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Chapter 1

n-Types and the Stone Space

Throughout this project, let £ be a language consisting of a set R of relation
symbols, a set C of constant symbols and a set F of function symbols. Here, we
assume some backgrounds in first-order logic. For more details, we refer to [1] and
[3].

In this chapter, we introduce n-types along with some properties. All results
in this chapter can be found in [1] and [3]; therefore we omit the proofs.

1.1 n-Types

Let 9t be an L-structure with the underlying set M and A C M. Let L4 be the
language obtained by adding each element of A to £ as a constant symbol. Note
that 9 is an £ 4-structure by the trivial interpretation ™ = a for each a € A.
For any L4-sentence o, we use I |= o to denote the statement “o is true in
M”. Let Thy (M) = {0 : o is an L4-sentence and M | o}. Note that Th, (9N)
is satisfiable. Let T" be an L,4-theory. We say that 9t is a model of T (denoted
by M E=T) if M | o for every 0 € T; and for any L4-formula ¢ (vy,...,v,)
we say that T satisfies ¢ (vy,...,v,) (denoted by T' = ¢ (vy,...,v,)) if for every
model 9 of T and aq,...,a, €M, M E= é(a,...,a,).

Definition 1.1. Let p(vy,...,v,) be a set of L4-formulas. We call p(vy,...,v,)
an n-type over A if all L-formulas in p(vy,...,v,) have no free occurrences
of variables other than wvy,...,v,. We say that p(vi,...,v,) is consistent if
p(v1,...,v,) U Thy (ON) is consistent. We say that p(vy,...,v,) is complete if
¢ € plvy,...,v,) or =¢ € p(vy,...,v,) for all L-formulas ¢ with no free occur-
rences of variables other than vy,... v,. Welet ST (A) be the set of all complete
and consistent n-types over A.

Let p(vi,...,v,) be an n-type and cy,..., ¢, be fresh constant symbols. By
the Completeness Theorem and the Compactness Theorem, it follows that an n-
type p(v1,...,v,) over A is consistent if and only if p(cy,...,¢,) U Thy (9N) is
finitely satisfiable.

We simply write p instead of p(vy,...,v,) when it causes no confusion.

Here, we provide some examples.

Example 1.2. Let M = (Q,<) and A = N. Let p(v;) = {“i <v,” :i € N}.
Then p is a 1-type. Let A be a finite subset of p U Thy (9). If ANp =0, then

1



A C Thya (9M); so A is satisfiable since Thu (90) is satisfiable. If ANp # 0, we
may interprete v; as max{i € N: “s <v,” € A} + 1; therefore A is satisfiable.
Thus p U Thy (90) is finitely satisfiable so p is consistent. It is obvious that p is
not complete.

Example 1.3. Let M = (Q,<) and A = N. Let p(v1) = {¢(v1) : M = ¢(3)}-
Then p is a 1-type. By replacing v; by %, it follows that p is satisfiable; so it is
consistent. For any £4-formula ¢ (v1), either M = ¢ () or M = —=¢ (4). Thus

@ (v1) € p or =g (v1) € p; therefore p is complete.
The latter example shows a way to generate a complete and consistent n-types.

Definition 1.4. Let 9% be an L-structure, A C M and a = (aq,...,a,) € M".
Define

tp™ (a/A) = {¢ (v1,...,0,) : ¢ is an Ly-formula and M = ¢ (a1,...,a,)}.
We denote tp™ (a/0) by tp™ (a).

Then tp™ (a/A) is complete and consistent. In [3], tp™ (a/A) is called the type
of a i M over A or the relative type of a in M over A. We provide another
impotant definition.

Definition 1.5. Suppose p is a consistent n-types over A. We say that a € M"
realizes p (or p is realized by a) if M = ¢ (a) for all ¢ € p. We say that p is
realized in 2N if p is realized by some a € M".

If p is not realized in 9, we say that 9T omits p (or p is omitted in IM).

In Definition 1.5., it follows that a consistent n-type p over A is realized in
M if p C tp™ (a/A) for some a € M. In [3], this property is used to define the
realizability of a consistent n-types over A which is equivalent to Definition 1.5.

