

OBJECT DETECTION IN INTELLIGENT BILLING SYSTEM FOR CONVEYOR BELT SUSHI
RESTAURANT

Mr. Rangrak Maitriboriruks

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science in Computer Science

Department of Computer Engineering
FACULTY OF ENGINEERING
Chulalongkorn University

Academic Year 2021
Copyright of Chulalongkorn University

การตรวจหาวัตถุในระบบวางบลิอจัฉริยะสำหรับร้านซูชิสายพาน

นายรังรกัษ์ ไมตรีบริรักษ์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลกัสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
สาขาวิชาวิทยาศาสตร์คอมพิวเตอร์ ภาควิชาวิศวกรรมคอมพิวเตอร์

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
ปีการศึกษา 2564

ลิขสิทธ์ิของจุฬาลงกรณ์มหาวิทยาลัย

3

Thesis Title OBJECT DETECTION IN INTELLIGENT BILLING SYSTEM FOR

CONVEYOR BELT SUSHI RESTAURANT
By Mr. Rangrak Maitriboriruks
Field of Study Computer Science
Thesis Advisor Associate Professor Yachai Limpiyakorn, Ph.D.

Accepted by the FACULTY OF ENGINEERING, Chulalongkorn University in
Partial Fulfillment of the Requirement for the Master of Science

Dean of the FACULTY OF
ENGINEERING

 (Professor SUPOT TEACHAVORASINSKUN, D.Eng.)

THESIS COMMITTEE

Chairman
 (Assistant Professor SUKREE SINTHUPINYO, Ph.D.)

Thesis Advisor
 (Associate Professor Yachai Limpiyakorn, Ph.D.)

External Examiner
 (Paskorn Apirukvorapinit, Ph.D.)

 iii

AB ST R ACT (T HAI) รังรกัษ์ ไมตรีบริรกัษ์ : การตรวจหาวัตถุในระบบวางบลิอัจฉริยะสำหรบัร้านซูชิสายพาน.

(OBJECT DETECTION IN INTELLIGENT BILLING SYSTEM FOR CONVEYOR
BELT SUSHI RESTAURANT) อ.ที่ปรึกษาหลัก : รศ. ดร.ญาใจ ลิ่มปิยะกรณ์

องค์กรต้องดำเนินการอัตโนมัติทุกที่ และทุกเวลา โดยเฉพาะอย่างยิ่ งในช่วงที่

ชีวิตประจำวันเปลี่ยนแปลงไปทั่วโลก แนวโน้มการใช้เทคโนโลยี โดยเฉพาะ ปัญญาประดิษฐ์ ได้
กลายเป็นปัจจัยสำคัญที่ทำให้เกิดนวัตกรรมที่ก่อกวน วิทยานิพนธ์นี้จึงนำเสนออินเทอร์เฟซการ
เขียนโปรแกรมแอปพลิเคชันของเครื่องตรวจจับวัตถุที่ใช้งานกับ โยโลวี4 และโอเพนซีวีเพื่อจำแนก
ราคาของจานซูชิแยกตามสี เครื่องตรวจจับวัตถุเป็นส่วนหนึ่งของแอปพลิเคชันมือถือข้าม
แพลตฟอร์มอัจฉริยะเพื่ออำนวยความสะดวกในกระบวนการเรียกเก็บเงินสำหรับธุรกิจซูชิสายพาน
ส่วนหน้าของระบบได้รับการพัฒนาด้วยฟลัตเตอร์เพื่อสร้างโค้ดเบสเดียวสำหรับส่วนต่อประสานกับ
ผู้ใช้ เพื่อจัดการกับสีต่างๆ ของภาพที่เกิดจากการใช้กล้องมือถือที่แตกต่างกัน การถ่ายโอนสีจะใช้
สำหรับการถ่ายโอนสีของชุดข้อมูลภาพไปยังภาพที่ผู้ใช้ถ่าย สถาปัตยกรรมไมโครเซอร์วิสถูก
นำมาใช้สำหรับส่วนหลังของระบบการประสานกันของ โยโลวี4, โอเพนซีวี และ สปริงบูตเรสต์ เอ
พีไอ จะสร้าง เอพีไอ เพื่อคำนวณค่าอาหาร สร้างรหัส คิวอาร์ สำหรับชำระบิล และรักษา
ผลประโยชน์การเป็นสมาชิกของลูกค้า แบบจำลองการตรวจจับวัตถุที่สร้างข้ึนค่าความเที่ยงตรง
97%, การเรียกกลับ 97%, คะแนนเอฟหนึ่ง 97% และ เอ็มเอพี 97.3% ระบบการเรียกเก็บเงิน
อัจฉริยะที่นำเสนอในงานนี้จะช่วยเร่งเวิร์กโฟลว์ เพิ่มผลผลิต ลดของเสีย และขับเคลื่อนการ
เคลื่อนไหวเพื่อสังคมไร้สัมผัส

สาขาวิชา วิทยาศาสตร์คอมพิวเตอร ์ ลายมือช่ือนสิิต ..
ปีการศึกษา 2564 ลายมือช่ือ อ.ทีป่รกึษาหลกั

 iv

AB ST R ACT (ENGLI SH) # # 6370245421 : MAJOR COMPUTER SCIENCE
KEYWORD: object detection, conveyor belt sushi, intelligent process

automation, smart billing
 Rangrak Maitriboriruks : OBJECT DETECTION IN INTELLIGENT BILLING

SYSTEM FOR CONVEYOR BELT SUSHI RESTAURANT. Advisor: Assoc. Prof.
Yachai Limpiyakorn, Ph.D.

Organization must automate wherever and whenever they can,

particularly during today’s global changes in daily lifestyles. Trends regarding the
use of technology, especially AI has emerged as a key enabler for disruptive
innovation. This thesis thus presents the application programming interface of
object detector implemented with YOLOv4 and OpenCV for classifying the prices
of sushi plates distinguished by colors. The object detector is part of the smart
cross-platform mobile application to facilitate billing process for conveyor belt
sushi business. The frontend is developed with Flutter to build single codebase for
UIs. To handle the variants of image colors resulting from the use of different
mobile cameras, color transfer is used for transferring the image dataset colors to
images captured by users. Microservices architecture is adopted for the backend.
Orchestration of YOLOv4, OpenCV and Spring Boot REST API will create APIs to
calculate food cost, generate QR code for bill payment, and maintain customer
membership benefits. The constructed object detection model achieved the
precision of 97%, recall of 97%, F1-score of 97% and mAP of 97.3% The smart
billing system presented in this work would accelerate the workflow, increase
productivity, reduce waste and drive moving for contactless society.

Field of Study: Computer Science Student's Signature
Academic Year: 2021 Advisor's Signature

 v

ACK NOWLEDGEMENT S

ACKNOWLEDGEMENTS

The completion of this thesis could not have been possible without the
assistance and participation of so many people whose names may not all be
enumerated. Their contributions are sincerely appreciated and gratefully
acknowledged. However, the group would like to express deep appreciation and
indebtedness particularly to the following.

Assoc. Prof. Dr. Yachai Limpiyakorn, Asst. Prof. Dr. Sukree Sinthupinyo and Dr.
Paskorn Apirukvorapinit for their time, endless effort and generous advice during the
presentation.

And thanks a lot to Assoc. Prof. Dr. Yachai Limpiyakorn for being advisor, who
is always helping to give advice for thesis and following the work process, is a person
who gives good advice in every matter. causing students to choose the right path. And
thank you to my family for always supporting me when I need encouragement. Last
but not least, to all relatives, friends, family others who in one way or another shared
their support, either morally, financially and physically, thank you.

