

A Design Of FPGA Framework For Quantum Computing Simulation

Miss Yaninee Jungjarassub

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science in Computer Science

Department of Computer Engineering
FACULTY OF ENGINEERING
Chulalongkorn University

Academic Year 2021
Copyright of Chulalongkorn University

การออกแบบเฟรมเวิร์กเอฟพีจีเอสำหรับการจำลองการคำนวณแบบควอนตัม

น.ส.ญาณินี จึงจรัสทรัพย ์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปรญิญาวิทยาศาสตรมหาบัณฑติ
สาขาวิชาวิทยาศาสตร์คอมพิวเตอร์ ภาควิชาวิศวกรรมคอมพิวเตอร์

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
ปีการศึกษา 2564

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title A Design Of FPGA Framework For Quantum Computing

Simulation
By Miss Yaninee Jungjarassub
Field of Study Computer Science
Thesis Advisor Associate Professor KRERK PIROMSOPA

Accepted by the FACULTY OF ENGINEERING, Chulalongkorn University in
Partial Fulfillment of the Requirement for the Master of Science

Dean of the FACULTY OF
ENGINEERING

 (Professor SUPOT TEACHAVORASINSKUN)

THESIS COMMITTEE

Chairman
 (Assistant Professor NATAWUT NUPAIROJ)

Thesis Advisor
 (Associate Professor KRERK PIROMSOPA)

Examiner
 (Assistant Professor VEERA MUANGSIN)

External Examiner
 (Assistant Professor Jittat Fakcharoenphol)

iii

ABSTRACT (THAI) ญาณิน ีจึงจรัสทรัพย ์: การออกแบบเฟรมเวิร์กเอฟพีจีเอสำหรับการจำลองการคำนวณ

แบบควอนตัม. (A Design Of FPGA Framework For Quantum Computing
Simulation) อ.ที่ปรึกษาหลกั : รศ. ดร.เกริก ภิรมย์โสภา

งานวิจัยนี้ใช้เอฟพีจีเอเพื่อเพิ่มประสิทธิภาพการจำลองของการคำนวณควอนตัมในสอง

ด้าน ได้แก่ 1.ใช้คำสั่งควบคุมเงื่อนไขแทนการคำนวณผลิตภัณฑ์เทนเซอร์ สิ่งนี้ทำให้ผลิตภัณฑ์เทน
เซอร์ของตัวดำเนินการควอนตัมแต่ละตัวถูกสร้างขึ้นในวงจรนาฬิกาเดียว 2. เก็บค่าที่คำนวณไว้
ล่วงหน้าไว้ในรอมซึ่งถูกใช้สำหรับประมาณค่าไซน์และโคไซน์ สิ่งนี้อำนวยความสะดวกในการ
คำนวณประตูควอนตัมที่เกี่ยวข้องกับมุม เพื่อตรวจสอบงานวิจัยนี้ จึงนำการออกแบบของเรามาใช้
ใน VerilogHDL ประสิทธิภาพสามารถประเมินได้โดยใช้โปรแกรมจำลอง FPGA ผลที่ได้แสดงให้
เห็นว่าในกระบวนการจำลองด้วยงานของเราดีขึ้นเมื่อเปรียบเทียบกับการจำลองบนคอมพิวเตอร์
แบบคลาสสิก

สาขาวิชา วิทยาศาสตร์คอมพิวเตอร์ ลายมือช่ือนิสิต ..
ปีการศึกษา 2564 ลายมือช่ือ อ.ที่ปรึกษาหลัก

iv

ABSTRACT (ENGLISH) # # 6270068621 : MAJOR COMPUTER SCIENCE
KEYWORD: tensor product, quantum gate, FPGA, simulation
 Yaninee Jungjarassub : A Design Of FPGA Framework For Quantum

Computing Simulation. Advisor: Assoc. Prof. KRERK PIROMSOPA

We use FPGA to optimize the simulation of quantum computing in two
aspects. (a) The if-else state is used in place of tensor product calculation. This
allows the tensor product of each quantum operator to be generated in a single
clock cycle. (b) The pre-calculated lookup ROM is used for estimating the sine and
cosine values. This facilitates the computation of quantum gates that are related
to angle. To validate our work, we implement our design in VerilogHDL. The
performance is evaluated using an FPGA simulator. The result shows a dramatic
improvement in the simulation process comparing to those of simulation on
classical computers.

Field of Study: Computer Science Student's Signature
Academic Year: 2021 Advisor's Signature

v

ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

Thank you to my advisor, Dr. Krerk Piromsopa, for his patience, guidance, and
support. I have benefited greatly from his wealth of knowledge and meticulous editing.
I am extremely grateful that he took me on as a student and continued to have faith in
me.

Thank you to my committee members, Dr. Nutawut Nupairoj, Dr. Veera

Muangsin, Dr. Puchong Uthayopas and Dr. Jittat Fakcharoenphol Your encouraging
words and thoughtful, detailed feedback have been very important to me.

Thank you to Dr. Thiparat Chotibut and Apimuk Sornsaeng, for all assistance

about the quantum computing knowledge that you have provided.

Thank you to my family, Patcharamon Jungjarrasub, Akkarapong Jungjarrassub

and Pholparis Jungjarrasub, for your endless support. You have always stood behind
me, and this was no exception. Thank you for cheering me up and calming me down
on the day when my mind was depressed. Thank you for all of your love and for
always reminding me of the end goal.

Thank you to my sweetheart, for always being there for me and for telling me

that I should do my thesis even though I'm discouraged.

Thank you to my master's degree friends, Nutcha Zazum for always listening to

me and talk for telling me that I can do it even when I didn't feel that way. Kitsaphon
Thitisiriwech and Vitchaya Siripoppohn these friends made my master's degree life
more enjoyable.

Thank you to my bachelor's degree friends, for always supporting and listening

to me.

vi

Thank you to SPA lab's member, for exchanging knowledge and practicing

questioning.

Thank you to Hinata (from Haikyuu) and Naheedo (from Twenty Five Twenty

One) for being a model of effort. That's the key to helping me complete this thesis.

