

เทคนิคการวิเคราะหเพื่อเพิ่มความสามารถในการทดสอบคลาสคอมโพเนนท

นางสาวสุภาภรณ กานตสมเกียรต ิ

วิทยานพินธนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรดุษฎีบัณฑิต
สาขาวิชาวิศวกรรมคอมพิวเตอร ภาควิชาวิศกรรมคอมพิวเตอร

คณะวิศวกรรมศาสตร จุฬาลงกรณมหาวทิยาลัย
ปการศึกษา 2549

ลิขสิทธิ์ของจุฬาลงกรณมหาวิทยาลัย

 AN ANALYSIS TECHNIQUE TO INCREASE TESTABILITY OF CLASS-COMPONENT

 Miss Supaporn Kansomkeat

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy Program in Computer Engineering

Department of Computer Engineering
Faculty of Engineering

Chulalongkorn University
Academic year 2006

Copyright of Chulalongkorn University

 vi

ACKNOWLEDGEMENTS

First, I am especially deeply grateful to my thesis advisor, Associate
Professor Dr. Wanchai Rivepiboon, for his continuous support in the Ph.D program.
Without his encouragement and constant guidance, I could not have finished this
dissertation.

Besides my advisors, I would like to thank Professor Dr. Jeff Offutt of
George Mason University for hosting me during parts of this research. Moreover, he
also gave me valuable suggestions and comments. More importantly, he taught me
how to write academic papers.

I would like to thank the rest of my thesis committee: Associate
Professor Dr. Somchai Prasitjutrakul, Assistant Professor Dr. Somnuk Keretho, Assistant
Professor Dr. Taratip Suwannasart and Assistant Professor Dr. Twittie Senivongse, who
gave insightful comments and reviewed my work.

I would like to thank Thailand’s Commission on Higher Education,
Ministry of Education for funding. This fund supported for studying in Ph.D. program
and gave me a chance to have research collaboration in oversea.

Let me also say ‘thank you’ to all members of the Software Engineering
Laboratory for their helps and discussions on my thesis. Thanks also go to Dr.
Natenapa Sriharee and Mr. Tawa Kampachua for being my friend thru all my Ph.D.
life.

My special thanks go to my family for their support.

CONTENTS

 Page
ABSTRACT (THAI)………………………………………………………………………………... iv
ABSTRACT (ENGLISH)…………………………………………………………………………… v
ACKNOWLEDGEMENTS……………………………………………………………………....... vi
CONTENTS……………………………………………………………………………………….. vii
LIST OF TABLES……………………………………………………………………………......... ix
LIST OF FIGURES………………………………………………………………………………… x
CHAPTER
I INTRODUCTION……………………………………………………………………………... 1

1.1 Motivation…………………………………………………………………………………. 1
1.2 Objective………………………………………………………………………………….. 3
1.3 Scope……………………………………………………………………………………… 3
1.4 Contribution………………………………………………………………………………. 4
1.5 Research Methodology…………………………………………………………………. 4
1.6 Organization of the thesis………………………………………………………………. 5

II BACKGROUD AND RELATED WORKS………………………………………………….. 6
2.1 Background………………………………………………………………………………. 6
 2.1.1 Java Bytecode Instructions…………………………………………………........ 6
 2.1.1.1 Java Class File Format……………………………………………......... 6
 2.1.1.2 Bytecode Instruction Set………………………………………….......... 8
 2.1.2 Software Testing…………………………………………………………………. 10
 2.1.3 Testability…………………………………………………………………………. 13
 2.1.4 Mutation Testing…………………………………………………………............ 14
2.2 Related Works…………………………………………………………………………... 15
 2.2.1 Testing Object-oriented Classes ………………………………………........... 15
 2.2.2 Testability Analysis………………………………………………………………. 16

III CLASS-COMPONENT TESTABILITY………………………………………………........ 18
3.1 Bytecode-based Class-Component Analysis …………………………………........ 18
 3.1.1 Determining Basic Blocks…………………………………………………........ 20
 3.1.2 Constructing the CDFGs………………………………………………………... 22

 viii
 Page

 3.1.3 Applying the CDFGs………………………………………………………......... 28
 3.1.4 Definition-Use of Method (DUM)……………………………………………….. 29
3.2 Increasing Class-Component Testability……………………………………………. 31
 3.2.1 Increasing Controllability……………………………………………………….. 31
 3.2.2 Increasing Observability………………………………………………………... 37
3.3 Measuring Class-Component Testability……………………………………………. 41
 3.3.1 Execution Analysis………………………………………………………………. 41
 3.3.2 Propagation Analysis……………………………………………………………. 43

IV CASE STUDY……………………………………………………………………………….. 47
4.1 Increasing Testability Experiment………………………………………………......... 47
 4.1.1 Experimental Setting and Results……………………………………………… 49
4.2 Measuring Testability Experiment………………………………………………......... 54
 4.2.1 Experimental Setting and Results……………………………………………… 55

V SUMMARY AND FUTURE WORKS……………………………………………………... 59
5.1 Summary.………………………………………………………………………………... 59
5.2 Future Works……………………………………………………………………………. 61

REFERENCES…………………………………………………………………………………... 62
APPENDIX…..………………………………………………………………………………........65

APPENDIX A. Publications……………………………………………………………........ 66
BIOGRAPHY……………………………………………………………………………………... 67

LIST OF FIGURES
ix

Figure Page
2.1 A Simple Java Class and the Bytecode Instructions for Method CalCoeff…………. 7
2.2 Class File Format………………………………………………………………………….. 8
3.1 The Class-Component Testability Process……………………………………………. 18
3.2 Partitioning Method calCoeff in Figure 2.1 into Basic Blocks……………………..... 21
3.3 The Flows between Basic Blocks of Method calcoeff……………………………….. 23
3.4 The Vending Machine Class……………………………………………………………. 25
3.5 The Bytecode Instructions for Vending Machine…………………………………….. 26
3.6 The CDFGs of Each Method of Vending Machine…………………………………… 27
3.7 Class-Component Analysis Process…………………………………………………… 29
3.8 The Process of Collection the Definition and Use Information……………………… 30
3.9 The DUCoTs of Vending Machine’s Variables………………………………………... 32
3.10 Test Requirement Generation Process………………………………………………… 34
3.11 Test Case Generation Process…………………………………………………………. 36
3.12 Observability Probes Process………………………………………………………….. 39
3.13 The Process of Increasing Class-Componenet Testability………………………….. 40
3.14 Execution Analysis Process…………………………………………………………….. 42
3.15 Propagation Analysis Process………………………………………………………….. 45
3.16 The Detail of Execution in Propagation Analysis Process…………………………… 45
4.1 A Family of Data Flow Testing Criteria…………………………………………………. 48
4.2 The Test Generation Process for ACU and ACU-O………………………………….. 51
4.3 The dd Data Flow Anomaly of Variable end of ArrList Calss………………………... 54

LIST OF TABLES
x

Table Page

3.1 Bytecode Instructions Used in the CDFG Construction Process…………………… 19
3.2 DefUse Information…………......……………………………………………………….. 22
3.3 The DUMs of Vending Machine………………………………………………………… 30
3.4 The All-coupling-uses of Vending Machine’s Variables……………………………... 33
3.5 Values to Mutate Each Data Type……………………………………………………… 45
4.1 The Description of Each Class Used in the Experiment…………………………….. 51
4.2 The Number of Test Cases of ACU and AllDU tests…………………………………. 51
4.3 The Number of Mutants for Each Class……………………………………………….. 52
4.4 Case Study Results on All-coupling-uses and All-coupling-uses with
 Observability……………………………………………………………………………… 53
4.5 Case Study Results on All-du-paths and All-coupling-uses with Observability…... 53
4.6 The Number of Definition-use Pairs and The Number of Def-clear Path
 Executions……………………………………………………………………….............. 54
4.7 The Considered Locations of Each Class………………………………………......... 56
4.8 The Number of Test Cases Executing Each Location of Vending Machine………. 57
4.9 The Number of Executions that the execution output of mutant differs from
 the original output of Vending Machine……………………………………………….. 57
4.10 The Testability Measure of Vending Machine class………………………………..... 58
4.11 The Testability Measure of Each Class……………………………………………....... 58

CHAPTER I
INTRODUCTION

The purpose of this chapter is to give an overview of the topic of this
thesis. We discuss motivation, objective, scope and contribution of this thesis.

1.1 Motivation

Program analysis is a way to inspect programs to gather some
properties such as control and data flow information. An early use was to support code
optimization in compilers [1]. Program analysis has also been widely used for software
engineering problems such as program understanding, testing, and maintenance.
Program analysis is used in testing to precisely compute what parts need to be
executed [2], to determine which test cases must be rerun to test the program after
modifying [3], and to generate more effective tests [4].

Software testing is used to verify software quality and reliability, but it can
be an expensive and labor-intensive task [5]. Software testing attempts to reveal
software faults by executing the program on inputs and comparing the outputs of the
execution with expected outputs. Many research papers have focused on methods to
reduce the test effort [6, 7, 8]. An aspect of software that influences the test effort and
success is known as testability. Testability is defined in terms of controllability and
observability. Controllability is the ease of controlling inputs of tests. Observability is the
ease of observing the outputs.

Object-oriented software is increasingly used, partly because it
emphasizes portability and reusability. Java classes are compiled into portable binary
class files which contain statements called bytecode. The class-components are
included in Java libraries without source code, thus the source is not always available.

An important goal of reusable components is that the “re-users” should
not need to understand how the components work, and should not need or want access
to the source. Furthermore, it is usually assumed that the initial developers tested the

 2

component. However, this initial testing was either carried on the component in isolation
(unit testing), in its original context, or both.

The goal of this thesis is to test a reused component with regards to how
it integrates into a new context. That is, this is a form of integration testing that asks
whether the component behaves appropriately in this new context. When a component
is reused, a key issue is how to test the component in its new context. Weyuker [9]
suggests that a component should be tested many times, individually and also each
time it is integrated into a new system. Voas and Miller [10] explained that testability
enhances testing and claimed that increasing testability of components is crucial to
improving the testability of component-based software. Wang et al. [11] increase
component testability by using the built-in test (BIT) approach, that is, putting complete
test cases inside the components. The tests are constantly presented and reused with
the component. The disadvantage of BIT is growth of programming overhead and
component complexity. Naturally, component developers do not always provide BIT and
also testing information to component users. Instead of increasing testability by BIT, this
research tests the component when it is integrated into a new context. Because of the
lack of source code, program analysis techniques cannot be applied to the source. To
address this problem, we apply program analysis at the bytecode level.

Component testability analysis and measurement can be used to
estimate the difficulty of testing components, aiding planning and execution of testing.
Also, testability measure can be used to determine whether the component should be
modified to increase its testability before reuse. And it can be used to check the
testability improvement of a component after increasing its testability.

This thesis presents an analysis technique to analyze a java class at the
bytecode level that is used to directly increases and measures component testability
without requiring access to the source. First, Java bytecode (.class file) is analyzed to
extract the essential information of control flows and data flows. Then, this flow
information is used to collect definition and use information of component’s method and

 3

class variables. Finally, the collected information is used to increase and measure
component testability. With the above strategy just presented, we considered a java
class a component called class-component.

The increased testability supports class-component testing by
supporting the generation of tests to exercise a class-component in various ways
(increasing controllability), thus faults can more easily be revealed. The increased
testability also helps to monitor the results of testing (increasing observability), thus
class-component failures can more easily be detected. The testability measurement
helps to assess a component’s testability by measuring the fault revealing ability during
testing.

1.2 Objective

The objectives of this thesis are:
- To propose an approach to analyze class-component information and implement

the corresponding tool, based on data flow analysis from Java bytecode,
- To design a method to increase testability of class-component and implement

the respective tool to support testing by controlling inputs and observing outputs
by using the class-component information, and

- To design a method to measure testability of class-component and implement
the respective tool by using the class-component information.

1.3 Scope
- In this work, a component is a java class called class-component.
- This work proposes an approach (1) to analyze a class-component at bytecode

level, (2) to increase testability of class-component and (3) to measure testability
of class-component, and implements the corresponding tool.

- This work focuses on intra-class method calls, and does not look for problems
that exist in inheritance and polymorphism of multiple classes.

- The efficiency of tests is considered by faults revealing.

 4

- To measure the fault revealing ability, the fault statements are limited to faults in
definition and use statements.