Rangrak Maitriboriruks

vi

TABLE OF CONTENTS

 Page
ABSTRACT (THAI) ... iii

ABSTRACT (ENGLISH) .. iv

ACKNOWLEDGEMENTS ..v

TABLE OF CONTENTS ... vi

LIST OF TABLES ... 1

LIST OF FIGURES.. 1

Chapter 1 Introduction .. 1

1.1 Statement of the problems .. 1

1.2 Objectives ... 3

1.3 Scope of Study .. 3

1.4 Research Methodology .. 3

1.5 Outcomes ... 3

1.6 Thesis Publication ... 4

Chapter 2 Related Theories and Literature Review ... 5

2.1 Related Theories ... 5

2.1.1 Object Detection .. 5

2.1.2 Spring Boot REST API.. 6

2.1.3 OpenCV ... 7

2.2 Literature Review .. 8

Chapter 3 Proposed Methodology .. 14

3.1 YOLOv4 Model ... 14

 vii

3.2 API Gateway .. 18

3.3 Microservices .. 18

3.4 Database.. 19

3.5 Model Evaluation .. 19

Chapter 4 Evaluation and Result ... 20

4.1 Object Detection Model .. 20

4.2 Model training by using K Fold Cross validation ... 33

4.3 API Gateway .. 40

4.4 Microservice .. 41

4.5 Database.. 43

Chapter 5 Conclusion ... 46

Appendix... 48

REFERENCES ... 58

VITA .. 61

1

LIST OF TABLES

Table 1: Comparison of model performance: Faster-RCNN, SSD, YOLOv4 [9]................. 9

Table 2: Comparison of model performance of YOLOv4 implemented in this work
with CNN model [13] ... 33

Table 3: Summary and average of performance metrics of 5-fold. 40

Table 4: TRANSACTION_LOG table description. ... 44

Table 5: MEMBER table description. ... 45

1

LIST OF FIGURES

Figure 1: Uobei Sushi Menu [2] ... 2

Figure 2: Price of desserts on sushi plates [3].. 2

Figure 3: R-CNN workflow [6] ... 6

Figure 4: YOLO workflow [6] .. 6

Figure 5: Object detection using OpenCV trained by YOLO [4] ... 7

Figure 6: ROI before training with the model [9] ... 8

Figure 7: Steps of object detection of YOLOv4 [10] ... 10

Figure 8: Yolov4 BenchMark [11] .. 10

Figure 9: Example of an embryo counting image [12]. .. 12

Figure 10: Ellipse Detection method to detect sushi plates [13] 12

Figure 11: Convolutional Neural Network for classify sushi plates [13] 13

Figure 12: Architecture Design of Integrated Research System .. 15

Figure 13: example of sushi plates .. 16

Figure 14: Label images format .. 17

Figure 15: Example training images. ... 21

Figure 16: Example after data preprocessing images. .. 22

Figure 17: (a) screen capture of Labelimg showing bounding box. (b) label image
format (.txt). ... 23

Figure 18: screen capture directory after labeling images .. 23

Figure 19: Code for connecting google drive with google colab 24

Figure 20: Code for download YOLOv4 library .. 24

Figure 21: Code for unzip dataset to directory ~/rungruk_yolov4/darknet/data 24

Figure 22: Screen capture Train.txt and Test.txt .. 25

 2

Figure 23: Python code for split data .. 26

Figure 24: Capture screen of obj.data ... 27

Figure 25: Capture screen of obj.names ... 27

Figure 26: yolov4-custom.cfg .. 28

Figure 27: yolov4-custom.cfg .. 29

Figure 28: Code for enable OpenCV and GPU ... 29

Figure 29: Code for trainning model using darknet .. 29

Figure 30: Loss graph of 16,000 epochs of training. ... 30

Figure 31: Screen capture showing model performance. ... 31

Figure 32: Object detection base on IoU threshold[19]. ... 32

Figure 33: Example of test images and the results of detection..................................... 32

Figure 34: Python code for split data in k fold ... 33

Figure 35: Code for create directory command .. 34

Figure 36: Python code for write train.txt and test.txt in each fold 34

Figure 37: Screen capture Train.txt and Test.txt in Fold1 ... 35

Figure 38: Screen capture showing model performance in Fold1. 35

Figure 39: Screen capture Train.txt and Test.txt in Fold2 ... 36

Figure 40: Screen capture showing model performance in Fold2. 36

Figure 41: Screen capture Train.txt and Test.txt in Fold3 ... 37

Figure 42: Screen capture showing model performance in Fold3. 37

Figure 43: Screen capture Train.txt and Test.txt in Fold4 ... 38

Figure 44: Screen capture showing model performance in Fold4. 38

Figure 45: Screen capture Train.txt and Test.txt in Fold5. .. 39

Figure 46: Screen capture showing model performance in Fold5. 40

 3

Figure 47: Spring Boot library in pom.xml .. 40

Figure 48: OpenCV version 4.5.3-1.5.6. .. 41

Figure 49: Process flow of payment service. ... 41

Figure 50: Screen capture of postman testing payment service. 42

Figure 51: Password encoding step .. 43

1

Chapter 1
Introduction

1.1 Statement of the problems
It has been widely known that conveyor belt sushi experienced is a big boom in

popularity in Japan. The main reasons are a wide variety of menu choices (example
as shown in Figure 1), reasonable price, and accessible to all types of customers.
Especially when people loved being able to eat quickly. Therefore, Japanese people
decide to choose sushi served on rotation plates. The main concept of a typical
conveyor belt sushi restaurant is using color-coded plates to identify sushi price and
calculate the bill. The color-coded plate does not limit to only sushi item, non-sushi
items can be calculated as well, as shown in Figure 2. However, the main problem
with conveyor belt sushi restaurant is the method for calculating the bill. Generally,
customers call a staff member to count all the sushi plates on the table, where each
sushi plate has its own color-coded. If there are many customers who come to the
restaurant and order a variety of sushi items with various prices, this may cause a
delay in sorting and counting the plates. Repetition and fatigue may cause human
error in the restaurant. From the aforementioned factors, it impacts delays in
services. When service failure occurs due to a long waiting time, this reflects
negatively on customer satisfaction and the store's image.

This research presents the application of Object Detection to count the
number of color-coded plates. The study is based on the patterns of sushi color-
coded plates from the most famous conveyor belt sushi restaurant in Japan. Central
World has the first branch of conveyor belt sushi from Japan that opened its door in
Thailand [1]. Applying the color-coded detection of sushi plates by implementing
YOLO technique version 4 (YOLOv4) in conjunction with the OpenCV Library. The
input data first use the photos from the mobile camera of the restaurant staffs. Then
processing the color-coded plates recognition, and calculating the amount that the
customer has to pay. It is designed and developed as an Application Programming
Interface (API) developed with Java framework, Spring Boot REST API. This tool can

 2

work on 3 platforms, namely Android, iOS and Web application. It is expected that
the results of the research will enhance quality of service, operational efficiency,
responsive calculation, paper usage and human accuracy. Additionally, reducing
queue at the counter in front of the restaurant and keeping customers safe from
contracting Covid 19 in the epidemic situation of emerging infectious disease.

Figure 1: Uobei Sushi Menu [2]

Figure 2: Price of desserts on sushi plates [3]

 3

1.2 Objectives
Introducing an Intelligent billing system for conveyor belt sushi restaurants. by

applying technology to detect objects from mobile device shot of sushi plates. To
reduce the time for counting containers and calculating the cost of food that
customers have to pay. as well as supporting a new normal life in a communicable
disease epidemic situation.

1.3 Scope of Study
1.3.1 Using the dataset of sushi plates from the Japanese’s most famous

conveyor belt sushi franchise restaurant in Bangkok, Thailand.
1.3.2 Able to detect objects, consisting of free water cups, sauce dishes, sushi

dishes in 4 colors: 1. Red, 40 baht, 2. Silver, 60 baht, 3. Gold, 80 baht, and 4.
Black, 120 baht , and the container is not sushi dishes.