Yaninee Jungjarassub

TABLE OF CONTENTS

 Page
 ..iii

ABSTRACT (THAI) ..iii

 ... iv

ABSTRACT (ENGLISH) .. iv

ACKNOWLEDGEMENTS .. v

TABLE OF CONTENTS .. vii

LIST OF TABLES .. x

LIST OF FIGURES .. xi

Problem and Motivation .. 1

Objective .. 2

Scope .. 2

Background knowledge .. 2

Quantum Computer ... 2

Superposition .. 2

Entanglement ... 2

Representing a quantum state in quantum computing .. 3

Representing an operator in quantum computing ... 3

Basic quantum gate ... 3

Quantum gate in quantum system ... 5

Definition of unitary matrix ... 6

Transforming state in quantum computing .. 6

viii

Field-programmable gate arrays (FPGAs) ... 6

Quantum Computer Architecture .. 7

Qiskit .. 7

Graphic processing units (GPU) ... 8

Field programable gate arrays (FPGA) ... 8

Propositions ... 15

Instruction set architecture .. 18

Instruction format ... 18

Representation of data in our system ... 20

System design ... 21

Signal .. 21

Processor ... 22

State machine ... 22

Memory .. 25

Generator .. 26

Vector generator .. 26

Matrix generator ... 26

Co-processor ... 27

Vector-Matrix multiplication module .. 27

Measurement module .. 29

Verification of the simulation .. 31

Verification of generator module .. 35

Verification of vector generator module .. 35

Verification of matrix generator module .. 36

ix

Verification of Vector-Matrix Multiplication module .. 43

Verification of Measurement module .. 44

Result of propositions ... 45

Result of Proposition I .. 45

Result of Proposition II ... 50

REFERENCES ... 59

VITA ... 62

LIST OF TABLES

 Page
Table 1 Show the quantum gates .. 5

Table 2 Comparison of CORDIC and ROM .. 14

Table 3 Type of opcode in our system .. 19

Table 4 Relevant signal of our system .. 21

Table 5 Representation of actual output of 4 modules in our system 34

Table 6 Verification of vector generator module ... 35

Table 7 Verification of 1-qubit gate generator module .. 39

Table 8 Verification of 2-qubit gate generator module .. 41

Table 9 Verification of 3-qubit gate generator module .. 42

Table 10 Verification of Vector-Matrix multiplication module .. 43

Table 11 Verification of Measurement module .. 44

Table 12 Comparison of runtime between software simulation and our work 49

Table 13 Meaning of all states in our system ... 50

Table 14 Simulation time comparison of our work and software simulation 51

Table 15 Clock speed comparison of our work and software simulation 51

Table 16 Raw data of run time of Qiskit. .. 58

LIST OF FIGURES

 Page
Figure 1 Quantum circuit of Quantum Fourier Transform (QFT) for 5 qubits. 11

Figure 2 Algorithm for creating matrix operator of single-qubit gate............................... 16

Figure 3 Algorithm for creating matrix operator of multiple-qubit gate 17

Figure 4 Fixed-point number that represent complex number .. 20

Figure 5 System design of our work ... 21

Figure 6 State machine of system module ... 23

Figure 7 State machine of generator matrix module and vector-matrix multiplication
module ... 24

Figure 8 State machine of measurement module ... 25

Figure 9 Vector generator module ... 26

Figure 10 Matrix generator module ... 27

Figure 11 Vector-Matrix multiplication module .. 28

Figure 12 Design of vector-matrix multiplication module .. 29

Figure 13 Design of measurement module .. 30

Figure 14 Simulation result for generating operator step in 1 clock cycle 49

Figure 15 Timing diagram represent state machine when simulation (Zoom in) 50

Figure 16 Timing diagram represent state of state machine when simulation 50

Introduction

Problem and Motivation
While a quantum computing provider (such as IBM) allows remote access to a

real quantum computer, the developers still have to wait in a long line.

Consequently, the use of a quantum computing simulator or emulator is an

alternative tool that allows initial algorithm development to be tested and validated.

With the use of physical effects like superposition, a quantum state is able to

represent multiple states at the same time. In addition, entanglement allows a

change in the state of one qubit to immediately change the state of the associated

qubit. These properties allow a quantum computer to solve problems that are

intractable for a classical computer. Examples include solving the factorization

problem for RSA decryption using Shor's algorithm in polynomial time. Because one

part of Shor's algorithm comes from a quantum fourier transform that takes

advantage of quantum computing.

There exist several software simulations of a quantum computing on classical

computers. Unlike the parallel execution in a quantum computer, the inherent

classical computer is, however, executed in a sequence. Intuitively, the

implementation of a quantum algorithm on the classical computer would take more

time to execute comparing to those of the quantum computer. To ease the

simulation speed, parallel execution hardware, such as graphics processing units

(GPUs) and Field Programmable Gate Arrays (FPGAs), has been employed to achieve

faster simulation time.

We aim at using FPGA to improve the speed of quantum computer

simulators. This simulator allows developer to test arbitrary quantum algorithm.

2

Objective

To design a platform for quantum computing simulation using VerilogHDL

simulation that can simulate arbitrary quantum algorithms at a faster speed than

software simulation.

Scope
1. This research is simulated on VerilogHDL.

2. We need to focus on run time to compare with the baseline (Qiskit).

3. The Qiskit is used as a baseline for proving the correctness of

quantum circuits.

Background knowledge

Quantum Computer

A quantum computer is a type of computer that takes the advantage of

quantum phenomena, this allows the quantum computer to outperform a classical

computer. In general, there are 2 properties: superposition and entanglement.

Superposition

 It is the principle of quantum superposition states that allows a quantum state to

represent more than one (classical) state at the same time. In another word, we can

represent arbitrary states by using the combination of all possible states in quantum

bits.

Entanglement

 Quantum entanglement is a physical phenomenon that happens when we have 2

qubits, which can be entangled. Change in the state of one qubit will immediately

change the state of another one. The change of that qubit is easy to foretell. This

phenomenon has been true although these qubits are far away from each together.

[1]

3

Representing a quantum state in quantum computing

In the classical machine, a bit is used for describing the information of the

classical system. The classical bit is either 0 or 1. On another hand, the quantum

computer has a unit that can represent multiple states at the same time. it's called a

qubit. [2] A quantum bit or a qubit is a unit of information describing a two-

dimensional quantum system. A qubit can be represented by a 2n-by-1 matrix with

complex numbers.

 (1)

where n is the number of qubits and |c0|2 and |c1|2 are the probabilities amplitude of

qubit, where the measurement will result in |0> and |1> respectively. Thus, |c0|2 +

|c1|2 = 1.[1]

Representing an operator in quantum computing

Basic quantum gate

In classical computer, logic gates are ways of managing bits. If the input bits

are passed through a gate, we will get the result bits. So, the calculation relies on

types of each gate. In the same way, quantum computer qubits are manipulated by

quantum gate.

 A quantum gate is simply an operator that acts on qubits. Such operators can be

represented by unitary matrices. We can express the gate in the form of 2n-by-2n

matrix (2). Where n is number of qubits.

 (2)

4

There are many types of quantum gates that are shown with their unitary

matrix in Table 1.[3]

Operator Gate Matrix

Pauli-X (X)

Pauli-Y (Y)

Pauli-Z (Z)

S

T (
𝜋

8
)

Square root of

NOT gate

Phase shift

Controlled U

When U is an arbitrary single quantum

gate.

5

Controlled NOT

(CX, C-NOT)

Controlled Z

(CZ)

SWAP

Toffoli gate

(CCX, CCNOT,

TOFF)

Table 1 Show the quantum gates

Quantum gate in quantum system

Each qubit in a quantum system interacts with others. To model them, a

tensor product is the mathematical expression from multiple qubits transformation.

The tensor operation on any pair of 1-qubit transformations is illustrated as

follows.[1]

6

 (3)

Definition of unitary matrix

When we have an n-by-n matrix U, it will be unitary matrix if and only if

 (4)

when is conjugate and transpose of .

Transforming state in quantum computing

If we want to apply a quantum gate (operator) on a quantum state, a matrix-

vector multiplication can be used to describe this transformation. The example is

shown in equation 5.

