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Abstract

In this senior project, we find holographic solutions in the forms of supersymmetric domain
walls, supersymmetric Janus solutions, and supersymmetric AdS4 black holes from N = 5
gauged supergravity with local SO(5) symmetry. There is only one N = 5 supersymmetric
AdS4 vacuum preserving the full SO(5) symmetry dual to an N = 5 SCFT in three
dimensions in the language of holographic duality. A number of supersymmetric domain
wall solutions interpolating between this AdS4 fixed point and singular geometries in the
IR with SO(4) and SO(3) symmetries are presented. Holographically, these solutions
describe RG flows from the N = 5 SCFT in the presence of mass deformations. Some of
these solutions are precisely in agreement with the previously known mass deformations
within the dual N = 5 SCFT. In addition, universal domain wall solutions subjected to
specific unbroken supersymmetry are analyzed. Then, we provide a number of projectors
and BPS equations required for the existence of Janus solutions in parallel to the case
of domain wall solutions. As a result, we find supersymmetric Janus solutions describing
two-dimensional conformal defects in the N = 5 SCFT with N = (4, 1) and N = (1, 1)
supersymmetries on the defects in the form of AdS3�sliced domain wall solutions. Finally,
we perform an analysis as similar to the two previous cases for solutions of the form
AdS2 ⇥ ⌃2, with ⌃2 = S2, H2 being a Riemann surface, corresponding to near horizon
geometries of AdS4 black holes. We study both magnetic and dyonic solutions and show
that there exists a class of AdS2 ⇥ H2 solutions with SO(2) symmetry. In the language
of holography, these solutions correspond to twisted compactification of N = 5 SCFT to
superconformal quantum mechanics.
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Chapter 1

Introduction

Over the past twenty years, The AdS/CFT correspondence originally proposed in [1] see
also [2] and [3], has provided the holographic duality between strongly coupled conformal
field theory and the low-energy limit of the M-/superstring- theory living on the product of
AdSd⇥M11/10�d. This well-known duality has become a prominent tool describing various
strongly couple systems ranging from (non-)conformal field theories, conformal defects,
AdS-black holes, and condensed matter physics systems. Although the complete AdS/CFT
duality is achieved only in the context of string/M-theory, a large number of remarkable
results have been obtained from solutions of lower-dimensional gauged supergravities.

In many cases, the gauged supergravity theory under consideration is known to be
consistently embedded in ten- or eleven-dimensional supergravities which are low energy
e↵ective theories of string/M-theory. The resulting holographic solutions can accordingly
be uplifted to string/M-theory and can be interpreted as D- and M-brane configurations.
Solutions of gauged supergravities with presently unknown higher-dimensional origin are
also interesting in the sense that they can provide a bottom-up approach to the AdS/CFT
duality and still give some insight to the dynamics of the dual field theories at strong
coupling limits. These make studying solutions of gauged supergravities in various space-
time dimensions and di↵erent numbers of supersymmetries worth considering.

Most of the previous studies concern with finding a particular class of solutions that
preserve some amount of supersymmetry. These supersymmetric or BPS solutions play an
important role in di↵erent aspects of the AdS/CFT correspondence. Gauged supergravities
including possible massive deformations are known to exist in dimensions from two to ten.
Among these theories, four-dimensional gauged supergravities are of particular interest
since they give rise to holographic duals of three-dimensional superconformal field theories
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(SCFTs) and possible deformations thereof. These SCFTs describe low energy dynamics
of the world-volume theory on M2-branes which are fundamental objects in M-theory. The
SCFTs in three dimensions take the form of Chern-Simons-Matter (CSM) theories since the
usual gauge theories with Yang-Mills gauge kinetic terms are not conformal. Up to now,
many of these SCFTs with di↵erent numbers of supersymmetries have been constructed,
see [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].

In this senior project, we are interested in supersymmetric solutions from N = 5 gauged
supergravity with local SO(5) constructed long ago in [25]. According to the AdS/CFT
duality, these solutions could describe various aspects of strongly coupled N = 5 SCFT
in three dimensions. There are ten scalars described by SU(5, 1)/U(5) coset. For the full
construction of gauged supergravity with a given coset manifold G/H in various space-
time dimensions and a number of supersymmetries, there is a complete prescription using
a generalized electromagnetic duality and an embedding of gauge group inside the global
group G, see an excellent review on this topic [26], which can be used to construct this
theory and provide a generalization to other (non-)compact gauge group; however, this
senior project will not cover this topic. In the case of SU(5, 1)/U(5), the scalar potential
of this gauged supergravity has been analyzed in [27]. There is only one supersymmetric
AdS4 vacuum preserving the full N = 5 supersymmetry with unbroken SO(5) symmetry.
According to the AdS/CFT duality, this AdS4 critical point is dual to an N = 5 SCFT in
three dimensions. There is also another non-supersymmetric AdS4 vacuum with unbroken
SO(3) gauge symmetry. This critical point is perturbatively stable as pointed out in [28]
and has been extensively studied in the context of holographic superconductors in [29]. To
the best of our knowledge, no supersymmetric solutions of N = 5 gauged supergravity have
previously been considered. The present work will hopefully fill this gap in the existing
literature.

We will look for various types of supersymmetric solutions of the aforementioned N = 5
gauged supergravity. We will firstly study supersymmetric domain walls interpolating
between the supersymmetric AdS4 vacuum and singular geometries. We will show explicitly
the calculations involving the Killing spinor equations. Consequently, the solutions to these
equations describe holographic RG flows from the dual N = 5 SCFT in the UV to non-
conformal field theories in the IR obtained from mass deformations of the N = 5 SCFT.
Similar solutions have extensively been studied in N = 8, 4, 3, 2 four-dimensional gauged
supergravities, see for example [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43].

We will also find Janus solutions described by AdS3-sliced domain walls interpolating
between asymptotically AdS4 spaces. These solutions are holographically dual to two-
dimensional conformal defects within the N = 5 SCFT that break the superconformal
symmetry in the three-dimensional bulk to a small superconformal symmetry on the two-
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dimensional surfaces resulting in conformal interfaces. Supersymmetric Janus solutions in
other four-dimensional gauged supergravities have previously been studied in [41, 42, 44,
45, 46, 47].

We finally look for solutions interpolating between the supersymmetric AdS4 and
AdS2 ⇥ ⌃2 geometries with ⌃2 being a Riemann surface. These solutions describe su-
persymmetric black holes in an asymptotically AdS4 space. Solutions of this type in other
gauged supergravities can be found in [48, 49, 50, 51, 52, 53, 54, 55, 56, 57]. In the dual
field theory, the solutions are dual to RG flows from the N = 5 SCFT to another SCFT
in one dimension or superconformal quantum mechanics. The latter is obtained from the
former via twisted compactifications on ⌃2. This type of solution plays an important role
in the microscopic computation of black hole entropy in asymptotically AdS4 space, see
for example [58, 59, 60].

The senior project is organized as follows. In section 2, we review the construction
of four-dimensional N = 5 gauged supergravity with SO(5) gauge group. In section 3,
we first review a calculation used in deriving the supersymmetric domain wall solutions,
such as the Killing spinor equations. We also mention a criterion conjectured to classify
physical singularities obtained as solutions in the IR regime. Subsequently, we will look for
supersymmetric domain wall solutions describing RG flows in the dual N = 5 SCFTs in
three-dimensions. Similarly, we then study the case of supersymmetric Janus solutions in
section 4 and finally consider possible supersymmetric AdS4 black holes for both magnetic
and dyonic solutions in section 5. Several calculations are based on the use of di↵erential
form and vielbein formalism; we review these rich topics and show some practical examples
in appendix A. In Appendix B, we collect some useful manipulations involving gamma
matrices. Finally, conclusions and comments on the results are given in section 6.
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Chapter 2

A Review of N = 5 Gauged

Supergravity

In this chapter, we review a basic structure describing N = 5 gauged supergravity theory
which is the main theory we focus on.

We begin by providing the original form of N = 5 gauged supergravity with an SO(5)
gauge group first constructed in [25], with slight changes of the convention. N = 5 su-
persymmetry in four-dimensions does not allow for any matter multiplets due to a large
number of supersymmetries, so the only allowed supermultiplet in this theory is the gravity
multiplet with the following field content

�
eaµ, 

i
µ, A

ij
µ ,�

ijk,�i
�

(2.1)

These fields correspond to the graviton eaµ, five gravitini  i
µ, ten vectors Aij

µ = �Aji
µ ,

eleven 3-form spin-12 fields �ijk = �[ijk] and a singlet spin-12 field � together with five
complex scalars �i = (�i)⇤.

Space-time and tangent space indices are denoted by µ, ⌫, ... = 0, 1, 2, 3 and a, b, ... =
0, 1, 2, 3, respectively. N = 5 supergravity theory admits global SU(5, 1) and local com-
posite U(5) ⇠ SU(5) ⇥ U(1) symmetries. The latter is the R-symmetry for N = 5 su-
persymmetry. Indices i, j, k, ... = 1, 2, ..., 5 denote a fundamental representation of SU(5).
The ten scalars then parametrize SU(5, 1)/U(5) coset manifold described by the coset
representative

⌃A
B =

✓
�ij � e2�i�j e1�i

e1�j e1

◆
(2.2)
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with A,B = 1, 2, ..., 6 being indices of SU(5, 1) fundamental representation. The quantities
e1 and e2 are defined by

e1 ⌘
1p

1� |�|2
and e2 ⌘

1

|�|2

 
1� 1p

1� |�|2

!
(2.3)

where |�|2 = �i�i with summation over i. It should be noted that this expression of
coset representative can be given in terms of an exponential of non-compact generators on
SU(5, 1) contracted with the scalar fields, i.e.

⌃A
B = exp

✓
05⇥5 �̃i

�̃j 01⇥1

◆
, (2.4)

in which we can match two di↵erent scalars as �i = �̃i tanh |�̃|
|�̃| .

In addition this parametrization restricts �i to be well-defined on |�|2 < 1. Being an
element of SU(5, 1), ⌃A

B satisfies the following identity

⌃�1 = ⌘⌃†⌘ (2.5)

in which ⌘ = diag(1, 1, 1, 1, 1,�1) is the SU(5, 1) invariant tensor.

The ten vector fields Aij
µ can be used to gauge the SO(5) ⇢ SU(5) ⇢ SU(5, 1) symmetry

resulting in N = 5 gauged supergravity with SO(5) gauge group. The corresponding
bosonic Lagrangian is given by

e�1L =
1

2
R� 1

2
P i
µP

µ
i �

1

8

⇥
(2Sij,kl � �ik�jl)F+

µ⌫ijF
+µ⌫
kl

+(2Sij,kl � �ik�jl)F�ij
µ⌫ F�µ⌫kl

⇤
� V (2.6)

with the 10 ⇥ 10 matrix Sij,kl = (Sij,kl)⇤. As shown in the last chapter, the quantities P i
µ

and Qµ
i
j can be understood as the vielbein and composite connection defined on the scalar

manifold; it can be obtained from the following relation

⌃�1Dµ⌃ =

 
1
2Qµ

i
j � 1

6�
i
jQµ

k
k � 1p

2
P i
µ

� 1p
2
Pµi

1
3Qµ

k
k

!
(2.7)

Explicitly, we can write

P i
µ = �

p
2e1
�
�ij � e2�

i�j

�
Dµ�

j (2.8)
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Qµ
i
j = 2e2�

i !D µ�j +
1

2

�
e21�

i
j � 2e22�

i�j

�
�k !D µ�k (2.9)

with the gauge covariant derivative given by

Dµ�i = @µ�i � gAij
µ �j and Dµ�

i = (Dµ�i)
⇤ (2.10)

We now come to the gauge field part. The (anti) self-dual field strength tensors are
defined as

F+ij
µ⌫ =

1

2

✓
F ij
µ⌫ +

i

2
✏µ⌫⇢�F

⇢�ij

◆
and F�

µ⌫ij =
1

2

✓
F ij
µ⌫ �

i

2
✏µ⌫⇢�F

⇢�ij

◆
(2.11)

with the gauge field strengths defined by

F ij
µ⌫ = 2@[µA

ij
⌫] � 2gAik

[µA
kj
⌫] (2.12)

with summation over k. We also note that (F+ij
µ⌫ )⇤ = F�

µ⌫ij .

The matrix Sij,kl is defined by the relation
✓
�ijkl +

1

2
✏ijklp�p

◆
Skl,mn = �ijmn (2.13)

with summation over repeated indices. The explicit form of Sij,kl is first derived in [61]
in which black hole attractors in ungauged N = 5 supergravity have been studied. In our
notation, this matrix reads

Sij,kl =
1

1� (�k�k)2


�ijkl �

1

2
✏ijklm�m � 2�[i[k�l]�j]

�
(2.14)

with summation over repeated indices.

Finally, the scalar potential is given by

V = �g2

2 + 4e21 �

1

2
e41
�
|�|2 � (�i�i)(�

j�j)
��

(2.15)

To calculate the holographic solution, we also need supersymmetry transformation rules
for fermions. In the chiral notation, the fermionic fields are subject to the chirality projec-
tion

�5 
i
µ =  i

µ, �5� = ��, �5�
ijk = �ijk (2.16)
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with
�5 µi = � µi, �5�ijk = ��ijk (2.17)

The corresponding supersymmetry transformations read

� µi = 2Dµ✏i �Qµ
j
i✏j �

1

2
p
2
�⌫⇢�µG

+
⌫⇢klCij

kl✏j +
p
2g�µSij✏

j, (2.18)

��ijk = ✏ijklmP
m
µ �

µ✏l +
3

2
G+

µ⌫rs�
µ⌫C[ij

rs✏k] � 2gN l
ijk✏l, (2.19)

�� = �Pµi�
µ✏i � 2gN i✏i (2.20)

in which

Sij = e1�
ij +

1

2
e22
⇥
|�|2

�
�i�j + �i�

j
�
� 2(�k)

2�i�j
⇤
, (2.21)

Nl
ijk = e1✏

ijklm�m + e1e2✏
ijklmn�m�

n�l + 3e21�
ijk
lmn�m�

n, (2.22)

N i = �e21�i � e1e2(�k)
2�i, (2.23)

C ij
kl =

1

e1
�ijkl � 2

e2
e1
�[i[k�

j]�l] (2.24)

The first three matrices are known as the fermion-shift matrices related to gravitini, 3-form
fermions, and a singlet fermion. We have already included the space-time covariant deriva-
tive in Dµ. We emphasize that raising and lowering of SU(5) indices i, j, k, ... correspond
to taking complex conjugate. The field strengths G+

µ⌫ij are obtained from F+
µ⌫ij by dressing

with scalars
G+

µ⌫ij = Sij,klF+
µ⌫kl (2.25)

in order to have a manifest SU(5) covariant object.