- The efficiency of our tests is compared with the all-du-paths criteria by the fault
revealing ability based on mutation testing.

1.4 Contribution

The outcome of this thesis will be (1) an analysis mechanism and the
corresponding tool for gathering class-component information at bytecode level, and (2)
a method and the respective tool for increasing and measuring testability of class-
component by using the gathered information.

1.5 Research Methodology

Our research methodologies are presented as follows:
- Review and study the research papers related to component testing, component

testability and testability measurement.
- Design an approach to analyze class-component information at bytecode level

and implement the corresponding tool.
- Design a method to increase testability of class-component and implement the

respective tool.
- Design a method to measure testability of class-component and implement the

respective tool.
- Compare the efficiency of our tests with the tests from all-du-paths criteria.
- Evaluate our measurement
- Analyze the results and make conclusions

 5

1.6 Organization of the Thesis

The thesis contents are organized as follows. In Chapter II, we review the
background and related works.

In Chapter III, we explain an analysis process to collect information for
bytecode instructions. Then, we present a method that uses the colleted information to
increase and measure testability of class-component.

Chapter IV presents the case study.

Finally, in Chapter V, we conclude our research work and present some
directions for the future work.

CHAPTER II
BACKGROUND AND RELATED WORKS

2.1 Background

This thesis presents an analysis technique to increase and measure
class-component testability. The analysis is carried out at the bytecode level. The
bytecode instructions are parsed to collect information based on data flow analysis. This
information provides ways to generate test inputs and observe the outputs of testing.
Coupling-based criteria are used to guide test selection. The tests are evaluated by the
fault detection ability based on mutation testing. Thus, this section provides brief
overviews of these topics.

2.1.1 Java Bytecode Instructions

Java programs are written and compiled into portable binary class files.
Each class is represented by a single file that contains class related data and bytecode
instructions. This file is dynamically loaded into an interpreter (Java Virtual Machine,
JVM) and executed. An example of a Java program and its corresponding bytecode
instructions of method calCoeff are shown in Figure 2.1.

2.1.1.1 Java Class File Format
The class file contains simplified seven sections [12] as shown in Figure

2.2.
 Header: Contains the Magic Number OxCAFEBABE and the Version Number.
 Constantpool: Contains all used constants. The first entry is the own class

followed by the superclasses, then the constants, and at the end is the name of
the source file. The constantpool holds the following types of constants: strings,
integers, floats, longs, doubles and references to methods, fields and classes.
References are entries in the constantpool which points onto another entry in the
constantpool, these entries can be different for each instance.

 Access rights: The access rights of the class.

 7

Figure 2.1: A Simple Java Class and the Bytecode Instructions for Method CalCoeff

 Implemented Interfaces: All implemented Interfaces.
 Fields: A list of fields, normally an index into the constantpool.
 Methods: A list of methods, containing the instructions of each method.
 Class Attributes: Contains the source file name and other user definable

attributes which are ignored by the JVM.

1: public class SetCoeff {
2:
3: int co,rate;
4:
5: void calCoeff() {
6: try {
7: if (rate == 0)
8: throw new ArithmeticException();
9: else if (rate < 20)
10: co = 5;
11: else
12: co = 15;
13: } //try
14: catch (ArithmeticException e) {
15: System.out.println("Exception");
16: } //catch
17: } // calCoeff
18: } // class

Method void calCoeff()

0: aload_0 //Load var#0 (rate) onto stack
1: getfield Coeff.rate I (2)
4: ifne #15 //branch to address 15
7: new <java.lang.ArithmeticException> (3)
10: dup
11: invokespecial
 java.lang.ArithmeticException.<init> ()V (4)
14: athrow //Throwing exception
15: aload_0
16: getfield Coeff.rate I (2)
19: bipush 20
21: if_icmpge #32 //branch to address 32
24: aload_0
25: iconst_5
26: putfield Coeff.co I (5)
29: goto #38 //branch to address 38
32: aload_0
33: bipush 15
35: putfield Coeff.co I (5)
38: goto #50 //branch to address 50
41: astore_1 //Exception handle block
42: getstatic
 java.lang.System.out Ljava/io/PrintStream; (6)
45: ldc "Exception" (7)
47: invokevirtual java.io.PrintStream.println
 (Ljava/lang/String;)V (8)
50: return

 8

2.1.1.2 Bytecode Instruction Set
The Java bytecode instruction set can be roughly grouped as follows:

 Stack operations: Constants can be pushed onto the operand stack either by
loading them from the constant pool with the ldc (load constant) instruction or
with special “short-cut” instructions where the operand is encoded into the
instructions. For example, iconst_5 is to push int constant 5 or bipush is to push
byte value.

 Arithmetic operations: The arithmetic instructions compute a result that is
typically a function of two values on the operand stack, pushing the result back
on the operand stack. The instruction set of the Java Virtual Machine
distinguishes its operand types using different instructions to operate on values
of specific type. For example, arithmetic operations starting with i denote an
integer operation such as iadd instruction that adds two integers and pushes
the result back on the stack.

Figure 2.2: Class File Format [12]

 9

 Control flow: There are unconditional branch instructions like goto and
conditional branch instructions, for example ifne, ifnull and if_icmpeq.

 Load and store operations: Load a local variable onto stack, for example aload,
aload_0 and fload. Store value from the operand stack into a local variable, for
example astore_0, astore_1and istore.

 Field access: The value of an instance field may be retrieved with getfield and
written with putfield. For static fields, there are getstatic and putstatic
counterparts.

 Method invocation: Methods may either be called via static references with
invokestatic or be bound virtually with the invokevirtual instruction. Super class
methods and private methods are invoked with invokespecial.

 Return Instruction: The method return instructions, which are distinguished by
return type, are ireturn (used to return values of type Boolean, byte, char, short,
or int), lreturn, freturn, dreturn and aretrun. In addition, the return instruction is
used to return from methods declared to be void.

 Object allocation: Class instance is allocated with the new instruction, array of
basic type like int[] is allocated with newarray, array of references like String[][]
is allocated with anewarray or multianewarray.

 Conversion and type checking: There are instructions for checking and
converting basic types and instances. For example, i2f instruction is used to
convert int to float. The instanceof instruction is used to determine if object is of
given type.

 Operand Stack management: A number of instructions are provided for the
direct manipulation of operand stack, for example pop, dup and swap.

 Throwing Exception: Exceptions are thrown using the athrow instruction.

A list of all instructions with detailed description can be found in the JVM
Specification [13].

In Java, an exception is an event that occurs during the execution of a
program that disrupts the normal flow of instructions. When an exception is raised,

 10

control transfers to a block of instructions that can handle the exception. This block of
instructions is called an exception handler. For example, the catch block in the left side
of Figure 2.1 is the exception handler.

2.1.2 Software Testing

Software testing has been proved to be a valuable activity for
determining whether a software system has faults. It is estimated that “testing consumes
at least half of the labor expended to produce a working program” [5]. Beizer defines
three distinct levels of testing, unit/component testing, integration testing and system
testing. The objectives of each level are different. Unit/Component testing aims to show
if the unit/component satisfies its functional specification and/or if its implemented
structure matches the intended design structure. Integration testing aims to show
inconsistencies between units or components. System testing concerns issues and
behaviors that can only be exposed by testing the entire integrated system or a major
part of it. There are two general testing approaches, white-box and black-box. White-
box approaches, such as branch testing and path testing, require knowledge of the
implementation based on the source code. Black-box approaches, such as functional
testing and random testing, require knowledge of the specification details. Two
approaches are complementary to each other.

Many researches on software testing have concentrated on the process
of creating the set of test cases that is consisting of an input and expected output pairs
[6, 7, 14]. A program is executed on the input and the expected output is compared to
the actual output. Most of the researches on testing have revolved around the goal of
selecting the small set of inputs that discover the large set of errors.

Test requirements are specific things that must be satisfied or covered
during testing. For example, reaching every statement of a program is the requirements
for statement coverage. A testing criterion is a rule or collection of rules that imposes the
requirements on a set of test cases. Such as, data flow testing criteria require test cases
to exercise certain paths based on data flow relationships. Testers measure the extent to

 11

which a criterion is satisfied in terms of coverage, which is the percent of requirements
that are satisfied [6]. There are lots of ways to classify adequacy criteria. One of the
most common ways is by the source of information used to specify testing requirements
and in the measurement of test adequacy. Therefore, an adequacy criterion can be
specification-based and program-based.

A specification-based criterion specifies the required testing in terms of
identified features of the specifications of the software, so that a test set is adequate if all
the identified features have been fully exercised. A program-based criterion specifies
testing requirements in terms of the program under test and decides if a test set is
adequate according to whether the program has been thoroughly exercised. The criteria
listed below are traditional program-based criteria.

 Statement coverage requires enough test cases to ensure that each statement in
a program is executed at least once.

 Decision coverage (or branch coverage) requires enough test cases to ensure
that each decision has a true and false outcome at least once.

 Condition coverage requires enough test cases to ensure that each condition in
a decision takes on all possible outcomes at least once.

 Data flow testing [15, 16] tries to ensure that the correct values are stored into
memory, and then that they are subsequently used correctly. A definition (def) is
a statement where a variable’s value is stored into memory. A use is a statement
where a variable’s value is accessed. A definition-use pair (or du-pair) of a
variable is an ordered pair of a definition and a use, with the limitation that there
must be an execution path from the definition to the use without any intervening
redefinition of the variable. Data flow criteria requires tests to execute paths from
specific definitions to uses. They select particular definition-use pairs to test.
Two data flow testing criteria were first defined by Laski and Korel [15]. They
proposed the all-definitions criterion, which requires that a test should cover a
path from each definition to at least one use, and the all-uses criterion, which
requires a test to cover a path from each def to all reachable uses.

 12

Unfortunately, directly applying either the all-defs or the all-uses criterion to
interprocedural testing is very expensive, both in terms of number of du-pairs
and the difficulty of resolving the paths. Therefore, Jin and Offutt [17] proposed
coupling-based testing (CBT) as an application of data flow testing to the
integration level.

Coupling-based testing (CBT) [17] applies data flow testing to the
integration level by requiring the program to execute data transfers from definitions of
variable in a caller to uses of the corresponding variables in the callee unit. Instead of all
variables definitions and uses, CBT is only concerned with definitions of variables that
are transmitted just before calls (last-defs) and uses of variables just after calls (first-
uses). The criteria are based on the following definitions:

 A Coupling-def is a statement that contains a last-def that can reach a first-use
in another method on at least one execution path

 A Coupling-use is a statement that contains a first-use that can be reached by a
last-def in another method on at least one execution path

 A coupling path is a path from a coupling-def to a coupling-use

Four levels of coupling-based integration test coverage criteria are
defined between two units:

 Call-coupling requires the test cases to cover all call-sites of the called method
in the caller method

 All-coupling-defs requires, for each coupling-def of a variable in the caller, the
test cases cover at least one coupling path to at least one reachable coupling-
use

 All-coupling-uses requires, for each coupling-def of a variable in the caller, the
test cases must cover at least one coupling path to each reachable coupling-use

 All-coupling-paths requires the test cases to cover all coupling paths from each
coupling-def of a variable to all reachable coupling-uses

 13

2.1.3 Testability

Software testing is one of the most common ways to assure software
quality and reliability, and is made easier by high software testability. Several different
definitions of testability have been published [10, 18, 19, 20].

According to the 1990 IEEE standard glossary [18], testability is the
“degree to which a component facilitates the establishment of test criteria and the
performance of tests to determine whether those criteria have been met, and the degree
to which a requirement is stated in terms that permit establishment of test criteria and
performance of tests to determine whether those criteria have been met.”

Voas and Miller [10] explained that testability enhances testing and
claimed that increasing component testability is a primary key to improve the testability
of component-based software. They define software testability by focusing on the
“probability that a piece of software will fail on its next execution during testing (with a
particular assumed input distribution) if the software includes a fault.”

Binder [19] defined testability in term of controllability and observability.
Controllability is the probability that users are able to control component’s inputs (and
internal state). Observability is the probability that users are able to observe
component’s outputs. If users cannot control the input, they cannot be sure what caused
a given output. If users cannot observe the output of a component under test, they
cannot be sure if the execution was correct.