 (5)

Field-programmable gate arrays (FPGAs)

Field-programmable gate arrays (FPGAs) are digital devices that rely on digital

logic. There are many general-purposed logic gates on FPGA that can be used for

design the circuit using drawing logic gates or using the Verilog (or another) hardware

description language. [4]

7

Related Work
There are many ways to simulate or emulate quantum computing. In this

chapter, we will present the proposition of the quantum computer architecture and

the previous quantum computing simulator or emulator by software, GPUs and FPGA

respectively.

Quantum Computer Architecture
The concept and implementation of a quantum computer architecture to

allow creating a new computational device as a quantum computer accelerator are

presented by Koen Bertels et al [6]. They present the idea of a quantum accelerator

that contains the full-stack of the layers of an accelerator. The highest level is an

algorithm or application, and the next layer is quantum logic that can represent the

algorithm. This logic is translated to a common assembly language called cQASM by

OpenQL. Then, the compiler can convert cQASM to eQASM to generate an

executable on the specific device.

Moreover, this article mentions the use of a full-stack quantum accelerator.

There are 2 ways of using quantum accelerators, so it depends on the type of the

lowest layer device. If the device is quantum chip material, it is used to improve the

quality of qubits. If the device is a quantum simulator, such as a GPU or FPGA, it is

used to develop quantum algorithms.

Qiskit
Qiskit [quiss-kit] is an open-source SDK for working with quantum computers

at the level of pulses, circuits, and application modules. [5]

However, the nature of the classical computer, which processes in sequence,

causes it to take exponential time and resources, and is not suitable for simulating

the parallel processing inherent in the quantum computer. Accordingly, the usage of

devices that can process in parallel, such as GPUs and FPGAs, is interesting.

8

Graphic processing units (GPU)
Graphic processing units (GPU) is a device that can process in parallel. Smith

A. and Khavari K. [6] implemented quantum fourier transform (QFT) which is the

heart of many other quantum algorithms using Compute Unified Device Architecture

(CUDA) GPUs. They proposed optimization for GPU in two ways. First, Algebraic

manipulations include combining consecutive phase shift gates into one that

improves 3.8xspeedup by choosing cosf and sqrt instead of sinf and cosf (by the

knowledge that in calculations. Second, Combining Kernels and

Shared Memory when they realize these methods together can achieve further

speed up.

Oumarou et al. [7] use CuPy, which is the NumPy equivalent library that

supports CUDA enabled GPUs, a general-purpose library (linear algebra) developed

specifically for CUDA-based GPUs, to simulate quantum circuits. Within the Python

ecosystem, they have to pay attention to usability, implementation, and

maintainability. They benchmarked the performance of CuPy using two types of

circuits: supremacy and arithmetic. When compared to state-of-the-art C++-based

simulators, the speedup for supremacy circuits is around 2x, and for quantum

multipliers it is nearly 22x.

Field programable gate arrays (FPGA)
Field-programmable gate arrays (FPGAs) are digital devices that rely on digital

logic. There are many general-purposed logic gates on FPGA that can be used for

designing the circuit using drawing logic gates, VerilogHDL or other hardware

description languages.[4] Moreover, FPGA which has intrinsic parallelism is a good

choice to mimic quantum computer behavior because of its properties in performing

bit-level parallelism. From the previous studies, there are 3 ways to simulate

quantum computer using FPGA.

9

 From the architectural point of view, C. Conceição and R. Reis [8] proposed a

processor architecture based on single instruction multiple data (SIMD) which is

capable of efficiently emulate quantum circuit. Lee et al. [9] presented serial-parallel

architecture with efficient resource utilization. Their work has two advantages: serial

architecture uses fewer resource comparing to those of others and the pipeline

architecture yield higher throughput. This work can achieve a linear reduction of

resource utilization when compared to pipeline architecture. Furthermore, this work

chooses a suitable number of fixed-point representations for balancing between

precision error and resource utilization.

 From the circuit point of view, N. Mahmud, E. El-Araby, and D. Caliga [10]

inspected the approach for emulating quantum computing instead of emulating gate-

based quantum circuit. Scalability was their goal. There were 2 models of emulation

depending on the type of matrix representing the quantum algorithm. The first

model is suitable for the dense quantum algorithm matrix. Reducing the quantum

circuit to arithmetic operation (complex multiplication-and-accumulation CMAC) is a

key of this model. Moreover, they can optimize this model by combining two types

of computation consisting of lookup and dynamic generation. Lookup needs to pre-

compute and store value in memory for speed optimization. Dynamic generation

causes space optimization. The second model is appropriate for the sparse quantum

algorithm matrix. The core operations of that matrix are extracted as a kernel. It is

then applied iteratively across all groups of input states.

 From the coprocessor point of view, A. U. Khalid et. al. [11] represents the

approach for emulating the quantum circuit using the ability of FPGA to emulate the

parallelism of quantum computing and to resolve the bottleneck in software

simulation. Besides, the code-generation, which is a capability of VHDL language,

constructs the n-input gates from 1-input gates (from software quantum circuit

package) instead of keeping the multiple-input gate in large matrix form. Regarding

the evolution, the quantum circuit have quantum state register (QSR) for holding

10

amplitude of every state after each transformation. For the quantum measurement,

simulator from the software part is used. The universal and scalable quantum

emulator using the FPGA to emulate the behavior of a real quantum system is

proposed in [12]. This emulator was user, so it focuses on the ease of use and

reflects on the behaviors of real-quantum computer by using advantage of FPGA that

can operate the instruction in one clock tick. Hence, there are parts of software and

hardware that can communicate together. Moreover, it can run the entire quantum

algorithm, contains state initialization, transformation, and measurement. However,

the resource optimization is not their goal. Hence, this work can emulate only two

qubits, which is not enough for general quantum algorithms.

11

Design and Methodology
In this chapter, we will describe the system design and methodology of our

simulation. To understanding more, let’s start with the example. If we want to run

Quantum Fourier transform (QFT) for 5 qubits, we begin the process by generating

quantum state or vector of complex number and quantum circuit that is the matrix

of operator. Next, to transforming quantum state the vector is multiplied with that

matrix. The process is repeated until all operators have been used. Lastly, the

measurement step is performed on a final result of quantum state. The details of

this process are described following this.

Figure 1 Quantum circuit of Quantum Fourier Transform (QFT) for 5 qubits.
First, we will explain generating quantum state step. This step produces the

vector of complex number size 2n-by-1 is show as in (6) when n is a number of

qubits and 2n is all possible quantum state in our system.

 (6)

 After that, generating quantum circuit as the matrix size 2n-by-2n is performed.

For the circuit is shown as in figure 1, all matrix operator that represent the circuit at

12

each layer can be creating using directly calculating the tensor product. Its layer is

presented by equation (7) – (21)

 (7)

 (8)

 (9)

 (10)

 (11)

 (12)

 (13)

 (14)

13

 (15)

 (16)

 (17)

 (18)

 (19)

 (20)

 (21)

From these equations, we notice that in case of equation (7), (8), (12), (13),

(16), (17) (19), (20), (21). We can directly find the tensor product of these by operating

quantum gate for target qubit and identity gate (I) for others. On the other case for

the rest equations, Since the CR(theta) gate must be acted on 2-closed-qubits,

therefore these layers are consisted of SWAP gate before and after a desired gate CR

(theta) for switching 2-target-qubit to close each other.

 Next, matrix-vector multiplication, which is the executing of each layer

operator on qubits, is performed for transforming quantum state. Finally, if all

operators have been used, we will measure a final vector from this process.