1.3.3 The picture of the sushi plate is clear. Not far away and the image is not
broken

1.4 Research Methodology
1.4.1 Study and research related theories and literature review
1.4.2 Explore and Data colloection sushi dishes.
1.4.3 Data preprocessing
1.4.4 Develop an object detection model with the YOLOv4 algorithm.
1.4.5 Use file (*.weight) trained with the YOLOv4 algorithm as an application

interface (API).
1.4.6 Test and evaluate research results.
1.4.7 Summary the result.
1.4.8 Compile and produce reseach paper.
1.4.9 Compile and produce thesis.

1.5 Outcomes
1.5.1 The speed of customer service in a conveyor belt sushi restaurant

business

1.5.2 Use technology to reduce the risk of infection in epidemic situations from

queuing at the counter.

 4

1.6 Thesis Publication

Parts of the thesis had been published in the conference as following:
R. Maitriboriruks and Y. Limpiyakorn, “Object Detection for Classifying Sushi

Dishes in Conveyor Belt Sushi Business”, in Proceedings of the 8th International
Conference on Computer Technology Applications (ICCTA) , 2022 , Vienna , Austria

RANGRAK MAITRIBORIRUKS and PATCHARIYA PIYA-AROMRAT and YACHAI
LIMPIYAKORN , “Smart Conveyor Belt Sushi Bill Payment with a Mobile Shot “, 2022,
GuangZhou, China

 5

Chapter 2
Related Theories and Literature Review

2.1 Related Theories

2.1.1 Object Detection
Object Detection [4] is a modern computer technology that deals with the
application of Computer Vision and Image processing to detect various types of
objects in images or videos by detecting objects with a number of researchers. The
focus is on face detection and pedestrian detection along the road or various
locations, and object detection can be divided into two main categories:

2.1.1.1 Multiple-Stage Object Detection
Multiple-Stage Object Detection [5] detects objects that use two or

more models. Typically, the first model is used to separate regions and the
second model is used to classify objects. (object classification) Multiple-Stage
Object Detection is the detection of objects with high accuracy. The
disadvantage is that it takes longer to detect other types of objects. Examples
of models classified as Multiple-Stage Object Detection is Region Based
Convolutional Neural Network (R-CNN) [6] invented by Ross Girshick et al. in
2014 and is said to be a CNN-based model (CNN) in The problem of object
detection and segmentation is very good. Figure 3 shows the working of the
R-CNN consisting of 3 modules:
• Region Proposal – Creating bounding box for object of interest
• Feature Extractor - Serves to extract features from each region of the

object of interest using Deep CNN.
• Classifier - Use to classify the object of interest as an object class by

using the SVM classifier.

 6

Figure 3: R-CNN workflow [6]

2.1.1.2 Single-Stage Object Detection

Single-State Object Detection [6] is an object detection that uses only
one model to detect all classes of objects in an image or video. The
advantage is that Single-State Object Detection takes less training time than
multiple- stage object detection and suitable for use with mobile devices and
also has high accuracy.An example of a Single-Stage Object Detection is
YOLO. It is a model developed by Joseph Redmon et al. Figure 4 shows the
YOLO workflow starting from the S x S grid division of the image. Each grid is
responsible for predicting the bounding box if the center of the bounding box
lies within each grid. Each grid predicts the bounding box with respect to x ,y,
width, height, sentiment. (confidence) and use Non Maximal Suppression to
find bounding boxes with the highest Intersection Over Union (IoU) value,
reducing the problem of bounding boxes overlapping in multiple layers

Figure 4: YOLO workflow [6]

2.1.2 Spring Boot REST API

 Spring Boot [7] developed by Pivotal, is an open-source framework that uses Java

 7

as its primary language. Spring Boot uses the concept of Microservices, which clearly

separates each function into sub-services by Spring. Boot adopts the concept of

REST, an architectural style that takes advantage of Web protocol technologies to

create Web services to create application interfaces. API in order to make the client

(Client) able to communicate with the server (Server)

2.1.3 OpenCV

OpenCV [8] developed by Intel, is a library with the goal of real-time

computer rendering. for use in the development of open-source software systems

OpenCV is used to perform visualizations in Machine Learning or Artificial Intelligence

in object recognition or Face Recognition problems. Developed with C++ and also

supports Python, Java and MathLab, the OpenCV is a cross-platform library. It is

cross-platform and freely available under the Berkeley Source Distribution (BSD)

open-source software license. Detect objects of interest.

Figure 5: Object detection using OpenCV trained by YOLO [4]

 8

2.2 Literature Review

2.2.1 Comparison of Faster-RCNN, YOLO, and SSD for Real-Time Vehicle
Type Recognition [9]

Jeong-ah Kim et al. conducted research on comparing three neural
network models, 1. Faster-RCNN, 2.YOLOv4, and 3.Single-Shot Detector (SSD),
with the Automobile dataset, which were more efficient and have the most
accurate in real-time object detection. The research categorizes vehicles into
6 categories: 1.car 2.mini_van 3.big_van 4.mini_truck 5.truck and 6.compact.
Before taking the dataset for training, a Region of Interest (ROI) was done to
label the objects of interest before training with the model as shown in Figure
6. The SSD model uses mobilenet v1, the Faster-RCNN model uses Inception
v2 and YOLOv4 is all used by default. Comparisons of the results are
summarized in Table 1.

Figure 6: ROI before training with the model [9]
Table 1 shows that Faster-RCNN is a model with two state object

detection: regional proposal and classification. Low accuracy was obtained
with real-time datasets of type F1score=0.90 , Precision=0.86 , Recall=0.94 ,
and mAP=93.40 makes Faster-RCNN unsuitable for use. The SSD has the
fastest speed compared to Faster-RCNN and YOLOv4 because it uses a
mobilenet light model, but the accuracy is the lowest compared to Faster-
RCNN and YOLOv4, with F1score=0.88 , Precision=0.90 , Recall=0.87 and mAP

 9

= 90.56, making SSD unsuitable for adoption. YOLOv4 is a very accurate
model that predicts vehicles without fail in real time. However, the model
training speed is slower than SSD but faster than Faster-RCNN: F1score=0.96 ,
Precision=0.93 , Recall. =0.98 and mAP=98.19, which is the highest
achievement compared to Faster-RCNN and SSD, thus YOLOv4 has the best
predictive performance compared to Faster-RCNN and SSD.

Table 1: Comparison of model performance: Faster-RCNN, SSD, YOLOv4 [9]

 F1score Precision Recall mAP Time

Faster-RCNN 0.90 0.86 0.94 93.40 Ranking 3

SSD 0.88 0.90 0.87 90.56 Ranking 1

YOLOv4 0.93 0.98 0.98 98.19 Ranking 2

2.2.2 YOLOv4: Optimal Speed and Accuracy of Object Detection [10]

Alexey Bochkovskiy et al. implemented YOLOv4 to overcome the
drawbacks of Convolutional Neural Networks that suffer the detection of
overlapping objects, real-time detection, and high GPU consumption. Figure 4
illustrates the four major learning steps consisting of:
• Input - the training images
• Backbone - CSPDarknet53 is chosen as the pretrained model for object

recognition. Compared to CSPResNet50 and EfficientNet-B3, CSPDarknet53
provides higher accuracy rate and less training time.

• Neck - combine the features in conv net as preparation before moving to
the next step. The PANet model was selected for feature integration. The
block following CSPDarknet53 was implemented with the SPP model to
augment the receptive field and separate important features from the
backbone.