Likewise, Freedman [20] considered testability based on the notions of
controllability and observability. Controllability refers to the ease of producing all values
of its specified output domain. Observability captures the degree to which a component
can be observed to generate the correct output for a given input.

From above definitions, component testability generally refers to how
easy to test. A high degree of testability indicates that any existing faults can be

 14

revealed relatively easily during testing, inputs can easily be selected to satisfy some
testing criteria and outputs of state variables can be observed during testing.

A component with good testability is important because test tasks are
eased and test costs are reduced. There are various ways to improve testability. Gao,
Tsao and Wu [21] introduced three basic approaches to increase software component
testability: 1) Framework-based testing facility, 2) Built-in tests, and 3) Automatic
component wrapping for testing. These three mechanisms construct testable
components. Framework-based testing facility method, a well-defined framework (such
as a class library) is developed to allow engineers to add program testing code into
software components. Built-in tests method requires component developers to add test
code and tests inside a software component to support self-checking and self-testing.
Automatic component wrapping for testing method uses a systematic way to convert a
software component into a testable component by wrapping it with the program code
which facilitates software testing.

2.1.4 Mutation Testing

Mutation analysis [22] is often used to assess the adequacy of a test set.
It is a fault-based testing strategy that starts with a program (or specification) to be
tested and makes numerous small syntactic changes into the original program (or the
specification). Program (or specification) with injected faults are called mutants. Mutants
are obtained by applying mutation operators that introduce the simple changes into the
original program (or specification). For example, changing relational operator:

The program P =

1. if (x < 10)

2. doA()

3. if (x < 20)

4. doB()

 15

 A mutation of P would be (line 1)

1. if (x > 10)

2. doA()

3. if (x < 20)

4. doB()

If a test set is capable of causing behavioral differences between original
program (or specification) and mutant, mutant is considered as killed by the test. The
product of the mutation analysis is a measure called mutation score, which indicates the
percentage of mutants killed by a test set. If the mutation score is 100% or near, it
indicates the adequacy of the test cases. Some mutants are functionally equivalent to
the original program. Equivalent mutants always produce the same output as the original
program, so cannot be killed by any test cases. Equivalent mutants are not counted in
the mutation score.

2.2 Related Works

Several approaches relating to software testing and testability have been
proposed in the literature. In this section we describe a number of them.

2.2.1 Testing Object-Oriented classes

Hong et al. [8] and Harrold and Rothermel [23] proposed methods that
use information from developers to test object-oriented components. Hong et al. [8]
proposed the method for a single-class testing. The method models the behavior of a
single class as a finite state machine that is transformed representation into a data flow
graph. This graph explicitly identifies the definitions and uses of each state variable of
the class. Then conventional data flow testing can be applied to produce test case
specifications that can be used to test the class.

 16

Harrold and Rothermel [23] proposed a method for performing class
testing by testing the data flow interactions in a class. Their approach consists of three
levels of data flow testing, intra-method testing, inter-method testing, and intra-class
testing. Intra-method testing has the same meaning as the unit testing of a procedure in
procedural programs. Inter-method testing has the same meaning as the integrating
testing. Intra-class testing performs testing on the interactions of public methods when
they are called in random sequences. Their testing methods use the data flow relations
from the program source to guide the selection of tests.

The above explained approaches [8, 23] relied on detailed analysis of
the program source to generate test cases by considering all definitions and uses of
variables from data flow analysis. Applying all definitions and uses of variables to
generate test cases is very expensive, both in term of number of paths and the difficulty
of resolving the paths. Our approach generates test cases based on data flow testing by
considering only the first use and the last definition of variables. Our analysis method
analyzes data flow information of a class-component at bytecode level because the
source is not always available for software component.

2.2.2 Testability Analysis

A number of researches [10, 24, 25] have proposed the testability
analysis approaches. McCabe [24] proposed McCabe metric to predict testability. This
metric evaluates software complexity by measuring the cyclomatic number based on the
number of execution paths in the control flow graph. This complexity measure is
assumed to apprise the number of test cases in term of number of execution paths.

Voas et al. [10, 25] defined software testability as the probability that a
piece of software will fail on its next execution during testing, provided it contains a fault.
They believed that software failure only occurs when the following three necessary and
sufficient conditions occur in the following sequence:

1. A input must cause a fault to be executed

 17

2. Once the fault is executed, the succeeding data state must contain a data state
error.

3. Once the data state error is created, the data state error must propagate to an
output state.

From these three conditions, they defined fault sensitivity to analyze
testability as multiplying the probabilities, named PIE analysis, that (1) the location
containing the fault is executed, execution, (2) the fault corrupts the program’s state,
inflection, and (3) the corrupted state propagates to the output, propagation. High fault
sensitivity indicates high testability and vice versa.

Our testability analysis technique is closely related to the mutation
testing technique used by Voas et al. [10, 25]. Their work analyzes testability from three
stages which are execution, inflection and propagation. They defined the inflection
technique as making a fault to the source code and determining the program’s state
corruption as a result of the induced fault, and purposely defined the propagation
technique as analyzing the corrupted state propagating to the output. Due to our
assumption that the component’s source codes are unavailable, the Voas et al’s
inflection technique is therefore not applicable. We induced faults to data states at the
bytecode level.

CHAPTER III
CLASS-COMPONENT TESTABILITY

This chapter describes methodology and mechanism of a framework for
class-component testability. Figure 3.1 shows an overview of the class-component
testability process. First, class-component, which is bytecode instructions, is analyzed
by the analysis tool called Bytecode-based Class-Component Analysis. This process
extracts control flow and data flow information based on data flow analysis as described
by part of subsection 2.1.2.

Results of the previous process are used to increase class-component
testability in the Increasing Class-Component Testability process, and to measure class-
component testability in the Measuring Class-Component Testability process. The
details of each process are described in the subsequent sections.

3.1 Bytecode-based Class-Component Analysis

This thesis is based on data flow testing that considers a flow between a
variable definition and subsequent use of that variable. The supporting information for
considering is control flow and data flow information.

Figure 3.1: The Class-Component Testability Process

Measuring
Class-Component

Testability

Class-Component

Bytecode-based
Class-Component

Analysis

Control/Data Flow
Information

Increasing
Class-Component

Testability

19

The most common method to represent the control flow information is a
Control Flow Graph (CFG) [1], which was originally proposed for compiler optimization.
Each node in a CFG represents a statement or a basic block of statements, and edges
represent the flow of control between nodes. To represent both control and data flow
information, CFG is extended by collecting variables defined and used in each node.
The extended CFG to represent control and data flow information is called Control-Data
Flow Graph (CDFG).

Conventional program analysis collects control and data flow information
from source code of the application program. Because of the lack of source code due to
inaccessibility, our analysis technique gathers such information at the bytecode level.

Our bytecode analysis results in a CDFG for each method of a class-
component. The CDFG includes both control and data flow information. The CDFG also
includes exception handling control, which was not defined for the CFG. The exception
handling control flow can be raised in the class-component through a throw statement
(for example, throw new ArithmeticException()). The CDFG construction process is as
follows. First, the bytecode instructions are extracted and partitioned into basic blocks,
and then the flows of control and data are added. The details are described in the
following sections. Table 3.1 shows bytecode instructions used in the CDFG
construction process.

Table 3.1: Bytecode Instructions Used in the CDFG Construction Process

Group Bytecode Instructions
Unconditional branch goto
Conditional branch if_acmpeq, if_acmpne, if_icmpeq, if_icmpge, if_icmpgt,

if_icmple, if_icmplt, if_icmpne, ifeq, ifge, ifgt, ifle, iflt, ifne,
ifnonnull, ifnull, lookupswitch, tableswitch

Return areturn, dreturn, freturn, ireturn, lreturn, return
Athrow athrow

20

3.1.1 Determining Basic Blocks

A basic block is a sequence of consecutive bytecode instructions in
which flow of control enters at the beginning and leaves at the end without halting or
branching except at the end. In a basic block, if any instruction is executed, all
instructions will be executed. A basic block has only one entry point and one exit point.
To create a basic block, leader instructions, instructions that begin basic block, are
identified. A leader instruction can be:

 The first instruction,
 Any instruction that is the target of either a conditional branch group instruction

or an unconditional one,
 Any instruction that immediately follows either a conditional branch group

instruction or an unconditional one,
 Any instruction that immediately follows a return group instruction or athrow

instruction (exception handling), and
 The first instruction of an exception handler.

After identifying a leader instruction, a basic block is defined as
consisting of a leader and all instructions up to but not including the next leader. An
EXIT block is added to be the exit point. For example, the bytecode instructions for
method calCoeff in Figure 2.1 are divided into the following basic blocks: [0-4], [7-14],
[15-21], [24-29], [32-35], [38], [41-47] and [50] as shown in Figure 3.2. Each basic block
is analyzed to gather the definition and use information (DefUse information) for data
flow analysis. DefUse information refers to variable definitions and uses. An instruction is
considered to perform a definition of a variable (Def instruction) if a value is stored into
that variable from the operand stack. An instruction is considered to perform a use of a
variable (Use instruction) if its value is accessed and loaded onto the stack. In Java
bytecode, there are two types of field variables, instance fields (non-static fields) and
class fields (static fields). The instance fields are unique to each object of the class. The
class fields are unique to the entire class. This thesis focuses on instance fields which
are defined and used between methods, therefore local variables will not be considered.

21

0: aload_0 //BasicBlock0
1: getfield Coeff.rate I (2) //use rate
4: ifne #15 //branch to address 15
--
 //BasicBlock1
7: new <java.lang.ArithmeticException> (3)
10: dup
11: invokespecial java.lang.ArithmeticException.<init> ()V (4)
14: athrow //Throwing exception
--
15: aload_0 //BasicBlock2
16: getfield Coeff.rate I (2) //use rate
19: bipush 20
21: if_icmpge #32 //branch to address 32
--
24: aload_0 //BasicBlock3
25: iconst_5
26: putfield Coeff.co I (5) //define co
29: goto #38 //branch to address 38
--
32: aload_0 //BasicBlock4
33: bipush 15
35: putfield Coeff.co I (5) //define co
--
 //BasicBlock5
38: goto #50 //branch to address 50
--
 //BasicBlock6
41: astore_1 //Exception handle block
42: getstatic java.lang.System.out Ljava/io/PrintStream; (6)
45: ldc "Catch Exception" (7)
47: invokevirtual java.io.PrintStream.println (Ljava/lang/String;)V (8)

50: return //BasicBlock7

Figure 3.2: Partitioning Method calCoeff in Figure 2.1 into Basic Blocks

22

Because of the complexity of array bytecode instructions, we only focus on an array of
type int. Furthermore, the DefUse information of any element within array is considered
the DefUse information of the whole array. The reference Java bytecode instructions
used to gather the DefUse information is shown in Table 3.2.

Table 3.2: DefUse Information
Bytecode Instructions Description Def/Use

Instruction
getfield Load a value of an instance field onto

the operand stack
Use

putfield Store a value from the operand stack
as an instance field

Def

iaload Load an array component onto the
operand stack

Use

iastore Store a value from the operand stack
as an array component

Def

3.1.2 Constructing the CDFGs

After each basic block has been defined, edges associated with the flow
of control are added. An edge is added from basic block B1 to B2, depending on the
type of the last instruction in B1, which could be one of the following cases:
Case1: An instruction of unconditional branch group: An edge is added from B1 to the

basic block whose leader is the target of the branch instruction of B1 (e.g. from
BasicBlock3 to BasicBlock5 in Figure 3.3, Flow7 in Figure 3.3).

Case2: An instruction of conditional branch group: Two edges are added from B1. The
first is to the basic block whose leader is the first instruction that directly follows
the last instruction of B1 (e.g. from BasicBlock0 to BasicBlock1, Flow1). The
second is to the basic block whose leader is the target of the branch instruction of
B1 (e.g. from BasicBlock0 to BasicBlock2, Flow2).

Case3: An instruction of return group: An edge is added from B1 to the exit point, EXIT
(e.g. from BasicBlock7 to the EXIT block, Flow10).

23

Case4: An athrow instruction: An edge is added from B1 to the basic block whose
leader is the first instruction of the associated exception handler. If there is no
associated exception handler, an edge is added to the exit, EXIT (e.g. from
BasicBlock1 to BasicBlock6, Flow5).

Case5: Not an instruction of branch, return or athrow group: This happens when a B1
ends just before a leader of another basic block. Add an edge from B1 to the next
basic block (e.g. from BasicBlock4 to BasicBlock5, Flow6).