As an above example, in the latter case of generating quantum circuit by

using tensor product at each layer uses a lot of operations of switching qubits.

14

Moreover, if the 2-target-qubit are more far, the number of operations for switching

are larger. Therefore, we propose an optimization proposition for calculating tensor

product step to improve the speed of quantum computing simulation with an

implementation using FPGA. We will explain it in the next section.

Moreover, for the quantum gate that involved with angle such as R gate, CR

gate. It must use sine and cosine value in calculating tensor product step. CORDIC

algorithm was introduced for the computation of Trigonometric functions,

Multiplication, Division, Data type conversion, Square Root and Logarithms in FPGA as

mention in [13].

Criteria CORDIC ROM
Time ✓
Space ✓
Accuracy ✓

Table 2 Comparison of CORDIC and ROM
In table 2, we compared 2 methods that are used to compute sine and

cosine values in 3 aspects.

First, in the time aspect, ROM can overcome CORDIC. Because ROM uses the

pre-compute of sine and cos values, this allows the ROM to directly use the sine and

cos values. While CORDIC is an iterative algorithm, this can compute trigonometric

values. For this reason, it spends more time computing each iteration than ROM.

Next, in view of space, CORDIC can overcome ROM. Because CORDIC collect a

group of initial values that is used to compute other values. On another hand, the

space for collecting value in ROM is depend on the number of values that we want

to use. For example, suppose that we want to use sine in range 0 – 90 degrees. If we

use CORDIC, it will spend 30 units to collect initial value then it will use that value to

compute others. But, if we use ROM, it will spend 91 unit to collect all values.

15

Finally, in terms of accuracy, ROM can outperform CORDIC. Because ROM

outputs the exact values, whereas CORDIC outputs the approximate values by using

the group of initial values. Furthermore, the CORDIC requires more iteration for

calculating sine and cosine value to achieve higher accuracy.

For the reasons stated above, ROM can outperform CORDIC in terms of speed

and accuracy. As a result, the ROM is chosen for collecting sine and cosine values

rather than directly calculating them (CORDIC).

Propositions
From the example above, there are two steps to simulate quantum

computing using the matrix method: calculating the tensor product of quantum

operators, which creates operators that act on all qubits, and matrix-vector

multiplication, which is the operation of operator on qubits. In this work, we propose

an optimization proposition for calculating tensor product step to improve the speed

of quantum computing simulation with an implementation using VerilogHDL

simulation.

Proposition I: Describes the relationship within the operator's matrix rather

than directly calculating the tensor product

From usage this proposition, the matrix operator can be created without the

need for any calculation operations. Because this method simply compares the

desired qubit's index in the matrix using a comparison operation instead of

calculation. Therefore, this method uses operations for generating the operator.

The algorithm for use of this method is shown in algorithm 1 for single-qubit gate

and 2 for multiple-qubits gate. In these algorithms, the initial state is the row index in

the binary form of the matrix, and the final state is the column index in the binary

form of the matrix. And each qubit is equivalent to a binary index bit.

16

Figure 2 Algorithm for creating matrix operator of single-qubit gate

17

Figure 3 Algorithm for creating matrix operator of multiple-qubit gate
Proposition II: Use a lookup table to collect sine and cosine values instead of

calculating them directly

By implementing our propositions on FPGAs, we hope to speed up the

quantum computing simulation in the calculation the tensor product step.

18

Instruction set architecture
 In this section, we will explain about an instruction format that is used to

command the system. Moreover, the representation of data, which is quantum state

and quantum gate, and involved signal of our system are also described.

Instruction format

 In our system, we designed the instruction format have a length of 32 bits. It

contains the following data that is required to simulate a quantum circuit:

1. Opcode is interpreted as the type of operator that a user wants to simulate.

There are 7 types of opcodes as shown in Table 3.

Type Opcode Operation
Gen_vec 101000 Generate quantum state

as vector of complex
number by gen_vec
module.

1Q-type
1 target qubit gate

000xxx Generate quantum gate by
using opcode and target as
input

000000 X gate
000001 Y gate
000010 Z gate
000110 H gate

1Q1C-type
1 target qubit with 1
constant (an angle).

001000 Generate P gate by using
opcode, target and angle
as input.

2Q-type
1 target qubit and 1
control qubit.

010xxx Generate quantum gate by
using opcode, target and
control as input

010000 CX gate

19

010001 CY gate
010010 CZ gate

2Q1C-type 011000 Generate CP gate by using
opcode, target control and
angle as input.

3Q-type 100000 Generate CCX gate by
using opcode, target and 2
control as input

Table 3 Type of opcode in our system
2. Target is a position of target qubit that a user wants to perform quantum gate

on it.

3. Ctrl0 and Ctrl1 are the position of control qubit. The Ctrl0 is used in case that

quantum gate what we perform has 1 control qubit but in case it has 2

control qubits the both Ctrl0 and Ctrl1 are used.

4. Angle is interpreted as the angle that is used to rotate the qubit for the

quantum gate that is involved with angle. In our work, it can use angle from 0

to 90 degree because it has 7 bits which represents this part.

5. N is a number of qubits of the quantum circuit that user want to simulate.

The instruction format of our system can be represented as below.

gen_vec-type

Opcode (6 bits) Reserved (22 bits) N (4 bits)

1Q-type

Opcode (6 bits) Target (5 bits) Reserved (17 bits) N (4 bits)

1Q1C-type

Opcode (6 bits) Target (5 bits) Reserved (10 bits) Angle (7 bits) N (4 bits)

2Q-type

Opcode (6 bits) Target (5 bits) Ctrl0 (5 bits) Reserved (12 bits) N (4 bits)

20

2Q1C-type

Opcode (6 bits) Target (5 bits) Ctrl0 (5 bits) Reserved (5 bits) Angle (7 bits) N (4 bits)

3Q-type

Opcode (6 bits) Target (5 bits) Ctrl0 (5 bits) Ctrl1 (5 bits) Reserved (7 bits) N (4 bits)

Representation of data in our system

In general, data representation of a quantum state is represented by vector of

complex number and a quantum gate is represented by matrix of complex number.

However, in hardware it cannot represent data as 2 dimensions and complex

number. Hence, these data must be represented by 1 dimension of fixed-point

number of real part and imaginary part stick together as in figure 4.

Figure 4 Fixed-point number that represent complex number
In fixed-point number, 1 bit is used to represent sign of the value and 1 bit is

used to represent an integer because the amplitude of quantum state and the value

in quantum gate is not over 1. And the rest of fixed-point (14 bits) are enough for

using to represent the fraction part. So, the 16 bits fixed-point number is sufficient to

represent the value of each part.

21

System design
Our system design contains 3 main parts that is processor, generator and co-

processor. Overall, of our system can be shown as figure 5.

Figure 5 System design of our work

Signal

 Before we get into the details of each module, these modules have the

relevant signals that are used commonly for controlling it. As shown in this table 4.

Signal Function
clock Determine the timing of each module.
nreset Determine the non-reset (nreset=1) or

reset (nreset=0) of each module.
start_flag Determine the starting of each module.
done_flag Determine the completion of each

module.
Table 4 Relevant signal of our system

22

Processor

 Processor is a part that put the state machine and memory together. It

controls and manages overall of system. Function of each part can be delineated as

follows.

