figure 8. It has four states:
“idle”, “cal_prob”, “clear” and “done”. Normally, the state is “idle” after that if the
start-to-measure signal comes to this module, the state will be changed to
“cal_prob” then vector input is calculated probability. Then, when it has finish
calculating, the state is changed to “clear” to clear the value of all registers and

changed to “done” and then it returns to” idle.”
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CAL_PROB

____J
-—

Figure 8 State machine of measurement module

Memory
Memory is used for writing an instruction from user to our system and read or
fetch instruction to the system. Thus, random access memory (RAM) that can be read

and writhed data is used as memory in our work.

This module has clock, address, instruction (when writing) as input and done

flag, instruction (when reading) as output.
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Generator
Generator part is a part that generates vector and matrix corresponding with
an instruction. These vector and matrix are used for input of multiplication unit to

transform quantum state. There are 2 types of this generator:

Vector generator

For the first line of every set of instruction must be the instruction declare a
number of qubits and command our system to generate initial vector of complex
number size 2". Vector generator is a module that is used for this task as shown in

figure 9.

VECGEN

cdock |
nreset done_flag
opcode[5:0] res[255:0]

start flag |

vectorGenerator_mo

Figure 9 Vector generator module

The input of this module is clock, nreset (non-reset), opcode and start_flag

and the output are done flag and res (result) that is the vector of complex number.

Matrix generator
Matrix generator module is used to generate a matrix of quantum operator in
our system. This module can be divided this into 5 types according to instruction
format. In each type, there are differences input that is shown in figure 10. Al
modules have similar output that is done flag and res (result). The result represents

the matrix of complex number.



GENMATI1Q GENMAT1Q1C GENMAT2Q1C
cock angle[6:0] anglel6:dl |
clock
nreset done_flag clock [ [
etrlof4:0] done_flag
opcodel5:0] res[2047] nreset done _flag
nreset res[20470]
opcode(5:0] res[2047:0]
start flag | peodel:0) L ] opeodels0] |
target[4:0] _start flag | start_flag
singleQ_mo Let[d.ﬂ]__ _target{a:0] |
singleQC doubleQC
GENMAT3Q
GENMAT2Q
clock
clock I
ctrl0[4:0]
ctrl0f4:0] —————
——
ctrl1[4:0] done_flag
nreset done_flag
nreset res[2047:0]
opcode[5:0] res[2047:0]
opcode[5:0]
start_flag et L
start_flag
target[tl:()] I
target[4:0]
doubleQ
tripleQ

Figure 10 Matrix generator module
Co-processor
The main function of co-processor is about arithmetic operation. This part

includes a vector-matrix multiplication module and a measurement module.

Vector-Matrix multiplication module

Vector-Matrix multiplication module is used for multiplication vector of
quantum state and matrix of quantum operator. In addition, this multiplication is a
complex number that is represented in fixed-point number format. This number is
between [-1,1] because the probability of quantum state no more than 1. As
illustrated in the figure 11 it has vector size 2"-by-1 and matrix size 2"-by-2" be as an

input and result size 2"-by-1 be as an output.
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MULT_UNIT

clock
matrix[2047:0] done_flag
nreset result[255:0]
start_flag |

vector[255:0]

mult_unit_mo

Figure 11 Vector-Matrix multiplication module

Inside this module, it has 4 QMULT and 4 QADD for using in multiplication
and addition between each element of vector and matrix as shown in figure 12. To
describe how it works, we assumed that it has one vector v, which has size 2-by-1 in

equation 22, and one matrix m, which has size 2-by-2 in equation 23, are input of our

re iy i
Vo Vo TV
b £ A . (22)
v re 4 v im
1 v+ jyi
re - re -
[moo Mo } lmoo"'fmuo Mt ]
m = =

re - re — i
m10+Jm10 m11+Jm'11

module.

