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Chapter 1

Preliminaries

1.1 Background

Let f(x) be a polynomial with integer coefficients. We say that f(z) is intersective
if f(x) does not have any integer root but do have a root modulo m for all m € N.
This kind of polynomial provides a counterexample to the local-global principle.
Namely, there exists a polynomial in Z[z] which has a root locally modulo m for all
m € N but does not have a globally root in Z. It follows Brandl et al. [2] that f(z)
cannot be irreducible over Q since in this case there must be a prime p for which
f(z) = 0 (mod p) is insolvable. Consequently, an intersective polynomial has at
least two irreducible factors over Q. Hyde et al. [3] gave a characterization for a
cubic free n such that (3 — n)(z? + 3) is an intersective polynomial by using only
elementary number-theoretic techniques available in undergraduate course. Their

main result is as follows.

Theorem 1. Let n be a cubic free integer. Then f(z) = (23 —n)(2?+3) is intersective
if and only if n is congruent to 9% + 1 and every prime factor of n is congruent to 1

modulo 3.

We next discuss some of Hyde’s tools. Let p be an odd prime, a,b and ¢ be
integers, and ( ) be the Legendre symbol defined by

*
p

)
1, if pta, and 2% = a (mod p) is solvable,

a
(5) =93 -1, ifpfa, and 2? =a (mod p) is insolvable,

0, ifp|a.
\



To determine the Legendre symbol, we usually use:

Proposition 2. (Quadratic reciprocity law) If p and ¢ are distinct positive odd primes,

() -

Proposition 3. Let p be a positive odd prime. Then

then

(

1, if p=1 (mod 3),
-3
<?) =4 -1, ifp=2(mod 3),
0, if p=3.

\

Proof. Let p be a positive odd prime. If p = 3, then (%) = 0. Now we assume that
p # 3. By Proposition 2

() =G)G) - =G = (5)

Then (2> —1ifp=1 (mod 3) and (g) — 1ifp=2 (mod 3). O

3

Let m and n be positive integers and a an integer such that ged(a,m) = 1. We
say that a is an n—th power residue m if the congruence ™ = a (mod m) is solvable.
To determine if a is an n-th power residue modulo m, we use the next elementary

proposition in basic number theory.

Proposition 4. Suppose m is a number having primitive roots and let a € Z be such
that ged(a,m) = 1 and n € N. Then a is an n-th power residue of m if and only if

#(m)

a~da =1 (mod m) where d = ged(n, ¢p(m)).

Finally, to lift our solutions modulo p’ to solution modulo p’*™! where j € N and

p is a prime, we must use the following Hensel’s lemma.

Lemma 5. (Hensel’s Lemma) Let f(z) € Z[z]. Let p be a prime and let r be a
solution of the congruence f(x) = 0 (mod p). If p does not divide f'(r), then the

congruence f(z) = 0 (mod p*) is solvable for all k € N.

We also need another refined version of Hensel’s lemma presented with proof

as follows.



Lemma 6. (Refined Hensel’s Lemma) Let f(x) € Z[z] and j € N. Suppose that there
isan a € Z such that f(a) = 0 (mod p?), p"|| f'(a) and j > 27+ 1. If b = a (mod p'~7),
then f(b) = f(a) (mod p’) and p7||f'(b). Moreover, there is a unique ¢t modulo p
such that f(a +tp/~*) = 0 (mod p?*1). Therefore, f(z) = 0 (mod p*) is solvable for
all k e N.

Proof. We begin with the Taylor’s expansion of f(b)

f(b) = fla+tp’™7) = fa) +tp"" f'(a) (mod p¥~*).

Here the modulus is divisible by p’™!, because 2j — 27 = j+ (j —27) > j+ 1. Hence,

fla+tp'™") = f(a) +tp’ 7 f(a) (mod p/™).

Since both terms on the right hand side are divisible by p/, the term on the left side
is divisible by p/. When we divide through by p’ we find

flattp™) _ fla) P ) _ @) f@
v P v v P’

Since the coefficient t is relatively prime to p so there is a unique ¢t modulo p for

(mod p).

which the right side is divisible by p. To finish the proof, we note that f/(z) is a

polynomial with integer coefficients so that
flla+tp’™ ™) = f'(a) (mod p’™7)

for any integer t. But j — 7 > 7+ 1, so this congruence holds modulo p™*!. Since p”

exactly divides f’(a), we conclude that p™ exactly divides f(a + tp/~7). ]

1.2 Objective

Hyde et al. [2] gave an infinitely family of polynomials that are intersective and used
only techniques available in an undergraduate course in number theory. Hence,
we are interesting in intersective polynomials of the form (z® — n)(z? + 3!) and
(23 — n)(z* + 3m?) where ¢ and m are positive integers.