In addition, the scalar potential can be written in term of the fermion-shift matrices as

V = �1

5
g2
✓
6SijSij �

1

3
Nl

ijkN l
ijk � 2N iNi

◆
(2.26)

due to the supersymmetric Ward identity.

There are two kind of AdS4 vacua appeared in scalar potential, one with maximal
N = 5 supersymmetry and the other one with completely broken supsersymmetry. These
two vacua are given respectively by

�i = 0, V0 = �6g2, L =
1p
2g

(2.27)
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and

�i = 0 for i = 1, 2, 3, �4 = �i�5 =
q

2
5

V0 = �14g2, L =
p
3p

14g
(2.28)

where V0 is the cosmological constant. The supersymmetric critical point preserves the
full SO(5) gauge symmetry while the non-supersymmetric one is only invariant under
SO(3) ⇢ SO(5). The AdS4 radius L is related to the cosmological constant by

L2 = � 3

V0
(2.29)

where we have taken g > 0 for definiteness.
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Chapter 3

Holographic RG flows

We begin with the holographic RG flow solutions in the form of supersymmetric domain
wall solutions interpolating between the supersymmetric AdS4 vacuum in the UV and
singular geometries in the IR. There is an excellent review on this topic, see [62].

The metric ansatz takes of the form

ds2 = e2A(r)dx2
1,2 + dr2 (3.1)

with dx2
1,2 being the flat metric on three-dimensional Minkowski space-time. Along with

these solutions, no gauge fields are turned on, and scalar fields depend only on the ra-
dial coordinate r to preserve the Poincare invariance on the embedded three-dimensional
Minkowski space-time. We also use Majorana representation for gamma matrices in which
all �µ are real, but �5 is purely imaginary from now on.

Before we take a close look at each solution with di↵erent residual symmetries, we note
here some technical calculations which will be used in the following subsections.

The non-vanishing vielbein one-forms followed from the ansatz (3.1) are given by

eµ̂ = eAdxµ, er̂ = dr (3.2)

for µ = 0, 1, 2. The non-vanishing spin connections are then obtained by using the structure
equation1

!µ̂r̂ = A0eAdxµ = A0eµ̂ (3.3)

where 0 denotes r-derivatives.
1see Appendix A for brief reviews.
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Since we are here looking for the supersymmetric solutions interpolating between super-
symmetric vacuum, we demand that supersymmetry variation of the fermionic fields along
the solutions vanish. We first consider the case of gravitini along µ = 0, 1, 2 directions.

0 = 2Dµ✏i +
p
2g�xSij✏

j

=
1

2
eµ̂µ!µ̂

ab�ab✏i +
p
2geµ̂µ�µ̂Sij✏

j

= A0�µ̂r̂✏i +
p
2gSij�µ̂✏

j.

To obtain non-trivial solutions to this equation, we impose the projector

�r̂✏i = ei⇤ei (3.4)

with ⇤ being a real function of r. It should be noted here that this projector relates
two chiralities of Killing spinors ✏i, the solutions then preserve only half of the original
supersymmetry or ten supercharges for this case. Since the fermion-shift matrix Sij is
symmetric, we can always diagonalize it into a diagonal matrix written as

Sij =
W
g
p
2
�ij (3.5)

in which we have introduced the ”superpotential” W for convenience. Inserting back, we
then get

0 = A0ei⇤✏i +W✏i. (3.6)

This equation leads to
0 = ei⇤A0 +W , (3.7)

or, in particular,

A0 = ±W = ±|W| and ei⇤ = ⌥W
W

. (3.8)

We will choose an upper sign for definiteness. We next consider the gravitini’s variation
along r-direction

0 = 2@r✏i +W�r✏
i

= 2@r✏i +Wer̂re
�i⇤✏i

where we have used the expressions of vielbein and projector defined earlier. Combining
with equation (3.7), we find

@r✏i =
A

2
✏i (3.9)
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Solution to this equation is the usual form of the Killing spinors for supersymmetric domain
wall solutions,

✏i = e
A
2 ✏i(0), (3.10)

for constant spinors ✏i(0) satisfying �r̂✏i(0) = ✏i(0).

Hence, what we get from the analysis of the supersymmetry variations of gravitino are

1. the projector (3.4) used to relate di↵erent chiralities of spinors resulting in the half
number of supersymmetries,

2. the Killing spinor equation (3.7) used to determine the relation between warped
factor A and scalars �i,

3. the solutions of Killing spinors (3.10) satisfying the Killing spinor equations.

We now move to consider the supersymmetry variation of 3-form fermions and a singlet
fermion, applying the projector (3.4) gives

��ijk = 0 ! 0 =
�
✏ijklmP

m
r e�i⇤ � 2gN l

ijk

�
✏l (3.11)

�� = 0 ! 0 =
�
�Prie

�i⇤ � 2gN i
�
✏i (3.12)

which are the rest Killing spinor equations. It clearly be seen that these two equations
contain purely scalar fields, it then be the first-order di↵erential equations, used for deter-
mining the form of scalar fields, also known as the BPS equations.

In addition, solutions of scalars taken from equations (3.11) and (3.12) can be checked
that it satisfy the field equations. Recall first that, any symmetry transformation of a field
equation also consistently yields a combination of field equations of transformed fields.
As the equations (3.11) and (3.12) are direct consequences of supersymmetry transfor-
mation, the solutions to these equations consistently satisfy field equations if and only if
the fermionic field equations, involving � and �ijk, are satisfied which is the case for BPS
solutions. However, some chosen set of scalars may transform inappropriately under gauge
symmetry. This would yield an inconsistency in the BPS equations. Nevertheless, choosing
a set of scalars to be singlet under residual symmetry can avoid this case together with a
particular form of BPS equations introduced in [63],

(�I)0 = gIJ
@W

@�J
(3.13)

A0 = W (3.14)
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with scalar potential written as

V = �3W 2 + gIJ
@W

@�I

@W

@�J
. (3.15)

We have denoted �I as a set of singlet scalars and gIJ as the inverse of metric on the scalar
manifold.

We end this section by mentioning the criterion given in [64] to classify physical and
unphysical singularities (if exist) in domain wall solutions. This conjecture states that

Large curvatures in geometries of the form of domain wall solutions are allowed

only if the scalar potential is bounded above in the solutions. (3.16)

In particular, the behavior of solutions at the singular geometries with scalar potential
V !1 would give no sensible non-conformal field theory in the IR.

3.1 RG flows with SO(4) symmetry

We first consider the simplest case, solutions with the largest symmetry contained within
SO(5) gauge symmetry with non-vanishing scalars, an SO(4) symmetry. By further calcu-
lating complicated solutions, we should obtain this class of solutions as a common solution
with consistent truncation. With the parametrization given in chapter 2, we can easily see
that only one complex scalar is an SO(4) ⇢ SO(5) singlet. We will choose this singlet,
specifically �5, to take the form

�5 = tanh'ei⇣ (3.17)

with real scalars ' 2 [0,1) and ⇣ 2 [0, 2⇡). According to the expression of the fermion-
shift matrices, we obtain the non-vanishing components

Sij = (g cosh') �ij (3.18)

N5 = �ei⇣ sinh' (3.19)

N1
234 = �ei⇣ sinh' (3.20)

in which N1
234 is only an example of the matrix N l

ijk from several identical components up
to sign factor. In this case, every eigenvalues of Sij coincide, we then get the superpotential

W =
p
2g cosh' (3.21)

12



This coincidence of W along every Killing spinors ✏i gives us a clue that the following
solutions must preserve maximal N = 5 supersymmetry.

According to the supersymmetric Ward identity, we then find the scalar potential from
fermion-shift matrices as

V = �2g2 (2 + cosh 2') (3.22)

Since W is real, we can therefore check whether this choice of singlet scalars is consistent
with the field equations by using the real superpotential W = |W| to determine the scalar
potential and see whether it is identical with our result from supersymmetric Ward identity.
To do this, we first calculate the vielbein on scalar manifold,

P 5
r = �

p
2ei⇣ ('0 + i cosh' sinh'⇣ 0) ; otherwise vanish, (3.23)

and then use it to write down scalar Lagrangian,

e�1Lscal = �1

2
P 5
r P

r
5 � V (3.24)

= �('0)2 � cosh2 ' sinh2 '(⇣ 0)2 � V. (3.25)

The metric defined on scalar manifold is readily verified, its non-vanishing inverse compo-
nents then read

g'' = 1 and g⇣⇣ =
4

sinh2 2'
(3.26)

With all of these, the scalar potential calculated by using (3.15) thus takes of the form

V = �3W 2 + gIJ
@W

@�I

@W

@�J

= �3W 2 +

✓
@W

@'

◆2

+
4

sinh2 2'

✓
@W

@⇣

◆2

(3.27)

= �2g2 (2 + cosh 2')

in which we have labeled �I = {', ⇣}. This result is exactly identical to the result derived
from the supersymmetric Ward identity; our choice of singlet scalars is therefore consistent
with the field equations. For the reader who prefer a more explicit calculation indicating
a consistence of the field equations, we will comeback to show this after we obtain the
explicit form of solutions.

Graphically, the scalar potential is shown in figure 3.1 where we have set gauge coupling
g = 1 for simplicity. Note here that, from figure 3.1, we can guess that solutions should
roll our scalar ' from the trivial critical point to 1 which exhibits evidence of singularity.
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Figure 3.1: The scalar potential with SO(4) symmetry. It can be seen directly that the
only supersymmetric critical point in the case of SO(4) symmetry is at ' = 0 which gives
a negative cosmological constant as desired.

Next, we now move to finding a set of BPS equations. This can be done by considering
the Killing spinor equations coming from gravitini, 3-form spinors, and a singlet spinor.
The first one is readily read o↵ from the expression of superpotential W . Since W is real
and phase ei⇤ = 1, we then get

A0 =
p
2g cosh'. (3.28)

Another two Killing spinor equations, ��ijk = 0 and �� = 0, yield the almost identical
BPS equations

'0 + i cosh' sinh'⇣ 0 = �
p
2ei⇤g sinh' and (3.29)

'0 + i cosh' sinh'⇣ 0 = �
p
2e�i⇤g sinh' (3.30)

The di↵erence is on the sign of the exponent of the phase; however, it does not a↵ect our
equations because of the vanishing of the phase as mentioned before. Nevertheless, this is
not the case of Janus solutions in which even though there are the same BPS equations,
but ei⇤ 6= 1 resulting in a more discussion on this equations. We will comeback to this
later.

Using the reality of scalars, we find the complete set of BPS equations as

A0 =
p
2g cosh'

'0 = �
p
2g sinh'

⇣ 0 = 0

14



which are also known as flow equations. Before we solve the above equations, it should be
noted that, as mentioned in the beginning of chapter, the above equations can be rewritten
in terms of derivatives of superpotential W . Provided inverse of the scalar metric, we can
write the flow equations together with the equation of A0 as

A0 = W =
p
2g cosh' (3.31)

'0 = �@W
@'

= �
p
2g sinh' (3.32)

⇣ 0 = � 4

sinh2 2'

@W

@⇣
= 0 (3.33)

therefore ensuring the consistency with the field equations.

The equation (3.33) simply yields the constant of pseudoscalar ⇣ = ⇣0. Because ⇣
does not appear in other BPS equations and scalar potential, ⇣0 can be any real constant
value. Subsequently, it is straightforward to solve the equations (3.31) and (3.32). We first
consider equation (3.31) divided by equation (3.32),

dA

d'
= � 1

tanh'

which gives a relation between warped factor A and scalar ',

A = C1 � ln sinh'

Substitute back into the equation (3.31), we find

tanh
'

2
= e�

p
2g(r�r0) (3.34)

We will neglect the integration constant C1 by rescalling coordinates on dx2
1,2. The solutions

are shown graphically in figure 3.2.

At the asymptotic limit r !1, we find

' ⇠ e�
p
2gr ⇠ e�

r
L and A ⇠

p
2gr ⇠ r

L
. (3.35)

This is the N = 5 supersymmetric AdS4 configuration as desired.

On the other side of the solution, we expect that it should be another supersymmetric
AdS4 configuration, so the solution interpolates between supersymmetric critical points.
Unfortunately, this is not the case, since there is only one supersymmetric critical point.
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(b) A solution of A (dashed) and ' (thick)
along the radial coordinate.

Figure 3.2: A Domain wall solution from the N = 5 AdS4 critical point as r ! 1 to a
singularity geometry in r0 = 0.

Nevertheless, there exhibit a singular geometry instead. To see this, we consider the radial
coordinate as r ! (r0)+ at which the solution becomes

' ⇠ � ln
⇣
1� e�

p
2g(r�r0)

⌘
⇠ 1 and A ⇠ � ln

✓
1

2(e�
p
2g(r�r0) � 1)

◆
⇠ �1. (3.36)

Accordingly, scalar potentials are of the form

V ⇠ �
✓

g

e�
p
2g(r�r0) � 1

◆2

⇠ �1. (3.37)

According to the criterion given in [64], the singularity is then physically acceptable. There-
fore the above solution holographically describes an RG flow from the N = 5 SCFT in the
UV to an N = 5 non-conformal field theory in the IR. The flow breaks conformal symmetry
but preserves the full N = 5 Poincare supersymmetry in three dimensions. We identify this
flow with the mass deformation pointed out in [13] in which the explicit form of relevant
mass terms have also been given. The deformation preserves N = 5 supersymmetry but
breaks the SO(5) R-symmetry to an SO(4) subgroup in agreement with the supergravity
result obtained here.