• Head - apply Head of YOLOv3 to predict the bounding box used for
classification and regression. The format of the enclosing framework is
divided into 4 characters: width, height, center, and label prediction score.

 10

As a result, using YOLOv4 achieved 43.5% speed (AP) from the real-
time MS COCO dataset of 65 Frame per second (FPS) on the Tesla V100 GPU.
When comparing YOLOv4 with YOLOv3, the Average Precision (AP) increased by
10% and FPS increased by 12%. The benchmark of YOLOv4 against other single
stage object detection models using the same dataset MS COCO is depicted in
Figure 8. The graph shows that YOLOv4 achieved the highest average Precision
/frames per second, indicating that YOLOv4 had the highest accuracy despite
the increased frames per second that could be applied. YOLOv4, therefore,
works well for object detection of real-life photography [11].

Figure 7: Steps of object detection of YOLOv4 [10]

Figure 8: Yolov4 BenchMark [11]

11

2.2.3 Automatic Counting Shrimp Larvae Based You Only Look Once (YOLO)
[12]

Siska Armalivia et al. conducted research on using YOLOv3 3 model to
help shrimp embryo count as shown in Figure 9 to help shrimp farmers to
determine the number of shrimp embryos. for calculating profit or loss The
research process is as follows.

• Data Collection - A total of 355 images of shrimp embryos were
collected by mobile phones taken at the Takalar Brackish Water
Aquaculture Fisheries, Center Takalar Regency and South Sulawesi.

• Annotation Image - Bring the image dataset to be converted into a file
format Label image using YOLO mark tools. By creating a Label image
will set a frame to the object of interest and the resulting value will be
in the file format (*.txt)

• Training the Model - Before training the model with the dataset, edit
the .cfg file by setting the learning rate=0.001, batches=64,
iteration=4000. The dataset was divided into 325 training data and 30
testing data. After changing the values in the cfg file and dividing the
dataset, the model was trained using the Graphics Processing Unit
(GPU).
The research result achieved F1score=94.38%, Recall=93.51%,

Precision=95.26%, mAP@0.5=96.83% and average of Accuracy=76.48%. Note
that the Precision is very high and when the larger the number of images will
make the value more accurate.

 12

Figure 9: Example of an embryo counting image [12].

2.2.4 Sushi Dish : Object detection and classification from real images [13]
Yeongjin Oh et al. 2017 conducted research on the object detection

and classification of sushi plates from real images. The researchers
implemented Ellipse Detection method to detect sushi plates as shown in
Figure 10. The Convolutional Neural Network model was trained to classify
color-coded plates as shown in Figure 11. The model achieved ellipse
detection precision 85%, recall 96%, and classification accuracy 92%

Figure 10: Ellipse Detection method to detect sushi plates [13]

 13

Figure 11: Convolutional Neural Network for classify sushi plates [13]

 14

Chapter 3
Proposed Methodology

This chapter mainly describes the construction of an object detection model
implemented with YOLOv4 to facilitate the automated count of distinct colored
sushi dishes. Figure 12 illustrates the architectural design of the proposed smart
billing system for a conveyor belt sushi restaurant. The system structure can be
divided into three main components. The frontend is developed with Flutter to build
single codebase for UIs. The intelligent component of sushi plate count or the object
detection model is constructed using YOLOv4. The backend is designed with
Microservices architecture. Orchestration of YOLOv4, OpenCV and the Spring Boot
REST API will create an API (Application Programming Interface) offering a service to
other pieces of software. For example, when the API has finished calculating the cost
of food, it will store the food cost for billing and the customer's information for
membership benefits in the database. The Spring Boot REST API is selected as it can
support a large number of incoming requests by making the API itself as a
Microservice. While OpenCV [8] is a huge Opensource Computer Vision library that
contributes to image processing and performing computer vision tasks. The library is
cross-platform and mainly aimed at real-time computer vision.

3.1 YOLOv4 Model

According to related research, the findings of using the YOLOv4 approach to

train an image dataset revealed high accuracy and the capacity to discriminate

overlapping items [12]. As a result, this approach is appropriate for the sushi plate's

visual qualities. Sushi platters are naturally sorted into column before being counted.

As a result, the researcher chose the YOLOv4 approach as a training method for the

image dataset, dividing the dataset into 80% for training and 30% for testing. Setting

the pre-trained weight to yolov4.conv.137, divided into 4 main steps as described

following:

 15

Figure 12: Architecture Design of Integrated Research System

3.1.1 Image collection of how the sushi plates is arranged in layers

with different color-coded plates from the iPhone 12 in JPEG (.jpeg) file

format. As indicated in Figure 13, the photographs collected are a plate of

sushi arranged according to the nature of the restaurant's clients. Sushi plates

have a clear habit of being sorted in a variety of ways. It can be arranged both

in color order and out of color order. It could also include non-sushi plates.

When there are a lot of plates, it is usually organized in more than one

column. Various objects, like as sauce dishes, free cups, chopsticks, and food

trash, are frequently placed on top of sushi platters.

 16

Figure 13: example of sushi plates

 3.1.2 Label Image

The initial step was to collect photos from a dataset and label it,
which was called Annotation Image. Label image in order to identify the
position of the objects of interest, before using the YOLOv4 approach. The
label image's value is determined by five factors as Figure 14:

• Category Number is the class of the object of interest consisting 7

classes: 0) “40baht” represents the red sushi plate, 1) “60baht”

represents the silver sushi plate, 2) “80baht” represents the golden

sushi plate, 3) “120baht” represents the black sushi plate, 4) “free-

water” represents the free water cup, 5) “free-dish” represents the

free sauce plate, and 6) “not-sushi-dish” represents other kinds of

plates used for special orders. Note that in this work, the class label

indicates the product pricing rather than the type of sushi plate.

• Bounding Box Left X denotes the initial x-axis position of the object of
interest at the upper left corner.

 17

• Bounding Box Top Y denotes the initial y-axis position of the object of
interest at the upper left corner.

• Bounding Box Right X denotes the starting x-axis of the object of
interest at the lower right corner.

• Bounding Box Bottom Y denotes the starting y-axis of the object of
interest at the lower right corner.

Labelimg [14], an open-source software that allows you to configure
an image in the form of a label image that looks like a text (.txt) file. In figure
4, Labelimg can be used to create a label image.

Figure 14: Label images format

 3.1.3 Config the parameter in YOLOv4-custom.cfg

change the values in the file (*.cfg) as follows: batch at 64,

subdivisions at 16, width at 416, height at 416, max_batches at 14000 (all

value from class are multiplied by 2000), steps at 11200,12600(the first value

is 80% of the max_batches, and the second value is 90% of the max_batches)

filters at 33 (values are based on (class+5)*3) claesses at 7 (values from the

number of classes of objects of interest), all of these numbers are based on

the inventor of YOLOv4 [15]

 18

 3.1.4 Pre-Trained Weight YOLOv4

Download the yolov4.conv.137 file, which is the YOLOv4 Pre-Training
Weight file used to train datasets that are not in the MS COCO dataset. The
research datasets are conveyor belt sushi dishes.

3.2 API Gateway
The Spring Boot REST API was used in this phase to help create the

application interface so that data could be exchanged between the frontend and
backend. According to related research studies, the majority of them were built in
Python. However, in this study, Spring Boot REST API was chosen because of JAVA
unique property of being able to write Microservices better than Python [15]. This
approach is the best way to manage in parts when using the Microservice
architecture. Managing future upgraded versions is undeniably convenient. Another
advantage of using the Spring Boot REST API is having a database ecosystem that is
simple to connect to the database and suitable of making application interfaces.