Definition 1.6. Let 9t and 91 be L-structures. An L-homomorphism h : 9 —
N is a function h : M — N such that

i) for every R € R and a4, ..., Garity(r) € M, we have

if (a1,...,Garity()) € R then (h(ay), ..., Maarity(r)) € R
i) h(c™) =" for every ¢ € C; and

iii) for every f € F and ay, ..., Garity(s) € M, we have

h (fEm (CLl, cee 7aarity(f))) = fm (h(al)v s 7h(aarity(f))) .

We say that an L£-homomorphism h : 9 — N is a strong L-homomorphism
if for every R € R and ay, ..., Garity(r) € M, we have

(al, . ,aarity(R)) e R™ if and only if (h(al), . ,h(aarity(R))) e R™.



An L-embedding from 9% to M is an injective strong L-homomorphism; and an
L -isomorphism from 9T to M is a surjective L-embedding.

We say that 9t and 91 are L-isomorphic if there is an L-isomorphism from
M to N.
We call an L-isomorphism 91 to 9N itself an L -automorphism on .

Definition 1.7. Let A : 91 — 91. We say that h is an elementary L-embedding
from 9 to N if h is an L-embedding and for every L-formula ¢ (vy,...,v,) and
A1y 0y € M,

ME= o (ay,...,a,) if and only if N = ¢ (h(ay), ..., ~h(a,)).
Theorem 1.8. Fvery L-isomorphism is an elementary L-embedding.

Definition 1.9. Let 9t and 91 be L-structures. We say that 91 is a substructure
of M (or N is an extension of M), denoted by M C N, if

i) M C N,

N

)
i) R = R™"N M>(E) for every R € R;
) ™ =™ for every ¢ € C; and

111
iv) for every f € F, f™ is the restriction of f™ to Maiy(/),

Definition 1.10. Suppose 9t C 91. We say that 91 is an elementary substructure
of 9 or M is an elementary extension of M, (denoted by M < MN) if for all L-
formula ¢ (vq,...,v,), and ay,...,a, € M, M = ¢ (ay,...,a,) if and only if
NEo(ar,...,an).

We provide some properties.

Proposition 1.11. Let M be an L-structure, A C M and p be a consistent n -
type over A. There is an elementary extension N of 9 such that p is realized in

N.

Corollary 1.12. p € S™(A) if and only if there are an elementary extension N
of M and @ € N™ such that p = tp™ (a/A).

1.2 Stone Space of Complete and Consistent n-
Types

In this section, we provide the definition of the stone space of complete and con-
sistent n-types and some facts about the space.

Before we begin, we will provide the definition of bases of a topological space.
For more backgrounds in topology, we refer to [2].

Definition 1.13. Let X be a set. A basis for a topology on X is a collection B
of subsets of X (called basis elements or basis open sets) such that

i) for each x € X, there exists B € B such that z € B; and



ii) if z € By N By for some By, By € B, then there is B3 € B such that
ngBlmBg and $€Bg.

If B satisfies these two conditions, then we define the topology T generated by B
as follows: A subset U of X is said to be open in X if for each x € U, there is a
basis element B € B such that z € B and B C U.

Definition 1.14. A topology 7 on the set of complete and consistent n-types
S™(A) can be generated by the basis B consisting of

6] = {p e ST (A): ¢ €p}

for all £ -formulas ¢ with no free occurrences of variables other than vy, ..., v,.
We call 7 the Stone topology on S™ (A) and (Sflﬁ (A) ,7') the Stone space of com-
plete and consistent n-types (over A). It follows that [T] = SP(A) and [L] = 0.

We simply write S™ (A) as a topological space equipped with a topology T
generated by B.

We recall some properties of the Stone space of complete and consistent n-
types.

Proposition 1.15. Let ¢ (vy,...,v,) and ¥ (vy,...,v,) be La-formulas with no

free occurrences of variables other than vy, ...,v,. Then
i) [o Vil = ol U],
i) ¢ Ayl =I[o]N[Y],

iii) [=¢] = S (A)\ [¢].

Proposition 1.16. S™(A) is compact; that is every collection of basis open set
covering S™ (A) has a finite subcollection covering S™ (A).

Proposition 1.17. S™(A) is Hausdoff and totally disconected (that is, if p,q €
S™(A) and p # q, then there is a clopen set X such that p € X and q ¢ X ).

Proposition 1.18. S™(A) is zero-dimensional, i.e. the topology has a clopen
base.

Proposition 1.19. If £ and A are countable, then S™ (A) is metrizable (that is,
there exists a metric d on S (A) that induces the Stone topology).