(23)

If we calculate m- v, we will get an output vector o, which has size 2-by-1 by
using calculation as in equation 24.

m m v m_v_ +m_ v
00 01 0 00" 0 01 1

o=m-v= . = (24)
My My Vi mgVotm,v

1

From figure 12, the QADD number 3 and 4 are used for accumulating the

v in first row and m v in

result from multiplication of each row (mUUVO, myv, w’o MoV

second row) in real part and imaginary part respectively. The RTL_REG SYNC is used
for collecting the temporary out output from QADD 3 and 4 when it has not finished
adding. Next, we focused in multiplication between a multiplier and a multiplicand
of each element such as m v, that refers to complex number multiplication as

(m&’ﬁjmé"é) -(vg’+jvg”). It has multiplication 2 times for real part of complex

number that is me-ve, mgg-vg”, and others for imaginary part that is mee-vie,



29

mgg vie. Thus, OQMULT number 1 and 2 are used for multiplication this real part and
QMULT number 3 and 4 are used for the rest part. In addition, the QMULT has an
input it will assign to 1 when the multiplier and the multiplicand are both imaginary
then flip a sign of output of it (from + to — or from - to +). For others case, i is set to
0 and the sign is not flipped. The output of QMULT number 1 and 2, which is real
part, and number 3 and 4, which is imaginary part, are added by QADD number 1 and

2 respectively. Finally, the output of that QADD is accumulated by QADD number 3

and 4.
RST
_ I
L Q
m;’; 1 r D
—
I—— re
a
QMULT ] RTL_REG_SYNC 3
1 ’Fab
QADD
i QADD
mi"z 2 Ty
r;;n L
QMULT
RST
i > C
il Q
me 3 i D
ab 1
] o
— T im
amuLT ) RTL_REG_SYNC 4 =
2 I
QADD
L QADD
map| 4 i
vim

Figure 12 Design of vector-matrix multiplication module
Measurement module
Measurement module is used for measuring the final-quantum state, which is
matrix of vector state that are transformed by quantum circuit. As shown in figure 13,
this module has clock, nreset, startp_flag and vector as input. The startp flag is used

to trigger calculating probability and the vector is the final-quantum state.



clock

nreset

startp flag |

prob

__| done flag

vector[255:0]

Figure 13 Design of measurement module

prob_unit_mo

result[127:0]
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Results

In this chapter, we will show the result of our simulation. By starting with the
verification of our system. Next, the result of each proposition is represented. Finally,

the runtime of the simulation is compared with the baseline.

Verification of the simulation
In this part, the verification of our modules in system are shown. There are

three parts that must be checked for the correctness of the work.

Before we consider our verification results, we need to understand the actual
data format of each part's output. The output is binary (fixed-point representation) as
described in section of data representation. For example, if we want to create
quantum circuit that has 3 qubits (0, 1, 2) and operate the H gate on 0™ qubit. The
process will be in the following 4 steps. First, the vector generator will create vector
of complex number with the size of 2°-by-1. Second, the matrix generator will create
matrix of complex number with the size 2°-by-2°. Afterwards, the vector and the
matrix will be multiplied by using vector-matrix multiplication module that get the
vector of complex number with the size 2°-by-1. Finally, for measurement step the
measurement module will find the probability of each quantum state (each element
of the final-state vector) and then get the output as a vector of real number with the
size of 2°-by-1. Hence, the actual output from each module at each step can be

shown as in Table 5.
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Verification of generator module

The verification result of generator module is described in this section. It
contains 2 parts of generator module. The result of vector generator module is
shown as in Table 6 and the result of matrix generator modules are shown as in

Table 7-9.

Verification of vector generator module

Number of qubits Expected result Simulation result

3 l (1+07)
07
0j
0j
0j
0j
07
0j

D On O O N\

N
1
1
—
> +
]
Ly
R

S O O O O O O 0 O o0 O oo o o o -
]
=

Table 6 Verification of vector generator module
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Verification of Measurement module