Finally, we will end this section by showing that our solution is compatible with the
field equations. We begin with the bosonic Lagrangian underlying this supersymmetric
domain wall.

L = e3A

�3
�
2A02 + A00�� 1

2

�
'02 + sinh' cosh'⇣ 02

�
+ 2g2 (2 + cosh 2')

�
(3.38)
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By using Euler-Lagrange equation, Einstein field equation in x1,2-direction, Einstein field
equation in r-direction, scalar field equation for ', and scalar field equation for ⇣ are
respectively given by

3A02 + 2A00 = 2g2 (2 + cosh 2')� '02 � cosh' sinh'⇣ 02 (3.39)

3A02 = 2g2 (2 + cosh 2') + '02 + cosh' sinh'⇣ 02 (3.40)

0 = 4g2 sinh2 2'+ 6A0'0 � cosh 2'⇣ 02 + 2'00 (3.41)

0 = 2 cosh 2''0⇣ 0 + sinh 2' (A0⇣ 0 + ⇣ 00) (3.42)

Inserted BPS equations (3.31), (3.32), and (3.33), it is easily to verify that the field equa-
tions are satisfied.

3.2 RG flows with SO(3) symmetry

In this section, we will repeat the analysis with a smaller residual symmetry SO(3) ⇢
SO(5). There are two complex scalars which are SO(3) singlets. Particularly, we choose
them to be �4 and �5. These scalars are parametrized as follows

�4 = tanh' cos#ei⇣1 and �5 = tanh' sin#ei⇣2 (3.43)

We first consider the fermion-shift matrix Sij to predict number of unbroken super-
symmetries. It turns out that Sij has non-vanishing o↵-diagonal components along the ✏4,5

directions, i.e.

Sij = g cosh'�ij for i, j = 1, 2, 3 (3.44)

S45 = S54 = ig sin(⇣1 � ⇣2) sin 4# sinh4 '

2
(3.45)

S44 = g
⇥
cosh'� cos2 # (cosh'� 1)2

�
cos2 #+ e2i(⇣1�⇣2) sin2 #

�

+4 cos2 # sinh4 '

2

i
(3.46)

S55 = g
⇥
cosh'� sin2 # (cosh'� 1)2

�
e�2i(⇣1�⇣2) cos2 #+ sin2 #

�

+4 sin2 # sinh4 '

2

i
(3.47)

It can be observed that there is no term involving ⇣1 or ⇣2 individually. This means
that superpotential inherited from either one of these components would depends only on
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di↵erence of pseudoscalars, ⇣1� ⇣2, so we expect that consistent solutions must relate only
di↵erence ⇣1 � ⇣2. Consequently, we redefine our scalars as

�4 = tanh' cos#ei⇣ and �5 = tanh' sin#ei(⇣�⌘) (3.48)

in which ⇣1 = ⇣ and ⇣2 = ⇣ � ⌘.
Accordingly, the eigenvalues of Sij lead to three di↵erent values of superpotential

WD =
p
2g cosh' (3.49)

W± =
g

4
p
2

h
2 (3 + cos 2⌘) cosh'+ (3 + cosh 2') sin2 ⌘

�8 sinh4 '

2

�
cos 4# sin2 ⌘ ± i�

�i
(3.50)

with

� = sin ⌘ sin 2#
q
3 + cos 2⌘ + 2 cos 4# sin2 ⌘ . (3.51)

Note here that the Killing spinors corresponding to W± are not ✏4 and ✏5, but a linear
combination between them.

Nevertheless, only one of these superpotential will play a role of true superpotential
along the solutions. we then expect to find three inequivalent solutions with SO(3) residual
symmetry preserving N = 3, N = 1, and N = 1 supsersymmetries (if exist) for choosing
WD, W+, and W�, respectively. Before that, we note here the scalar Lagrangian invariant
under SO(3) residual symmetry,

e�1Lscal = �'02 � sinh2 '

"
#02 + cosh2 '

�
⇣ 02 � 2 sin2 #⌘0⇣ 0

�

+
1

4
sin2 #

�
3 + cosh 2'� 2 cos 2# sinh2 '

�
⌘02
#
� V (3.52)

where scalar potential V depends on the choice of unbroken supersymmetry. The inverse
of scalar metric reads

gIJ =

0

BBB@

1 0 0 0
0 1

sinh2 '
0 0

0 0 4
sin2 2# sinh2 '

1
sinh2 ' cos2 #

0 0 1
sinh2 ' cos2 #

1
sinh2 ' cos2 #

� 1
cosh2 '

1

CCCA
(3.53)

in which we have labelled �I 2 (',#, ⌘, ⇣)
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We now consider the first possibility where we take WD to be the true superpotential.
This amounts to set ✏4,5 = 0 implying the solutions to preserve N = 3 supersymmetry.
There is an interesting feature coming from the Killing spinor equations from ��ijk for
i, j, k = 1, 2, 3 resulting in algebraic constraints of the form

sin ⌘ = 0 ! ⌘ = n⇡ (3.54)

for an integer n. With this, the rest of the Killing spinor equations are given by

A0 = WD =
p
2g cosh',

'0 = g''
@WD

@'
= �
p
2g sinh',

#0 = g##
@WD

@#
= 0,

⌘0 = g⌘⌘
@WD

@⌘
+ g⌘⇣

@WD

@⇣
= 0, (3.55)

⇣ 0 = g⇣⌘
@WD

@⌘
+ g⇣⇣

@WD

@⇣
= 0,

(3.56)

in which they are consistent with the field equations as shown. We obtain the same solution
as in the SO(4) case up to some field redefinition. Therefore, keeping ✏1,2,3 to be unbroken
supersymmetry necessarily leads to a truncation of N = 5 supersymmetric solutions solved
in the previous section.

Next, we will consider another possibility which is setting ✏1,2,3 = 0. Consequently, the
constraint (3.54) is not needed, ⌘ is not fixed by any multiple of constant. We first consider
the real superpotential W± = |W±| obtained from turning on ✏±. Since equation (3.51)
shows that � must be real due to the positive definite value in the square root, W± thus
yield the same modulus resulting in the same real superpotential W± = W . Consistency
with the field equation then requires that both ✏± should yield the same solutions. The
scalar potential can then be written as

V = �3W 2 +

✓
@W

@'

◆2

+
1

sinh2 '

✓
@W

@#

◆2

+
4

sin2 2# sinh2 '

✓
@W

@⌘

◆2

=
1

2
g2
�
�8� 4 cosh 2'+ sin2 ⌘ sin2 2# sinh4 '

�
(3.57)

where we have omitted the term depending of ⇣ because it does not appear in (3.50).
Graphically, an example of scalar potential is shown in fig 3.3. We thus expect that we
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Figure 3.3: The scalar potential with SO(3) symmetry with # = ⇡/4, ⌘⇡/2. the super-
symmetric critical point is located at trivial point ' = 0 while another two critical points
shown above are the non-supersymmetric critical points mentioned in the begining of this
chapter.

will obtain two equivalent N = 1 solutions depending on either one of ✏± be an unbroken
supersymmetry, well this is not the case.

We will pause here for a moment and discuss an important consequence of ✏±. We first
show the explicit form of ✏±

✏± = ✏5 ±
✓
sin 2⌘ sin2 2#� �

sin ⌘ sin 4#

◆
✏4 (3.58)

with � given by (3.51). Recall that the Killing spinor equation coming from � ±
µ = 0 for

µ = 0, 1, 2 takes the form

0 = A0�r̂✏± +W±✏
±. (3.59)

Imposing projection condition �r̂✏± = ei⇤✏± would simply demand that W+ = W� which
obviously contradicts to our direct calculation before. To fix this problem, we can require
one of ✏± to vanish, or take some tea and look for another projector; we choose the later
one. We observe that two superpotentials are complex conjugate to each other as to give
the same modulus, i.e. W± = (W⌥)⇤. We then impose the following projectors

�r̂✏± = e±i⇤e± (3.60)

which give us that ✏± must live in di↵erent representations of SO(4) residual symmetry.
Therefore, for general non-vanishing ✏±, the solutions will preserve N = 2 supersymmetry.
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The BPS equations are computed and checked to be consistent with the field equations;
they are given as follows

A0 = W =
g

8

h
67 + cosh 4'� 16 cos 2⌘ (3 + 4 cosh') sinh4 '

2

+ cosh 2'
⇣
60� 16 cos 2⌘ sinh4 '

2

⌘
� 16 cos 4# sin2 ⌘ sinh4 '

i1/2
, (3.61)

'0 = �@W
@'

=
g2

32W

⇥
8 cosh'

�
cos 2⌘ + 2 cos 4# sin2 ⌘

�
sinh3 '

�30 sinh 2'� sinh 4'] , (3.62)

#0 = � 1

sinh2 '

@W

@#
= � g2

2W
sin2 ⌘ sin 4# sinh2 ', (3.63)

⌘0 = � 4

sin2 2# sinh2 '

@W

@⌘
= � g2

W
sin 2⌘ sinh2 ', (3.64)

⇣ 0 = � 1

sinh2 ' cos2 #

@W

@⌘
= � g2

W
sin 2⌘ sin2 2# sinh2 '. (3.65)

Accordingly, we will study each limiting case of this solution to classify whether which
case yields a physical solution. First, It is straightforward to see that, as ⌘ ! n⇡ or
⇣ ! n⇡/2, we recover the N = 5 solutions as it should be. For the non-trivial cases, we
will have a separate discussion for 2 di↵erent flows in which one can be solved analytically
while the other cannot.

For flow I, we have # = ⇡/4 and ⌘ = ⇡/2, as to cancel the BPS equations for #0 and ⌘0.
The complete set of BPS equations become

A0 = W =
g

2
p
2
(3 + cosh 2') (3.66)

'0 = �@W
@'

= �
p
2g cosh' sinh' (3.67)

#0 = � 1

sinh2 '

@W

@#
= 0 (3.68)

⌘0 = � 4

sinh2 '

@W

@⌘
= 0 (3.69)

⇣ 0 = 0 (3.70)

which are consistent with the field equations. Noted that, along this flow, scalar potential
takes the form

V =
1

2
g2
�
�8� 4 cosh 2'+ sinh4 '

�
. (3.71)
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(a) A solution of A (dashed) and ' (thick)
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(b) The behavior of the scalar potential
along flow I.

Figure 3.4: Flow I: A Domain wall solution from the N = 5 AdS4 critical point as r !1
to a singularity geometry in r0 = 0 with # = ⇡/4 and ⌘ = ⇡/2.

It can be seen that this solution can be obtained analytically; the solution are of the
following form

tanh' = e�
p
2g(r�r0) (3.72)

A =
1

2
ln cosh'� ln sinh' (3.73)

where they are presented graphically in figure 3.4a. Although this solution is very similar
to the SO(4) case, it should be emphasized that this solution only preserves N = 2 su-
persymmetry and breaks SO(5) to SO(3) symmetry. As r ! 1, we find the solution at
asymptotic behavior,

' ⇠ e�
p
2gr ⇠ e�

r
L and A ⇠

p
2gr ⇠ r

L
(3.74)

which is the N = 5 supersymmetric AdS4 configuration as desired. Furthermore, this
solution also exhibit a singular geometry. To see this, we consider the region as r ! r0 at
which the solution becomes

' ⇠ �1

2
ln
⇣
1� e�

p
2g(r�r0)

⌘
and A ⇠ 1

4
ln
⇣
1� e�

p
2g(r�r0)

⌘
. (3.75)

Near the singularity, scalar potential becomes

V ⇠ 1

32

✓
g

e�
p
2g(r�r0) � 1

◆2

⇠ 1 (3.76)
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which, according to the critetion given in [64], is an unphysical singularity.

For flow II, we consider the case of # 6= ⇡/4 and ⌘ 6= ⇡/2. Due to complicated forms of
the BPS equations, we are not able to solve these equations in an analytic form; however,
we can find some relations among them. By combining equations (3.63) and (3.64), we
obtain

cot 2# = C1 cos ⌘ (3.77)

with an integration constant C1. Similarly, combining equations (3.62) and (3.63) gives

2
p
2sech2' = 32(1 + C2

1)C2

q
(1 + cos 2⌘)(2 + C2

1 + C2
1 cos 2⌘)

�3� 4C2
1 cos ⌘ � cos 2⌘ (3.78)

with another integration constant C2. In order to interpret the physical meaning of C1 and
C2, we impose the boundary condition at the AdS4 configuration as

'0 ⇠ 0, # ⇠ #0, ⌘ ⇠ ⌘0. (3.79)

Combined equations (3.77) and (3.78) and inserted the boundary condition at the AdS4

configuration, we find expressions of integration constants C1 and C2 in terms of initial
value #0 and ⌘0,

C1 =
1

cos ⌘0 tan 2#0
, (3.80)

C2 =
3 + 2

p
2 + 4C2

1 cos ⌘0 + cos 2⌘0

32(1 + C2
1)
p
(1 + cos 2⌘0)(2 + C2

1 + C2
1 cos 2⌘0)

. (3.81)

It should be emphasized that these expressions are not valid in the case of #0 = ⇡/4 or
⌘0 = ⇡/2 due to the vanishing of BPS equations for ⌘ and #.

The complete solution of flow II can be obtained only numerically. Example of these
flows are given in figure 3.5a in which we can see that scalar ' goes to 0 as r !1 which
exhibit AdS4 configuration as desired. On the other hand, we find a singular geometry as
'!1. To see that whether this singularity is physical, we have to consider the behavior
of scalar potential, given in (3.71), near this singularity. For '!1, we find that

V ⇠ sin2 ⌘ sin2 #e4' !1 (3.82)

unless sin# = 0 or sin ⌘ = 0.