Proposition 1.20. Let MM and N be L-structures and A, B be subsets of M .

i) Suppose A C B. For each p € S™(B), let p|A be the set of La-formulas
in p. Then p|A € S (A) and the map p — p|A is a continuous map from
SM(B) onto ST (A).

ii) Suppose f:9M — N is an elementary embedding and p € S™ (A). Let
fp)=Ao(vi,...,;0, flar), ..., flar)) : ¢ (v1,...,0n,a1,...,ax) € D} .

Then f(p) € S>(f(A)) and the map p — f(p) is continuous.



Next, we provide the definition of isolated points in S (A) along with its
properties.

Definition 1.21. We say that p € S™ (A) is isolated if {p} is an open subset of
ST(A).

Proposition 1.22. Let p € S™ (A) and ¢ be an L4 -formula with no free occur-
rences of variables other than vy, ...,v,. Then the following are equivalent.

i) {p} =gl

it) For any L4 -formula ¥ (vi,...,v,), ¥ € pif and only if M = Yvq ... Yo, (¢ —
V).

If one of the above holds, we say that ¢ isolates p.
Proposition 1.23. Let p € S™ (A). Then the following are equivalent.
i) p is isolated.

it) {p} = [¢| for some L4-formula ¢ which is no free occurrences of variables

other than vy, ...,v,.
iii) There exists an La-formula ¢ (v1,...,v,) with no free occurrences of vari-
ables other than wi,...,v, such that for any La-formula ¢ (vi,...,v,),

v € pif and only if M |= Yoy ... Yo.(¢ — ).



Chapter 2

Topological Properties of The
Stone Space of Complete
Consistent 1-types over (Q, <,S,P)

Let £ = {<} and £ = {<,8,P} where S and P are unary function symbols.
Let M = (Q, <,S,P) be an L -structure which is an expansion of an L£-stucture
(Q, <); the interpretation 8™ and P™ are functions from Q to Z defined by

S(z)=min{n € Z:x <n} and
PP (2) =P (z) =max{n € Z:n < z}

for each = € Q.

It follows immediately that x < S(z) and P(z) < x. If 2 € Z, we have
S(z)=z+1 and P(z) = x—1. For each z € Q, we denote S (P(x)) and P (S (x))
by SoP(z) and P o S(x), respectively.

Next, we will show some properties about P and S.

Lemma 2.1. Foranyn € Z and x € Q, S(n+xz) =n+8S(z) and P(n+2x) =
n+P(x).

Proof. Let n € Z and z € Q. Since z < S(x) and P(z) < z, it follows that
n+x <n+S(z) and n+P(z) < n+ax. Thus S(n+z) < n+ S(r) and
n+P(x) <P(n+x). Then we have

n+8(x)=n+S(—n+(n+x))
<n—-n+8(n+ux)

=S (n+x)
and
Pln+z)=n—n+P(n+x)
<n+P(—n+n+z)
=n+P(x).
Hence S(n+x) =n+8(z) and P(n+z) =n+P(z). O

6



Lemma 2.2. S and P are incresing functions.

Proof. Let x,y € Q be such that z <y. Then z <y < S(y) and P (z) < z < y.
Thus S (z) < S(y) and P (z) < P (y) by the minimality of S (z) and the maximality
of P(z). Hence the lemma holds. O

Lemma 2.3. For all x € Q, the following are equivalent:
i) v €Z,
it) PoS(r) =1,
i1i)) SoP(z)==x.

Proof. Let x € Q.
(i)=(ii) Assume z € Z. It follows that Po S (z) =
(ii)=-(iii) Suppose Po S(z) = x. Then SoP(x)
PogS(z).
(iii)= (i) Suppose SoP (x) = z. It follows immediately that = € Z.
Hence the lemma holds. U

Plx+1)=
= ()+1—P(x+1):

Lemma 2.4. For all x € Q, the following are equivalent:
i) v ¢ Z,
ii) PoS(z) <z,
iii) v < SoP(x).

Proof. Let x € Q.

()= (ii) Assume x ¢ Z. Then PoS(z) # x. Since PoS(z) < S(z), S(z) £
PoS(z) so x £ PoS(x). Thus PoS(z) < x.