Quantum circuit Expected result Simulation result
QFT 3 0.125 [0.1248779296875]
0.125 0.1248779296875
0.125 0.1248779206875
0.1248779296875
0.125 0.1248779296875
0.125 0.1248779206875
0.125 0.1248779296875
0.1248779206875
0.125 L -
0.125
003125 [0.03118806484375]
QFT 5 0.03123 0.03118896484375
0.03123 0.03118896484375
iﬁ:i: 0.03118896484375
S 0.03118896484375
o 0.03118896484375
- 0.03118896484375
s 0.03118896484375
o5 0.03118896484375
0.03125 0.03118896484375
0.03125 0.03118896484375
0.03125 0.03118896484375
0.03125 0.03118896484375
0.03125 0.03118896484375
0.03125 0.03118896484375
0.03125 0.03118896484375
0.03125 0.03118896484375
0.03125 0.03118896484375
003’3 0.03118896484375
g 0.03118896484375
O1e 0.03118896484375
0.05125 0.03118896484375
Sk 0.03118806484375
0.03125
— 0.03118896484375
e 0.03118896484375
A5 0.03118896484375
00515 0.03118896484375
0.03125 0.03118896484375
SIbL 0.03118896484375
0.03125 0.03118896484375
} . 0.03118896484375
10.03118896484375
QFT 7
0.0078125004157225 0.00775146484375
|: 0.0078125004157225 :|12 |: 0.00775146484375 s

Table 11 Verification of Measurement module

From the verification result is the table 6 is vector generator module, table 7-
9 is matrix generator module, table 11 is measurement module. We got the result

that match with baseline. But in the table 10 is vector-matrix multiplication module
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we got the result that didn’t match with the baseline. Therefore, the expected result
is recalculated by hand. To check if the results from our simulations are correct or
not. As a result, our result matched with this calculation. Note that this result is
shown in appendix section. Thus, we concluded that our system can simulate

guantum computing correctly.

Result of propositions

In this part, the result of our propositions is shown. Before we consider our
proposition results, we need to know about the experiment setup. The propositions
are modelled in VerilogHDL using a clock speed of 2.00 GHz. The Qiskit, a quantum
simulation software library, was chosen as a baseline. This library runs on Colab with

clock speed 2.20 GHz.

For our baseline, it didn’t spend the same amount of runtime each time.
Therefore, its runtime, as shown in the result, is an average of run time 10 times by

cutting out the min and max value.

Result of Proposition I: Describes the relationship within the operator's matrix rather

than directly calculating the tensor product

In this section, we design an experiment to compare how much time the
software simulation with our work spends building the tensor product of each

quantum gate.

To reduce the overlap measurement of propositions | and II, there are four
different types of quantum gates in the experiment. The single qubit gate and the
control single gate, which are not involved with angles (sine and cosine values), are
used to demonstrate the result of proposition I. The others are used to demonstrate

the result of proposition II.
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Type of gate

Number of

qubits

Qiskit (s)

Our work (s)

Speedup

Single qubit
gate

H(2)

G —

gz — H —

2.97 x 10

513 x 10

5.79 x 10°

qo ——

G ——

gz — H —

qs ——

3.09 x 10

1.47 x 107

2.10 x 10°

G —

gz — H —

qs ——

310 x 10*

531 x 107

5.84 x 10?

Control  single

272 x 10

513 x 10°%

5.30 x 10°
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qubit gate
CX(0,2)

do

a1

gz

do

a1

gz

as

2.69 x 10

1.47 x 107

1.83 x 10°

do

a1

gz

as

ga

232 x10*

531 x 10"

4.37 x 10°

Phase gate
P(37,2)

do

a1

gz

2.87 x 10™

513 x 10°%

5.59 x 10°

2.62 x 10

1.47 x 107

1.78 x 10°




a8

g ——
- F _
gz >

qs ——

qo ——
q —

qz_P_

ds ——

2.86 x 10™

531 x 107

5.39 x 10?

Control  phase
gate
CP(60, 0, 2)

qo —4—

G ——

gz —o—

277 x 10

513 x 10%

5.40 x 10°

do —j—

q ——

g2 —o—

qs ——

2.8%3x 10™

1.47 x 107

1.93 x 10°

276 x 10

531 x 107

5.20 x 10?
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qo —H—

o ——

gz —o—

qs ——

qs ——

Table 12 Comparison of runtime between software simulation and our work

In table 12, our propose method takes less time to run than those of
software simulation. As a result of proposition I, we can generate a matrix operator
by assigcnment through the if-else statement method rather than calculating the

tensor product directly. This allows the generation of a matrix step in one clock cycle

from 15.750 ns to 16.250 ns as shown in Fig 14. The resources required is 22", where

16.250 ns
1 D

n is the number of qubits in the circuit.