State machine

 State machine is a heart for controlling workflow of our system. In our work,

there is a state machine that is different type depends on the functionality of each

module in our system.

For the first module is a system module is shown as in figure 6. It has seven

states:” IDLE”,” FETCH”,” GENVEC”,” MEASURE”,” GENMAT”,” CALCULATE” and”

DONE”. If this module receives a system-start signal from user, it will change its state

from” IDLE” to” FETCH.” After that, an instruction from memory is read and checked

its opcode. If it equal to 6’b101100 a next state is assigned as” GENVEC” then the

generator vector module will start. But if the opcode is 6’b110000 the next state is

assigned as” MEASURE” then the measure module will start. Otherwise, If the

opcode equal to other values the next state is assigned as” GENMAT” then the

generator matrix module will start. Afterwards, when it’s done, the next state is

changed to” CALCULATE” for starting vector-matrix multiplication. Finally, when”

GENVEC” or” MEASURE” or” CALCULATE” are finished, it sends a signal to the

system’s state machine telling it to change the state to” done,” and then it returns

to” idle.”

23

Figure 6 State machine of system module
Second module is a group of generator matrix module. The word “group”

refers to, there are five types that depend on the input of these modules. These

differences are discussed in the section of instruction format. Although these

modules have differences, they have the same workflow. Hence, there are the same

state machine. It has three states:” idle,”” busy,” and” done” that is shown as in

figure 7. If this module receives a system-start signal, it will change its state from”

idle” to” busy.” This module generating matrix follows proposition I when the state

is” busy.” When it is finished, it sends a signal to the state machine telling it to

change the state to” done,” and then it returns to” idle.”

24

Figure 7 State machine of generator matrix module and vector-matrix
multiplication module

Next module is a vector-matrix multiplication module. It has three states is

same as the state machine of generator matrix module. For working of this state

machine looks as follows. If this module receives a system-start signal, it will change

its state from” idle” to” busy.” Then, this module starts to multiply matrix and

vector input. When it has finished, it sends a signal to the state machine to change

the state to” done,” and then it returns to” idle.”

Last module is measurement module as shown in figure 8. It has four states:

“idle”, “cal_prob”, “clear” and “done”. Normally, the state is “idle” after that if the

start-to-measure signal comes to this module, the state will be changed to

“cal_prob” then vector input is calculated probability. Then, when it has finish

calculating, the state is changed to “clear” to clear the value of all registers and

changed to “done” and then it returns to” idle.”

25

Figure 8 State machine of measurement module

Memory

 Memory is used for writing an instruction from user to our system and read or

fetch instruction to the system. Thus, random access memory (RAM) that can be read

and writhed data is used as memory in our work.

 This module has clock, address, instruction (when writing) as input and done

flag, instruction (when reading) as output.

26

Generator

 Generator part is a part that generates vector and matrix corresponding with

an instruction. These vector and matrix are used for input of multiplication unit to

transform quantum state. There are 2 types of this generator:

Vector generator

 For the first line of every set of instruction must be the instruction declare a

number of qubits and command our system to generate initial vector of complex

number size 2n. Vector generator is a module that is used for this task as shown in

figure 9.

Figure 9 Vector generator module
 The input of this module is clock, nreset (non-reset), opcode and start_flag

and the output are done_flag and res (result) that is the vector of complex number.

Matrix generator

 Matrix generator module is used to generate a matrix of quantum operator in

our system. This module can be divided this into 5 types according to instruction

format. In each type, there are differences input that is shown in figure 10. All

modules have similar output that is done_flag and res (result). The result represents

the matrix of complex number.

27

Figure 10 Matrix generator module

Co-processor

 The main function of co-processor is about arithmetic operation. This part

includes a vector-matrix multiplication module and a measurement module.

Vector-Matrix multiplication module

 Vector-Matrix multiplication module is used for multiplication vector of

quantum state and matrix of quantum operator. In addition, this multiplication is a

complex number that is represented in fixed-point number format. This number is

between [-1,1] because the probability of quantum state no more than 1. As

illustrated in the figure 11 it has vector size 2n-by-1 and matrix size 2n-by-2n be as an

input and result size 2n-by-1 be as an output.

28

Figure 11 Vector-Matrix multiplication module
 Inside this module, it has 4 QMULT and 4 QADD for using in multiplication

and addition between each element of vector and matrix as shown in figure 12. To

describe how it works, we assumed that it has one vector , which has size 2-by-1 in

equation 22, and one matrix , which has size 2-by-2 in equation 23, are input of our

module.

 (22)

 (23)

If we calculate , we will get an output vector , which has size 2-by-1 by

using calculation as in equation 24.

 (24)

 From figure 12, the QADD number 3 and 4 are used for accumulating the

result from multiplication of each row (, in first row and , in

second row) in real part and imaginary part respectively. The RTL_REG_SYNC is used

for collecting the temporary out output from QADD 3 and 4 when it has not finished

adding. Next, we focused in multiplication between a multiplier and a multiplicand

of each element such as that refers to complex number multiplication as

. It has multiplication 2 times for real part of complex

number that is , , and others for imaginary part that is ,

29

. Thus, QMULT number 1 and 2 are used for multiplication this real part and

QMULT number 3 and 4 are used for the rest part. In addition, the QMULT has an

input it will assign to 1 when the multiplier and the multiplicand are both imaginary

then flip a sign of output of it (from + to – or from – to +). For others case, is set to

0 and the sign is not flipped. The output of QMULT number 1 and 2, which is real

part, and number 3 and 4, which is imaginary part, are added by QADD number 1 and

2 respectively. Finally, the output of that QADD is accumulated by QADD number 3

and 4.

Figure 12 Design of vector-matrix multiplication module

Measurement module

 Measurement module is used for measuring the final-quantum state, which is

matrix of vector state that are transformed by quantum circuit. As shown in figure 13,

this module has clock, nreset, startp_flag and vector as input. The startp_flag is used

to trigger calculating probability and the vector is the final-quantum state.

30

Figure 13 Design of measurement module

31

Results
 In this chapter, we will show the result of our simulation. By starting with the

verification of our system. Next, the result of each proposition is represented. Finally,

the runtime of the simulation is compared with the baseline.

Verification of the simulation
 In this part, the verification of our modules in system are shown. There are

three parts that must be checked for the correctness of the work.

 Before we consider our verification results, we need to understand the actual

data format of each part's output. The output is binary (fixed-point representation) as

described in section of data representation. For example, if we want to create

quantum circuit that has 3 qubits (0, 1, 2) and operate the H gate on 0th qubit. The

process will be in the following 4 steps. First, the vector generator will create vector

of complex number with the size of 23-by-1. Second, the matrix generator will create

matrix of complex number with the size 23-by-23. Afterwards, the vector and the

matrix will be multiplied by using vector-matrix multiplication module that get the

vector of complex number with the size 23-by-1. Finally, for measurement step the

measurement module will find the probability of each quantum state (each element

of the final-state vector) and then get the output as a vector of real number with the

size of 23-by-1. Hence, the actual output from each module at each step can be

shown as in Table 5.