(i) = (iii) Suppose Po S(xz) < z. Then PoS(z) < P(z) by the maximality
of P(z). Thus SoPoS(z) < SoP(x). Since S(x) is an integer, we have
x<8(x)=SoP(8(x))=80PoS(x). Then z < SoP(x).

(iii)= (i) Suppose x < SoP(z). By Lemma 2.3, = ¢ Z.

Hence the lemma holds. O

Lemma 2.5. Let a € Q. If a € Z, then P(z) =P (a) and S(x) = a for all x €
(P(a),a). If a ¢ Z, then P (xz) =P (a) and S(z) =S (a) for all x € (P(a),S(a)).

Proof. First, assume a € Z. Let v € (P(a),a). Then a —1 =P(a) <z < a, so
P(x) =a—1=P(a) and S(z) = a.

Lastly, suppose a ¢ Z. Let z € (P(a),S(a)).

If x = a, we are done.

Assume x < a. Then P(x) < P(a). Since P(a) < x, P(a) < P(z) by the
maximality of P(x). Thus P(z) =P (a). Since P(a) <z <a, SoP(a) <S(x) <
S(a). Since a ¢ Z, a < SoP(a). So S(a) < SoP(a) by the minimality of S (a).
Then S(x) =S (a).

Assume a < x. Then S(a) < S(x). Since = < 8(a), S(z) < S(a) by the
minimality of S(z). Thus S(z) = S(a). Since a < z < S(a), P(a) < P(x) <
PoS(a). Since a is not an integer, PoS(a) < a. So PoS(a) < P(a) by the
maximality of P (a). Then P (z) =P (a). O



Next, we will state the definition of discrete topologies and discrete sets.

Definition 2.6. Let X be a nonempty set. Then P (X) is the discrete topology
on X. We say that a subset Y of the topological space X is a discrete set if the
subspace topology of Y is the discrete topology; that is for all y € Y| there is an
open set G of X such that GNY = {y}.

From the previous definition, it follows that the basis consisting of all singletons
generates the discrete topology on a nonempty set.
We provide the result.

Theorem 2.7. ST (() is discrete.
Proof. By Lemmas 2.3 and 2.4,

ST(@)=[PoS(v) <vi]UPoS(v1) =]

and [PoS(v1) <vy] N[PoS(vy) =v;] = 0. It is enough to show that both
[PoS(v1) <] and [Po S (v1) = vy] are singletons.

By proposition 1.21, it suffices to show that “P o S(v;) = v;” isolates any
pe€[PoS(v)=wv] and “PoS(v1) < v;” isolates any p € [Po S (v1) < vq].

Let p € [PoS(v1) = vy].

Let ¢(vy) € p(vy). Since {Po S (vy) =vy,% (v1)} C p(vy) and p(vy) is consis-
tent, there exists r € Q such that M = (PoS(r) =7)A¢ (r). Then r € Z. Next,
it suffices to show that 9 = Vv, (Po S (vy) = v1) — ¥ (vy1)).

Suppose not. Then M = Jv; (P oS (vy) = v1) A (=2 (v1))). Thus there exists
¢ € Q such that M = (PoS(c) =c) A=t (c). Then c € Z

Define f : Q — Q by f(z) = 2z —c+r. We will show that f is an L-
isomorphism. (This will imply that 9t |= ¢ (c) if and only if MM =1 (f (¢)).)

It is obvious that f is a strictly increasing bijection and we have

foS(z)=8(z)+r—c=S(x+r—c)=So f(z)
and
foP(x)=P(zx)+r—c=P(x+r—c)=Po f(x).
Therefore f is an L-isomorphism.
Since M = 1 (¢), M = = (f(¢)). Since f(c)
contradicts 9t = ¢ (r). Hence M = Vo, (PoS(vq) = )
Let p € [PoS(v1) < vq].
Let ¢(v1) € p(vy). Since {PoS(v1) < wv1,7¢ (v1)} C p(vy) and p(vy) is consis-
tent, there exists 7 € Q such that M = (PoS(r) <r)Av¢ (r). Then r ¢ Z.
Similarly, it suffices to show that 9t = Vv, (Po S (v1) < v1) = ¢ (v1)).
Suppose not. Then M = Fvy (P oS (vy) < vy) A (=t (vy))). Thus there exists
¢ € Q such that M = (PoS(c) <c) A=t (c). Then ¢ ¢ Z.
Define g : Q — Q by

r, M = = (r) which
v1) = (v1)).

|

r(P(T)—P(C))-i-x, if 2 <P(c);
%(m—P(c))er(r), itP()<z<c

g(x):<S(T)_r if d
W(Z’—C)—FT, if c<z<8(c) an

\(S(r)—S(c))—f—x, if S(c) < x.