Figure 3.3 shows the flows between basic blocks of method calCoeff.

BasicBlock0
0: aload_0
1: getfield Coeff.rate I (2)
4: ifne #15

7: new <java.lang.ArithmeticException> (3)
10: dup
11: invokespecial java.lang.ArithmeticException.<init> ()V (4)
14: athrow

BasicBlock1

Case4

15: aload_0
16: getfield Coeff.rate I (2)
19: bipush 20
21: if_icmpge #32

24: aload_0
25: iconst_5
26: putfield Coeff.co I (5)
29: goto #38

41: astore_1
42: getstatic java.lang.System.out Ljava/io/PrintStream; (6)
45: ldc "Catch Exception" (7)
47: invokevirtual java.io.PrintStream.println (Ljava/lang/String;)V (8)

BasicBlock6

BasicBlock2

BasicBlock3

BasicBlock4
32: aload_0
33: bipush 15
35: putfield Coeff.co I (5)

BasicBlock5
38: goto #50

BasicBlock7
50: return

EXIT

Case2

Case1

Case5

Flow2

Flow3

Flow5

Case2

Case5

Case1

Case3

Flow4

Flow1

Flow6

Flow7

Flow8

Flow10
BasicBlock8

Flow9

Figure 3.3: The Flows between Basic Blocks of Method calCoeff

24

We illustrate our technique with a vending machine example taken from
Harrold et al. [26]. The Java source code and bytecode instructions for the vending
machine are shown in Figures 3.4 and 3.5 respectively. The numbers preceding the line
in Figure 3.5 indicate the instruction positions of the bytecode. The “…” indicates
omitted instructions. Figure 3.6 depicts the CDFGs of each method of vending machine.
In this figure, a basic block is represented as the compartmentalized rectangle. The top
compartment contains the basic block number, the middle compartment contains the
first and last instruction positions of the basic block, and the bottom compartment
contains the sequence of DefUse information. Each element of this sequence contains d
(a definition) or u (a use), the variable name, and the position of the instruction. For
example, the element (d, Type, 16) in basic black 0 of method <init> indicates that the
variable Type is defined (putfield instruction) at position 16. A directed arrow shows the
flow of control between basic blocks. A predecessor block of a current block is the
basic block that has the flows of control to the current block. A successor block of
current block is the basic block that has the incoming flows of control from the current
block.

Data flow analysis is a technique for obtaining variables’ relationships
from flow graphs. This technique examines definitions and the subsequent uses of
variables. Suppose instruction I1 defines a value to x, which instruction I2 then uses.
Then, instructions I1 and I2 have a data flow relationship. Using DefUse information from
the previous step, data flow analysis can be processed by traversing the basic blocks in
the CDFGs. For the vending machine example, the data flow relationship of variable
Type within method vend is in basic block 0 at position 7 (Def) and basic block 2 at
position 29 (Use). Data flow relationships can also be obtained between methods, for
example, variable curQtr is defined in basic block 0 of method <init> and then used in
basic block 0 of method addQtr.

25

1 class VendingMachine {
2
3 private int total = 0;
4 private int curQtr = 0;
5 private int Type = 0;
6 private int availType = 2;
7
8 void addQtr() {
9 curQtr = curQtr + 1;
10 }
11
12 void returnQtr() {
13 curQtr = 0;
14 }
15
16 void vend (int selection) {
17 int MAXSEL = 20;
18 int VAL = 2;
19 Type = selection;
20 if (curQtr == 0)
21 System.err.println ("No coins inserted");
22 else if (Type > MAXSEL)
23 System.err.println ("Wrong selection ");
24 else if (!available())
25 System.err.println ("Selection unavailable");
26 else {
27 if (curQtr < VAL)
28 System.err.println ("Not enough coins");
29 else {
30 System.err.println ("Take selection");
31 total = total+ VAL;
32 curQtr = curQtr - VAL;
33 }
34 }
35 System.out.println ("Current value = " + curQtr);
36 }
37
38 boolean available() {
39 if (availType == Type)
40 return true;
41 else
 return false;
42 }
43 } // class VendingMachine

Figure 3.4: The Vending Machine Class

26

void <init>()
0: aload_0
…
6: putfield VendingMachine.total I (2)
…
11: putfield VendingMachine.curQtr I (3)
…
16: putfield VendingMachine.Type I (4)
…
21: putfield VendingMachine.availType I (5)
24: return

void addQtr()
0: aload_0
1: aload_0
2: getfield VendingMachine.curQtr I (3)
…
7: putfield VendingMachine.curQtr I (3)
10: return

void returnQtr()
0: aload_0
1: iconst_0
2: putfield VendingMachine.curQtr I (3)
5: return

void vend(int arg1)
0: bipush 20
…
7: putfield VendingMachine.Type I (4)
10: aload_0
11: getfield VendingMachine.curQtr I (3)
14: ifne #28
17: getstatic java.lang.System.out
…
25: goto #112
28: aload_0
29: getfield VendingMachine.Type I (4)
32: iload_2
33: if_icmple #47
36: getstatic java.lang.System.out

…
44: goto #112
47: aload_0
48: invokevirtual VendingMachine.available ()Z (10)
51: ifne #65
54: getstatic java.lang.System.out
…
62: goto #112
65: aload_0
66: getfield VendingMachine.curQtr I (3)
69: iload_3
70: if_icmpge #84
73: getstatic java.lang.System.
…
81: goto #112
84: getstatic java.lang.System.out
…
94: getfield VendingMachine.total I (2)
…
99: putfield VendingMachine.total I (2)
…
104: getfield VendingMachine.curQtr I (3)
…
109: putfield VendingMachine.curQtr I (3)
112: getstatic java.lang.System.out
…
128: getfield VendingMachine.curQtr I (3)
…
140: return

boolean available()
0: aload_0
1: getfield VendingMachine.availType I (5)
4: aload_0
5: getfield VendingMachine.Type I (4)
8: if_icmpne #13
11: iconst_1
12: ireturn
13: iconst_0
33: ireturn

Figure 3.5: The Bytecode Instructions of Vending Machine

27

EXIT
1

0 - 24
(d, total, 6),
(d, curQtr, 11),
(d, Type, 16),
(d, availType, 21)

Method <init> Method addQtr Method returnQtr

EXIT
1

(u, curQtr, 2),
(d, curQtr, 7)

0 - 10
00

0 - 5
(d, curQtr, 2)

0

EXIT
1

(d, Type, 7),
(u, curQtr, 11)

0 - 14
0

17 - 25
1

28 - 33
(u, Type, 29)

2

36 - 44
3

47 - 51
4

54 - 62
5

65 - 70
(u, curQtr, 66)

6

73 - 81
7 84 - 109

(u, total, 94),
(d, total, 99),
(u, curQtr, 104),
(d, curQtr, 109)

8

112 - 140
(u, curQtr, 128)

9

EXIT
10

Method available

EXIT
3

(u, availType, 1),
(u, Type, 5)

0 - 8
0

Method vend

11 - 12
1

13 - 14
2

Figure 3.6: The CDFGs of Each Method of Vending Machine

28

3.1.3 Applying the CDFGs

An analysis tool was implemented for automatically analyzing java .class
file and generating CDFGs. The tool was implemented by using an open source tool
from Apache/Jakarta [12], a bytecode manipulation library called BCEL (Byte Code
Engineering Library). The BCEL API can help to analyze, create and manipulate Java
bytecode files.

Figure 3.7 illustrates the class-component analysis process. The process
consists of two major components: (1) the Class Parser and (2) the Control-Data Flow
Graph Generator (CDFGen). The Class Parser parses the java .class file and creates the
JavaClass object, which represents all the information about the class (constant pool,
fields, methods etc.). The CDFGen consists of three parts: the leader generator, the
basic block generator and the flow generator. The leader generator generates the
Leader Hashtable that will be used by the basic block generator and the flow generator.
The Leader Hashtable contains leaders that were mentioned in section 3.1.1. The basic
block generator divides bytecode instructions into a collection of basic blocks. The Def
instruction and Use instruction are also collected for each basic block. The flow
generator generates flows of control between basic blocks. When the three processes of
CDFGen finish, a CDFG has been created for a method.

29

Figure 3.7: Class-Component Analysis Process

Java class file
(.class file) Class Parser JavaClass

Leader
Hashtable

Leader
Generator

Basic Block
Generator

Flow
Generator

Control-Data Flow
Graph Generator

Control-Data
Flow Graph

(CDFG)

3.1.4 Definition-Use of Method (DUM)

The previous process constructs the Control-Data Flow Graph (CDFG) of
a method to model the flow of control and data through that method. This process uses
the CDFGs of a class-component to collect the definition and use information. The
process collects (1) the definition and use information for all variables of each method
and (2) the first use and the last definition information. The information gathered for a
method is collectively called the Definition-Uses of Method (DUM). To collect definitions
and uses information for all variables of a method, the associated CDFG of a method is
traversed from the first basic block (basic block 0) to the last basic block (EXIT block).
To collect the first uses, the CDFG is traversed by starting from the first basic block and
then following with each successor block, in a depth first manner. To collect the last
definitions, the CDFG is traversed by starting from the last basic block and then
following backward through predecessor blocks, again in a depth first manner. Table
3.3 shows the DUMs of vending machine. Columns Use and Def show the sequence of
use and definition instruction positions of variables. Column First-Use and Last-Def show
the sequence of first use and last definition instruction positions of variables.

30

Table 3.3: The DUMs of Vending Machine
Method Name Variable Name Positions

 Use Def First-Use Last-Def
<init> () curQtr 11 11
 total 6 6
 Type 16 16
 availType 21 21
addQtr () curQtr 2 7 2 7
returnQtr () curQtr 2 2
Vend () curQtr 11, 66, 104, 128 109 11 109
 total 94 99 94 99
 Type 29 7 29 7
available () Type 5 5
 availType 1 1

As shown in Figure 3.8, the Definition-use Generator was implemented to
generate the DUMs for each method. The next section explains how the DUMs are used
to increase testability, controllability and observability, of a class-component.

Figure 3.8: The Process of Collecting the Definition and Use Information

Definition-Use
Generator

Colleting the
definition and use

information

Increasing
Controllability

Increasing
Observability

Control-Data
Flow Graph

(CDFG)

Definition-Use
of Method

(DUM)

31

3.2 Increasing Class-Component Testability

Testing software is easier when testability is high, and, in general,
increasing testability makes detecting faults easier. This section explains the process
used to increase class-component testability. The DUMs from the previous step are
used to increase testability that is proportionally influenced by: controllability and
observability.

3.2.1 Increasing Controllability

Binder [19] defined the significance of controllability as “if user cannot
control the inputs, they cannot be sure what caused a given output”. Controllability
focuses on the ease of controlling component’s inputs. This means that a class-
component that supports various ways of supplying inputs to exercise the class-
component as necessary tends to provide better controllability.

To increase controllability, the DUMs mentioned in previous step are
used to collect definition-use pairs of a variable between the last definitions and the first
uses. The definition-use pairs of a variable are called Definition-Use Couplings for
Testing (DUCoT). For example, the variable total of the vending machine in Table 3.3,
the last definitions are in method <init> at position 6 and method vend at position 99,
and the first use is in method vend at position 94. The remainder of this subsection
refers to the last definition at position x and the first use at the position y as the last-def
location x and the first-use location y. A DUCoT is defined as follows:
Definition The DUCoT of variable v is a tuple, DUCoT (v) = (DL, UF)

 DL is a finite set of last definitions of variable v
Each element of DL is Md[Ld] where

 Md is a method that defines variable v, and
 Ld is a last-def location in Md where variable v is defined
 UF is a finite set of first uses of variable v

Each element of UF is Mu[Lu] where
 Mu is a method that uses a variable v, and

32

 Lu is a first-use location in Mu where variable v is used

Figure 3.9 shows the DUCoTs for variables of vending machine. From
the figure, the first DUCoT is for variable curQtr, DUCoT(curQtr) = (DL, UF). DL is a set
that consists of four elements, <init>[11], addQtr[7], returnQtr[2] and vend[109]. Each
element contains two parts, Md and [Ld]. The first part, Md, is a method’s name. Ld in the
second part is a last-def location in method Md. For example, the last element of DL,
vend[109], indicates a method vend and a last-def location 109. UF is a set that consists
of two elements, addQtr[2] and vend[11]. Each element contains two parts, Mu and [Lu].
The first part, Mu, is a method’s name. Lu in the second part is a first-use location in
method Mu. For example, the last element of UF, vend[11], indicates a method vend and
a first-use location 11.