9 mat[2047:0] :0000&70@09

W state[2:0]

# clock

Figure 14 Simulation result for generating operator step in 1 clock cycle

Table 13 represents the meanings of all the states in our system. Fig. 15
shows the timing diagram of the state machine of our system when it was simulating
that it contains states that follow the instruction. If we zoom out this timing diagram
as Fig. 16, we will find that almost all time is spent on state 4, or the matrix-vector

multiplication step.

Number State

0 IDLE

1 FETCH
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GENVEC (generate vector)

GENMAT (generate matrix)

CALCULATE (matrix-vector multiplication)

GENRAND (generate random number)

MEASURE (find probability of final state)

~N| O BR~WDN

DONE

Table 13 Meaning of all states in our system

> M yvec[255:0] . { 0000000000000000000000000000000000000000000000000000000040000000

I
> B result[255:0] 2441000 0000000ERS. . . 2d41000 0000000NER. . . 2441 0000:C000T00NK.

> W vec[255:0]
> B resylt[255:0]

> W state[2:0]

Figure 16 Timing diagram represent state of state machine when simulation
(Zoom out)

Result of Proposition II: Use a lookup table to collect sine and cosine values

instead of calculating them directly

Proposition Il is yet another reason why a matrix step can be generated in a
single clock cycle. Because it reduces the time it takes to access sine and cosine

values.

To compare the simulation time of our work with software simulation when
simulate Quantum Fourier Transform (QFT) at 3, 5, 7 qubits that is a quantum

algorithm. Table 14 is shown the simulation time of both.
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Quantum circuit Qiskit Our work Speedup
run on colab @2.2 GHz @2 GHz (s)
(s)
QFT 3 qubits 3.18x10™ 2.24x107 1.42x10°
QFT 5 qubits 4.83x10" 7.79x10° 6.20x10
QFT 7 qubits 3.99 x10™ 2.30x10™ 1.73

Table 14 Simulation time comparison of our work and software simulation

If we simulate these circuit by our work with the same time spent as gjiskit's,

we will use the clock speed in each case as shown in table 15.

Quantum circuit

Simulation time (s)

Qiskit Our work
QFT 3 qubits 3.18x10" 2.2 GHz 1.41 MHz
QFT 5 qubits 4.83x10™* 2.2 GHz 32.2 MHz
QFT 7 qubits 3.99 x10™ 2.2 GHz 1.15 GHz

Table 15 Clock speed comparison of our work and software simulation

The clock speed in this table can be calculated from (22). From the result in

table 15. Our work takes less clock speed than giskit at the same time.

clock speed ( Hz)

_ simulation time of our work (s) Xold clock speed of our work ( Hz)

simulation time of qiskit (s)

(22)
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Conclusion and Future Work

Based on these results, we conclude that optimizing the construction of
tensor products using our proposed if-else method can significantly reduce the
execution time of quantum computing simulation. However, the number of qubits
and quantum gates in the circuit will increase the runtime. This is due to the fact

that the multiplication vector-matrix step is still not optimized in this experiment.

Moreover, due to hardware resource constraints, we intend to modify this
module to support the generation of quantum operators for larger quantum circuits.
Furthermore, the matrix-vector multiplication step should also be redesigned to gain

better performance.

We plan to modify our system by increasing the number of matrix-vector
multiplication module in order to multiply vector and matrix in parallel. This will
increase the speed of our simulation. In addition, the matrix-vector multiplication
module and matrix generator module should be concurrent working for reduce the
space that is used to collect the output of matrix generator module to increase the

space for supporting larger circuit.
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This table represent the calculation of each algorithm by hand.