We will show that ¢ is an L-isomorphism. (This will imply that 9t = ¥ (¢) if

and only if M = (g(c)).)
First, we will show that ¢ is surjective.

Let y € Q.
Suppose y < P (r). Choose x =y — (P(r) —P(c)). Since

it follows that g () = (P(r) —=P(c)) +y— (P(r) = P(c¢)) = y.
Suppose P (r) <y < r. Choose = = ﬁ:igi)) (y —P(r))+P(c). Since 0 <
we have

c¢—P(c)
—p

r—P(r)’

Pl0) = S (P(1) —P () +P (0
< =R+
and
c—"P(c) i
v =P () +P (O
<RSP P ()

So P(c) <z <c.
Then g (z) = r—2(r) <C_P(C) (y—P(r))+P(c)—P (c)) +P(r)=y.

c—P(c) \ r—P(r)
Suppose 7 < y < S(r). Choose = = :((3:? (y—r)+c. Since 0 < 583 we
have
S(c)—c
c= S(T)_T(r—r)—l—c
S(c)—c
T (y—r)+c
=z
and
S(c)—c
'T_S(/’n)_ (y—T)+C
S(c)—c
S _
S e ORDE
=S (c).

So c <z <8(c).
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Then g(e) = 35 ($9=5(y =)+ e—c) 4+ 7=y,
Assume S (r) <y. Choose x =y — (S(r) —S(c)).

Since
s(c)=8(r)—(S(r) —S(c))
<y—(8(r)—(c)

it follows that g () = (S(r) —S(c¢)) +y— (S(r) —S(c)) =y.
Thus g is surjective.
Next, we will show that g is strictly increasing which implies that ¢ is injective.
Let
D, = (_OO’P(C)L D,y = (P(C)>C]’
D3 = (¢,S(c)) and Dy = [S(c),0).
Then
g[Dl] :(—OO,P(T)], g[DQ] = (P(?‘),T],
g[Ds] = (r,8(r)) and  g[Ds} =[8(r),00).

By linearity of <, it is enough to show that if < y, then g(x) < g(v).

Let z,y € Q. Assume 2 <vy. If x € D; and y € D; where 4,5 € {1,2,3,4}
and ¢ < j, then g (x) < g(y). Assume z,y € D; where i € {1,2,3,4}.

If 7 =1, we have

g(@)=((r)—P(c) +=
< (B(r) =P(c)) +y
=g (y)
If 7 =2, we have
_T—P(T) ~
9(0) = = (0= P () +P()
<LZED @)+ 0
=9(y).
If 2 = 3, we have
g(x)ziEZ;:Z(x—c)Jrr
<2E3:Z(y—c)+r
=g()-
If i =4, we have
g(x)=(8(r)—8(c)) +=
<(S(r)—=5s(c)) +
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Thus g (x) < g (y).
Then g is strictly incresing. Hence ¢ is strictly incresing bijection.

Lastly, we will show that goS(z) =Sog(z) and goP(z) =Pog(x) for all
x € Q.

Let x € Q. We now have 3 cases to consider.
Case 1: z € (—00,P (¢)]. We have

Sog(x) =8((P(r) =P(c)) + )

and

and

Case 3: © € (P(c),S(c)). Since ¢ ¢ Z, P(z) =P (c) and S(x) = S(c). Then

we have

goP(z)=(P(r)=P(c)) +P(z)
= (P(r) =P(c)) +P(c)
P (1)
and
gos(z)=

Since g [(P(¢),S8(c))] = (P(r),S(r)) and r ¢ Z, Pog (z) =P (r) and Sog (x) =
S(r). Then goP(x) =Pog(r) and goS(x) =Sog(x).

Thus goP(z) =Pog(z) and goS(xz) =Sog(x).

Therefore ¢ is an L-isomorphism.