Therefore, we have to look for the value of pseudoscalars # and ⌘ near the singularity.
This can be done by using equations (3.77) and (3.78) together with the boundary condition

23



!"#$%&&'(

2 4 6 8 10

-6

-4

-2

2

4

6

8

φ
η
ϑ
A

(a) Flow II: An RG flow solution with # 6= 0
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Figure 3.5: An RG flow from the N = 5 AdS4 critical point as r !1 to a non-conformal
field theory in the IR with # 6= 0 and '!1 in the IR.
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(a) A relation of sech2' (vertical) and ⌘
(horizontal) along flow II.

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

�

�

(b) A relation of # (vertical) and ⌘ (hori-
zontal) along flow II.

Figure 3.6: Several examples of the relations between scalars ', #, and ⌘ along flow II.
The blue, orange, and green curves represent the flows with (⌘,#) = (0, ⇡/3), (⇡/4, ⇡/3),
and (⇡/4 + ⇡/8, ⇡/3), respectively.
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sech' = 0. Numerically, the relations between ', #, and ⌘ are given in figures 3.6. From
which, the shaded region is a forbidden region due to the condition that scalar ' must be
real.

It can readily be seen that flow II continuosly connects the scalar function sech2' taken
the value of 1 at the AdS4 configuration to 0 at the singular geometry. With all these,
near the singularity, ' ⇠ 1 and sech2' ⇠ 0, we find that ⌘ 6= 0 and # 6= 0 and then imply
V ⇠ 1. Consequently, we can conclude that flow II gives an unphysical singularity.

Finally, it would be interesting to find an uplift (if exists) of this solution to string/M-
theory and check whether the singularities are acceptable. If this is the case, identifying the
analog of non-vanishing ⌘ and # in the dualN = 5 SCFT that breaksN = 5 supersymmetry
to N = 2 also deserves further study.

3.3 Comment on general supersymmetric domain wall

solutions

In this section, we will provide an analysis to explain a universal behavior of the singlet
scalars under residual symmetry SO(n) for 1 < n < 5. It is motivated by the algebraic
relation taken schematically as

sin (⇣i � ⇣j) = 0 for i, j = 1, 2, ..., 5� n (3.83)

where the Killing spinors are ✏i projected on SO(n) subspace. It occurs previously in the
case of SO(3) domain wall solution. This kind of constraint implies that the phase of all
complex scalar fields are equal up to some multiple of ⇡. Interestingly, the presence of
pseudoscalars ⇣i obeying the equation (3.83) also leads to the BPS equations given by

⇣ 0i = 0 (3.84)

which is exemplified by the case of SO(3) domain wall solution with ✏4,5 = 0.

With these clues, we will try to describe this feature analytically from which, in the
end, it will provide that every case of domain wall solutions with residual symmetry SO(n)
and unbroken supersymmetries living on SO(n) subspace always e↵ectively reduce to the
SO(4) case.

Since there are only five complex scalars in N = 5 gauged supergravity, we can gener-
alize the results obtained in the previous cases to the full SU(5, 1)/U(5) scalar coset. We
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first consider solutions with a residual symmetry SO(n) for 1 < n < 5. For n = 5, no
scalars can be turned on because there is no SO(5) singlet among the five scalars.

To proceed further, we recall that the conditions ��ijk = 0 for vanishing gauge fields
can be written as

��ijk = �✏ijklm�µPµm✏l � 2gNl
ijk✏l = 0 (3.85)

with
Nl

ijk = e1✏
ijklm�m + e1e2✏

ijkmn�m�
n�l + 3e21�

ijk
lmn�m�

n . (3.86)

It turns out that some of these conditions do not involve derivatives of scalars from
P i
µ. In particular, this can happen when indices l and i are equal among other possibilities

due to the appearance of levi-civita symbol. We then write �m = 'mei⇣m and consider the
conditions ��ijk = 0, for l = i, which reduce to

e1e2✏
ljkmn'm'n'le

i(�⇣m+⇣n�⇣l) + 3e21�
ljk
lmn'm'ne

i(�⇣m+⇣n) = 0 (3.87)

without summing over l. By antisymmetrizing the products of 'm’s, we arrive at the result

e1e2✏
ljkmn'l'n'me

�i⇣l sin (⇣n � ⇣m) + 6e21'j'k sin (⇣j � ⇣k) = 0 . (3.88)

Since the two terms on the left hand side are independent of each other, this condition
implies

sin(⇣i � ⇣j) = 0 (3.89)

which gives the previously obtained result ⇣i = ⇣j + n⇡.
By splitting indices i, j, . . . = 1, 2, . . . , 5 into î, ĵ, . . . = 1, 2, . . . , n and ĩ, j̃, . . . = n +

1, . . . , 5 with scalars 'ĩ and �î being respectively singlets and non-singlets of SO(n), we
can summarize possible cases as follow.

• For n = 4, there is only one SO(4) singlet scalar, and in this case Nl
ljk automatically

vanish.

• For 1 < n < 4, there are 5 � n singlet scalars denoted by �ĩ. The relevant non-

vanishing components of Nl
ijk are Nl̂

l̂j̃k̃ which lead to the conditions sin(⇣ĩ� ⇣j̃) = 0.
Accordingly, we need to set ⇣ĩ = ⇣j̃ +m⇡ or ✏î = 0. In the former case, all the phases
are equivalent up to an additive constant m⇡ and lead to the tensor Sij proportional
to the identity matrix. The latter case gives N = 5 � n supersymmetric solutions
with the corresponding Killing spinors ✏ĩ.
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In particular, this result implies that domain wall solutions with all five scalars non-
vanishing are possible only when all the complex phases of the scalars are equal up to
an additive constant m⇡. In addition, for scalar fields of the form

�i = ('1,'2,'3,'4,'5)e
i⇣ (3.90)

with m = 0 for convenience, we can verify from the definition (2.14) that the Sij tensor
is real and independent of ⇣. This leads to the BPS equation ⇣ 0 = 0 according to which ⇣
can be set to zero.

Furthermore, by using the parametrization of the form

'1 = tanh' cos ⇠1, '2 = tanh' sin ⇠1 cos ⇠2, '3 = tanh' sin ⇠1 sin ⇠2 cos ⇠3,

'4 = tanh' sin ⇠1 sin ⇠2 sin ⇠3 cos ⇠4, '5 = tanh' sin ⇠1 sin ⇠2 sin ⇠3 sin ⇠4, (3.91)

we readily find
Sij = g cosh'�ij (3.92)

with the scalar potential
V = �2g2(2 + cosh 2'), . (3.93)

The one-form scalar Lagrangian can be written as

e�1Lscal = �d'2 � sinh2 '(cosh2 'd⇣2 + d⌦2) (3.94)

in which d⌦2 describes a line element on S4 parametrized by {⇠i}.
Therefore, the resulting BPS equations will give

⇠0i = �g⇠i⇠i @W
@⇠i

= 0 for all i = 1, 2, 3, 4, (3.95)

'0 = �@W
@'

= �
p
2g sinh' (3.96)

A0 = W =
p
2g cosh' (3.97)

⇣ 0 = 0. (3.98)

Thus, the solution e↵ectively reduces to that of the SO(4) case. We can then conclude
that the most general supersymmetric domain wall solutions of N = 5 gauged supergravity
can only involve non-vanishing real scalars with SO(4) symmetry.

We end this section by emphasizing that this discussion here only works for the solutions
with unbroken supersymmetry ✏i living on the SO(n) subspace. Oppositely, this is not the
case of N = 2 domain wall solutions with SO(3) symmetry, since, in that case, we worked
with the unbroken supersymmetry living on SO(5)/SO(3) subspace, specifically along ✏±.
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Chapter 4

Supersymmetric Janus solutions

We now move to supersymmetric Janus solutions in the form of AdS3-sliced domain wall
solution. The metric anstaz takes of the form

ds2 = e2A(r)
⇣
e

2⇠
l dx2

1,1 + d⇠2
⌘
+ dr2 (4.1)

with dx2
1,1 being the flat metric on two-dimensional Minkowski space. The two-dimensional

conformal defects live on the boundary of (1+1)-Minkownski space, namely ⇠ ! 1. As
shown in [44], this metric must obey the boundary conditions, as r ! ±1,

A = ln

✓
L

l
cosh

r

L

◆
. (4.2)

Therefore, this solution connects two similar AdS4 configurations. As usual, we will take
some time here describing some technical calculation used in the rest of this chapter.

We begin with the vielbein one-forms defined over space-time,

eµ̂ = eAe⇠/ldxµ, e⇠̂ = eAd⇠, and er̂ = dr (4.3)

for µ = 0, 1. The spin connection are then of the form

!µ̂r̂ = A0eµ̂, !µ̂⇠̂ =
e�A

l
eµ̂, and !⇠̂r̂ = A0e⇠̂. (4.4)
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In this case, the Killing spinor equation coming from � i
µ for µ = 0, 1-direction gives

0 = 2Dµ✏i +
p
2g�µSij✏

j

=
1

2
eµ̂µ!µ̂

µ̂r̂�µ̂r̂✏i +
1

2
eµ̂µ!µ̂

µ̂⇠̂�µ̂⇠̂ +
p
2geµ̂µSij�µ̂✏

j

= A0�µ̂r̂✏i +
e�A

l
�µ̂⇠̂✏i +

p
2gSij�µ̂✏

j (4.5)

We will impose the same �r̂ projection and an additional �⇠̂ projection, respectively,

�r̂✏i = ei⇤ei and �⇠̂✏i = iei⇤✏i (4.6)

with 2 = 1 due to the normalization of cli↵ord algebra �2
⇠̂
= 1. With these two independent

projections, we then expect that our solutions preserve 1
4 -supersymmetry, or particularly

five supersymmetry on conformal defect.

Despite from the phase ei⇤, we can understand the interpretation of projection �⇠̂
as follows. Consider the highest rank gamma matrix, or the so-called gamma-5 �5 =
i� 0̂� 1̂� ⇠̂� r̂, acting on the Killing spinors

�5✏i = �✏i and �5✏i = ✏i (4.7)

Substitution with the two projections, we then have

� 0̂� 1̂✏i = �✏i and � 0̂� 1̂✏i = �✏i (4.8)

Operationally, �0̂�1̂ is a highest-rank gamma matrix in the (1+1)�dimensional space which
can be used to determine the chirality of spinors. Thus, it clearly be seen that we have
the chiral supersymmetric theory in which  determines the chirality of Killing spinors on
conformal defects.

We continue our calculation (4.5) by using the projectors (4.6) such that

0 =

✓
A0ei⇤ +

i

l
e�Aei⇤ +W

◆
✏i

where, as in the previous chapter, we have defined superpotential via the eigenvalues ofp
2Sij. For a nontrivial solution of ✏i, we therefore obtain

A0 +
i

l
e�A = �e�i⇤W . (4.9)
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To find a general solution of ✏i, we first consider � i
⇠ = 0 such that

0 = 2@⇠✏i +
1

2
e⇠̂⇠!⇠̂

⇠̂r̂�⇠̂r̂✏i +We⇠̂⇠�⇠̂✏
i

= 2@⇠✏i � ieAA0✏i � ieAe�i⇤W✏i

= 2@⇠✏i � ieAA0✏i + ieA
✓
A0 +

i

l
e�A

◆
✏i

= 2@⇠✏i �
✏i
l

which finally gives

✏i = e
⇠
2l "i (4.10)

where "i does depends solely on r. By repeating the same calculation as in the case of
domain wall solution, we finally obtain

✏i = e
A
2 + ⇠

2l+
i⇤
2 "(0)i (4.11)

in which the constant spinor "(0)i satisfy

�r̂"
(0)
i = "(0)i and �⇠̂"

(0)
i = i"(0)i. (4.12)

For ��ijk = 0 and �� = 0, these two equation involve only �r̂ as our scalars still depend
only on radial coordinate r, so we obtain the same Killing spinor equations for scalar fields
as in the case of domain wall solutions; so we can use Killing spinor equations obtained
from the domain wall’s case.

We again emphasize that ✏i in di↵erence representation can yield di↵erent phase ei⇤.
We finally note that, as l ! 1, the metric ansatz reduces to the form of domain wall
solutions, so it can be used to check the consistency.

4.1 Janus solutions with SO(4) symmetry

We now begin with supersymmetric Janus solutions with SO(4) symmetry under which
✏i transform as 4 + 1. We choose the parametrization of scalars as in the case of SO(4)
domain wall solution, i.e.

�5 = tanh'ei⇣ . (4.13)
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The superpotential takes the form

W =
p
2g cosh', (4.14)

and the phase are then of the form

ei⇤ = �
p
2g cosh'

A0 + i
l e

�A

= � A0
p
2g cosh'

� i

l

e�A

p
2g cosh'

(4.15)

According to the case of SO(4) domain wall, the Killing spinor equations coming from
��ijk and ��, (3.29) and (3.30) respectively, now yield the di↵erent equations for this case.
In other words, we obtain a requirement that

Im(ei⇤) = �
l

e�A

p
2g cosh'

= 0 (4.16)

which contradicts to our assumption for Janus solutions, but it is automatically satisfied
in the domain wall limit. To solve this problem, we take a step back and look at the origin
of equations (3.29) and (3.30). It shows up that these equations are actually given by

('0 + i cosh' sinh'⇣ 0) �r̂✏
î =

⇣
�
p
2ei⇤g sinh'

⌘
✏î for î = 1, 2, 3, 4and (4.17)

('0 + i cosh' sinh'⇣ 0) �r̂✏5 =
⇣
�
p
2e�i⇤g sinh'

⌘
✏5. (4.18)

Hence, we must require that the projectors are of the form

�r̂✏î = ei⇤✏î, �⇠̂✏î = iei⇤✏î for î = 1, 2, 3, 4 and

�r̂✏5 = e�i⇤✏5, �⇠̂✏5 = �ie
�i⇤✏5 (4.19)

In particular, ✏i transform under SO(4) as 4+1 as claimed in the beginning. By inserting
the phase (4.15) into equations (4.17) and (4.18) with projectors (4.19), the complete set
of BPS equations are therefore given by

'0 = �
✓
A0

W

◆
@W

@'
+

2

sinh 2'

✓
e�A

Wl

◆
@W

@⇣
= �A0 tanh' (4.20)

⇣ 0 = � 4

sinh2 2'

✓
A0

W

◆
@W

@⇣
� 2

sinh 2'

✓
e�A

Wl

◆
@W

@'
= � e�A

l cosh2 '
(4.21)

A02 = W 2 � e�2A

l2
= 2g2 cosh2 '� e�2A

l2
(4.22)
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in which writing the BPS equations in the above form ensures the consistency with the
field equations; however, the general prescription of doing this is still not well-defined as
opposed to the case of supersymmetric domain wall solutions. So direct check with the
field equations is still needed to confirm. As it is an important step, we already check its
consistency.