The DUCoTs are used to increase controllability by supporting test case
generation to cover all the necessary tests. These test cases are generated according
to the coupling-based testing criteria proposed by Jin and Offutt [17], as described in
Section 2.1.2. The coupling-based testing criteria are a collection of rules that imposes
requirements on a set of test cases. Applying coupling-based testing to component
testing requires some minor modifications to the terminology.

The All-coupling-uses criterion requires that for each coupling-def, at
least one test case executes a path from the def to each reachable coupling-use. A
coupling-def is an instruction that contains a last-def that can reach a first-use in another

Figure 3.9: The DUCoTs of Vending Machine’s Variables

DUCoT (curQtr) = ({<init>[11], addQtr[7], returnQtr[2], vend[109]},
 {addQtr[2], vend[11]})

DUCoT (total) = ({<init>[6], vend[99]}, {vend[94]})

DUCoT (Type) = ({<init>[16], vend[7]},
 {vend[29], available([5]})

DUCoT (availType) = ({<init>[21]}, {available[1]})

33

method on at least one execution path. A coupling-use is an instruction that contains a
first-use that can be reached by a last-def in another method on at least one execution
path. An adaptation of the standard All-coupling-uses for a component by using DUCoT
is given in the following definition.
Definition Let (DL, UF) be a DUCoT of variable v. The All-coupling-uses of variable v is

defined as
AllCoU(v) = (DL×UF) = { (Md[Ld], Mu[Lu]) | ∀Md[Ld] ∈ DL and ∀Mu[Lu] ∈ UF)
 and Md = Mu → Ld > Lu }

In this thesis, we identify test requirements in form of definition-use pairs
that are to be tested. The test requirement for an ordered definition-use pair (Md [Ld], Mu

[Lu]) of variable v requires the path to execute from the last-def location Ld of method Md
to the first-use location Lu of method Mu without any intervening redefinitions of the
variable v. The All-coupling-uses considers definition-use pair between methods, a last-
def in a method and a first-use in another method. Therefore, if the first-use and last-def
locations are in the same method, the first-use location must be appeared before the
last-def location. Example of the test requirements of All-coupling-uses of vending
machine are shown in Table 3.4.

Table 3.4: The Test Requirements of All-coupling-uses of vending machine

Variable All-coupling-uses # Variable All-coupling-uses
1 curQtr <init> [11], addQtr [2] 8 vend [109], vend [11]
2 <init> [11], vend [11] 9 total <init> [6], vend [94]
3 addQtr [7], addQtr [2] 10 vend [99], vend [94]
4 addQtr [7], vend [11] 11 Type <init> [16], vend [29]
5 returnQtr [2], addQtr [2] 12 <init> [16], available [5]
6 returnQtr [2], vend [11] 13 vend [7], available [5]
7 vend [109], addQtr [2] 14 availType <init> [21], available [1]

A tool to automatically generate DUCoTs and test requirements for a
class-component was implemented. The tool provides two main modules, the generation
of first-use and last-def of variables, and of All-coupling-uses test requirements as
shown in Figure 3.10. The First-use and Last-def Generator uses DUMs to generate

34

DUCoTs. The Coupling-based Test Generator uses DUCoTs to generate test
requirements of All-coupling-uses.

According to the test requirements generated, test cases are then
created to satisfy these requirements. A test case is a sequence of method calls. For
example, test requirement for a variable, (Md [Ld], Mu [Lu]), causes the execution to reach
two specific locations. The first is the last-def location Ld of method Md, which defines
that variable (required def location). The second is the first-use location Lu of method
Mu, which uses that same variable (required use location). Moreover, this execution
must not redefine the variable between these two locations. That is, this must be a def-
clear path execution. Some of test requirements are infeasible because the required
locations cannot be reached or the execution does not produce a def-clear path. To
eliminate infeasible paths during test case generation process, instrumentation is
developed.

An overall process of test case generation is shown in Figure 3.11. The
Definition-Use Track Instrumentation was implemented to automatically instrument java
.class file and to create the Instrumented Class. The instrumentation is performed at
bytecode level by inserting auxiliary instructions at all definition and use locations. The
definition and use locations are indicated by DUMs defined in section 3.1.4. The
inserted instructions are used to record the reached locations. The Temporary Test Data

Figure 3.10: Test Requirement Generation Process

First-Use and
Last-Def
Generator

Coupling-based
Test Generator

Definition-Use
of Method

(DUM)

Definition-Use
Coupling for
Testability
(DUCoT)

Test
Requirement

35

is first generated by the Initial Test Data Generator module according to a test
requirement. The Execution and Evaluation executes the Instrumented Class against the
Temporary Test Data and results the sequence of reached locations. The Execution and
Evaluation also automatically checks the required def and use locations and checks that
the execution is a def-clear path execution by using the sequence of reached locations.
If the execution is not def-clear path or the required locations are not reached, the Test
Data Modifier modifies the Temporary Test Data by adding a method call or by
changing the values of the method call parameters. The initialization and modification of
the test data are done manually. For example, in Table 3.4, the fourth test requirement,
(addQtr[7], vend[11]), requires the execution to reach the location 7 of method addQtr
and the location 11 of method vend. The initial test data for this test requirement consists
of the vending machine class object, the call to method addQtr, and the call to method
vend. The parameter of method vend is randomly generated, e.g. 1. This initial test data
– new(), addQtr(), vend(1) – when executed, reaches the location 7 of method addQtr
and location 11 of method vend, and creates the def-clear path execution. Therefore,
the test case for this test requirement is new(), addQtr(), vend(1). From the same table,
considering the ninth test requirement, (<init>[6], vend[94]), which requires the
execution to reach the location 6 of method <init> and the location 94 of method vend.
The initial call, <init>, is called automatically by the system when a new class object,
new(), is created. So the test data is initialized, using the same parameter as before, to
be new(), vend(1). When such test data is executed, the location 94 of method vend
could not be reached. To correct this, the test data is modified by adding the calls to
method addQtr and changing the parameter value of method vend to 2. As a result, the
modified test case of the ninth test requirement in Table 3.4 is new(), addQtr(), addQtr(),
vend(2). The automated process of initialization and modification of test data is a
complex problem, and, therefore, is left as part of the future work.

36

The step by step to summarize the test case generation process for a
test requirement for a variable with parameters, location Ld of method Md and location Lu
of method Mu (Md [Ld], Mu [Lu]), is illustrated as follows:

1. First, an initial test data is generated with first creating a class-component
object, the making a method call to Md and later a method call to Mu. Note that,
the initial test data, specifically method parameters, is randomly generated to
fulfill requirement. This data is assigned as “temporary test data.”

2. Next, the instrumented class is executed with the temporary test data. At the end
of the execution, the sequence of the reached locations is recorded.

3. After that, the recorded reached locations are evaluated. If (1) the sequence of
reached locations executed contains the required def location Ld in method Md,
(2) the sequence of locations executed contains the required use location Lu in
method Mu after Ld in method Md, and (3) there is no other definition of the
variable between location Ld and location Lu, the temporary test data finalized
and established as our “Test Case”. Otherwise, the temporary test data is
modified by adding a method call or by changing the values of the method call
arguments, and repeat step 2.

Initial Test Data
Generator

Test Case

Temporary
Test Data

Execution and
Evaluation

Test
Requirement

Test Data
Modifier

Java class file
(.class file)

Definition-Use
Track

Instrumentation

Instrumented
Class

Definition-Use
of Method

(DUM)

Figure 3.11: Test Case Generation Process

37

The result of test case generation for a test requirement is the sequence
of creating a class-component object and making method calls that cause execution of
the required def location and the required use location with a def-clear path.

3.2.2 Increasing Observability

Binder [19] makes the following point about observability in object-
oriented software: “if users cannot observe the output, they cannot be sure how a given
input has been processed.” Observability focuses on the ease of observing outputs.
Observability requires that test engineers be able to determine if the software behaves
correctly during testing. For black-box software, its observability is inherently limited
because only the outputs are visible. Due to the encapsulation and data hiding
properties of such black-box software, despite their direct benefits, cause problems with
testing by making object-oriented software less observable [10]. This is because the
internal state is not readily available. This makes it possible for the internal state to be
erroneous while still yielding correct outputs. Hence, being able to access the internal
state is a crucial task for testing.

An approach at accessing the internal state is by way of debugging.
However, a debugger generally provides a view of all the state information at a certain
point during an execution. The larger the size of a program, the less the observability it
is. To alleviate this problem, we derived a method for specifying particular observation
points to observe internal states of variables during testing. Typically, internal states of
classes are not immediately and directly available to test engineers. For example, from
Figure 3.4, the state variable total, as defined in line 31, is a private variable. So the
client of the vending machine class consisting of this private variable (total) would not
be able to access directly. Suppose that line 31 has a fault, no test case could detect it.
To deal with this problem, being able to observe intermediate values of state variables
during testing by using temporary variables is necessary.

Therefore, in this thesis, a technique called observability probes is
introduced. This observability probes keep track of relevant internal state variables at

38

their definition and use locations, and assert the correctness of such state variables
during testing. Such instrumentation is used to help the observability probes process.

The intermediate values of state variables can be observed by inserting
auxiliary instructions at bytecode level. Such instructions are inserted into the class-
components in such a way that the overall program behavior would not change. The
instrumented instructions are classified into three groups. The first group defines
instructions for creating temporary variables called tracking variable for each variable of
a class-component. These variables are defined as public so they are accessible by
other test classes. For example, variables d_curQtr and u_curQtr are created to be
tracking variables of variable curQtr for storing its values at its definition location and its
use location, respectively. The second group defines instructions for storing the values
of each variable into its corresponding tracking variable created from the first group
instructions. For example, the variable d_curQtr is assigned the value of the variable
curQtr at its definition location. Similarly, the variable u_curQtr is assigned the value of
the variable curQtr at its use location. The second group instructions are inserted at
every location of the variable definition and every location of the variable use.

The last group is instructions used for asserting the correctness of the
values of the internal state variables. The assertion is performed at every use location.
The assertion is to see if the temporarily stored value at the use location is equal to the
temporarily stored value of the corresponding state variable at the definition location,
i.e., u_curQtr = d_curQtr. If the two values associated with the state variable are equal,
that variable retains its right value. Otherwise, the variable has been unexpected
redefined. Referring to table 3.4, which provides all test requirements of all relevant state
variables for the vending machine class example. For example, to test the curQtr
variable, all test requirements defined by ordered pairs from line 1 to line 8 must be
executed. Specifically, the first test requirement (<init>[11], addQtr[2]) is first translated
to the test case new(), addQtr(), as depicted in Figure 3.11. The new() method makes a
call to the method <init>. When this test case is executed, the respective definition
location, line 11 in Figure 3.5, of the method <init> and the respective use location, line

39

2 in Figure 3.5, of the method addQtr have been reached. At the point of the definition
and use locations, the state variables of variable curQtr are stored into the
corresponding tracking variables, d_curQtr and u_curQtr. At the point of the use
location, an assertion is performed to compare the value of the tracking variable at its
use location (u_curQtr) to the value of the tracking variable at its definition location
(d_curQtr).

The mentioned observability probes process has been implemented as
shown in Figure 3.12. A java .class file to be tested is instrumented by the Observable
Instrumentation to add the three groups of instructions as previously stated. The
Observable Class is produced by referring to the definition and use locations of the
DUMs, described in section 3.1.4.

Figure 3.13 shows the overall process of increasing class-component
testability. From the figure, class-component (.class file) is analyzed at bytecode level
by the Betycode-based Class-component Analysis process. This produces the
Definition-Use of Method (DUM) for each method of the class-component being tested.
The generated DUMs are then used in the Increasing Controllability process to generate
test cases and used in the Increasing Observability process to monitor internal state
variables. The Increasing Controllability process generates test cases according to All-
coupling-uses criteria for the class-component being tested. The Increasing
Observability process instruments a class-component to produce the Observable Class.
When the Observable Class is executed by the Execution and Assertion module against

Figure 3.12: Observability Probes Process

Java class file
(.class file)

Observable
Instrumentation

Observable
Class

Definition-Use
of Method

(DUM)

40

test cases, the execution results include the normal program outputs and the internal
state variable assertion.