Since M = b (c), M E (g (c)). Since g(c) = r, M E — (r) which
contradicts 9 |= ¢ (r). Hence M |= Vo, ((PoS(v1) < vy) — ¥ (v1)). O



Chapter 3

First Countability and Second
Countability of the Stone Spaces
of Complete and Consistent
1-type over (Q, <) and (R, <)

In this section, we consider the countability axioms of ST*(Q) and ST (R) where
M= (Q,<) and N = (R, <) which are L-structures with £ = {<}.

First, we introduce the definition of quantifier elimination and a properties
which can be seen in [1] and [3].

Definition 3.1. Let T be an L-theory. We say that T has quantifier elimination
if for every formula ¢(vy, ..., v,) there is a quantifier-free £-formula ¥ (vy, ..., v,)
such that

T =Y. . Yo, (d(vr, ... vn) & P(v1,...,0,)).

Proposition 3.2. Suppose that L contains a constant symbol ¢, T is an L-theory,
and ¢(vy,...,v,) is an L-formula. The following are equivalent:

i) there is a quantifier-free L-formula ¥ (vy,...,v,) such that
T EVYou ... Yo, (o(vr,...,0,) <> ¥(v1,...,0,)),

i) if M and N are models of T', A is an L-structure, A C M and A C N, then
M= o(ay,...,a,) if and only if M= dar, ..., a,) forall ai,... a, € A.

Proposition 3.3. Let DLO,, be the L-theory of dense linear orders without end-
points. Then DLO., has quantifier elimination.

From Proposition 3.3, since (Q, <) and (R, <) are models of DLO,,, we have
that both (Q, <) and (R, <) admit quantifier elimination.
Let 9 = DLO, and A C M. Define L, and U, by

L,={a€A:“a<v)” €p} and
U, ={beA: “vy <b” € p}

where p € S7" (A).

12
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Proposition 3.4. Let M |= DLO,, and A C M. Then for any p € ST* (A), if p
is not realized by elements in A, then L,UU, =A and a <b for all a € L, and
belU,.

Proof. Trivial. O

Next, we provide the definitions of the first countability axiom and the second
countability axiom. We refer to [2] for more details.

Definition 3.5. A topological space X is said to have a countable basis at x if
there is a countable collection B, of open neighborhoods of x such that each open
neighborhood of = contains at least one of the elements of B,. A topological
space that has a countable basis at each of its points is said to satisfy the first
countability axiom, or to be first-countable.

Definition 3.6. If a topological space X has a countable basis for its topology,
then X is said to satisfy the second countability axiom, or to be second-countable.

We provide the result.

Theorem 3.7. ST (Q) is both first-countable and second-countable but ST (R) is
first-countable but not second-countable where M = (Q, <) and N = (R, <).

Proof. Since the set of words on VarUQU{<}U{—, A, Vv,V,3, T, L} is countable,
the set of all Lg-formulas on 9 is also countable. Hence S (Q) is second-
countable. Thus it is also first-countable.

For ST (R), since tp” (a/R) is isolated by “v; = a” for all a € R, the basis
genarating SY' (R) must contain {[v = a]: a € R} which is an uncountable set.
Thus S} (R) is not second-countable.

We will show that S}' (R) is first-countable.

Let p € ST (R).

In the case that p is realized by a € R, p is isolated by “v; = a”; so {p} =
[v; = a]. Therefore every open neighborhood G of p € ST(R), [v; =da] C G.
Choose B, = {[v; = a]}. Then we are done.

Suppose p is not realized by any a € R. By Proposition 3.4, we have 4 cases
to consider.

Case 1: Assume L, =R and U, = 0.

Choose B, = {[d < v1] : d € Z}. Observe that B, is countable.

Let G be an open neighborhood of p. Then there is an Lg-formula ¢(v;) such
that p € [¢(v1)] C G.

Observethat (R, <) E-(z<y) < (r=yVaez<y)and (R,<) =~ (z=y) <
(x <yVy<zx). Since (R, <) admits quantifier elimination, we may assume that

k1l

¢ (1) = \/ N\ b5 ()

i=1j=1

where 0;; (v1) is of the form v; = a, v; < a and a < v; for some a € R. We can
see that [\/f:1 /\3’;1 0,5 (vl)] = Ur, [/\3:1 0;; (vl)} . Therefore, we may assume
further that ¢ (v,) = /\;:1 6, (v1). Since p € [¢ (v1)], we have that 0;(v;) € p for
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all j € {1,...,1}. Since p is not realized in (R, <) and U, = 0, we have that for
cach j € {1,...,l}, 0;(v1) = “a; < v,” for some a; € R.