Next, we will solve the above BPS equations. It can be seen that, as opposed to the
SO(4) domain wall solution, pseudoscalar ⇣ is not constant along with the flow. Further-
more, it can easily be seen that in the domain wall limit l!1, the equations become our
SO(4) domain wall solution found previously.

To obtain solutions, we first consider the relation between warped factor A and scalar
' from equation (4.20),

A = � ln sinh' (4.23)

where we have neglected an additive constant. Inserted back into equation (4.22), we find
a di↵erential equation determining ' as

'02 = 2g2 sinh2 '� 2g2

a2
sinh4 '

cosh2 '
(4.24)

where a ⌘
p
2gl. Solution to this equation is given by

sinh' =
ap

1� a2
1

cosh
�p

2g(r � r0)
� for a < 1 and (4.25)

sinh' =
ap

a2 � 1

1

sinh
�p

2g(r � r0)
� for a > 1. (4.26)

The warped factor are then expressed in terms of radial coordinate r as

eA =

p
1� a2

a
cosh

⇣p
2g(r � r0)

⌘
for a < 1 and (4.27)

eA =

p
a2 � 1

a
sinh

⇣p
2g(r � r0)

⌘
for a > 1. (4.28)

Consequently, pseudoscalar ⇣ is given by

tan(⇣ � ⇣0) = �
p
1� a2 sinh

⇣p
2g(r � r0)

⌘
for a < 1 and (4.29)

tan(⇣ � ⇣0) = �
p
a2 � 1 cosh

⇣p
2g(r � r0)

⌘
for a > 1. (4.30)
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Figure 4.1: A space of Janus solution with examples of solution represented by the red
curve and the blue curve. The directions along the flow determine an increasing of radial
coordinate r. The supersymmetric AdS4 critical point is located at the middle. The red
curve represents a solution with a = 0.4 and ⇣0 = 0 along which the lighter part and the
darker part give the solution over regions r < r0 and r > r0, respectively. Furthermore,
the blue curve represents a solution with a = 2 and ⇣0 = 0.
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(a) A solution along the radial coordinate
with a = 0.4.

(b) A solution along the radial coordinate
with a = 2.

Figure 4.2: Flow I: A Janus solution with  = 1, r0 = 0, and ⇣0 = 0 from the N = 5 AdS4

critical point as r ! 1 to (a) the N = 5 AdS4 critical point as r ! �1 for a < 1, and
(b) a singularity geometry in r0 = 0 with a > 1.

What we have obtained from solving BPS equations are two possible Janus solutions,
exemplified graphically by figure 4.2a and 4.2b, separated by the parameter a =

p
2gl. A

space of solution are given in figure 4.1 in the (' cos ⇣,' sin ⇣)-plane. It should be noted
that these solutions are similar to the solutions given in [44] and [65] in which they are
interested in N = 8 and N = 3 gauged supergravity, respectively. Noted that the chirality
of Killing spinors on the defect,  = ±, a↵ects the direction of pseudoscalar ⇣ along the
flow.

For the solution with a < 1, as r !1, the solution becomes, recall that L = 1p
2g
,

' ⇠ 2ap
1� a2

e�
r
L , A ⇠ ln

✓p
1� a2

2a
e

r
L

◆
, ⇣ ⇠ ⇣0 + 

⇡

2
(4.31)

which is an AdS4 configuration with specific value of ⇣ as desired. Oppositely, as r ! �1,
we obtain

' ⇠ 2ap
1� a2

e
r
L , A ⇠ ln

✓p
1� a2

2a
e�

r
L

◆
, ⇣ ⇠ ⇣0 � 

⇡

2
(4.32)

which also be AdS4 configuration similarly. It can readily be seen that ⇣ is manifestly
changed between two AdS4 configurations by value of ⇡. Although, this is just a rotation
of complex scalar in complex plain in this point of view; however, there is an interesting
physical meaning in a holographic point of view, see an example in [44]. To obtain this,
we need to find an uplift solution to the higher dimensional original theory.
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On the other hand, for a > 1, as r !1, the solution takes the form

' ⇠ 2ap
a2 � 1

e�
r
L , A ⇠ ln

✓p
a2 � 1

2a
e

r
L

◆
, ⇣ ⇠ ⇣0 � 

⇡

2
, (4.33)

while near singularity, r ! r0, the solution becomes

' ⇠ ln

✓
ap

a2 � 1

1

e
p
2g(r�r0) � 1

◆
, A ⇠ ln

✓p
a2 � 1

a

⇣
e
p
2g(r�r0) � 1

⌘◆

⇣ ⇠ ⇣0 � arctan
p
a2 � 1 (4.34)

Finally, we end this section by giving a result on the di↵erent chirality of ✏î and ✏5. As
projector �⇠̂ is directly related to chirality of Killing spinors, we then conclude that, on

the two-dimensional defect, ✏î and ✏5 have opposite chirality, i.e. two-dimensional defect
preserves N = (4, 1) or N = (1, 4) supersymmetry depending on the values of  = 1 or
 = �1, respectively.

4.2 Janus solutions with SO(3) symmetry

In this section, we now move to consider Janus solutions with SO(3) symmetry. We
parametrize the corresponding singlet scalars as in the domain wall case

�4 = tanh' cos#ei⇣ and �5 = tanh' sin#ei(⇣�⌘). (4.35)

Superpotential is given by either equations (3.49) or (3.50) depending on number of un-
broken supersymmetry.

We begin with the former case in which we have Killing spinors ✏1,2,3 being unbroken
supersymmetries living on conformal defects. With the projectors (4.6) required to solve
the Killing spinor equations, we then expect that the two-dimensional defect preserves
N = (p, q) supersymmetry with p + q = 3. As the same analysis in the SO(3) domain
wall case, the Killing spinor equations along ��ijk for i, j, k = 1, 2, 3 give the algebraic
constraint among pseudoscalar resulting in ⌘ = n⇡ with an integer n. By solving the rest
Killing spinor equations, we finally obtain the same SO(4) Janus solution as in the previous
section. Therefore, this solution is then just a truncated solution of SO(4) Janus solution
with N = (4, 1) or N = (1, 4).

We then move to a more complicated case, solutions describing two-dimensional con-
formal defects preserving N = (p, q) supersymmetry with p+ q = 2. To obtain this result,
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we must choose W± to be our superpotential simultaneously. In the case of domain wall
solution, this amounts to impose �r̂ projectors di↵erently on two corresponding Killing
spinors ✏±. So, we then expect that this feature would be inherited automatically to Janus
solution, and fortunately this is the case. Explicitly, we impose the projectors as follows

�r̂✏± = e±i⇤✏± and �⇠̂✏± = ±ie±i⇤e± (4.36)

where we should emphasize that imposing projectors di↵erently reflects the fact that ✏± sit
in di↵erent representations under SO(3) residual symmetry. As in the previous analysis,
the following solutions preserve N = (1, 1) supersymmetry.

Unfortunately, turning on full four real scalars together with the nontrivial phase ei⇤

give rise to far complicated BPS equations of which we presently cannot find the explicit
form. Therefore, we will proceed by taking ⌘ = ⇡

2 for simplicity. In this case, superpoten-
tials obtained from the eigenvalues of the fermion-shift matrix Sij are given by

W± =
p
2g
⇣
cosh4 '

2
� e⌥4i# sinh4 '

2

⌘
(4.37)

corresponding to the simpler form of Killing spinors ✏± = ✏4 ± ✏5.

With all of these, ��ijk = 0 and �� = 0 lead to a complete set of BPS equations as
follows

'0 = �
✓
A0

W

◆
@W

@'
+

✓
e�A

W `

◆
1

sinh'

@W

@#

=
g2

16W 2


8

✓
e�A

`

◆
sin 4# sinh3 '

+ A0 �8 cos 4# cosh' sinh3 '� 14 sinh 2'� sinh 4'
��

, (4.38)

#0 = � 1

sinh2 '

✓
A0

W

◆
@W

@#
�
✓
e�A

W `

◆
1

sinh'

@W

@'

=
g2

16W 2 sinh'


�8A0 sin 4# sinh3 '

+

✓
e�A

`

◆�
8 cos 4# cosh' sinh3 '� 14 sinh 2'� sinh 4'

��
, (4.39)

0 = A02 �W 2 +
e�2A

`2
(4.40)

with real superpotential,

W ⌘ |W±| =
g

4
p
2

q
35 + 28 cosh 2'+ cosh 4'� 8 cos 4# sinh4 ' . (4.41)
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Figure 4.3: A Janus solution with SO(3) symmetry and N = (1, 1) supersymmetry on the
two-dimensional conformal defect within the N = 5 SCFT.

(a) ' solution. (b) # solution. (c) A solution.

Figure 4.4: A Janus solution with SO(3) symmetry and N = (1, 1) supersymmetry on the
two-dimensional conformal defect within the N = 5 SCFT.

Solutions to this set of BPS equations need numerically calculation. Several examples
are given in figures 4.3 and 4.4.

Interestingly, it can be seen that these examples of N = (1, 1) Janus solutions with
SO(3) symmetry take the similar profile as in the case of N = (4, 1) or N = (1, 4) Janus
solution with SO(4) symmetry. Graphically, we can immediately see that these solutions
interpolate between fixed points with ' ⇠ 0, A ⇠ r, and # ⇠ #0 in which pseudoscalar #
is changed by some definite value.
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Chapter 5

Supersymmetric AdS4 black holes

In this chapter, we consider supersymmetric AdS4 black hole solutions by looking for
solutions interpolating between AdS4 and AdS2 ⇥ ⌃2 geometries. The former one is the
asymptotic space-time at a large distance from the black holes while the latter one describes
near horizon geometries with ⌃2 being two-dimensional Riemann surfaces.

In this work, we are only interested in the cases of ⌃2 being two-sphere (S2) and a
hyperbolic space (H2).

We begin with the metric ansatz

ds2 = �e2f(r)dt2 + dr2 + e2h(r)
�
d✓2 + F 2(✓)d�2

�
(5.1)

with

F (✓) ⌘
(
sin ✓, ⌃2 = S2

sinh ✓, ⌃2 = H2
. (5.2)

As mentioned above, at the large space-time distance away from a black hole, the metric
should reproduce an AdS4 configuration, as r !1,

f = h =
r

L
(5.3)

with L being AdS4-radius. Furthermore, at the near horizon geometry, we expect to find
an AdS2⇥⌃2 geometry depending on whether there exists AdS2⇥S2 or AdS2⇥H2 critical
points. In particular, it set the boundary conditions, as r ! �1, as follows

�i0 = 0, h0 = 0, f 0 =
1

LAdS2

. (5.4)
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As usual, we will collect su�cient technical calculations here. The vielbein one-forms
are given by

et̂ = efdt, er̂ = dr

e✓̂ = ehd✓, e�̂ = ehFd�. (5.5)

The spin connection are of the form

!t̂r̂ = f 0et̂, !✓̂r̂ = h0e✓̂

!�̂r̂ = h0e�̂, !✓̂�̂ =
F 0

F
e�he�̂ (5.6)

in which F 0(✓) ⌘ dF
d✓ .

The Killing spinor equation comming from � i
�̂
is given by

0 =
1

2
!�̂

ab�ab✏i � 2gA�̂i
j✏j �

1

2
p
2
�⌫⇢��̂G

+
⌫⇢klCij

kl✏j +
p
2g��̂Sij✏

j

=
F 0

F
e�h�✓̂�̂✏i � 2gA�̂i

j✏j + h0��̂r̂✏i �
1

2
p
2
�⌫⇢��̂G

+
⌫⇢klCij

kl✏j +W��̂✏
i. (5.7)

with our usual superpotential W . Since the first term in the final line depends explicitly on
✓ together with the condition that ✏i should depend only on radial coordinate r, we then
demand that this term must vanish in order to solve the equation. This can be done by
requiring the form of gauge field’s solution. Concretely, the one-form gauge fields ansatz
take the following expression

Aij =

✓
�paF

0

F
e�he�̂ + Aa

t e
�fet̂

◆
(Ta)

ij = (�paF 0d�+ Aa
t dt) (Ta)

ij (5.8)

with Aij
t , p

a, and (Ta)ij being arbitrary real functions depending on r, real constants, and
gauge generators, respectively, and no summation on a. Consequently,

0 =
F 0

F
e�h

⇣
�✓̂�̂✏i + 2gpa(Ta)i

j✏j
⌘
. (5.9)

To accomplish the above equation, we impose the simplest possible requirements which are

2gpa = �1 for a = 1, 2, ..., dim(Ggauge) (5.10)

and the following projector on the Killing spinors

�✓̂�̂✏i = (Ta)i
j✏j and �✓̂�̂✏

i = (Ta)
i
j✏

j. (5.11)
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This procedure, in which we cancel the spin connection on surface ⌃2, !✓̂�̂, by the gauge
fields, is called a topological twist. The family of equations (5.10) are known as twist
conditions.