Figure 3.13: The Process of Increasing Class-Component Testability

Java class file
(.class file)

Observable
Instrumentation

Observable
Class

Definition-Use
of Method

(DUM)

Control-Data
Flow Graph
Generator

Coupling-based
Test Generator

Definition-Use
Coupling for
Testability
(DUCoT)

Test
Requirement

Control-Data
Flow Graph

(CDFG)

Definition-Use
Generator

Bytecode-based Class-Component
Analysis

First-Use and
Last-Def
Generator

Test Case
Generator

Test Case

Execution and
Assertion

Increasing Controllability

Increasing Observability

Output and
Assertion Results

41

3.3 Measuring Class-Component Testability

The goal of this section is to find a measurement that can be used to
assess a component’s testability. Generally, there exist two general testability
measurement approaches. The first approach focuses on predicting the effort needed
for program testing [24]. For example, if a particular software has high complexity in
terms of the number of flows, much effort may be needed to satisfy a test criterion, thus
reducing the software testability. The second approach focuses on the fault revealing
ability during testing [10, 25], resulting in high degree of testability. This thesis adopted
the concept of the second approach to measure a component’s testability. In this
approach, the testability measurement is defined as the probability that existing faults
are revealed during testing. A fault can be revealed when a program segment that
contains the fault is executed and the fault affects the output. Consequently, testability
can be measured by the product of the probability that faults are executed (execution
probability) and the probability that the executed faults propagate to the output
(propagation probability). A location of variable definition and use is a good place to
look for error [19]. Thus, the locations of variable definition and use will be used to
measure testability.

3.3.1 Execution Analysis

Execution analysis executes a class-component and records the
locations executed by each test case. The execution probability of a location l, E(l), is
estimated to be the percentage of test cases that execute that location. The algorithm
for finding an execution probability of a particular location is as follows:

1. Assign a location number to each definition and each use location of a class-
component.

2. Initialize an array counter to zeroes, where the size of counter is the number of
definition and use locations in a class-component.

3. Execute a class-component by using a test case. If a location l is executed, the
element of array counter that corresponds to the location l is increased the value
by one.

42

4. Repeat algorithm step 3 m times with different test cases.
5. Divide each element of counter by m to calculate an execution probability of

each location. For example, the execution of a location l is estimated to be
counter[l]. The execution probability of location l is counter[l]/m.

The process of execution analysis was implemented as illustrated in
Figure 3.14. From the figure, there are two major components: the Execution
Instrumentation and the Execution Analysis. The Execution Instrumentation instruments
java .class file (original class) and automatically creates the Instrumented Class as
inputs for the Execution Analysis component. The instrumentation is performed by
inserting three groups of instructions. The first group of the instructions is used to
declare an array counter to record the number of specific locations that have been
executed, as described in step 3 of the Execution Analysis algorithm. The second group
instructions are used to initialize the array counter created by the first group instructions.
The third group instructions are inserted at all definition and use locations to update the
values stored by the elements of the array counter. The definition and use locations are
indicated by the DUMs defined in section 3.1.4. The instrumented class generated is
then invoked by the Execution Analysis component using the desired test cases. The
final array counter is used to compute the execution probability. For example, assume
that the component C has five locations of definition and use, and there are four test
cases. Suppose that, the number of the test cases that executed all five locations is
3,2,4,2 and 3, respectively. Therefore, the execution probability for each location is
computed to be 0.75, 0.5, 1, 0.5 and 0.75.

Execution
AnalysisTest Case

Java class file
(.class file)

Execution
Instrumentation

Instrumented
Class

Execution
Probability

Definition-Use
of Method

(DUM)

Figure 3.14: Execution Analysis Process

43

3.3.2 Propagation Analysis

A data state is a set of variable values after execution. A definition
statement modifies the data state. For example, the data state {(a, undefined)} is
changed to {(a, 5)} after executing the definition statement a=5. The value of variable is
used in a use statement. In this thesis, we are interested in faults of data state, namely,
incorrect data state. The incorrect data state is classified into two types. The first type,
incorrect definition, occurs when a variable value is defined incorrectly. The second
type, incorrect use, occurs when a variable value is used incorrectly. Our propagation
analysis estimates the probability that an incorrect data state caused by a faulty location
will propagate to the output. The incorrect data state is generated by injecting a fault
into the data state. This is called a data state mutation. This generation process is
similar to the mutation process in mutation analysis [22]. Base on incorrect data state,
we define two operators of data state mutation: Definition Replacement and Use
Replacement. Definition Replacement operator creates a mutant by redefining the
variable value. Use Replacement operator creates a mutant by changing the used
variable value to an incorrect value. The data state mutation creates mutants by
applying data state mutation operators at definition and use locations at bytecode level.
At a definition location, the Definition Replacement operator is applied. At a use location,
the Use Replacement operator is applied. For example, at the definition location l, the
variable x is mutated to generate the mutant by redefining the value of variable x. Each
mutant is executed and the execution output is checked against the original output. If
the execution outputs from the original are different those from the mutant, this mutant is
considered “killed” by the test. In this thesis, we assume that every mutant could be
killed by some tests, therefore, equivalent mutants would not be considered. The
propagation probability of a location l, P(l), is the percentage of executions that the
execution output of mutant of l differs from that of the original program. The algorithm for
finding a propagation probability of a particular location is as follows:

1. Create a mutant by data state mutation for a definition or use location l.
2. Initialize an integer variable kill to 0.
3. Execute the mutant by a test case.

44

4. Compare the execution output with the output of the original class on the same
test case. If the outputs differ, propagation has occurred and kill is incremented.

5. Repeat algorithm steps 3 to 4 p times, each time with a different test case.
6. Divide kill by p to calculate the propagation probability of the mutant of location l.

The process of propagation analysis was implemented as shown in
Figure 3.15. The process consists of two major components: the Mutation Generator and
the Propagation Analysis. The Mutation Generator modifies the original java .class file
by instrument certain instructions into it and produces mutants by using the data state
mutation technique described previously. A mutant is generated for each location of
variable definition and use. Our implementation tool generating mutants supports five
data types of java, int, double, string, Boolean and array of type int. Table 3.5 presents
the values used to mutate each data type. For example, to produce a mutant at a use
location of int variable total, instructions are inserted at the use location. The inserted
instructions change the used total value to MinInt. The Propagation Analysis component
then invokes each mutant against the desired test cases. The detail of invoking a mutant
against a test case of this component is shown in Figure 3.16. In this figure, the
execution output of the mutant against the test case is compared with the execution
output of the original class against the same test case. The result of this comparison is
used to generate the propagation probability. For example, assume that the component
C has five locations of definition and use, and four test cases. Applying the data state
mutation technique, five mutants were generated for this component. Each mutant was
executed four times, each time against each test case. Assume further that, the
numbers of different execution outputs for each respective definition and use location
are 2, 1, 2, 3, and 3, for mutant execution. Therefore, the propagation probabilities of all
locations are 0.5, 0.25, 0.5, 0.75 and 0.75, respectively.

45

Table 3.5: Values to Mutate Each Data Type

Data Type Values to mutate
Int MinInt
Double MinDouble
String Null
Boolean Inversion of state (true -> false, false -> true)
Array of type Int MinInt

Propagation
Analysis

Mutant
Java class file

(.class file)

Mutation
Generator

Definition-Use
of Method

(DUM)

Propagation
Probability

Test Case

Figure 3.15: Propagation Analysis Process

MutantJava class file
(.class file) Execute

Result of
Comparision

Test Case

Compare

Figure 3.16: The Detail of Execution in Propagation Analysis Process

46

To compute the testability for each location l, the testability of location l,
T(l), is the execution probability, E(l), multiplied by the propagation probability, P(l). The
testability measure of a class-component (T) is the average testability of all locations. If
a component has k locations, the testability measure is calculated as follows:

T =
k

)(T
k

1
∑
=i

i
 k1 , ≤≤ i

CHAPTER IV
CASE STUDY

The goal of this thesis is to increase and measure the class-component
testability by using the component information analyzed at the bytecode level. This
chapter demonstrates our proposed methods. Section 4.1 presents an effectiveness of
our increasing class-component testability method, how fault can be easily revealed
and failures can be easily detected by using our method. Section 4.2 shows the
effectiveness of our testability measurement. By the testability measurement, a class-
component with high fault revealing ability should be indicated the high testability
measure.

4.1 Increasing Testability Experiment

This section shows the effectiveness of our increasing class-component
testability process. As discussed in Section 3.2, increasing controllability and
observability present increasing class-component testability. To increase controllability,
we support ways to generate test cases based on All-coupling-uses. To increase
observability, the observability probes are added in order to trace and assert internal
state variables. The increased class-component testability makes faults easier
revealing.

The mutation testing is used to evaluate the fault detection ability that
results from our increasing class-component testability process. Mutation is widely
considered to be one of the strongest testing techniques, and is often used as a “gold
standard” against which to evaluate other testing techniques. It has been used as a
way to induce faults into the program for empirical fault studies in dozens of testing
papers [27, 28, 29]. Andrews et al. [27] recently studied the direct question of whether
mutation-like faults are valid in studies like this, and found that they are. This supports
older evidence [30], which found that tests that detect mutation-like faults are good at
detecting more complicated faults.

48

As explained about mutation analysis in background section, Mutation
analysis works by modifying copies of the original program or component. Mutants are
created by making copies of the original version, then inducing each mutant change
into a unique copy. Tests are run on the original version, and then each mutant version.
If the results from an original version are different from the results from a mutant
version, the mutant is said to be killed by the tests.

Figure 4.1 shows a family of data flow testing criteria proposed by
Rapps and Weyuker [16]. The criteria relationships identify that All-du-paths is a
stronger criterion than All-uses. All-uses criterion requires a test to cover a path from
each definition to reachable uses, whereas All-du-paths criterion requires the coverage
of all possible definition-use paths. Note that, the definition-use pairs of All-uses
criterion is the subset of definition-use pairs of All-du-paths criterion.

This thesis generates test cases based on All-coupling-uses criterion as
explained in subsection 3.2.1. This criteria requires, for each coupling-def, at least one
test case executes a path from the definition to each reachable coupling-use. Both All-
coupling-uses and All-uses criteria consider on the paths from each definition to
reachable uses. The specific of All-coupling-uses criterion is it only considers on the
definition-use paths of a variable between the last definition in a method and the first

All-paths

All-du-paths

All-uses

All-c-uses/
some-p-uses

All-p-uses/
some-c-uses

All-defs All-p-uses

All-edges

All-node

Figure 4.1: A Family of Data Flow Testing Criteria [16]

49

use in other methods. Consequently, the definition-use pairs of All-coupling-uses
criterion are the subset of definition-use pairs of All-uses criterion. As stated before,
the definition-use pairs of All-uses criteria are the subset of definition-use pairs of All-
du-paths criterion. Therefore, the definition-use pairs of All-coupling-uses criterion are
the subset of definition-use pairs of All-du-paths criterion. In other words, the All-du-
paths requires more complete paths than All-coupling-uses. To show effectiveness of
our test cases, this experiment uses the test cases generated according to the All-du-
paths criterion to compare the fault detection ability with our test cases. The detail of
experiment is described in the following subsection.

4.1.1 Experimental Setting and Results

The experiment proceeded in six steps:

(1) Prepare classes to test,

(2) Generate a set of test cases following our approach, All-coupling-
uses, for each class,

(3) Generate a set of test cases to satisfy All-du-paths coverage for
each class,

(4) Generate the mutants for each class,

(5) Run each set of test cases on the original and each mutant version,
and

(6) Compute the fault detection ability of each set of test cases.

The details of each step are explained as following.