In the next chapter, we provides some lemmas in order to prove our main results
in Section 2.1 and present our main results in Section 2.2. We find necessary and
sufficient conditions for intersective polynomials of these forms. This allows us to

determine two infinite families of intersective polynomials.



Chapter 2

Main Results

In this chapter, we present our main results on intersective polynomials. We study
polynomials of the form (z® —n)(2? + 3!) and (2® — n)(z* + 3m?) where n is a cubic
free positive integer and ¢t and m are positive integers. We obtain a characterization of
n such that these polynomials are intersective similar to Hyde’s. We begin with some

lemmas in the first section and we prove our main theorems in the later section.

2.1 Some lemmas

We collect some lemmas that will be repeatedly used in the proof of our main results
in this section. We also list some remarks in the following two lemmas. Their proofs

are elementary.

Lemma 7. Let n be a positive integer and let p be a prime. If every prime factor of

n is congruent to 1 modulo p, then n =1 (mod p).

Proof. Assume that every prime factor of n is congruent to 1 modulo p. Let py, pa, ..., ps
be the prime factors of n. Then for each i € {1,2,...,t}, p; = 1+ k;p for some integer
k;. Thus,

t

n = H(l + kp)* =1 (mod p)

=1

for some ay,as,...,a; € N. []

Lemma 8. Let g(x),h(z) € Z[z], and p a prime. If g(z)h(z) is intersective and
g(z) = 0 (mod p*) does not have a solution for some k € N, then h(x) = 0 (mod p')

has a solution for all [ € N.



Proof. Suppose that g(z) = 0 (mod p*) and h(x) = 0 (mod p') are insolvable for
some k,l € N. Since g(z)h(z) is intersective, so g(z)h(x) = 0 (mod p**!) must have
a solution, say w. By the assumption, p* { g(w) and p' t h(w), so p*™ t g(w)h(w), a

contradiction. L]

2.2 Intersective polynomials

In this section, we will prove our main results which are similar to Hyde’s. We remark
that the Chinese remainder theorem allows us to work only on the existence of

solutions modulo every prime power instead.

Theorem 9. Let n be a cubic free integer greater than 1 and ¢ an odd positive
integer. Then the polynomial f(z) = (2% — n)(2? + 3) is intersective if and only if

n =1 (mod 9) and every prime factor of n is congruent to 1 modulo 3.

Proof. Assume that n = 1 (mod 9) and every prime factor of n is congruent to 1
modulo 3. Let p be a prime. We consider three cases: p = 1 (mod 3), p = 2 (mod 3)

and p = 3, respectively.

Case 1. p = 1 (mod 3). So the Legendre symbol (‘73> is 1. Since ¢ is an odd
positive integer, we have (%) = (%) <‘?3) = 1. It follows that the congruence
2?2 + 3" = 0 (mod p) has a solution, say u. Since p t 3, p { u. Therefore, p  2u and
2u = ¢'(u) where g(z) = 2? + 3'. By Hensel’s lemma, 22 + 3" = 0 (mod p*) has a

solution for all kK € N.

Case 2. p =2 (mod 3). Since every prime factor of n is congruent to 1 modulo 3, p 1 n,
so n?~! = 1 (mod p) by Fermat’s little theorem. By Proposition 4, the congruence
23 —n =0 (mod p) has a solution, say v. Since pfn, ptv. Also p13, so pt3v?and
3v? is the derivative of 2% — n at x = v. By Hensel’s lemma, z° — n = 0 (mod p*)

has a solution for all £ € N.

Case 3. p = 3. Since n = 1 (mod 9), we have n = 1,10,27 (mod 3%). Note that
13 = 1,43 = 10,7 = 19 modulo 33, so 2* = n (mod 3%) is solvable. Moreover,
the derivative of 2® — n, which is 322, evaluated at 1,4, and 7 equals 3,12, and 21,

respectively and is divisible by 3 and not divisble by other powers of 3 in all cases.