Inserted the last result back on equation (5.7) and operated by ��̂, we find

0 = h0�r̂✏i �
1p
2
��̂

⇣
G+
✓̂�̂kl

� ✓̂�̂��̂ +G+
t̂r̂kl
� t̂r̂��̂

⌘
Cij

kl✏j +W✏i

= h0�r̂✏i +
1p
2

⇣
G+
✓̂�̂kl

� ✓̂�̂ �G+
t̂r̂kl
� t̂r̂
⌘
Cij

kl✏j +W✏i. (5.12)

This equation can be simplified by noted that the chirality condition �5✏i = i� t̂r̂� ✓̂�̂✏i = ✏i

implies

� t̂r̂✏i = i� ✓̂�̂✏i = i�✓̂�̂✏
i = i(Ta)

i
j✏

j, (5.13)

such that

0 = h0�r̂✏i +
1p
2

⇣
G+
✓̂�̂kl
� iG+

t̂r̂kl

⌘
Cim

kl(Ta)
m

j✏
j +W✏i

= h0�r̂✏i + (W + Z)✏i. (5.14)

in which we have introduced the matrix

Zij ⌘
1p
2

⇣
G+
✓̂�̂kl
� iG+

t̂r̂kl

⌘
Cim

kl(Ta)
m

j (5.15)

whose eigenvalues give the ”central charges” Zij = Z�ij. By imposing our usual �r̂ projec-
tors, we arrive at the first BPS equation describing black holes

0 = h0ei⇤ +W + Z (5.16)

which gives

h0 = ±|W + Z| and ei⇤ = ⌥ W + Z
|W + Z| . (5.17)

Similarly, the equation � i
✓̂
= 0 yield the identical equation. In the case of � i

t̂
= 0, we

find

0 = f 0�t̂r̂✏i � 2gAa
t e

�f (Ta)i
j✏j �

1p
2
�t̂

⇣
G+
✓̂�̂kl
� iG+

t̂r̂kl

⌘
Cim

kl(Ta)
m

j✏
j +W�t̂✏

i

= f 0�r̂✏i � 2gAa
t e

�f (Ta)i
j� t̂✏j � Z✏i +W✏i

= f 0ei⇤✏i + 2igei⇤Aa
t e

�f✏i � Z✏i +W✏i (5.18)
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where we have used the expression of � t̂ in terms of � t̂r̂ and � r̂ as follows

� t̂r̂✏i = �i(Ta)
i
j✏

j

� t̂e�i⇤✏i = �i(Ta)
i
j✏

j

� t̂✏i = �iei⇤(Ta)
i
j✏j. (5.19)

We emphasize here that this is not an independent projector, so the total projectors we
have imposed so far are �✓̂�̂ and �r̂; we then expect the number of unbroken supercharges
to be at most 20/4 = 5 supercharges. Furthermore, equation (5.18) also yield the BPS
equations as follows

f 0 = �Re
⇥
e�i⇤(W � Z)

⇤
(5.20)

Aa
t = � 1

2g
ef Im

⇥
e�i⇤(W � Z)

⇤
(5.21)

in which the second equation can be used to determine explicit form of Aa
t in terms of Z

which are proportional to the gauge field strengths1. Therefore, we have to find explicit
form of the gauge field strengths via other approaches. This can be done by considering
both electric and magnetic charges of black hole solutions. By definition, the electric and
magnetic charges are expressed as

qij =
1

V ol(⌃2)

Z

⌃2

Hij and pij =
1

V ol(⌃2)

Z

⌃2

F ij (5.22)

with Hij defined by

Hij =
�Sgauge

�F ij
. (5.23)

Sgauge denotes the gauge field part of the gauged supergravity action, and V ol(⌃2) amounts
to volume of two-dimensional space ⌃2, such as vol(S2) = 4⇡.

In the present case, we can rewrite the gauge field part of the Lagrangian (2.6) as
follows

Lgauge = �
1

4
Rij,kl ⇤ F ij ^ F kl +

1

4
Iij,klF

ij ^ F kl (5.24)

with
Rij,kl = Re

�
2Sij,kl � �ik�jl

�
and Iij,kl = Im

�
2Sij,kl � �ik�jl

�
(5.25)

1Recall that gauge field strengths are of the form F = dA+A ^A. Therefore, the equation (5.21) can
be seen as the flow equation of the time-component of gauge fields.
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and (⇤F )µ⌫ =
1
2✏µ⌫⇢�F

⇢� denoted Hodge star operator. The form of Hij are then given by

Hij = �
1

2
Rij,kl ⇤ F kl +

1

2
Iij,klF

kl. (5.26)

In order to find the expression of F ij in terms of magnetic charges pij and electric charges
qij, we need to identify F ij

✓� and H ij
✓�, which are

pij =
1

V ol(⌃2)

Z

⌃2

pijF (✓)d✓ ^ d�

=
1

V ol(⌃2)

Z

⌃2

pije�2he✓̂ ^ e�̂

F ij

✓̂�̂
= pije�2h (5.27)

and, similarly, Hij✓̂�̂ = �qije�2h.

By using the gauge fields ansatz, it immediately be seen that the non-vanishing com-
ponents of field stregths are only F ij

✓� and F ij
tr . Combined equations (5.27) and (5.26), we

finally find the expression of gauge field strengths in terms of electric and magnetic charges
as, where we are working in local space-time indices for simplicity,

F ij
t̂r̂

= �1

2
e�2hRij,kl

✓
1

2
Ikl,mnp

mn + qkl

◆
, (5.28)

F ij

✓̂�̂
= pije�2h. (5.29)

This complete our determination of the consistent gauge fields required for supersymmetric
AdS4 black hole solutions. Furthermore, compared with the gauge fields ansatz, we can
identify that

pa(Ta)
ij = pij (5.30)

are precisely magnetic charges.

We note here that the self-dual field strengths can also be written as

F+ij =
1

2

�
F ij
t̂r̂
+ i(⇤F ij)t̂r̂

�
et̂ ^ er̂ +

1

2

⇣
F ij

✓̂�̂
+ i(⇤F ij)✓̂�̂

⌘
e✓̂ ^ e�̂

=
1

2

1

2

⇣
F ij
t̂r̂
+ iF ij

✓̂�̂

⌘
et̂ ^ er̂ +

1

2

⇣
F ij

✓̂�̂
� iF ij

t̂r̂

⌘
e✓̂ ^ e�̂

=
1

2
F ij

⇣
et̂ ^ er̂ � ie✓̂ ^ e�̂

⌘
(5.31)
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with

F ij ⌘ F ij
t̂r̂
+ iF ij

✓̂�̂
= �1

2
e�2hRijkl

✓
1

2
Iklmnp

mn + qkl

◆
+ ipije�2h (5.32)

Therefore, central charge matrix can be written generally as

Zij = �
ip
2
SklnpFnpCim

kl(Ta)
m

j. (5.33)

We now get back to compute the general solution of Killing spinors satisfying Killing
spinor equations coming from � i

r. By using our defined central charges and superpotentials
and relation given in (5.18), we find

0 = 2@r✏i � (Z �W)e�i⇤✏i
= 2@r✏i �

�
f 0 + 2igAa

t e
�f
�
✏i. (5.34)

Solution to this equation is given by

✏i = e
f
2�ig

R
drAa

t e
�f
"(0)i (5.35)

in which, as in the previous cases, the constant spinors "(0)i satisfy

�r̂"
(0)
i = "(0)i and �✓̂�̂"

(0)
i = (Ta)i

j"(0)j . (5.36)

Next, we will consider the rest of Killing spinor equations for determining the scalar
equations. we begin with the Killing spinors equation coming from ��. Since fermion-shift
matrix N i has non-vanishing components only along broken supersymmetries, as we will
see, the twist conditions always require the broken supersymmetries to vanish such that
�� = 0 is identically satisfied without any information on scalars.

The second one is the Killing spinor equation coming from ��ijk; the gauge dependent
term takes the form

0 =
3

2
G+

µ⌫rs�
µ⌫C[ij

rs✏k] + ...

= 3
⇣
G+
✓̂�̂rs

� ✓̂�̂ +G+
t̂r̂rs

� t̂r̂
⌘
C[ij

rs✏k] + ...

= 3
⇣
G+
✓̂�̂rs
� iG+

t̂r̂

⌘
C[ij

rs✏k]Tk
l✏l + ...

= �3
p
2Z[ij✏k] + ... (5.37)
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where it should be noted that � t̂r̂✏i = �i(Ta)ij✏j with an extra minus sign as opposed to
(5.13). With the usual remaining terms, we find the BPS equations determining scalars.

Therefore, we are now in a position ready to find supersymmetric AdS4 black hole
solutions. We end this section by emphasizing that to answer whether ⌃2 be either S2

and/or H2, or even neither of them, we have to look at the equation h0 = 0 at the
AdS2 ⇥⌃2 configuration. Generally, a real condition of the metric function h and positive
definite value of gauge coupling g together with the twist condition (5.10) is su�cient
information.

5.1 Black hole solutions with SO(2)⇥ SO(2) twist

We first consider SO(2)⇥SO(2) twist by turning on SO(2)⇥SO(2) gauge fields. We will
separately consider magnetic and dyonic solutions.

5.1.1 Magnetic solutions

We begin with the magnetic case. The SO(2)⇥ SO(2) gauge fields are of the form

A12 = �p1F 0(✓)d�+ Atdt and A34 = �p2F 0(✓)d�+ Atdt (5.38)

with the corresponding field strength tensors

F 12 = p1F (✓)d✓ ^ d� and F 34 = p2F (✓)d✓ ^ d�. (5.39)

where the absence of (t, r) components are due to Iij,kl = 0 for the following scalars. The
parameter  takes the value ±1 corresponding to the space ⌃ = S2/H2, see the definition
of function F (✓).

Among the five complex scalars �i, the SO(2)⇥SO(2) singlet coincides with the SO(4)
singlet �5 = '+ i⇣ which which we have parametrized di↵erently compared to the previous
cases for simplicity in the following calculation. The corresponding gauge generators are
expressed as Pauli matrix (T1,2)ij = (i�2)ij for each SO(2) gauge group. With this, the
twist conditions are of the form

2gp1 = �1 and 2gp2 = �1 (5.40)

together with the following projector

�✓̂�̂✏i = (i�2 ⌦ I2)ij✏j. (5.41)
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Remember that we impose the �✓̂�̂ to cancel the spin connection along ⌃2, so we have ✏5 = 0
because we cannot perform twist along ✏5-direction, namely the equation (5.7) cannot be
satisfied in the presence of the Killing spinor ✏5.

The twist conditions imply that p2 = p1 = p which means the twist is performed by
the SO(2)diag ⇢ SO(2) ⇥ SO(2) gauge field. This is very similar to the solution with a
universal twist in pure N = 4 gauged supergravity studied in [66].

The central charge matrix Zij is given by

Zij = Z�ij =
e�2h

p
2

p(�1 + '+ i⇣)p
1� '2 � ⇣2

�ij (5.42)

with an emphasizing that i, j = 1, 2, 3, 4 in this section only. Superpotential is given by

W =

p
2gp

1� '2 � ⇣2
(5.43)

where, by redefining ' = tanh '̃ cos ⇣̃ and ⇣ = tanh '̃ sin ⇣̃, it is identified with the super-
potential in the case of SO(4) domain wall solution.

The explicit form of the time-component of the gauge fields is given by

At = �
1

2g
ef Im

�
e�i⇤(W � Z)

�
=

�2efp⇣p
1� '2 � ⇣2

p
p2⇣2 + (2ge2h � p+ p')2

(5.44)

where, however, this equation would not involve any further BPS equations.

For the case of a real scalar field, we have ⇣ = 0, both central charge and superpotential
are real such that At vanishes identically. This is the simplest case of supersymmetric AdS4

black hole solutions with twist SO(2)⇥ SO(2). Consequently, this leads to ei⇤ = ⌥1, and
as usual we will choose the upper sign to bring AdS4 fixed point living in the limit r !1.
With the explicit formula given in the previous section, we find the complete set of BPS
equations in the case of real scalar as follows

'0 = � 1p
2

p
1� '2e�2h

�
2g'e2h � p'+ p

�
, (5.45)

h0 =
1p
2

e�2h

p
1� '2

�
2ge2h � p+ p'

�
, (5.46)

f 0 =
1p
2

e�2h

p
1� '2

�
2ge2h + p� p'

�
, (5.47)

⇣ 0 = 0. (5.48)
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Next, we will investigate whether there admit any AdS2 ⇥ ⌃2 configuration. To do this,
we first consider the limit r ! 1; the boundary conditions h0 = 0 and '0 = 0 yield the
following results

' = �1 and h =
1

2
ln

✓
p

g

◆
. (5.49)

In order for AdS2 ⇥ ⌃2 to exist, we must identify  = 1 corresponding to ⌃2 = S2 as we
mentioned before. However, using this result in the condition f 0 = 1/LAdS2 gives

f 0 ⇠
p
2g

r
1� '
1 + '

⇠ 2gp
1 + '

!1. (5.50)

Therefore, no AdS2 ⇥ S2 solutions exist in this case.

Then, we consider the case of a complex scalar field, namely ⇣ 6= 0. In this case, central
charge Z is complex function as shown above. As the same procedure, we find the following
BPS equations

f 0 =
�2
p
2gp⇣p

1� '2 � ⇣2
p

p2⇣2 + (2ge2h � p+ p')2
, (5.51)

h0 = |W + Z| = e�2h

s
p2⇣2 + (2ge2h � p+ p')2

2(1� '2 � ⇣2) , (5.52)

'0 = (1� '2 � ⇣2)2 @
@'

|W + Z|, (5.53)

⇣ 0 = (1� '2 � ⇣2)2 @
@⇣

|W + Z| (5.54)

where we did not give the explicit form along the '0 and ⇣ 0 equations; additionally, writing
'0 and ⇣ 0 as these form ensure the consistency with the field equations. However, by
considering the boundary conditions at AdS2⇥⌃2 configuration, we find no solutions exist
in these equations.