3.3 Microservices
This section is divided into 2 main Microservices:

 3.3.1 Payment Service

The payment service's main function is to process the weight value

received from YOLOv4 training and apply it to the application interface. It can

then determine the total payable amount to the customer and, finally,

record the customer's daily data in the database. The Request body is being

rolled out as a photo base64 and customer data receiver. The calculated

amount, as well as the number of sushi color-coded plates that clients have

ordered, are returned to the Response.

 3.3.2 Userprofile Service

The User Profile Service's main function is to store and retrieve
customer information that has been subscribed to the database.

 19

3.4 Database
The database was built using Structured Query Language (SQL). To further

explain the advantages of SQL, it is straightforward to work when table features are
in a fixed layout format. TRANSACTION_LOG and MEMBER_LOG are the only two
variables in the database. To be clear, TRANSACTION_LOG records the details of
consumers who visit the conveyor belt sushi restaurant on a daily basis.
MEMBER_LOG stores information on customers who have signed up to be restaurant
members.

3.5 Model Evaluation
Use the confusion matrix metrics including recall, precision, f1-score and

mean average precision for accuracy. For the accuracy of sushi plates calculations
will test by call the API with postman

 20

Chapter 4
Evaluation and Result

4.1 Object Detection Model
In this work, a unified, real-time object detector was constructed with YOLOv4

to classify the type of sushi plates in conveyor belt sushi business. The performance
of YOLOv4 models tends to achieve high accuracy and the capacity to discriminate
overlapping items. The image dataset used for model construction is collected from
a Japanese revolving sushi restaurant franchise in Bangkok, Thailand.

4.1.1 Data Collection

Prior to count the number of consumed dishes, the plates are typically
arranged in layers with different colors. A set of 600 photographs was taken by a

smartphone─ iPhone 12 pro max. Figure 15 illustrates example consumed dishes
gathered from the Japanese’s most famous conveyor belt sushi franchise restaurant
in Bangkok, Thailand. Figure 11a) portrays the stacks overlap each other. Figure 11b)
contains a noise of a sauce plate with a spoon at the top of stack. Figure 11c)
displays a close-up shot. Only half-side of stack is captured in Figure 11d). Figure 11e)
contains noises of chopsticks at the top of stack. Example of the high stack is
depicted in Figure 11f). Figures 11g), 11h), and 11i) present the cases where the top
plate is upside-down, and the same color as the beneath; but not sushi plate; and
different color from the beneath, respectively.

 21

Figure 15: Example training images.
4.1.2 Data Preprocessing

Use Preview, a program that has the ability to image viewer and PDF viewer
of the macOS operating system. In addition to viewing and printing digital images and
Portable Document Format files, it can also edit these media types [16] to transform
the image format from (*.HEIC) to (*.JPEG). Next, the dimensions of images were
converted to 960x1280 following the input format of YOLOv4 as shown in Figure16.

 22

Figure 16: Example after data preprocessing images.
4.1.3 Image annotation

Manual image annotation was performed to define the regions of interest in
an image and label a textual description of those regions. Labelimg, an open-source
software, is used as a tool to facilitate the task of configuring an image in the form of
a label image that looks like a text (.txt) file, as shown in Figure 17. The directory
after making the label image will look like in Figure 18. there is a file (*.JPEG)
converted in the data preprocessing step along with a file (.txt) obtained from the
Label image. After that compression directory in a format (.zip) and upload it to
Google drive for use in the training model process.

 23

Figure 17: (a) screen capture of Labelimg showing bounding box. (b) label image
format (.txt).

Figure 18: screen capture directory after labeling images
4.1.4 Model Training

The model was trained on the Google cloud (colab pro) with the specification of
GPU = T4, RAM size = 32GB. Training the model on cloud is easy to maintain and the
system is stable.

Use Google drive to access the dataset (*.zip) made in Data preprocessing and
Image Annotation steps and to store the file (*.weight) obtained from the YOLOv4

 24

train model. The advantage of storing the file (*.weight) is when training model and
then disconnected or lose session, no need to retrain the model from the beginning
but can bring the last saved file (*.weight) to run where the file (*.weight) will be
saved every 100 iteration [17] In google drive need to mount drive to retrieve data in
google colab Use the command drive.mount('/content/drive') under the google.colab
library and !mkdir ~dir to create a directory to store the YOLOv4 library and files
(*.weight) as shown in Figure19.

Figure 19: Code for connecting google drive with google colab

Download the YOLOv4 library from github and store it in the directory
~/mydrive/rungruk_yolov4 using the !git clone https://github.com/AlexeyAB/darknet
command as shown in Figure 20.

Figure 20: Code for download YOLOv4 library

Unzip the dataset on Google drive to directory
~/rungruk_yolov4/darknet/data using the command !unzip
/mydrive/rungruk_yolov4/obj.zip -d data/ as shown in Figure 21.

Figure 21: Code for unzip dataset to directory ~/rungruk_yolov4/darknet/data

https://github.com/AlexeyAB/darknet

 25

Once the unzip dataset is complete, The dataset of 600 images was divided
into train and test sets with the ratio 80:20, i.e., 480 images of training data will be
written to train.txt and 120 images of testing data will be written to. File test.txt as
shown in Figure 22. Figure 23 is a code to randomly split dataset in ratio 80:20 and
write to file train.txt and test.txt.

Figure 22: Screen capture Train.txt and Test.txt

 26

Figure 23: Python code for split data

Create obj.data and obj.names files in directory
~/rungruk_yolov4/darknet/data where obj.data is a config path file that tells each
parameter to read from that path, by setting classes = 7, train = data/train.txt, valid =
data/test.txt, names = data/obj.names, backup = /mydrive/yolov4/training as shown
in Figure24, and The obj.names file tells the class of the objection of interest
consisting of how many classes and what is the name of each class as shown in
Figure25.

 27

Figure 24: Capture screen of obj.data

Figure 25: Capture screen of obj.names

Modify the values in the file (yolov4-custom.cfg) in directory
~/rungruk_yolov4/darknet/cfg as follows: batch at 64, subdivisions at 16, width at
416, height at 416, max_batches at 16000 , steps at 12800,14400 (the first value is
80% of the max_batches, and the second value is 90% of the max_batches), filters at
36 (values are based on (class+5)*3), classes at 7 (values from the number of classes
of objects of interest) as shown in Figure26. Some parameter settings are the defaults
suggested by the inventor of YOLOv4 [18]. Each variable in the config file can be
described as follows. batch is a number of samples images which will be processed
in one batch , subdivisions is a number of mini_batches in one batch, size mini_batch
= batch/subdivisions, so GPU processes mini_batch samples at once, and the weights

 28

will be updated for batch samples (1 iteration processes batch images) , width and
height is a network size of width and height, so every image will be resized to the
network size during Training and Detection, steps is an Adjust of the learning rate
after 500 and 1000 batches , max_batches is the training will be processed for this
number of iterations and filter is a number of kernel-filters.

Figure 26: yolov4-custom.cfg

 29

Download the pre-trained weight of yolov4 stored in the directory
~/rungruk_yolov4/darknet where the weight to be used as the pre-trained weight is
yolov4.conv.137 The command used to download the pre-trained weight value is
!wget ~url as shown in Figure 27.

Figure 27: yolov4-custom.cfg

 Modify the values in the Makefile to enable OpenCV and enable GPU to use the
GPU to train the model using !sed -i 's/OPENCV=0/OPENCV=1/' Makefile.
and !sed -i 's/GPU=0/GPU=1/' Makefile and build darknet using !make command to
prepare to train model of YOLOv4 as shown in Figure 28.