We used five subjects, the vending machine class (VendingMachine)
and four classes from a data structure package, StackArr, QueueArr, BinaryHeap and
ArrList. Table 4.1 shows the description of each class. Column “SLOC” shows the
source lines of code. Column “#Instructions” shows the number of bytecode

50

instructions. Column “#Variables” shows the number of variables. Column “#Methods”
shows the number of methods. Following our proposed method as explained in
subsection 3.2.1, a set of test cases was generated to satisfy our All-coupling-uses
criterion for each class. These are called All-coupling-uses tests (ACU tests). The ACU
tests were duplicated, and observations of internal states were added by observability
probes as explained in subsection 3.2.2. These are called All-coupling-uses with
observability tests (ACU-O tests). The test generation process for ACU and ACU-O
tests is shown in Figure 4.2. A dashed arrow (“--->”) is used to represent omitted
methods. Also, a set of test cases for each class were generated to satisfy the All-du-
paths criterion (AllDU tests). Table 4.2 shows the number of test cases of ACU and
AllDU tests for each class. The obvious observation is that in all classes, AllDU tests
require more test cases than ACU tests. This is consistent with the criteria relationship
[16] that if a more stringent criterion is chosen, the number of definition-use pairs that
must be tested increases. The number of test cases of ACU-O tests is equal to ACU
tests, but ACU-O tests were with observability probes. The observability probes help to
observe internal state variables during testing.

Mutants were generated for each class by making faults at the definition
and use locations, called data state mutation. The data state mutation process was
performed at bytecode level same as the Mutation Generator module described in
subsection 3.3.2. We assume that the five subject classes are fault-free. The
discovered faults are only from mutants. The number of mutants generated for each
class is shown in Table 4.3. Each original class and corresponding mutants were
executed against ACU, ACU-O and AllDU tests. A mutant is said to be killed by a set of
test cases, if the execution results of the mutant are different from the execution results
of the corresponding original class. For example, if the results executed against ACU
tests of the VendingMachine class and a mutant are different, the mutant is killed by
ACU tests. The killed mutant means a fault is detected. The fault detection scores were
computed in terms of the number of faults detected for each class.

51

Table 4.1: The Description of Each Class Used in the Experiment
Class Name SLOC #Instructions #Variables #Methods

VendingMachine 40 118 4 5
StackArr 58 140 3 9
QueueArr 59 151 5 8
BinaryHeap 61 201 3 8
ArrList 58 229 4 9

Table 4.2: The Number of Test Cases of ACU and AllDU tests

Class Name ACU AllDU
VendingMachine 13 22
StackArr 25 25
QueueArr 22 27
BinaryHeap 22 39
ArrList 58 68

Figure 4.2: The Test Generation Process for ACU and ACU-O

Java class file
(.class file)

Observable
Instrumentation

Observable
Class

Definition-Use
of Method

(DUM)

ACU test ACU-O test

Definition-Use
Generator

Coupling-based
Test Generator

52

Table 4.3: The Number of Mutants for Each Class
Class Name #Mutants

VendingMachine 18
StackArr 13
QueueArr 21
BinaryHeap 25
ArrList 36

Table 4.4 and Table 4.5 show the fault detection ability of ACU, ACU-O
and AllDU tests. “#Mutants” indicates the number of mutants for each class. “#Tests”
indicates the number of test cases for each class. “Faults Detected” indicates the
number of killed mutants for each class. “Detection Increase” indicates the number of
increment of detected faults for each class. Table 4.4 shows fault detection ability of
ACU and ACU-O tests. The execution results of ACU-O tests found more faults than
ACU tests of any classes. The fault detection was increased of any classes. The
average increment of fault detection is 73%.

Table 4.5 shows the execution results of AllDU and ACU-O tests. The
results provided by this experiment indicate that the fault detection ability of ACU-O
tests was increased from the fault detection ability of AllDU tests of any classes. The
fault detection ability of ACU-O tests was increased 73% from that of the AllDU tests.
We found that the increased fault detection ability of ACU-O tests was mostly affected
by proposed observability probes. The observability probes help observe the validity of
the internal state variables during testing. For example, consider the VendingMachine
class’s mutant that was mutated by changing the used total value at line 31 in Figure
3.4, this fault was not directly propagated to the output and this mutant was not killed
by AllDU tests. Equipped with the observability probes in ACU-O tests, the incorrect
total value could be detected. As shown in Table 4.5, the proposed ACU-O tests detect
all the faults for four out of five classes. The fault detection ability of ArrList class was
not 100% because of the dd data flow anomaly that occured when a definition is
followed by another identical definition without any intermediate use. For example, from
ArrList class, the partial instructions shown in Figure 4.3 created the dd data flow

53

anomaly for the variable end. As part of the future work, data flow anomaly detection
should be eliminated before testing.

In our experimentation, we can observe that applying our All-coupling-
uses criterion (ACU tests) to generate test cases provided the greater number of def-
clear path executions satisfying definition-use pairs than applying All-du-paths criterion
(AllDU tests). As shown in Table 4.6, the def-clear path executions of ACU tests
reached 92% of definition-use pairs, whereas the def-clear path executions of AllDU
tests reached 74%.

As a conclusion, our increasing class-component testability process
provides an improvement in detecting faults. The process supplies the effective test
cases for exercising a class-component.

Table 4.4: Case Study Results on All-coupling-uses and All-coupling-uses with
Observability
 ACU ACU-O

Class Name #Tests #Mutants Faults
Detected

% Faults
Detected

Faults
Detected

% Faults
Detected

Detection
Increase

%Detection
Increase

VendingMachine 13 18 13 72 18 100 5 39
StackArr 25 13 8 62 13 100 5 63
QueueArr 22 21 15 71 21 100 6 40
BinaryHeap 22 25 6 24 25 100 19 317
ArrList 58 36 21 58 32 89 11 25

Sum 140 113 63 109 46

Table 4.5: Case Study Results on All-du-paths and All-coupling-uses with Observability
 AllDU ACU-O

Class Name #Mutants#Tests Faults
Detected

%Faults
Detected

#Tests Faults
Detected

%Faults
Detected

Detection
Increase

%Detection
Increase

VendingMachine 18 22 13 72 13 18 100 5 39
StackArr 13 25 8 62 25 13 100 5 63
QueueArr 21 27 15 71 22 21 100 6 40
BinaryHeap 25 39 6 24 22 25 100 19 317
ArrList 36 68 21 58 58 32 89 11 25

Sum 113 181 63 140 109 46

54

…
31: aload_0
32: aload_0
33: dup
34: getfield ArrList.end I (4)
37: iconst_1
38: iadd
39: dup_x1
40: putfield ArrList.end I (4) //definition end
43: aload_0
44: getfield ArrList.array [I (2)
47: arraylength
48: irem
49: dup_x1
50: putfield ArrList.end I (4) //definition end
…

Figure 4.3: The dd Data Flow Anomaly of Variable end of ArrList Calss

Table 4.6: The Number of Definition-use Pairs and The Number of Def-clear Path
Executions
 AllDU ACU

Class Name #Definition-use
Pairs

#Def-clear Path
Executions

#Definition-use
Pairs

#Def-clear Path
Executions

VendingMachine 27 22 14 13
StackArr 31 25 31 25
QueueArr 29 27 23 22
BinaryHeap 73 39 24 22
ArrList 86 68 61 58

Sum 246 181 153 140

4.2 Measuring Testability Experiment

This section shows the usefulness of our measurement. As mentioned in
Section 3.3, testability indicates the difficulty of revealing fault. The high testability
shows the high fault revealing ability of components. A fault can be revealed when a
program segment that contains the fault is executed and the fault affects the output.
Our testability measurement is defined as the product of execution probability and
propagation probability. The execution probability of a location l, E(l), is estimated to
be the percentage of test cases that execute that location. The propagation probability

55

of a location l, P(l), is the percentage of executions that the execution output of mutant
of l differs from that of the original class. The testability of a location l, T(l), is the
execution probability multiplied by the propagation probability. The testability measure
of a class-component (T) is the average of the testability of all locations.

The goal of this experiment was to determine whether the proposed
measurement can obtain the right results on the tests with high fault revealing ability
have the high testability measure. As shown in Section 4.1, the All-coupling-uses with
observability tests (ACU-O tests) generated after increasing class-component
testability gave higher fault revealing than the All-coupling-uses tests (ACU tests) and
All-du-paths tests (AllDU tests). These three sets of tests are used to evaluate our
testability measurement.

4.2.1 Experimental Setting and Results

The experiment proceeded in four steps:

(1) Prepare classes to test,

(2) Generate a set of test cases following our approach, All-coupling-
uses, for each class,

(3) Generate a set of test cases to satisfy All-du-paths coverage for each
class, and

(4) Measure testability of each class with each set of test cases.

The details of each step are explained as following.

As the increasing testability experiment in Section 4.1, we used the five
classes, VendingMachine, StackArr, QueueArr, BinaryHeap and ArrList, and the three
sets of tests, ACU, ACU-O and AllDU. The numbers of test cases of ACU and AllDU
tests is shown in Table 4.2. The number of test cases of ACU-O tests is same as ACU
tests but the ACU-O tests is added by observations of internal states. As explained in

56

Section 3.3, the class-component testability is measured by considering the locations
of definition and use. The considered locations of each class are shown in Table 4.7.
The “#Locations” column gives the number of definition and use locations for each
class.

Table 4.7: The Considered Locations of Each Class

Class Name #Locations
VendingMachine 18
StackArr 13
QueueArr 21
BinaryHeap 25
ArrList 36

To measure the testability of a class, the class with a set of test cases is
performed by the processes of execution analysis and propagation analysis explained
in subsection 3.3.1 and 3.3.2, respectively. For example, the testability of vending
machine class (VendingMachine) is measured by the AllDU tests. There are 22 test
cases for AllDU tests. The considered locations of vending machine class are 18
locations. An execution probability of each location is analyzed by the execution
analysis process explained in subsection 3.3.1. Table 4.8 shows the number of test
cases executing each location. An execution probability of each location, E(l), was
calculated. For example, the execution probability of location 18 was 0.68 (15/22).

A propagation probability of each location is analyzed by the
propagation analysis process explained in subsection 3.3.2. Appling the data state
mutation technique, 18 mutants were generated for vending machine class. Each
mutant was mutated at each location. Each mutant was executed 22 times, each
execution against each test case of AllDU tests. The number of executions, that the
execution output of mutant differs from the original output, was counted as shown in
Table 4.9. A propagation probability of each location, P(l), was calculated. For
example, the propagation probability of location 18 was 0.55 (12/22). For each

57

location, the execution probability was multiplied by the propagation probability to be
the testability of the location, T(l). For example, the testability measure of location 18
was 0.37. The average of the testability of all locations was computed to be the
testability of vending machine class.

Table 4.8: The Number of Test Cases Executing Each Location of Vending Machine
Location 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#Test Cases 22 22 22 22 16 16 3 17 17 13 12 8 8 8 8 17 15 15

Table 4.9: The Number of Executions that the execution output of mutant differs from
the original output of Vending Machine
Mutated Location 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 #Executions 0 15 0 12 13 13 2 12 4 0 8 0 0 8 8 17 12 12

Similarly, the testability of vending machine class was also measured
by using the ACU and ACU-O tests. Table 4.10 shows the execution probability, E(l),
propagation probability, P(l), and testability measure, T(l), for each location of AllDU,
ACU and ACU-O tests.

Table 4.11 shows the testability measure of each class by using AllDU,
ACU and ACU-O tests. The “#Mutants” column gives the number of mutants created by
data state mutation technique for each class. The “#Tests” is the number of test cases
for each class. The “Testability” is the testability measure for each class. The testability
measure results of ACU-O tests were higher testability measure than ACU and AllDU
tests of any classes. These results support the results from the section 4.1 that the
ACU-O tests gave higher fault revealing than the ACU and AllDU tests. The experiment
shows that our testability measurement can be used to indicate the fault revealing
ability of component.