Finally, we note that one would hope for the pure gauge solutions, i.e. all scalars
vanish, to admit AdS2 ⇥ ⌃2 fixed points. However setting ' = ⇣ = 0 is inconsistent with
the BPS equations (5.53) and (5.54). Therefore, we conclude that there are no magnetic
AdS4 black holes with SO(2)⇥SO(2) symmetry in N = 5 gauged supergravity with SO(5)
gauge group.
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5.1.2 Dyonic solutions

In this section, we will enhance our last result to have a non-vanishing electric charges.
This amounts to the dyonic AdS4 black holes with SO(2) ⇥ SO(2) symmetry. We begin
with the expression of scalar fields parametrized as in the magnetic case

�5 = '+ i⇣ and �1,2,3,4 = 0. (5.55)

Recall that having non-vanishing electric charges qij does not a↵ect the twist procedure;
we are still able to cancel the spin connection along ⌃2 by turning on SO(2)diag ⇢ SO(2)⇥
SO(2) gauge fields. The twist condition is given by

2gp = �1 (5.56)

with the gauge field strength tensors given by

F 12 = F 34 = pe�2he✓̂ ^ e�̂ + 2qe�2h 1 + '� i⇣

�1 + '� i⇣
et̂ ^ er̂. (5.57)

The corresponding projector takes the form

�✓̂�̂✏i = (i�2 ⌦ I2)ij✏j. (5.58)

The expression of SO(2)diag gauge fields are given as in the magnetic case, i.e.

A12 = A34 = �pF 0(✓)d✓ + Atdt (5.59)

with the time-component taken as a non-linear function of scalars

At =
2ef (2q + 2q'� p⇣)p

1� '2 � ⇣2
p

(2q + 2q'� p⇣)2 + (2ge2h � p+ p'+ 2q⇣)2
. (5.60)

With the explicit form of the superpotential and the central charge given by

W =

p
2gp

1� '2 � ⇣2
, (5.61)

and Z = � 1p
2
e�2hp+ 2iq + (2iq � p)('+ i⇣)p

1� '2 � ⇣2
, (5.62)
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we find the following BPS equations

f 0 =
2
p
2g[2q(1 + ')� p⇣]p

1� '2 � ⇣2
p

(2q + 2q'� p⇣)2 + (2ge2h � p+ p'+ 2q⇣)2
, (5.63)

h0 = |W + Z| = e�2h

s
(2q + 2q'� p⇣)2 + (2ge2h � p+ p'+ 2q⇣)2

2(1� '2 � ⇣2) , (5.64)

'0 = (1� '2 � ⇣2)2 @
@'

|W + Z|, (5.65)

⇣ 0 = (1� '2 � ⇣2)2 @
@⇣

|W + Z| . (5.66)

Setting q = 0, we recover the BPS equations for magnetic solutions. However, even gen-
eralizing the solution to cover both magnetic and electic charges does not lead to any
consistent AdS2 ⇥ ⌃2 configuration. Therefore, we conclude that there are no AdS4 black
holes both magnetically and electrically with SO(2)⇥ SO(2) symmetry in N = 5 gauged
supergravity with SO(5) gauge group.

5.2 Black hole solutions with SO(2) twist

We now consider AdS2⇥⌃2 solutions with SO(2) twist by turning on only A12
µ gauge field

with both pure magnetic and dyonic charges. The same analysis as in the SO(2)⇥ SO(2)
can be repeated with F 34

µ⌫ = 0. However, in this case, we will come back to use the
parametrization of scalar fields as

�1 = �2 = 0

�3 = tanh' cos#ei⇣1

�4 = tanh' sin# cos ⇠ei⇣2

�5 = tanh' sin# sin ⇠ei⇣3 . (5.67)

In this case, the supersymmetry corresponding to ✏3,4,5 is broken since it is not possible to
perform the twist along these directions. We will accordingly set ✏3,4,5 = 0 from now on.
With this, �� = 0 conditions are identically satisfied as in the SO(2)⇥ SO(2) case.

As occur in the case of supersymmetric domain wall solutions, the Killing spinor equa-
tions coming from ��ijk give rise to the conditions

⇣i = ⇣j + n⇡, i 6= j, (5.68)
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for an integer n. However, we cannot use the same trick to avoid these constraints as
analysed in the case of N = 2 domain wall solutions with SO(3) symmetry because, due
to the vanishing of ✏3,4,5 implied by the twist condition. Therefore, in order to obtain the
supersymmetric solution, we set

⇣5 = ⇣, ⇣4 = ⇣ +m⇡, z3 = ⇣ + n⇡ (5.69)

for integers m and n. It turns out that

⇣ 0 = 0, (5.70)

so ⇣ is an arbitrary constant and will set to be zero for convenience. We finally end up
with the analysis of real scalars ', #, and ⇠. Fortunately, it is worth to consider the Killing
spinor equations coming from � i

✓̂
and � i

�̂
which yield

ei⇤h0 =
1p
2
e�2h(2ge2h � p� 2iq) cosh'. (5.71)

It can be easily seen that, in order for 2 ⇥ ⌃2 fixed points to exist, i.e. h0 = 0, we need
q = 0. Therefore, the black hole solutions (if exist) must be purely magnetic.

For q = 0, we have the real superpotential and central charges given by

W =
p
2g cosh' (5.72)

Z = �pe
�2h

p
2

cosh'. (5.73)

The complete set of BPS equations is of the following form

f 0 =
1p
2
(2g + pe�2h) cosh', (5.74)

h0 = |W + Z| = 1p
2
(2g � pe�2h) cosh', (5.75)

'0 = �@|W + Z|
@'

= � 1p
2
(2g � pe�2h) sinh', (5.76)

#0 = � 1

sinh2 ' sin2 ⇠

@|W + Z|
@#

= 0, (5.77)

⇠0 = � 1

sinh2 '

@|W + Z|
@⇠

= 0. (5.78)
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By considering boundary conditions at AdS2 ⇥ ⌃2 configuration, we find

h =
1

2
ln

✓
p

2g

◆
, LAdS2 =

1

2
p
2g cosh'0

' = '0, # = #0, ⇠ = ⇠0 (5.79)

with '0, #, and ⇠ any constant. By the twist condition, we find that the AdS2 fixed point
exists only for  = �1 giving rise to an AdS2 ⇥H2 geometry.

Unlike the previous case with SO(2)⇥SO(2) twist, it is possible to truncate all scalars
yielding the pure gauge solution. The solutions are then of the form

f = 2
p
2gr � 1

2
ln

 
e2

p
2g(r�r0) � p

2g

!
, (5.80)

h =
1

2
ln

 
e2

p
2g(r�r0) � p

2g

!
. (5.81)

As r !1, we find
f ⇠ h ⇠

p
2gr (5.82)

which gives AdS4 configuration, while for r ! �1, the solution becomes

h ⇠ 1

2
ln

✓
� p

2g

◆
and f ⇠ 2

p
2gr (5.83)

which is the AdS2⇥H2 configuration as desired. Accordingly, the full solution interpolates
between the supersymmetric AdS4 and AdS2 ⇥H2 geometries given graphically in figure
5.1. Therefore, this solution describes a black hole in asymptotically AdS4 space with
AdS2 ⇥ H2 near horizon geometry. From the holographic point of view, the solution
describes twisted compactification of N = 5 SCFT in three dimensions to superconformal
quantum mechanics.

For the case of non-vanishing scalars, we also find an analytic solution. We first combine
equations, (5.75) and (5.76) yielding the relations between h and scalar ' as

h = � ln sinh' (5.84)

where we have omitted an irrelevant integration constant. With equation (5.84), we can
find the explicit value of ' at the AdS2 ⇥H2 geometry by substitue h = 1

2 ln
�p
2g such that

sinh'0 = 2g. (5.85)
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Figure 5.1: A black hole solution with SO(2) twist and vanishing scalars.

Figure 5.2: A black hole solution with SO(2) twist along which scalars are non-vanishing.

Inserted (5.84) into (5.76), we obtain the di↵erential equation for scalar ',

'0 = � 1p
2

�
2g + p sinh2 '

�
sinh' (5.86)

which accordingly gives the rest of solution as follows

2
p
2gr =

2p
1 + 4g2

 
tanh�1

 
1� 2g tanh '

2p
1 + 4g2

!
+ tanh�1

 
1 + 2g tanh '

2p
1 + 4g2

!!

�2 ln tanh '
2
, (5.87)

f = � ln sinh'+ ln

✓
�p+ 2g + p

cosh2 '

◆
. (5.88)

An example of the solution with g = 1 is given graphically in figure 5.2.
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Next, we consider the asymptotic behavior of this solution. From this solution, we can
see that as '! 0,

ln' ⇠ �
p
2gr, f ⇠ h ⇠ � ln' ⇠

p
2gr (5.89)

which precisely AdS4 configuration as desired.

In order to have a flow to the AdS2 ⇥H2 fixed point, we consider the limit '! '0 =
sinh�1 2g resulting in

h ⇠ 1

2
ln

✓
� p

2g

◆
, (5.90)

' ⇠ '0 + Ce
2
p
2gr

q
p+2g

p , (5.91)

f ⇠ 2
p
2gr

r
p+ 2g

p
. (5.92)

Therefore, the solution becomes the supersymmetric AdS2⇥H2 fixed point. This solution
then describes an AdS4 black hole with AdS2 ⇥H2 horizon.
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Chapter 6

Conclusions and Discussions

In this senior project, we have studied supersymmetric solutions of N = 5 guaged super-
gravity in four dimensions with SO(5) gauge group. For all scalars vanishing, the gauged
supergravity admits an N = 5 supersymmetric AdS4 vacuum dual to an N = 5 SCFT in
the form of CSM theory in three dimensions. We have shown a required projector which
turns out to be a condition reducing a number of supersymmetries and general form of
BPS equations. For holographic RG flows describing mass deformations of the N = 5
SCFT to non-conformal field theories in the IR, we have found analytic solutions preserv-
ing N = 5 supersymmetry, but the SO(5) R-symmetry is broken to SO(4) subgroup. This
is in agreement with the field theory result given in [13]. All of the IR singularities are
physical by the criterion given in [64]. Accordingly, these solutions could be useful in the
context of the AdS/CFT correspondence regarding the gravity dual of N = 5 CSM theory
in three dimensions. For SO(3) symmetric solutions perserving N = 2 supersymmetry, we
have given numerical flow solutions, but the IR singularities turn out to be unphysical.

For supersymmetric Janus solutions describing two-dimensional conformal defects within
the N = 5 SCFT, we have provided necessary projectors required for supersymmetric solu-
tions; one of the projectors accounts for the chirality of Killing spinors on defects while the
other reduces the number of supersymmetry. Similarly, BPS equations are also presented.
Furthermore, we have studied solutions with SO(4) and SO(3) symmetries and N = (4, 1)
and N = (1, 1) unbroken supersymmetries on the defects, respectively. The former can
be found analytically and turns out to be the same as the solutions in N = 8 and N = 3
gauged supergravities given in [44] and [65]. This might suggest some universal property of
the solution, and if this is indeed the case, there would be a universal surface defect in the
dual three-dimensional SCFTs with N = 3, 5, 8 supersymmetries. Further investigation
along this direction both in gauged supergravities and dual CSM theories might be worth
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considering. The N = (1, 1) solution with SO(3) symmetry appears to be new and can be
only obtained numerically. Both of these solutions could be interesting in the holographic
study of strongly coupled N = 5 SCFT in the presence of conformal defects.

We have also considered supersymmetric black holes in asymptotically AdS4 space with
SO(2)⇥SO(2) and SO(2) twists. We have started with an analysis for twist procedure and
ansatz for gauge fields. We then have considered projectors required for supersymmetric
solutions and obtained corresponding BPS equations. It turns out that only the case of
SO(2) twist leads to a supersymmetric black hole preserving two supercharges with the
horizon geometry AdS2⇥H2. In the dual N = 5 SCFT, the solution describes an RG flow
across dimensions from three-dimensional SCFT to superconformal quantum mechanics.
This could be used to compute microscopic entropy of the black hole. It is remarkable
that we have found the analytic solution with a running scalar unlike most of the previous
analytic solutions that only involve the metric. We accordingly hope our solution would
be of particular interest in black hole physics and AdS4/CFT3 correspondence.

It would be interesting to explicitly find an uplift of these solutions to M-theory via
an orbifold compactification suggested in [13]. The uplifted solution could give rise to a
complete holographic description of N = 5 CSM theory and possible deformations. In
particular, the time component g00 of the resulting eleven-dimensional metric can be used
to determine whether the aforementioned singular flow solutions are physically acceptable
in M-theory by the criterion given in [67]. In this work, we have only considered gauged
supergravity with the so-called electric SO(5) gauge group. It could also be interesting to
perform a similar study for other gauge groups such as non-compact and non-semisimple
ones. In addition, working out the complete embedding tensor formalism of N = 5 gauged
supergravity to incorporate magnetic and dyonic gaugings as initiated in [68] would be
useful in various applications.
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Appendix A

Di↵erential form and Vielbein

formalism

In this appendix, we will show several ingredients used in this senior project in the context
of di↵erential form which is a manifest concept that appeared in di↵erential geometry.
This includes the definition of a di↵erential form and their component expression, an
integration over manifold, and a functional variation by a di↵erential form. Furthermore,
we will discuss the vielbein formalism (or sometimes is known as Tretrad formalism) which
is used over and over in this senior project. These two topics are the vast topic containing
deep concepts and details; however, we will not go into that. For readers who are interested
in these topics in detail, there are several excellent General Relativity textbooks explaining
these topics, for example, [69].

We begin with the definition of di↵erential form. A di↵erential p-form is a totally anti-
symmetric tensor of type (0, p), i.e. a multi-linear map of p-dual vectors, where the vector
space of p-forms at a point x is denoted by ⇤p

x with dim⇤p
x = n!

p!(n�p)! .

We then define an outer product of a p-form and a q-form by the so-called wedge map
^ : ⇤p

x ⇥ ⇤q
x ! ⇤p+q

x . Therefore, we can use the wedge product to express any p-form in
terms of p basis one-form dxµ as

! =
1

p!
!µ1µ2...µpdx

µ1 ^ dxµ2 ^ ... ^ dxµp (A.1)

in which
!µ1µ2...µp = ![µ1µ2...µp]. (A.2)
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The prefactor 1
p! is introduced in order to set the weight of the components. This can be

exemplified by the gauge field strength in the case of pure magnetically black hole with
SO(2)⇥ SO(2) twist in which, provided the non-vanishing components to be F 12

✓� ,

F 12 =
1

2
F 12
µ⌫dx

µ ^ dx⌫

=
1

2

�
F 12
✓�d✓ ^ d�+ F 12

�✓d� ^ d✓
�

=
1

2

�
F 12
✓�d✓ ^ d�+ F 12

✓�d✓ ^ d�
�

= F 12
✓�d✓ ^ d� (A.3)

which verify that F 12
✓� = p1F (✓) in the equation (5.39).