32

St
ep

M

od
ul

e
In

pu
t

Ou
tp

ut

1st
Cr

ea
te

ini

tia
l

ve
ct

or

of

co
m

pl
ex

nu

m
be

r

Ve
ct

or
 ge

ne
ra

to
r

Ins
tru

ct
ion

fro

m

m
em

or
y

(3
2

bit
s)

Ini
tia

l v
ec

to
r s

ta
te

 o
f c

om
pl

ex
 n

um
be

r i
n

fix
ed

-p
oin

t r
ep

re
se

nt
at

ion
.

 O
ut

pu
t i

n
he

xa
de

cim
al

fo
rm

 is
 sh

or
t t

ha
n

bin
ar

y.

 O
ut

pu
t

in
bin

ar
y

fo
rm

 is
 e

as
y

to
 u

nd
er

 in
te

rp
re

t
wh

en
 c

om
pa

re
 w

ith

fix
ed

-p
oin

t r
ep

re
se

nt
at

ion
 fo

rm
at

.

33

 2nd
 C

re
at

e
m

at
rix

 o
f

co
m

pl
ex

nu

m
be

r
H[

0]

M
at

rix
 ge

ne
ra

to
r

Ins
tru

ct
ion

fro

m

m
em

or
y

(3
2

bit
s)

Ma
tri

x o
f c

om
pl

ex
 n

um
be

r i
n

fix
ed

-p
oin

t r
ep

re
se

nt
at

ion
.

3rd

M

ul
tip

ly
m

at
rix

wi

th
 v

ec
to

r
M

at
rix

-V
ec

to
r

M
ul

tip
lic

at
ion

Ve

ct
or

of

sta

te

an
d

M
at

rix

of

ga
te

Ve
ct

or
 o

f c
om

pl
ex

 n
um

be
r i

n
fix

ed
-p

oin
t r

ep
re

se
nt

at
ion

 th
at

 p
as

se
d

th
e

H[
0]

ga

te
.

34

 4th

M
ea

su
re

pr

ob
ab

ilit
y

M
ea

su
re

m
en

t
Ve

ct
or

of

fin

al
sta

te

Ve
ct

or
 o

f r
ea

l n
um

be
r i

n
fix

ed
-p

oin
t r

ep
re

se
nt

at
ion

Ta

bl
e

 5
 R

ep
re

se
nt

at
ion

 o
f a

ct
ua

l o
ut

pu
t o

f 4
 m

od
ul

es
 in

 o
ur

 sy
ste

m

Fr
om

 th
e

ex
am

pl
e

ab
ov

e,
we

 n
ot

ice
 th

at
 o

ut
pu

ts
ar

e
he

xa
de

cim
al

re
pr

es
en

ta
tio

n.
 M

or
eo

ve
r,

th
e

po
sit

ion
 o

f e
ac

h
el

em
en

t i
n

th
e

ou
tp

ut
 is

 so
rte

d
in

de
sc

en
din

g o
rd

er
 fr

om
 le

ft
to

 ri
gh

t a
nd

 to
p

to
 b

ot
to

m
. T

he
re

fo
re

, f
or

 th
e

re
st

of
 th

e
re

su
lts

, w
e

co
nv

er
t a

ll

ou
tp

ut
s i

n
th

is
fo

rm
 to

 a
 n

ew
 fo

rm
 th

at
 is

 a
 d

ec
im

al
re

pr
es

en
ta

tio
n

an
d

re
ve

rse
 th

e
or

de
r o

f e
le

m
en

ts
fo

r e
as

e
of

 re
ad

ing
 th

e
re

su
lt.

Verification of generator module

 The verification result of generator module is described in this section. It

contains 2 parts of generator module. The result of vector generator module is

shown as in Table 6 and the result of matrix generator modules are shown as in

Table 7-9.

Verification of vector generator module

Number of qubits Expected result Simulation result
3

4

Table 6 Verification of vector generator module

Ve

rif
ica

tio
n

of
 m

at
rix

 g
en

er
at

or
 m

od
ul

e
Qu

an
tu

m

ga
te

Ex

pe
ct

ed
 re

su
lt

Sim
ul

at
io

n
re

su
lt

X[
1]

Y[
1]

37

Z[
1]

H[
1]

Ex

pe
ct

ed
 re

su
lt

 Sim
ul

at
ion

 re
su

lt

38

S[
1]

T[
1]

Ex

pe
ct

ed
 re

su
lt

Sim
ul

at
ion

 re
su

lt

39

 R[
1]

 4
5

Ex
pe

ct
ed

 re
su

lt

 Sim
ul

at
ion

 re
su

lt

Ta
bl

e
 7

 V
er

ific
at

ion
 o

f 1
-q

ub
it

ga
te

 ge
ne

ra
to

r m
od

ul
e

40

 Qu
an

tu
m

ga

te

Ex
pe

ct
ed

 re
su

lt
Sim

ul
at

io
n

re
su

lt

CX
[2

,0]

CY
[2

,0]

41

 CZ
[2

,0]

CR
[2

,0]
 6

0
Ex

pe
ct

ed
 re

su
lt

Sim
ul

at
ion

 re
su

lt

Ta
bl

e
 8

 V
er

ific
at

ion
 o

f 2
-q

ub
it

ga
te

 ge
ne

ra
to

r m
od

ul
e

42

 Qu
an

tu
m

ga

te

Ex
pe

ct
ed

 re
su

lt
Sim

ul
at

io
n

re
su

lt

CC
X[

0,2
,1]

Ta
bl

e
 9

 V
er

ific
at

ion
 o

f 3
-q

ub
it

ga
te

 ge
ne

ra
to

r m
od

ul
e

43

 Ve
rif

ica
tio

n
of

 V
ec

to
r-M

at
rix

 M
ul

tip
lic

at
io

n
m

od
ul

e

Qu
an

tu
m

 c
irc

ui
t

Ex
pe

ct
ed

 re
su

lt
Sim

ul
at

io
n

re
su

lt
Al

l-g
at

e

Qu
an

tu
m

 F
ou

rie
r T

ra
ns

fo
rm

 o
f 3

 q
ub

its
 (Q

FT
 3

)

Ta
bl

e
 1

0
Ve

rif
ica

tio
n

of
 V

ec
to

r-M
at

rix
 m

ul
tip

lic
at

ion
 m

od
ul

e

44

Verification of Measurement module

Quantum circuit Expected result Simulation result
QFT 3

QFT 5

QFT 7

Table 11 Verification of Measurement module

From the verification result is the table 6 is vector generator module, table 7-

9 is matrix generator module, table 11 is measurement module. We got the result

that match with baseline. But in the table 10 is vector-matrix multiplication module

45

we got the result that didn’t match with the baseline. Therefore, the expected result

is recalculated by hand. To check if the results from our simulations are correct or

not. As a result, our result matched with this calculation. Note that this result is

shown in appendix section. Thus, we concluded that our system can simulate

quantum computing correctly.

Result of propositions
In this part, the result of our propositions is shown. Before we consider our

proposition results, we need to know about the experiment setup. The propositions

are modelled in VerilogHDL using a clock speed of 2.00 GHz. The Qiskit, a quantum

simulation software library, was chosen as a baseline. This library runs on Colab with

clock speed 2.20 GHz.

For our baseline, it didn’t spend the same amount of runtime each time.