Figure 28: Code for enable OpenCV and GPU

 After everything is ready, run the command !./darknet detector train data/obj.data
cfg/yolov4-custom.cfg yolov4.conv.137 -dont_show –map as shown in Figure 29. To
bring dataset and file (* .cfg) that adjusts the parameters and the pre-trained weight
together to train the data, where model performance was monitored with the values
of loss as shown in Figure 30. The completion of training generates the output file
(*.weight). that will be used in the next testing phase

Figure 29: Code for trainning model using darknet

 30

Figure 30: Loss graph of 16,000 epochs of training.
4.1.5 Model Performance Evaluation

The values (*.weight) and files (*.cfg) were combined at this stage to detect
sushi plates with the trained model. The confidence threshold is set to 0.4 in this
work. The successfully detected object class will then be notified by a bounding box
associated with the confidence score not lower than 0.4. Figure 31 reports the model
performance evaluated with the test image dataset separated from the training set.
The performance measures include Precision, Recall, F1-Score, and mAP. And the
object detector achieved the values of 97%, 97%, 97%, and 97.3% respectively. The
value of precision is calculated by [True positive of all classes / (True positive of all
classes, +False positive of all classes)], so we get [1087/(1087+32)] = 97%. Recall is
calculated from [True positive of all classes / (True positive of all classes + False
Negative of all classes)], so we get [1087/(1087+28)] = 97%. F1-score is

 31

2*[(precision*recall)/(precision+recall)] = 2*[(97*97)/(97+97)] = 97% and The value
mAP@0.5 is mean average precision averaged over IOU thresholds in 0.5. It is
calculated by taking the average precision of all classes and dividing by the total
number of classes (99.30+98.19+97.51+96.10+99.17+93.75+97.12)/7 = 97.30%. The
truepositive value is obtained by predicting each class in each figure in the testing set
that if the prediction value with IoU is greater than or equal to the threshold value is
truepositive.False positive is obtained by predicting each class in each figure in the
testing set that if a prediction value has an IoU value less than a threshold value, it is
counted as false positive, and False negative is a prediction that cannot predict the
class at all in each figure as shown in Figure 32. Figure 33 shows some test images
associated with the classification results. The photographs contained 9 characteristics
of sushi dishes collected from the selected restaurant including: a) the sushi dishes
stacks overlap each other. b) sushi dishes that contain a noise of a sauce plate with a
spoon at the top of stack. c) the sushi dishes close-up shot. d) only half-side of sushi
dish stack. e) The sushi dishes that contains noises of chopsticks at the top of stack.
f) the high stack sushi dishes g) The sushi dishes where the top plate is upside-down
and the same color as the beneath. h) The sushi dishes where the top plate is
upside-down and the not sushi dish as the beneath. i) The sushi dishes where the
top plate is upside-down and different color with the beneath dish. The trained
model successfully recognized all 7 object classes. Compared to the results of the
CNN model [13], the object detector implemented with YOLOv4 in this work
achieves the higher precision, recall, and f1-score values. as shown in Table 2.

Figure 31: Screen capture showing model performance.

 32

Figure 32: Object detection base on IoU threshold[19].

Figure 33: Example of test images and the results of detection.

 33

Table 2: Comparison of model performance of YOLOv4 implemented in this work
with CNN model [13]

 Precision Recall F1score mAP Accuracy

CNN 0.85 0.96 0.90 N/A 0.92

YOLOv4 0.97 0.97 0.97 97.03 N/A

4.2 Model training by using K Fold Cross validation
 In this step, use k fold cross validation to find which fold have the best fit training
set and testing set for the dataset. We chose 5 fold because we will divide the
training set 80% and testing set 20%. The dataset has 600 images, so if k = 5 is
selected, Every image in the dataset is a testing set at least once, wherein the
dataset the image file names are numbers 1-600 in sequence. And the way to split
the dataset into testing set. First is using the python library random to randomize the
images out of order. After randomization, the images will be stored on the stack.
After that, 120 images will be popped from the stack and stored in a new list as
shown in Figure 34.

Figure 34: Python code for split data in k fold

 Create a directory to store the training set and testing set of each fold using the
command mkdir directory_name as shown in Figure 35 and create a total of 5
directories.

 34

Figure 35: Code for create directory command

 After that, take the list obtained from pop stack 120 to write to file test.txt and
put 480 images that are not in test.txt in train.txt as shown in Figure 36. The result is
the file train.txt and test.txt that will be in the directory of each fold that will have a
unique number of test sets in each fold.

Figure 36: Python code for write train.txt and test.txt in each fold
After that, training dataset of each fold using model yolov4. Starting from

Fold 1, training set and testing set as shown in Figure 37. Bring training set and testing
set of Fold 1 to training and config (*.cfg) file similar with 4.1.4, the result from
training data Fold 1 is a confusion matrix with precision = 98%, recall = 99%, F1-
Score = 99% and mAP@0.5 = 99.86% as shown in the figure. at 38

 35

Figure 37: Screen capture Train.txt and Test.txt in Fold1

Figure 38: Screen capture showing model performance in Fold1.
Fold 2 training set and testing set as shown in Figure 39. Bring the training set

and testing set of Fold 2 to training and config (*.cfg) file like in 4.1.4. Figure 40
shows the results from train data of Fold 2 is obtained with precision = 96%, recall =
97%, F1-Score = 96% and mAP@0.5 = 95.10%.

 36

Figure 39: Screen capture Train.txt and Test.txt in Fold2

Figure 40: Screen capture showing model performance in Fold2.
Fold 3 training set and testing set as shown in Figure 41. Bring the training set

and testing set of Fold 3 to training and config (*.cfg) file like in 4.1.4. Figure 42

 37

shows the results obtained from train data of Fold 3 is obtained with precision =
91%, recall = 95%, F1-Score = 93% and mAP@0.5 = 94.34%.

Figure 41: Screen capture Train.txt and Test.txt in Fold3

Figure 42: Screen capture showing model performance in Fold3.
Fold 4 training set and testing set as shown in Figure 43. Bring the training set

and testing set of Fold 4 to training and config (*.cfg) file like in 4.1.4. Figure 44

 38

shows the results from train data of Fold 4 is obtained with precision = 97%, recall =
99%, F1-Score = 98% and mAP@0.5 = 99.67%.

Figure 43: Screen capture Train.txt and Test.txt in Fold4

Figure 44: Screen capture showing model performance in Fold4.

 39

And the last fold is Fold5. Fold 5 training set and testing set as shown in
Figure 45. Take the training set and testing set of Fold 5 for traning and config file
(*.cfg) as in 4.1.4. Figure 46 shows the results from training data. Fold 5 is obtained
with precision = 95%, recall = 97%, F1-Score = 96% and mAP@0.5 = 96.47%.

Figure 45: Screen capture Train.txt and Test.txt in Fold5.

 40

Figure 46: Screen capture showing model performance in Fold5.
 Table 3 shows the results from k fold cross validation. Fold1 is the fold with the
highest precision, recall, f1-score and mAP values compared to other folds. The
average results were precision = 95%, recall = 97%, f1-score = 96% and mAP = 97.07.
It was observed that the results were similar to the train model in 4.1.4 using a
randomized training set and testing set without doing k fold cross validation.

Table 3: Summary and average of performance metrics of 5-fold.

 Precision Recall F1-Score mAP

Fold1 0.98 0.99 0.99 99.86

Fold2 0.96 0.97 0.96 95.10

Fold3 0.91 0.95 0.93 94.34

Fold4 0.97 0.99 0.98 99.67

Fold5 0.95 0.97 0.96 96.47

Average 0.95 0.97 0.96 97.09

4.3 API Gateway
 The API Gateway uses Spring Boot REST API version 2.3.11. RELEASE to create a
controller for API. The Spring Boot library is called by adding the Spring Boot
dependency format xml into the pom.xml file as shown in Figure 47.