Subsequently, we define an exterior derivative on a p-form to (p+1) form as d : ⇤p
x !

⇤p+1
x , i.e.

d! =
1

p!
@[µ!µ1µ2...µp]dx

µ ^ dxµ
1 ^ ... ^ dxµ

p

=
(p+ 1)

(p+ 1)!
@[µ!µ1µ2...µp]dx

µ ^ dxµ
1 ^ ... ^ dxµ

p (A.4)

such that, in component form,

(d!)µµ1...µp = (p+ 1)!µ1µ2...µp . (A.5)

It should be noted that, up to now, there is no need of a metric structure. An example of
this operator is the usual two-form field strength tensors written as a exterior derivative
of a one-form gauge field, namely

dF = A. (A.6)

Specifically, in the case of a pure magnetically black hole with SO(2)⇥SO(2) twist, given
a one-form gauge field A12 = �p1F 0(✓)d� results in

F 12 = dA12

= (1 + 1)@[µA⌫]dx
µ ^ dx⌫

= 2
1

2
(@µA⌫ � @⌫Aµ) dx

µ ^ dx⌫

= @✓(�p1F 0(✓))d✓ ^ d�

= �p1F (✓)d✓ ^ d�. (A.7)
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which precisely equation (5.39).

Next, we define the Hodge-star operator or sometimes known as Hodge duality. Given
Mn be an n-dimensional manifold. A Hodge-star operator is a operator taking a p-form
into (n-p)-form by the use of levi-civita tensor ✏µ1µ2...µn , generally written as ? : ⇤p

x ! ⇤n�p
x .

In particular, this operator takes of the following form

⇤!p =
1

p!(n� p)!
✏µ1µ2...µn�p

⌫1⌫2...⌫p!⌫1⌫2...⌫pdx
µ1 ^ ... ^ dxµn�p (A.8)

such that, in component form

(⇤!p)µ1µ2...µn�p =
1

p!
✏µ1µ2...µn�p

⌫1⌫2...⌫p!⌫1⌫2...⌫p . (A.9)

It can readily be seen that the existence of Hodge-star operator requires a metric struc-
ture on a manifold in order to raising and lowering the indices of the levi-civita tensor.
Furthermore, it should be noted that levi-civita tensor is not a usual levi-civita symbol
denoted by "µ1µ2...µn . The later does not transform as a tensor under global coordinate
transformations while the former does. The relation between these two objects is

✏µ1µ2...µn =
p
�g"µ1µ2...µn (A.10)

in which
p
�g =

p
� det g.

Let U ⇢ Mn be a subset arbitrary open region on manifold. we define the integral of
a p-form ! over the region U by

Z

U

! =

Z

U

!µ1µ2...µpdx
µ1 ^ dxµ2 ^ ... ^ dxµp

=

Z

 (U)

!µ1µ2...µpdx
µ1dxµ2 ...dxµp (A.11)

where  (U) denotes a chart over the region U . An example is given by an evaluation of
electric and magnetic charges, (5.27).

It turns out that, in the case of integral over manifold, we can write a famous form
of the integration by considering the integral of a Hodge-dual zero-form with an arbitrary
scalar function f , i.e.

Z

Mn

⇤If =

Z

Mn

f✏µ1µ2...µndx
µ1 ^ dxµ2 ^ ... ^ dxµn

=

Z

Mn

p
�gf"µ1µ2...µndx

µ1 ^ dxµ2 ^ ... ^ dxµn

=

Z

U(Mn)

p
�gfdnx (A.12)
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in which, in four-dimension,

"µ1µ2µ3µ4dx
µ1 ^ dxµ2 ^ dxµ3 ^ dxµ4 = dt ^ dx ^ dy ^ dz. (A.13)

We note here some properties involving the integration and Hodge-star operator:

⇤ (⇤!) = (�1)p(n�p)g!, (A.14)
Z
⇤! ^ ⌘ =

Z
⇤⌘ ^ ! for

n

2
� form !, ⌘. (A.15)

An example is given by the first term of gauge field Lagrangian introduced in (2.6). In
particular, this term can be written as

�1

4
Rij,kl ⇤ F ij ^ F kl = �1

4
Rij,kl ⇤ (⇤(⇤F ij ^ F kl))

= �1

4
Rij,kl ⇤ (✏µ⌫⇢�(

1

2
✏µ⌫

��F ij
��F

kl
⇢�)I)

= �
p
�g
8

Rij,klF
µ⌫ijF kl

µ⌫d
4x. (A.16)

In the case of identity matrix Rij,kl = �ij,kl, we find the standard Maxwell Lagrangian.

We finally give a comment of functional variation of a di↵erential form. This occur
in the vicinity of definition of dual field strength tensor Hij, (5.23). In order to find a
functional derivative of the action with respect to the gauge field strength F ij, we have to
use the property (A.15). For instance, given a 4-form Lagrangian

L = �1

4
Rij,kl ⇤ F ij ^ F kl, (A.17)

we find

�S =

Z
�1

4
Rij,kl

�
⇤�F ij ^ F kl + ⇤F ij ^ �F kl

�

=

Z
�1

4
Rij,kl

�
⇤F kl ^ �F ij + ⇤F ij ^ �F kl

�

=

Z
�1

2
Rij,kl ⇤ F kl ^ �F ij. (A.18)

where we have used the symmetric property, Rij,kl = Rkl,ij, to obtain the third line. Con-
sequently, we can identify

�S

�F ij
= �1

2
Rij,kl ⇤ F kl. (A.19)
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Next, we will give some aspects of vielbein formalism, and several practical examples are
presented. This topic, as similar to a di↵erential form, is a manifest mathematical branch
providing many insights in the language of di↵erential geometry. However, we will intro-
duce this rich structure in a simple and su�cient, though e↵ective, way in understanding
a calculation used in this senior project.

We first consider a metric tensor gµ⌫ defined over (3+1)-dimensional space-time. With
the symmetrical property of the metric, this object may be diagonalized by an orthogonal
transformation, i.e. (O�1)µa = Oa

µ and

gµ⌫ = Oa
µDabO

b
⌫ , (A.20)

with positive eigenvalues �a in Dab = diag(��0,�1,�2,�3). This construction allow us to
define the vielbein eaµ(x) as

eaµ(x) ⌘
p
�a(x)Oa

µ(x), (A.21)

such that
gµ⌫ = eaµ⌘abe

b
⌫ (A.22)

with ⌘ab being a flat space-time metric.

An advantage of using vielbein formalism is that, as we can see in the equation (A.22),
vielbein contain information related to the global coordinate transformation, indicated by
global indices µ, ⌫ = 0, 1, ..., 3, and bypass into the local coordinate transformation, namely
the local Lorentz transformation, indicated by the indices a, b = 0, 1, ..., 3 being local indices
(or sometimes known as Lorentz indices). Therefore, given a well-known object defined
over a flat space-time, e.g. Dirac spinor, we can find its globally counter-part living on the
curved space-time, such as the gamma matrices �µ = eµa�

a introduced in Appendix B.

Combine with the language of a di↵erential form, we can construct a specific basis
one-form in the space ⇤p

x as
ea ⌘ eaµdx

µ (A.23)

which are called local Lorentz basis of one-forms or vielbein one-forms.

Hence, components of p-form field written in the vielbein one-form are understood auto-
matically to transform under local Lorentz transformation in tensor rank-p representation.
For example, recall that a metric ansatz as AdS4 black hole is of the form

ds2 = �e2f(r)dt2 + dr2 + e2h(r)
�
d✓2 + F 2(✓)d�2

�
, (A.24)

we can readily find a complete set of one-form vielbein as follows

et̂ = efdt, er̂ = dr

e✓̂ = ehd✓, e�̂ = ehFd�. (A.25)
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Furthermore, a two-form gauge field strengths given in equation (5.39) can be written in
the local Lorentz basis as

F 12 = �p1F (✓)d✓ ^ d�

= �p1e�2h(ehd✓) ^ (ehF (✓)d�)

= �p1e�2he✓̂ ^ e�̂, (A.26)

such that F 12
✓̂�̂

= �p1e�2h. Another important example is the volume form used to con-

struct the integration; it can be written in the local Lorentz basis as

✏µ1µ2...µndx
µ1 ^ dxµ2 ^ ... ^ dxµn = ✏a1a2...andx

a1 ^ dxa2 ^ ... ^ dxan (A.27)

in which ✏a1a2...an is precisely the levi-civita symbol, i.e. ✏t̂r̂✓̂�̂ = 1. Thus, Hodge-star
operation is much simpler in the local Lorentz basis.

According to the Lorentz transformation rule,

e0aµ (x) = ⇤�1a
b(x)e

b
µ(x), (A.28)

we can see that the two-forms dea constructed by acting exterior derivative on vielbein
one-forms are not transform covariantly under the Lorentz transformation, i.e.

de0a = d(⇤�1a
be

b)

= ⇤�1a
bde

b + d⇤�1a
b ^ eb (A.29)

To cancel the second term which spoils the transformation property of two-forms, we intro-
duce a one-form named spin connection !a

b which transform under Lorentz transformation
as

!0a
b = ⇤�1a

cd⇤
c
b + ⇤�1a

c!
c
d⇤

d
b, (A.30)

such that we find two-form T a satisfying

T a ⌘ dea + !a
b ^ eb. (A.31)

The two-form T a is called the torsion two-form which indeed transform covariantly under
the Lorentz transformation, i.e. T 0a = ⇤�1a

bT b. The equation (A.31) is known as the first
Cartan structure equation.

It should be noted that the transformation rule of the spin connection (A.30) takes a
similar form as the gauge transformation of Yang-Mills gauge fields for the gauge group
SO(3, 1). Therefore, the spin connections are used as the gauge fields under gauging the
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Lorentz group. This is the reason why spin connections appeared in the supersymmetry
transformation rule.

In the absence of the torsion fields which is our case, we find the relation among the
spin connection and vielbein as

dea = eb ^ !a
b (A.32)

from which, provided a metric ansatz, we can identify the expressions of spin connection.
For instance, given a metric ansatz (A.24) and corresponding one-form vielbeins (A.25),
we consider the component along a = �̂,

de�̂ = et̂ ^ !�̂ t̂ + er̂ ^ !�̂r̂ + e✓̂ ^ !�̂✓̂
= efdt ^ !�̂ t̂ + dr ^ !�̂r̂ + ehd✓ ^ !�̂✓̂. (A.33)

Compared with the direct calculation by exterior derivative,

de�̂ = h0ehFdr ^ d�+ ehF 0d✓ ^ d�, (A.34)

we can identify that

!�̂r̂ = h0ehFd�, !�̂✓̂ = F 0d�, (A.35)

or, in the component form with the used of raising indices,

!�̂
�̂r̂ = h0, !�̂

�̂✓̂ =
F 0

F
e�h. (A.36)

62



Appendix B

�-Matrices Manipulation

In this appendix, we note some useful properties of �-matrices including examples used in
this senior project. However, we will not get into a rigorous structure of Cli↵ord algebra;
readers, who are interested in more detail, can find this topic in several standard textbooks.

We begin with the definition of �-matrices,

{�a, �b} = 2⌘ab (B.1)

where a, b label local space-time indices and ⌘ab denotes inverse of flat space-time metric,
⌘ = diag(�1, 1, 1, 1).

It should be emphasized that the connection between true �a and the one labeled by
global space-time indices �µ appearing in several times can be accomplished by contracting
with vielbein, i.e.

�µ = eµa�
a. (B.2)

With this, we can easily show that

{�µ, �⌫} = 2gµ⌫ . (B.3)

However, working with local space-time indices is usually more practical than the global
one.

Furthermore, we are also interested in the higher-rank gamma matrices which can be
defined as

�a1a2...an ⌘ �[a1�a2 ...�an] (B.4)

in which �a1a2...an is known as rank-n gamma matrix. An example of this is the rank-2
gamma matrices �ab which are also generators of the Lorentz group and mostly appeared

63



in the supersymmetry variation with non-vanishing gauge fields. In component form, we
can see that, for example of a1 = x and a2 = y,

�xy = �[x�y]

=
1

2
(�x�y � �y�x)

=
1

2
(�x�y + �x�y)

= �x�y (B.5)

and vanish when x = y. In the second line, we just substitute the definition of rank-2
gamma matrix, and then we use the Cli↵ord algebra to get the third line.

In particular, we can use the higher-rank gamma matrices to construct the complete
basis on the matrix space, i.e. a set of basis

� = {�a, �ab, �5�a, �5} (B.6)

span the space of matrix. However, we will not go into detail of this topic.

With the calculation given in (B.5), we can show that, for instance,

� t̂� t̂r̂�t̂ = � t̂� t̂� r̂�t̂
= �� r̂�t̂
= � r̂� t̂

= �� t̂r̂. (B.7)

This example shows how can we use the definition of rank-2 gamma matrix together with
the Cli↵ord algebra to compute the expression of the form � t̂� t̂r̂�t̂ which is an important
step to obtain the BPS equation coming from � i

t̂
in the presence of gauge field, for example

(5.18).
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[67] J. Maldacena and C. Nuñez, “Supergravity Description of Field Theories on Curved
Manifolds and a no GO Theorem,” International Journal of Modern Physics A, vol. 16,
pp. 822–855, Jan. 2001, hep-th/0007018.

[68] M. Trigiante, “Gauged supergravities,” Physics Reports, vol. 680, pp. 1–175, Mar.
2017, 1609.09745.

[69] R. M. Wald, General Relativity. University of Chicago Press, 1984.

70


	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (English)
	Acknowledgements
	Contents
	Chapter 1 Introduction
	Chapter 2 A Review of N = 5 GaugedSupergravity
	Chapter 3 Holographic RG flows
	Chapter 4 Supersymmetric Janus solutions
	Chapter 5 Supersymmetric AdS4 black holes
	Chapter 6 Conclusions and Discussions
	APPENDICES
	References