Therefore, its runtime, as shown in the result, is an average of run time 10 times by

cutting out the min and max value.

Result of Proposition I: Describes the relationship within the operator's matrix rather

than directly calculating the tensor product

In this section, we design an experiment to compare how much time the

software simulation with our work spends building the tensor product of each

quantum gate.

 To reduce the overlap measurement of propositions I and II, there are four

different types of quantum gates in the experiment. The single qubit gate and the

control single gate, which are not involved with angles (sine and cosine values), are

used to demonstrate the result of proposition I. The others are used to demonstrate

the result of proposition II.

46

Type of gate Number of
qubits

Qiskit (s) Our work (s) Speedup

Single qubit
gate
H(2)

3

2.97 x 10-4 5.13 x 10-8 5.79 x 103

4

3.09 x 10-4 1.47 x 10-7 2.10 x 103

5

3.10 x 10-4 5.31 x 10-7 5.84 x 102

Control single 3 2.72 x 10-4 5.13 x 10-8 5.30 x 103

47

qubit gate
CX(0,2)

4

2.69 x 10-4 1.47 x 10-7 1.83 x 103

5

2.32 x 10-4 5.31 x 10-7 4.37 x 102

Phase gate
P(37,2)

3

2.87 x 10-4 5.13 x 10-8 5.59 x 103

4 2.62 x 10-4 1.47 x 10-7 1.78 x 103

48

5

2.86 x 10-4 5.31 x 10-7 5.39 x 102

Control phase
gate
CP(60, 0, 2)

3

2.77 x 10-4 5.13 x 10-8 5.40 x 103

4

2.83 x 10-4 1.47 x 10-7 1.93 x 103

5 2.76 x 10-4 5.31 x 10-7 5.20 x 102

49

Table 12 Comparison of runtime between software simulation and our work

 In table 12, our propose method takes less time to run than those of

software simulation. As a result of proposition I, we can generate a matrix operator

by assignment through the if-else statement method rather than calculating the

tensor product directly. This allows the generation of a matrix step in one clock cycle

from 15.750 ns to 16.250 ns as shown in Fig 14. The resources required is 22n, where

n is the number of qubits in the circuit.

Figure 14 Simulation result for generating operator step in 1 clock cycle
 Table 13 represents the meanings of all the states in our system. Fig. 15

shows the timing diagram of the state machine of our system when it was simulating

that it contains states that follow the instruction. If we zoom out this timing diagram

as Fig. 16, we will find that almost all time is spent on state 4, or the matrix-vector

multiplication step.

Number State
0 IDLE
1 FETCH

50

2 GENVEC (generate vector)
3 GENMAT (generate matrix)
4 CALCULATE (matrix-vector multiplication)
5 GENRAND (generate random number)
6 MEASURE (find probability of final state)
7 DONE

Table 13 Meaning of all states in our system

Figure 15 Timing diagram represent state machine when simulation (Zoom in)

Figure 16 Timing diagram represent state of state machine when simulation
(Zoom out)

Result of Proposition II: Use a lookup table to collect sine and cosine values

instead of calculating them directly

 Proposition II is yet another reason why a matrix step can be generated in a

single clock cycle. Because it reduces the time it takes to access sine and cosine

values.

To compare the simulation time of our work with software simulation when

simulate Quantum Fourier Transform (QFT) at 3, 5, 7 qubits that is a quantum

algorithm. Table 14 is shown the simulation time of both.

51

Quantum circuit Qiskit
run on colab @2.2 GHz

(s)

Our work
@2 GHz (s)

Speedup

QFT 3 qubits 3.18x10-4 2.24x10-7 1.42x103

QFT 5 qubits 4.83x10-4 7.79x10-6 6.20x10

QFT 7 qubits 3.99 x10-4 2.30x10-4 1.73

Table 14 Simulation time comparison of our work and software simulation
If we simulate these circuit by our work with the same time spent as qiskit's,

we will use the clock speed in each case as shown in table 15.

Quantum circuit Simulation time (s) Qiskit Our work

QFT 3 qubits 3.18x10-4 2.2 GHz 1.41 MHz

QFT 5 qubits 4.83x10-4 2.2 GHz 32.2 MHz

QFT 7 qubits 3.99 x10-4 2.2 GHz 1.15 GHz

Table 15 Clock speed comparison of our work and software simulation
The clock speed in this table can be calculated from (22). From the result in

table 15. Our work takes less clock speed than qiskit at the same time.

 (22)

52

Conclusion and Future Work
Based on these results, we conclude that optimizing the construction of

tensor products using our proposed if-else method can significantly reduce the

execution time of quantum computing simulation. However, the number of qubits

and quantum gates in the circuit will increase the runtime. This is due to the fact

that the multiplication vector-matrix step is still not optimized in this experiment.

Moreover, due to hardware resource constraints, we intend to modify this

module to support the generation of quantum operators for larger quantum circuits.

Furthermore, the matrix-vector multiplication step should also be redesigned to gain

better performance.

We plan to modify our system by increasing the number of matrix-vector

multiplication module in order to multiply vector and matrix in parallel. This will

increase the speed of our simulation. In addition, the matrix-vector multiplication

module and matrix generator module should be concurrent working for reduce the

space that is used to collect the output of matrix generator module to increase the

space for supporting larger circuit.

53

Appendix
This table represent the calculation of each algorithm by hand.

Quantum circuit Calculation
by hand

Simulation result

All-gate

Quantum Fourier Transform of 3 qubits
(QFT 3)

This table represent the raw data of run time of Qiskit.

54

Type of gate Number of qubits Round Run time of Qiskit
(s)

Single qubit gate
H(2)

3

1 4.24 x 10-4

2 3.60 x 10-4
3 3.00 x 10-4
4 3.10 x 10-4
5 2.90 x 10-4
6 2.89 x 10-4
7 2.88 x 10-4
8 2.66 x 10-4
9 2.71 x 10-4
10

2.66 x 10-4

4

1 4.04 x 10-4

2 4.04 x 10-4
3 2.93 x 10-4
4 2.95 x 10-4
5 2.84 x 10-4
6 2.66 x 10-4
7 2.70 x 10-4
8 3.05 x 10-4
9 2.96 x 10-4
10

3.27 x 10-4

5 1 4.40 x 10-4
2 3.95 x 10-4
3 3.02 x 10-4
4 2.80 x 10-4
5 2.94 x 10-4

55

6 3.06 x 10-4
7 2.98 x 10-4
8 2.85 x 10-4
9 2.77 x 10-4
10

3.23 x 10-4

Control single qubit
gate
CX(0,2)

3

1 3.74 x 10-4
2 3.91 x 10-4
3 3.90 x 10-4
4 5.55 x 10-4
5 2.42 x 10-4
6 2.04 x 10-4
7 1.93 x 10-4
8 1.93 x 10-4
9 1.88 x 10-4
10

1.86 x 10-4

4

1 3.73 x 10-4
2 3.18 x 10-4
3 2.99 x 10-4
4 2.58 x 10-4
5 2.34 x 10-4
6 2.58 x 10-4
7 2.56 x 10-4
8 2.54 x 10-4
9 2.53 x 10-4
10