Quantum circuit

Calculation

Simulation result

by hand
All-gate —0.707j
. . _ 0 [—0.707092285156257 |
- = . T OJ
i - 0.707] 0.7069091796875;
qz ] 0 0_]'
07
0 0]
0 0]
0 ! 0J |
0
Quantum Fourier Transform of 3 qubits | _ )
0.35355339 | - -
(QFT 3) (0.35345458984375 + 05)
0.35355339 | 1(0.35345458984375 + 07)
0.35355339 | {(0.35345458984375 + 07)
e 0.35355339 | |(0-35345458984375 + 05)
q i (0.35345458984375 + 07)
1 » - 0.35355339 1 1(0.35345458984375 + 07)
% .- 0.35355339 | |(0.35345458984375 + 05)
0.35355339 | |(0-35345458984375 + 05)
0.35355339 |

This table represent the raw data of run time of Qiskit.
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Type of gate

Number of qubits

Round

Run time of Qiskit

(s)

Single qubit gate
H(2)

do

a1

gz — H —

—_

4.24 x 10

3.60 x 10

3.00 x 10

3.10 x 10™

2.90 x 10™

2.89 x 10™

2.88 x 10

2.66 x 10

O | 0| N O || P~ WLW|DN

271 x 10*

N
o

2.66 x 10™

g ——

gz — H —

93 ——

—_

4.04 x 10

4.04 x 10

293 x 10

295 x 10™

2.84 x 10™

2.66 x 10

270 x 10

3.05 x 10

O | 0| N O L | P~ WLW|DN

2.96 x 10™

—
(@)

3.27 x 10™

4.40 x 10

3.95x 10

3.02 x 10

2.80 x 10™

O P W

294 x 10




55

g ——

gz — H —

qs ——

qs ——

3.06 x 10

298 x 10™

2.85x 10™

O | 00| N | O

277 x 10

3.23 x 10

Control single qubit
gate
CX(0,2)

qo —§—

B ——

—_

3.74 x 10

391 x 10*

3.90 x 10*

5.55 x 10

242 x 10™

2.04 x 10

1.93 x 10

1.93 x 10

O | o0 | N || P~ WLW[IDN

1.88 x 10

N
(@]

1.86 x 10

do —§—

q ——

qz —,—

as

[N

373 x 10

3.18 x 10*

299 x 10

258 x 10™

2304 x 10

258 x 10

2.56 x 10

254 x 10

O | 0| N O L | B~ WVW|DN

253 x 10"

—
(@)

2.56 x 10™
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—_

279 x 10™

227 x 10™

1.99 x 10

1.96 x 10

1.93 x 10

2.86 x 10

2.35x 10™

2.08 x 10™

O | OO | N | O U] A WD

297 x 10

—
(@)

2.29 x 10*

Phase gate

P(37,2)

do

a1

- P
qz >

—_

3.69 x 10

311 x 10*

276 x 10

2.8%x 10"

279 x 10

2.55x 10™

254 x 10

257 x 10™

O[O0 | N | O L] B~V DN

271 x 10"

—
o

5.05 x 10™

g ——
qz — B —

q3 ——

295 x 10™

3.38 x 10

277 x 10

262 x 10

2.55x 10™

353 x 10

241 x 10™

|l NN PR~V DN

2.07 x 10*
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2.06 x 10™

10

223 x 10

go ——

g ——

qz —

qs ——

qs ——

3.82 x 10™

3.76 x 10

391 x 10*

2.70 x 10*

268 x 10™

2.56 x 10™

2.45 x 10

2.44 x 10

O | O | N || P~ WLWB]DN

248 x 10

N
o

243 x 10™

Control phase gate
CP(60, 0, 2)

dJo —H—

B ——
P G0}

gz —o—

—_

4.01 x 10*

3.46 x 10

3.24 x 10

2.84 x 10™

3.45 x 10™

2.35x 10™

2304 x 10

222 x 10

O | 0| N O UL | P~ WLW|DN

2.15 x 10™

—
o

2.28 x 10™

4.05 x 10

3.27 x 10

3.02 x 10™

291 x 10

279 x 10™

N | P W|DN

263 x 10
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7 2.63 x 10"

L 8 2,69 x 107

R T 9 2.68 x 10*

92 —o— 10 2.65 x 10
95—

5 1 3.92 x 10"

2 2.95x 10"

L 3 2.75 x 10°

R i 293 x 10"

9z —0— 5 291 x10*

g —— 6 2.60 x 10"

T — 7 2.64 x 10"

8 3.01x10*

9 2.25x 10

10 2.31x 10"

Table 16 Raw data of run time of Qiskit.
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