So we apply the refined Hensel’s lemma with 57 = 3,7 = 1, and conclude that
23 —n =0 (mod 3%) is solvable for all k € N. Then, f(x) = 0 (mod p?) is solvable
for all primes p and j € N.

Hence, by th Chinese remainder theorem, f(z) = 0 (mod m) is solvable for each

m € N. This establishes the intersective property of f(x).

Conversely, suppose that f(z) = (23 —n)(x*+3") is intersective. Let p be a prime
such that p | n. We will prove that f(z) cannot be intersective when p = 2 (mod 3)

and p = 3. So, we can conclude that p = 1 (mod 3).

Case 1. p = 2 (mod 3) We show that 22 4+ 3" = 0 (mod p°) is insolvable for some
¢ € N. Since t is an odd positive integer, t = 2s + 1 for some s € NU {0}. Then
3t = 3%%1 = 3 (mod 23). Note that all squares modulo 8 are 0,1 and 4. Thus,
2?2 + 3! = 0 (mod 23) does not have a solution. Next, we assume that p # 2. So
(_?3) = —1. Since t is an odd positive integer, we have (‘%t) = —1,s0 22 + 3t =
0 (mod p) does not have a solution. Hence, 22 + 3" = 0 (mod p°) is insolvable for
some ¢ € N. By Lemma 8, 2° — n = 0 (mod p*) has a solution for all k¥ € N, so
23 —n =0 (mod p?) has a solution, say v. Since p | n, we have p | v. It follows that

p | v3, and so p? | n which contradicts n is a cubic free integer.

Case 2. p = 3. Suppose that z% 4+ 3" = 0 (mod 3'™') has a solution, say w. Then
3t | w? so w? = h -3 for some h € N. Since 3 | w, we let w = 3°M for some
a,M € Nand 3¢ M. Then w? = 32¢M?. Since 3 1 M, 2a is the highest power of
3 that divides w?. We will show that 3 | h. If 3 h, then ¢ is the highest power of
3 that divides w?, so t = 2a which is impossible where t is an odd positive integer.
Thus, 3 | h. Since w? = h - 3% 3! | w? But 3" | w? + 3¢, so 3! | 3t which is a

contradiction. Hence, z% + 3! = 0 (mod 3*!) does not have a solution.

Assume that 23 — n = 0 (mod 3%) does not have a solutions for some k € N.
It follows by Lemma 8 that f(z) = (2% — n)(2? + 3') = 0 (mod 3*"*1) does not
have a solutions which is a contradiction because f(z) is intersective. Thus, z° —n =
0 (mod 3*) has a solution for all K € N. So 2 —n = 0 (mod 3?) has a solution, say
z. Then 3 | z because 3 | n, then 33 | 23, i.e. 3% | n which is impossible because n is

a cubic free integer.



Thus, every prime factor of n is congruent to 1 modulo 3, by Lemma 7, n =
1 (mod 3). Since ? + 3" = 0 (mod 3'™!) is insolvable, by Lemma 8, f(z) = (z* —
n)(z? 4+ 3') = 0 (mod 3*+*+1) does not have a solution which contradicts the fact
that f(z) is intersective. Thus, 23 —n = 0 (mod 3*) is solvable for all k € N, so the
congruence z® —n = 0 (mod 32) must have a solution. Since the cubes modulo 9 are
lor8 n=1,8(mod9).Ifn=8 (mod9), we have n = 2 (mod 3) which contradicts

the previous calculation. Hence, n = 1 (mod 9). ]

Theorem 10. Let n be a cubic free integer greater than 1 and m an integer. Then
the polynomial f(x) = (z* —n)(2? 4+ 3m?) is intersective if and only if n = 1 (mod 9)

and every prime factor of n is congruent to 1 modulo 3.

Proof. Assume that n = 1 (mod 9) and every prime factor of n is is congruent to 1
modulo 3. Let p be a prime. We consider three cases: p = 1 (mod 3), p = 2 (mod 3)
and p = 3.

Case 1. p=1 (mod 3). If p{ m,p{ —3m?. Then the Legendre symbol (%’M) =1
It follows that 22 + 3m? = 0 (mod p) has a soltution, say u. Since p { 3, we have
p 1t u. Thus, p t 2u and ¢'(u) = 2u where g(z) = z? + 3m?2. By Hensel’s lemma,
22+ 3m? = 0 (mod p*) has a solution for all k € N. Next, we assume that p | m and
write m = p"s for some r € N, s € Z and p 1 s. Then (%) =1,sothereisaz € Z
such that z2 + 3s®> = 0 (mod p). Let zg = p"z. Then z2 + 3m? = p?"(2* + 3s%) =
0 (mod p* ). Since p"||2zy and 2z is the derivative of 22 + 3m? at x = zy, by
applying the refined Hensel’s lemma with 7 = 2r + 1 and 7 = r, we can conclude

that 22 + 3m? = 0 (mod p*) has a solution for all k¥ € N.