58

Table 4.11: The Testability Measure of Each Class
 AllDU ACU ACU-O

Class Name #Mutants #Tests Testability #Tests Testability #Tests Testability
VendingMachine 18 22 0.25 13 0.17 13 0.28
StackArr 13 25 0.18 25 0.18 25 0.37
QueueArr 21 27 0.21 22 0.19 22 0.43
BinaryHeap 25 39 0.10 22 0.07 22 0.18
ArrList 36 68 0.09 58 0.07 58 0.17

Table 4.10: The Testability Measure of Vending Machine Class
 AllDU ACU ACU-O

Location E(l) P(l) T(l) E(l) P(l) T(l) E(l) P(l) T(l)
1 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.31 0.31
2 1.00 0.68 0.68 1.00 0.54 0.54 1.00 0.69 0.69
3 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.15 0.15
4 1.00 0.55 0.55 1.00 0.38 0.38 1.00 0.62 0.62
5 0.73 0.59 0.43 0.69 0.46 0.32 0.69 0.69 0.48
6 0.73 0.59 0.43 0.69 0.46 0.32 0.69 0.54 0.37
7 0.14 0.09 0.01 0.15 0.08 0.01 0.15 0.15 0.02
8 0.77 0.55 0.42 0.62 0.38 0.24 0.62 0.46 0.28
9 0.77 0.18 0.14 0.62 0.23 0.14 0.62 0.62 0.38

10 0.59 0.00 0.00 0.46 0.00 0.00 0.46 0.46 0.21
11 0.55 0.36 0.20 0.38 0.31 0.12 0.38 0.38 0.15
12 0.36 0.00 0.00 0.31 0.00 0.00 0.31 0.31 0.09
13 0.36 0.00 0.00 0.31 0.00 0.00 0.31 0.08 0.02
14 0.36 0.36 0.13 0.31 0.31 0.09 0.31 0.31 0.09
15 0.36 0.36 0.13 0.31 0.31 0.09 0.31 0.31 0.09
16 0.77 0.77 0.60 0.62 0.62 0.38 0.62 0.62 0.38
17 0.68 0.55 0.37 0.62 0.38 0.24 0.62 0.62 0.38
18 0.68 0.55 0.37 0.62 0.38 0.24 0.62 0.62 0.38
Average Testability 0.25 0.17 0.28

CHAPTER V
SUMMARY AND FUTURE WORKS

In this chapter, we conclude our thesis and present some directions for
the future work.

5.1 Summary

This thesis presented a new analysis technique to collect control and
data information of a class-component at the bytecode level. The collected information
is used to increase and measure class-component testability.

The contributions of this thesis are listed below:

 We provided an analysis method and corresponding tool to automatically
gather control flow and data flow information. This information is represented by
an intermediate graph, CDFG, for each method in a class-component. The
product of the analysis method is CDFGs of a class-component.

 Instead of the source code analysis mandated by the conventional approach,
our analysis method processed at bytecode instructions. At bytecode level, we
consider a dimensional variable as a unique storage location. A dimensional
array is viewed as one variable and does not differentiate values between
individual elements.

 We implemented preliminary tools to support:

- Instance fields

- Fields of primitive type, int, double, boolean and string

- An array of int

 We used an open source tool from Apache/Jakarta [12] called BCEL (Byte
Code Engineering Library) to analyze and instrument bytecode instructions.

60

 We proposed a method to increase testability of a class-component. To
increase testability, CDFGs are used with All-coupling-uses criteria to supply
test cases for testing of class-components (increasing controllability), and to
make it easier to observe internal state variables during testing (increasing
observability).

 We provided a process and corresponding tool for generating test cases. The
process generates test requirements for a class-component. Then, the test
requirements are used to generate test cases for exercise the component as
necessary. The corresponding tool was implemented to automatically generate
test requirements. The test cases were manually initialled and modified, and
automatically evaluated for satisfying test requirements.

 We provided a process, called observability probes, and respective tool for
observing internal state variables during testing. The respective tool was
implemented to automatically insert tracking mechanisms that recode and
assert internal state variables at runtime.

 The CDFGs represented information of a class-component are also used to
predict the ease (or difficulty) of component testing, called testability
measurement. The testability measurement concentrates on the fault revealing
ability of a class-component. The class-component testability is measured by
analyzing execution probability and propagation probability. The execution
probability is the percentage of faulty locations executed. The propagation
probability is the percentage of faulty locations for which a test case caused
incorrect output.

 We implemented the corresponding tool for supporting the testability measure.
This tool automatically instruments a class-component to recode and compute
the percentage of executed locations at runtime. The tool also automatically
mutates a class-component to product faulty versions, called mutants. The

61

mutants are executed and the execution outputs are used to compute the
propagation probability.

5.2 Future Works

The analysis approach described in this thesis only supported instance
fields. Future work should include a process supporting the analysis of class fields. The
analysis tool should be extended to perform the complete analysis for individual
elements and other types of array.

A few parts of tools described in this thesis are only partially automated.
Future efforts will focus on improving the tools to automate all processes.

This thesis focuses on intra-class method calls, but extending the inter-
class method calls are straight forward. However, the consideration of multiple classes
is more complex when class hierarchies with dynamic type binding and polymorphism
are used. This is an issue for future work.

Component-based (CB) software development is currently in
widespread use. A CB system is built by assembling already existing components,
which need to be retested in the new environment. Another important future work
should investigate whether our approach is readily applicable to all component-based
(CB) software, not just java.

REFERENCES

[1] A. V. Aho, R. Sethi and J. D. Ullman. Compilers: Principles, Techniques and Tools.

Addison-Wesley Publishing Company, Reading, MA, 1986.
[2] B.-Y. Tsai, S. Stobart, and N. Parrington. Employing data flow testing on object-

oriented classes. The IEE Proc. – Softw. 148, 2 (April 2001): 56-64.
[3] M. J. Harrold and M. L. Souffa. An incremental approach to unit testing during

maintenance. Proceedings of IEEE/ACM Conference on Software Maintenance,
Phoenix, Arizona, USA, 1988: 362-367.

[4] T. Alexander and A. J. Offutt. Analysis Techniques for Testing Polymorphic
Relationships. Proceedings of the Thirtieth International Conference on
Technology of Object-Oriented Languages and Systems (TOOLS30 '99), IEEE
Computer Society, Santa Barbara CA, 1999: 104-114.

[5] B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, Inc, New York NY,
2nd edition, 1990. ISBN 0-442-20672-0.

[6] A. Abdurazik, and J. Offutt. Generating test cases from UML Specifications.
Technical report ISE-TR-99-105, Department of Information and Software
Engineering, George Mason University, Fairfax VA, 1999.
http://www.ise.gmu.edu/techrep/.

[7] L. Gallagher, J. Offutt and A. Cincotta. Integration testing of object-oriented
components using finite state machines. The Journal of Software Testing,
Verification, and Reliability, in press - published online (January 2006).

[8] H. S. Hong, Y. R. Kwon, and S.D. Cha. Testing of Object-Oriented Programs Based
on Finite State Machines. The Asia-Pacific Software Engineering Conference
(ASPEC95), Brisbane, Australia, December 1995: 234-241.

[9] E. Weyuker. Testing Component-based Software: A. Cautionary Tale. IEEE Software
15, 5 (Sept/Oct 1998): 54-59.

[10] J. M. Voas, and K. W. Miller. Software testability: The new verification. IEEE Software
12, 3 (May 1995): 17-28.

63

[11] Y. Wang, G. King, M. Fayad, D. Patel, I. Court, G. Staples, and M. Ross. On Built-in
Test Reuse in Object-Oriented Framework Design. ACM Journal on Computing
Surveys 32, 1 (March 2000): 7-12.

[12] Apache Software Foundation. BCEL: Byte Code Engineering Library. Part of the
Apache/Jakarta project, 2002-2003. http://jakarta.apache.org/bcel/.

[13] T. Lindholm and F. Yellin. The JavaTM Virtual Machine Specification, Addison
Wesley, second edition, 1999.

[14] Y. G. Kim, H. S. Hong, S. M. Cho, D. H. Bae, and S. D. Cha. Test case generation
from UML state diagram. IEE Proceedings – Software 146, 4 (August 1999): 187-
192.

[15] J. Laski, and B. Korel. A data flow oriented program testing strategy. IEEE
Transaction on Software Engineering 9, 3 (May 1983): 347-354.

[16] S. Rapps, and E. J. Weyuker. Selecting software test data using data flow
information. IEEE Transaction on Software Engineering 11, 4 (April 1985): 367-
375.

[17] Z. Jin, and J. Offutt. Coupling-based criteria for integration testing. The Journal of
Software Testing, Verification, and Reliability 8, 3 (September 1998): 133–154.

[18] IEEE Standard Glossary of Software Engineering Technology, ANSI/IEEE 610.12,
IEEE Press (1990).

[19] R. V. Binder. Design for testability with object-oriented systems. Communications of
the ACM 37, 9 (September 1994): 87-101.

[20] R. Freedman. Testability of software components. IEEE Transactions on Software
Engineering 17, 6 (June 1991): 553–563.

[21] J. Gao, H.-S. Tsao, and Y. Wu. Testing and Quality Assurance for Component-
based Software. Artech House, Inc, MA, 2003. ISBN 1-58053-480-5.

[22] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur. Interface mutation: An
approach for integration testing. IEEE Transactions on Software Engineering 27,
3 (March 2001): 228–247.

64

[23] M. J. Harrold, and G. Rothermel. Performing data flow testing on classes. The ACM
SIGSOFT Foundation of Software Engineering, New Orleans, LA, December
1994: 154–163.

[24] T. J. McCabe. A Complexity Measure. IEEE Transactions on Software Engineering
SE-2, 4 (December 1976): 308-320.

[25] J. M. Voas. PIE: a dynamic failure-based technique. IEEE Transactions on Software
Engineering 18, 8 (August 1992): 717-727.

[26] M. J. Harrold, A. Orso, D. Rosenblum, G. Rothermel, M. L. Soffa, and H. Do. Using
component metadata to support the regression testing of component-based
software. The IEEE International Conference on Software Maintenance, Florence,
Italy, November 2001: 154-163.

[27] J.H. Andrews, L.C. Briand, & Y. Labiche. Is mutation an appropriate tool for testing
experiments?. The 27th International Conference on Software Engineering, St.
Louis Missouri, USA, 2005: 402-411.

[28] R. A. DeMillo, R. J. Lipton and F. G. Sayward. Hints on test data selection: Help for
the practicing programmer. IEEE Computer 11, 4 (April 1978): 34-41.

[29] R. A. DeMillo and A. J. Offutt. Constraint-based automatic test data generation.
IEEE Transactions on Software Engineering 17, 9 (September 1999): 900-910.

[30] J. Offutt. Investigations of the software testing coupling effect. ACM Transactions on
Software Engineering Methodology 1, 1 (January 1992): 3-18.

APPENDIX

APPENDIX A

PUBLICATIONS

A.1 International Journal
1. Kansomkeat, S., Offutt, J., and Rivepiboon, W. Bytecode-based Analysis for

Increasing Class-Component Testability. ECTI-CIT Transactions on Computer and
Information Technology, Volume 2, Number 2, November 2006.
http://www.ecti.or.th/~editoreec/index_eec.htm

2. Kansomkeat, S., Offutt, J., and Rivepiboon, W. Analysis for Class-Component
Testability. WSEAS Transactions on Computers, Issue 2, Volume 5, 2006: 352-358,
ISSN 1109-2750.

A.2 International Conference
1. Kansomkeat, S., Offutt, J., and Rivepiboon, W. Class-Component Testability Analysis.

The proceeding of the 5th WSEAS International Conference on Software Engineering,
Parallel & Distributed Systems, 2006.

2. Kansomkeat, S., Offutt, J., and Rivepiboon, W. Increasing class-component testability.
Proceedings of the IASTED International Conference on Software Engineering (SE
2005), 2005: 156-161.

3. Kansomkeat, S., and Rivepiboon, W. Component specification to test component-
based software. Proceedings of the International Society for computers and Their
Applications, 2004: 282-285.

4. Kansomkeat, S., and Rivepiboon, W. Automated-generating test case using UML
statechart diagrams. Proceedings of the 2003 annual research conference of the
South African institute of computer scientists and information, 2003: 296-300.

BIOGRAPHY

Name Miss Supaporn Kansomkeat

Sex Female

Date of Birth August 8, 1969

Education:

2006 Ph.D. in Computer Engineering, Chulalongkorn University

1995 M.Sc. in Computer Science, Prince of Songkla University

1991 B.Sc. in Mathematics, Prince of Songkla University

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I Introduction
	1.1 Motivation
	1.2 Objective
	1.3 Scope
	1.4 Contribution
	1.5 Research Methodology
	1.6 Organization of the Thesis

	Chapter II Background and Related Works
	2.1 Background
	2.2 Related Works

	Chapter III Class-Component Testability
	3.1 Bytecode-based Class-Component Analysis
	3.2 Increasing Class-Component Testability
	3.3 Measuring Class-Component Testability

	Chapter IV Case Study
	4.1 Increasing Testability Experiment
	4.2 Measuring Testability Experiment

	Chapter V Summary and Future Works
	5.1 Summary
	5.2 Future Works

	References
	Appendix
	Vita