Figure 47: Spring Boot library in pom.xml

 41

4.4 Microservice
4.4.1 Payment service
Payment service uses OpenCV version 4.5.3-1.5.6 . which is maven library as

shown in Figure 48. The process of calculating payment is shown in Figure 49. It
begins by converting the image to base64 and then decode it to byte-array. It
translates the byte-array value into Mat format, which is an OpenCV image variable.
Next, it takes the Mat value along with importing the YOLOv4 exercise's values
(*.weight) and files (*.cfg) into the readNetFromDarknet function. To detect and
classify sushi plates, set the parameters to confThreshold at 0.4 and nmsThreshold
at 0.4. The money is then calculated by counting each verifiable type of sushi dish.
As illustrated in Figure 50, checking the accuracy of the calculation and the number
of sushi plates of each kind using postman to test the API. Request body as image
converted to base64 and Response reveals the accuracy of the calculation and the
correct number of sushi plates of each type.

Figure 48: OpenCV version 4.5.3-1.5.6.

Figure 49: Process flow of payment service.

 42

Figure 50: Screen capture of postman testing payment service.
4.4.2 Userprofile

The main function of Userprofile service is to store and retrieve customer
information that has been subscribed to the database. It is categorized into 3 parts:

1. User_Register is an API that allows customers to apply for membership
with the restaurant, where customer information will be stored in the
store's database. SignIn function receive a request body from frontEnd 9
values: memberID, email, password, firstname, lastname, phoneNumber,
age, birthday. The password stored in the database must be hashed by
algorithm PBKDF2 for security purposes. Figure 51 shows the operation of
hashing with algorithm PBKDF2, which starts from receiving requestBody
password sent as String, which is a String that has not been hashed, and
converts String to ByteArray and a salt is set to be used for the hash
encryption. After the encryption is complete, the value will be converted
to HexString and stored in the database.

 43

Figure 51: Password encoding step
2. User_SignOut is an API made to provide Customer logout. SignOut

function will send a value to update the database in the table so that the
user's status is N.

3. User_SignIn is an API made to provide Customer login. This function will
get requestBody from frontEnd as 2 values: username , password . the
function will take username and password that have been hashed with
PBKDF2 to check at database and like both values match in database, will
return response back to frontEnd total 7 values is memberID ,firstname,
lastname, phoneNumber, age, email, birthday and change status to Y

4.5 Database

The database was created using Structured Query Language (SQL).
TRANSACTION_LOG and MEMBER are the only two variables in the database.
TRANSACTION_LOG records the details of consumers who visit the conveyor belt
sushi restaurant on a daily basis. MEMBER stores information on customers who
have signed up to be restaurant members. Table 4 shows the database schema
and the datatypes that stored in the table TRANSACTION_LOG. And Table 5
shows the schema of the data and the date type that stored in the MEMBER
table.

 44

Table 4: TRANSACTION_LOG table description.

Database name: demo Table name: TRANSACTION_LOG

Table description: table that keep customer daily log

No. FieldName Description DataType Key Condition

1 ID Unique number VARCHAR(32) PK NOT NULL

2 MEMBER_ID Customer id VARCHAR(32) FK NOT NULL

3 REQUEST_UID API Request id VARCHAR(22)

5 DETAILS Customer Details JSON

6 AMOUNT Customer amount per bill VARCHAR(100)

7 AMOUNT_NET
Amount + (17% of
VAT/Service charge) VARCHAR(100)

8 BRANCH_NO Merchant branch number VARCHAR(4)

9 TRANSACTION_DATE Date of log DATE

10 CREATE_DATE Record created date time TIMESTAMP

 45

Table 5: MEMBER table description.

Database name: demo Table name: Member

Table description: table that keep customer data

No. FieldName Description DataType Key Condition

1 EMAIL Customer email VARCHAR(200) PK NOT NULL

2 MEMBER_ID Customer id VARCHAR(32) FK NOT NULL

3 FIRSTNAME Customer first name VARCHAR(300)

5 LASTNAME Customer last name VARCHAR(300)

6 PHONE_NUMBER
Customer phone

number VARCHAR(20)

7 AGE Customer age VARCHAR(4)

8 PASSWORD Customer password VARCHAR(100)

9 DATE_OF_BIRTH Customer birthday DATE

10 STATUS Login Status VARCHAR(1)

11 CREATE_DATE
Record created date

time TIMESTAMP

 46

Chapter 5
Conclusion

This thesis presents the application of YOLOv4 object detection to detect and
classify sushi dishes, resulting in a new innovation of smart billing for conveyor belt
sushi business that will replace the current billing system that uses RFID to calculate
the billing system. RFID is costly due to the investment and maintenance of attaching
tags to each plate. The exhausted radio-frequency batteries may cause counting
error, in addition to increase the electronic waste hazardous to society. The approach
also requires manual count to double-check the total number of consumed dishes.
The dataset used is a reliable dataset from the Japanese's most famous conveyor
belt sushi franchise restaurant in Bangkok, Thailand. and collecting 600 images of
sushi plates by myself. Therefore, the detection and classification of sushi plates
requires high accuracy and speed. It is suitable for using YOLOv4 in this work because
YOLOv4 is a single state objection, which makes it faster than other models and
achieves the accuracy similar as the multiple state objection model.

For application in real life, the researcher has created an API that can be
applied to any mobile device to calculate payment. The payment API functionality
brings a file (*.weight) that is the resulting file from train the YOLOv4 model and
integrates it with Spring Boot RESTAPI to create an API that can calculate payment for
classification sushi dish

All images in the dataset must be labeled images before being used in the
train model. The labeling is a manual 600 images, then split the data into 80% train
sets and 20% test sets, and then train the dataset through the YOLOv4 model. The
YOLOv4 achieved the values of Precision = 97%, Recall = 97%, F1-Score = 97% and
mAP = 97.3% by randomly split dataset in ratio 80:20 and Experiment with K Fold
Cross validation using k = 5, found that the mean of confusion metric value equal to
Precision = 95%, Recall = 97% , F1-Score = 96% , mAP = 97.07%.

Since the API is still running on localhost, the system management cannot try
to handle the massive incoming traffic. Further direction would be applying Cloud

 47

Native and Load Balancer to handle the massive traffic that will help the API support
the traffic from the usage better, as well as improve the model performance. And
increase the model's ability to be compatible with other types of restaurant dishes
other than plates from conveyor belt sushi restaurants.

 48

Appendix
Model Testing Result

Figure 52: (a) The image in the testset. (b) The result of detection

Figure 53: (a) The image in the testset. (b) The result of detection

 49

Figure 54: (a) The image in the testset. (b) The result of detection

Figure 55: (a) The image in the testset. (b) The result of detection

 50

Figure 56: (a) The image in the testset. (b) The result of detection

Figure 57: (a) The image in the testset. (b) The result of detection

 51

Figure 58: (a) The image in the testset. (b) The result of detection

Figure 59: (a) The image in the testset. (b) The result of detection

 52

Figure 60: (a) The image in the testset. (b) The result of detection

Figure 61: (a) The image in the testset. (b) The result of detection

 53

Figure 62: (a) The image in the testset. (b) The result of detection

Figure 63: (a) The image in the testset. (b) The result of detection

 54

Figure 64: (a) The image in the testset. (b) The result of detection

Figure 65: (a) The image in the testset. (b) The result of detection

 55

Figure 66: (a) The image in the testset. (b) The result of detection

Figure 67: (a) The image in the testset. (b) The result of detection

 56

Figure 68: (a) The image in the testset. (b) The result of detection

Figure 69: (a) The image in the testset. (b) The result of detection

 57

Figure 70: (a) The image in the testset. (b) The result of detection

Figure 71: (a) The image in the testset (b) The result of detection

58

R EFER ENCES

REFERENCES

1. Wongnai.com. 2022 [cited 2022 09]; Available from:
https://www.wongnai.com/news/sushiro. .

2. Chill Chill Japan. 2022 [cited 2022 26]; Available from:
https://chillchilljapan.com/5-valuable-conveyor-belt-sushi-franchise/. .