Let d € Z be such that max{a,...,q;} < d. Then (R, <) = d < v; —
/\z»:1 6; (v1). Therefore p € [d < v1] C [p(v1)] C G.

Case 2: Assume L, =) and U, =R.

Choose B, = {[v; < d] : d € Z}. Observe that B, is countable.

Let G be an open neighborhood of p. Then there is an Lg-formula ¢(v;) such
that p € [¢(v1)] C G.

Similar to Case 1, we may assume that ¢ (vy) = /\2.:1 6, (v1) where 0; (v1) is
of the form v; = a, v; < a and a < v; for some a € R. Since p € [¢ (v1)], we
have that 6;(vy) € p for all j € {1,...,1}. Since p is not realized in (R, <) and
U, = 0, we have that for each j € {1,...,1}, 0;(v1) = “vy < b;” for some b; € R.

Let d € Z be such that d < min{by,...,b;}. Then (R, <) F v; < d —
/\2:1 6, (v1). Therefore p € [vy <d] C [¢(v1)] CG.

Case 3: Assume L, = (—o0,¢) and U, = [¢,00) for some ¢ € R.

Choose B, = {[d < v; Avy < ¢]:d e L,NQ}. Observe that B, is countable.

Let G be an open neighborhood of p. Then there is an Lg-formula ¢(v;) such
that p € [¢(v1)] C G.

Similar to Case 1, we may assume that ¢ (v;) = /\;:1 6; (v1) where 6; (vy) is
of the form v, = a, v; < ¢ and a < v; for some a € R. Since p € [p(v1)],
we have that 6;(vy) € p for all j € {1,...,l}. Since p is not realized in (R, <),
we have that for each j € {1,...,l}, 6;(v1) = “a; < v;” for some a; € L, or
0;j(v1) = “v1 < a;” for some a; € U,. Then {ai,...,a;} = {ai};c; U{an}pex
where 0;(v1) = “a; < v1” and O (v1) = “v1 < a;” foreach i € [ and k € K.

If I =0, then we have (R,<) = v, < ¢ = A\_,0;(v1). Since (R, <) k=
(d<wviANvy <e¢)—= v <cforany d € L,NQ, we have (R, <) = (d < vy Av; < ¢)
— /\lj:1 6, (v1). Therefore p € [d < vy Avy < ¢] C [¢p(v1)] C G forany d € L,NQ.

If I # 0, then there exists d € Q such that max{a;},.; < d < ¢. Then
(R, <) E(d<vAvy<ec) — /\;:1 6, (v1). Therefore p € [d<vi Avy <¢] C
[p(v1)] € G.

Case 4: Assume L, = (—o0, ] and U, = (¢,00) for some ¢ € R.

Choose B, = {[c < vy Avy <d]:d e U,NQ}. Observe that B, is countable.

Let G be an open neighborhood of p. Then there is an Lg-formula ¢(v;) such
that p € [¢(v1)] C G.

Similar to Case 1, we may assume that ¢ (vy) = /\é.:1 6, (v1) where 0; (v1) is
of the form v, = a, v; < a and a < vy for some a € R. Since p € [¢(v1)]
we have that 0;(vy) € p for all j € {1,...,l}. Since p is not realized in (R, <)
we have that for each j € {1,...,l}, 6;(v1) = “a; < v;” for some a; € L, or
0j(v1) = “v1 < a;” for some a; € U,. Then {ay,...,a;} = {ai};c; U{an}iex
where 0;(v1) = “a; < v;” and 0(vy) = “v1 < a;” for cach i € [ and k € K.

If K =0, then we have (R, <) = ¢ < vy — /\'lj:1 6; (v1). Since (R, <) =
(c<viAvy <d) = ¢ < forany d € U,NQ, we have (R, <) = (¢ < v Avy < d)
— /\éz1 6, (v1). Therefore p € [¢c < vy Avy < d] C [¢(v1)] C G for any d € U,NQ.

If K # 0, then there exists d € Q such that ¢ < d < min{az},c,. Then
(R, <) E (c<vAvy<d) — /\é.:1 6; (v1). Therefore p € [c <wvy Avy <d] C

[p(v1)] € G,
Hence S (R) is first-countable. O

)
Y
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