2.56 x 10-4

56

5

1 2.79 x 10-4
2 2.27 x 10-4
3 1.99 x 10-4
4 1.96 x 10-4
5 1.93 x 10-4
6 2.86 x 10-4
7 2.35 x 10-4
8 2.08 x 10-4
9 2.97 x 10-4
10

2.29 x 10-4

Phase gate
P(37,2)

3

1 3.69 x 10-4
2 3.11 x 10-4
3 2.76 x 10-4
4 2.83 x 10-4
5 2.79 x 10-4
6 2.55 x 10-4
7 2.54 x 10-4
8 2.57 x 10-4
9 2.71 x 10-4
10

5.05 x 10-4

4

1 2.95 x 10-4
2 3.38 x 10-4
3 2.77 x 10-4
4 2.62 x 10-4
5 2.55 x 10-4
6 3.53 x 10-4
7 2.41 x 10-4
8 2.07 x 10-4

57

9 2.06 x 10-4
10 2.23 x 10-4

5

1 3.82 x 10-4
2 3.76 x 10-4
3 3.91 x 10-4
4 2.70 x 10-4
5 2.68 x 10-4
6 2.56 x 10-4
7 2.45 x 10-4
8 2.44 x 10-4
9 2.48 x 10-4
10

2.43 x 10-4

Control phase gate
CP(60, 0, 2)

3

1 4.01 x 10-4
2 3.46 x 10-4
3 3.24 x 10-4
4 2.84 x 10-4
5 3.45 x 10-4
6 2.35 x 10-4
7 2.34 x 10-4
8 2.22 x 10-4
9 2.15 x 10-4
10

2.28 x 10-4

4 1 4.05 x 10-4
2 3.27 x 10-4
3 3.02 x 10-4
4 2.91 x 10-4
5 2.79 x 10-4
6 2.63 x 10-4

58

7 2.63 x 10-4
8 2.69 x 10-4
9 2.68 x 10-4
10

2.65 x 10-4

5

1 3.92 x 10-4
2 2.95 x 10-4
3 2.75 x 10-4
4 2.93 x 10-4
5 2.91 x 10-4
6 2.60 x 10-4
7 2.64 x 10-4
8 3.01 x 10-4
9 2.25 x 10-4
10

2.31 x 10-4

Table 16 Raw data of run time of Qiskit.

59

REFERENCES

REFERENCES

[1] N. S. Yanofsky and M. A. Mannucci, “Quantum Computing for Computer

Scientists,” p. 402.

[2] E. Gibney, “Hello quantum world! Google publishes landmark quantum

supremacy claim,” Nature, vol. 574, no. 7779, pp. 461–462, Oct. 2019, doi:

10.1038/d41586-019-03213-z.

[3] “Chapter 3 - Quantum Circuits and Quantum Information Processing

Fundamentals | Elsevier Enhanced Reader.”

https://reader.elsevier.com/reader/sd/pii/B9780123854919000034?token=5C7553DF50B

CFF2C186BB6BE668CCBDCDFBBE60A56B212BB05AC5C09E887EC7EC3CFCCA0814D39AF32

73A867AACB46DB&originRegion=eu-west-1&originCreation=20220708160904 (accessed

Jul. 08, 2022).

[4] S. Monk, Programming FPGAs getting started with Verilog. 2017.

[5] “Qiskit.” https://qiskit.org/ (accessed Jun. 01, 2022).

[6] “QFT_report.pdf.” Accessed: Jun. 01, 2022. [Online]. Available:

https://www.eecg.utoronto.ca/~moshovos/CUDA08/arx/QFT_report.pdf

[7] O. Oumarou, A. Paler, and R. Basmadjian, “Fast quantum circuit simulation using

hardware accelerated general purpose libraries.” arXiv, Jun. 26, 2021. Accessed: Jun. 21,

2022. [Online]. Available: http://arxiv.org/abs/2106.13995

[8] C. Conceição and R. Reis, “Efficient emulation of quantum circuits on classical

hardware,” in 2015 IEEE 6th Latin American Symposium on Circuits & Systems (LASCAS),

Feb. 2015, pp. 1–4. doi: 10.1109/LASCAS.2015.7250404.

[9] Y. H. Lee, M. Khalil-Hani, and M. N. Marsono, “An FPGA-Based Quantum

Computing Emulation Framework Based on Serial-Parallel Architecture,” Int. J.

60

Reconfigurable Comput., vol. 2016, pp. 1–18, 2016, doi: 10.1155/2016/5718124.

[10] N. Mahmud, E. El-Araby, and D. Caliga, “Scaling reconfigurable emulation of

quantum algorithms at high precision and high throughput,” Quantum Eng., vol. 1, no.

2, p. e19, 2019, doi: 10.1002/que2.19.

[11] A. U. Khalid, Z. Zilic, and K. Radecka, “FPGA emulation of quantum circuits,” in

IEEE International Conference on Computer Design: VLSI in Computers and Processors,

2004. ICCD 2004. Proceedings., Oct. 2004, pp. 310–315. doi: 10.1109/ICCD.2004.1347938.

[12] J. Pilch and J. Długopolski, “An FPGA-based real quantum computer emulator,”

J. Comput. Electron., vol. 18, no. 1, pp. 329–342, Mar. 2019, doi: 10.1007/s10825-018-

1287-5.

[13] R. Naik and R. Nadaf, “Sine-Cosine Computation Using CORDIC Algorithm,” vol.

4, no. 9, p. 5.

61

62

VITA

VITA

NAME Yaninee Jungjarassub

DATE OF BIRTH 2 February 1997

PLACE OF BIRTH Chonburi, Thailand

INSTITUTIONS ATTENDED - Bachelor’s Degree at Chulalongkorn University
Faculty of Science, Department of Physics, Bangkok,
Thailand (3.22)
- High School at Bothongwongchanwittaya school
Science – Mathematic Program, Chonburi, Thailand (3.94)
- Elementary school at Anubanbothong school
Chonburi, Thailand

PUBLICATION Y. Jungjarassub and K. Piromsopa, “A Performance
Optimization of Quantum Computing Simulation using
FPGA,” in 2022 19th International Conference on Electrical
Engineering/Electronics, Computer, Telecommunications
and Information Technology (ECTI-CON), May 2022, pp. 1–
4. doi: 10.1109/ECTI-CON54298.2022.9795571.

AWARD RECEIVED Achieved the Academic Year 2016 Outstanding
Achievement Development Award

	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Problem and Motivation
	Scope
	Background knowledge
	Quantum Computer
	Superposition
	Entanglement

	Representing a quantum state in quantum computing
	Representing an operator in quantum computing
	Basic quantum gate
	Quantum gate in quantum system

	Definition of unitary matrix
	Transforming state in quantum computing
	Field-programmable gate arrays (FPGAs)

	Quantum Computer Architecture
	Qiskit
	Graphic processing units (GPU)
	Field programable gate arrays (FPGA)
	Propositions
	Instruction set architecture
	Instruction format
	Representation of data in our system

	System design
	Signal
	Processor
	State machine
	Memory

	Generator
	Vector generator
	Matrix generator

	Co-processor
	Vector-Matrix multiplication module
	Measurement module

	Verification of the simulation
	Verification of generator module
	Verification of vector generator module

	Verification of Vector-Matrix Multiplication module
	Verification of Measurement module

	Result of propositions
	REFERENCES
	VITA