3. nanareview.com. 2022 [cited 2022 09]; Available from:
https://www.nanareview.com/content/10820/sushiplus-by-sushi-express.

4. Object Detection. 2022 [cited 2022 22 Feb]; Available from:
https://en.wikipedia.org/wiki/Object_detection.

5. a guide to two stage object detection r-cnn fpn mask-r-cnn and more. 2022
[cited 2022 22 Feb]; Available from: https://medium.com/codex/a-guide-to-two-
stage-object-detection-r-cnn-fpn-mask-r-cnn-and-more-54c2e168438c.

6. object recognition with deep learning. 2022 [cited 2022 22]; Available from:
:https://machinelearningmastery.com/object-recognition-with-deep-learning.

7. spring-boot. 2022 [cited 2022 15 Feb]; Available from:
https://spring.io/projects/spring-boot.

8. OpenCV. 2022 [cited 2022 10]; Available from: https://opencv.org/.
9. Kim, J.a., J.Y. Sung, and S.h. Park. Comparison of Faster-RCNN, YOLO, and SSD

for Real-Time Vehicle Type Recognition. in 2020 IEEE International Conference
on Consumer Electronics - Asia (ICCE-Asia). 2020.

10. Bochkovskiy, A., C.-Y. Wang, and H.-Y.M. Liao, YOLOv4: Optimal Speed and
Accuracy of Object Detection. ArXiv, 2020. abs/2004.10934.

11. The most accurate real-time neural network on MS COCO dataset. 2022 [cited
2022 9]; Available from: https://alexeyab84.medium.com/yolov4-the-most-
accurate-real-time-neural-network-on-ms-coco-dataset-
73adfd3602fe#:~:text=Neural%20networks%20comparison&text=YOLOv4%20ac
hieves%2043.5%25%20AP%20%2F%2065.7,with%208%E2%80%9316%20GB%20
VRAM.

12. Kumar, S., et al. Object tracking and counting in a zone using YOLOv4,

https://www.wongnai.com/news/sushiro
https://chillchilljapan.com/5-valuable-conveyor-belt-sushi-franchise/
https://www.nanareview.com/content/10820/sushiplus-by-sushi-express
https://en.wikipedia.org/wiki/Object_detection
https://medium.com/codex/a-guide-to-two-stage-object-detection-r-cnn-fpn-mask-r-cnn-and-more-54c2e168438c
https://medium.com/codex/a-guide-to-two-stage-object-detection-r-cnn-fpn-mask-r-cnn-and-more-54c2e168438c
https://machinelearningmastery.com/object-recognition-with-deep-learning
https://spring.io/projects/spring-boot
https://opencv.org/
https://alexeyab84.medium.com/yolov4-the-most-accurate-real-time-neural-network-on-ms-coco-dataset-73adfd3602fe#:~:text=Neural%20networks%20comparison&text=YOLOv4%20achieves%2043.5%25%20AP%20%2F%2065.7,with%208%E2%80%9316%20GB%20VRAM
https://alexeyab84.medium.com/yolov4-the-most-accurate-real-time-neural-network-on-ms-coco-dataset-73adfd3602fe#:~:text=Neural%20networks%20comparison&text=YOLOv4%20achieves%2043.5%25%20AP%20%2F%2065.7,with%208%E2%80%9316%20GB%20VRAM
https://alexeyab84.medium.com/yolov4-the-most-accurate-real-time-neural-network-on-ms-coco-dataset-73adfd3602fe#:~:text=Neural%20networks%20comparison&text=YOLOv4%20achieves%2043.5%25%20AP%20%2F%2065.7,with%208%E2%80%9316%20GB%20VRAM
https://alexeyab84.medium.com/yolov4-the-most-accurate-real-time-neural-network-on-ms-coco-dataset-73adfd3602fe#:~:text=Neural%20networks%20comparison&text=YOLOv4%20achieves%2043.5%25%20AP%20%2F%2065.7,with%208%E2%80%9316%20GB%20VRAM
https://alexeyab84.medium.com/yolov4-the-most-accurate-real-time-neural-network-on-ms-coco-dataset-73adfd3602fe#:~:text=Neural%20networks%20comparison&text=YOLOv4%20achieves%2043.5%25%20AP%20%2F%2065.7,with%208%E2%80%9316%20GB%20VRAM

 59

DeepSORT and TensorFlow. in 2021 International Conference on Artificial
Intelligence and Smart Systems (ICAIS). 2021.

13. Oh, Y., S. Son, and G. Sim. Sushi Dish - Object detection and classification from
real images. 2022; Available from: https://arxiv.org/abs/1709.00751.

14. LabelImg is a graphical image annotation tool and label object bounding
boxes in images. 2022; Available from: https://github.com/tzutalin/labelImg.

15. spring-boot. 2022 [cited 2022 22 Feb]; Available from: :
https://javasterling.com/spring-boot/spring-boot-vs-django/.

16. Preview macOS. 2022; Available from:
https://en.wikipedia.org/wiki/Preview_(macOS).

17. Train a custom yolov4 object detector using google colab. 2022; Available from:
https://medium.com/analytics-vidhya/train-a-custom-yolov4-object-detector-
using-google-colab-61a659d4868.

18. YOLO - Neural Networks for Object Detection (Windows and Linux version of
Darknet). 2022; Available from: https://github.com/AlexeyAB/darknet.

19. Custom object detection in the browser using TensorFlow.js. 2022 [cited 2022
9]; Available from: https://blog.tensorflow.org/2021/01/custom-object-detection-
in-browser.html.

https://arxiv.org/abs/1709.00751
https://github.com/tzutalin/labelImg
https://javasterling.com/spring-boot/spring-boot-vs-django/
https://en.wikipedia.org/wiki/Preview_(macOS
https://medium.com/analytics-vidhya/train-a-custom-yolov4-object-detector-using-google-colab-61a659d4868
https://medium.com/analytics-vidhya/train-a-custom-yolov4-object-detector-using-google-colab-61a659d4868
https://github.com/AlexeyAB/darknet
https://blog.tensorflow.org/2021/01/custom-object-detection-in-browser.html
https://blog.tensorflow.org/2021/01/custom-object-detection-in-browser.html

60

61

V I TA

VITA

NAME Rangrak Maitriboriruks

DATE OF BIRTH 16 September 1997

PLACE OF BIRTH THAI

INSTITUTIONS ATTENDED B.Sc. (Computer Science) 2nd class honor, Thammasat
University
M.Sc. (Computer Engineer) Chulalongkorn University

HOME ADDRESS 222/63 Nawamin 42 Alley Grandio Village Nawamin Rd.
Khlong Kum District ฺBangkok 10240

	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Chapter 1 Introduction
	1.1 Statement of the problems
	1.2 Objectives
	1.3 Scope of Study
	1.4 Research Methodology
	1.5 Outcomes
	1.6 Thesis Publication

	Chapter 2 Related Theories and Literature Review
	2.1 Related Theories
	2.1.1 Object Detection
	2.1.2 Spring Boot REST API
	2.1.3 OpenCV

	2.2 Literature Review

	Chapter 3 Proposed Methodology
	3.1 YOLOv4 Model
	3.2 API Gateway
	3.3 Microservices
	3.4 Database
	3.5 Model Evaluation

	Chapter 4 Evaluation and Result
	4.1 Object Detection Model
	4.2 Model training by using K Fold Cross validation
	4.3 API Gateway
	4.4 Microservice
	4.5 Database

	Chapter 5 Conclusion
	Appendix
	REFERENCES
	VITA