Case 2. p =2 (mod 3). Since every prime factor of n is congruent 1 modulo 3, p 1 n,
sonP~! =1 (mod p) by Fermat’s little theorem. By Proposition 4, 2% —n = 0 (mod p)
has a solution, say v. Since ptn, ptv. Also pt 3, so pt3v?, and 3v? is the derivative
of 23 — n at z = v. By Hensel’s lemma, the 23 — n = 0 (mod p*) has a solution for

all k e N.

Case 3. p = 3. Since n = 1 (mod 9), we have n = 1,10,19 (mod 3?). Note that
13 = 1,43 = 10,7% = 19 modulo 33, so 2* = n (mod 3%) is solvable. Moreover,

the derivative of 2* — n, which is 32?2, evaluated at 1,4, and 7 equals 3,12, and 21,



respectively and divisible by 3 and not divisible by other powers of 3 in all cases.
So we apply the refined Hensel’s lemma with j = 3 and 7 = 1, we conclude that
23 —n = 0 (mod 3%) is solvable for all k € N. Then, f(x) = 0 (mod p?) is solvable
for all primes pand j € N.

Hence, by the Chinese remainder theorem, f(z) = 0 (mod m’) is solvable for

each m’ € N. This establishes the intersective property of f(x).

Conversely, suppose that f(z) = (2% — n)(z? + 3m?) is intersective. Let p be a

prime such that p | n. We will prove that f(z) cannot be intersective when p =

2 (mod 3) and p = 3. So, we can conclude that p = 1 (mod 3).

Case 1. p = 2 (mod 3). We claim that z% + 3m? = 0 (mod p°) is insolvable for
some ¢ € N. Let m = 2'K for some t € NU {0}, K € N and K odd. Suppose
that 22 + 3m? = 0 (mod 2%*3) has a solution, say z;. Then 22 + 3m? = 0 (mod 2¢)
and 22 = 0 (mod 2%). Let x; = 2% for some d,e € N and e¢ odd. Then 2%¢? =
2?2 = 0 (mod 2%), so d > t. Observe that 0 = 22 + 3m? = 2%e? + 3. 22K? =
221((297e)? 4+ 3K?) (mod 2%+3). Thus, (2¢7%¢)? + 3K? = 0 (mod 8). Since K is odd,
K? =1 (mod 8), so 0 = (2¢7%?) + 3K? = (2%7%?) + 3 (mod 8). It follows that
r?+3 = 0 (mod 8) is solvable which is impossible because all squares modulo 8 are
0,1 and 4.

Now, we assume that p # 2. Then (*73) = —1,s50 22+ 3 = 0 (mod p) is
insolvable. If p { m, then <%j”2> = —1, 50 22+ 3m? = 0 (mod p) is insolvable. Next,
we suppose that p | m and write m = p/i for some f € N,i € Z and p { 4. Assume
that 22 + 3m? = 0 (mod p?>/*!) has a solution, say zy. Then p | x5, s0 25 = p®f
for some a € N, 3 € Z and p { 3. It follows that 0 = 22 + 3m? = p**p3% + 3p?/i? =
P ((p*~78)% + 3i2) (mod p**1), so (p®~/B)? + 3i> = 0 (mod p). Since p {4, —3 is
a square modulo p which is a contradiction. Hence, we have the claim. By Lemma
8, 3 —n = 0 (mod p¥) is solvable for all k € N. Also 3 —n = 0 (mod p?) has a
solution, say g. Then p | g, so p* | ¢°. It follows that p?® | n which contradicts n is a

cubic free integer.

Case 2. p = 3. Let m = 3"s; for some r; € NU{0}, s, € Z and 3 1 s1. We will claim
that 22+3m? = 0 (mod 321*2) is insolvable. Suppose that 22 +3m? = 0 (mod 3271+2)



has a solution, say w. Then 3 | w,w = 3°*d; for some e; € N,d; € Z and 31 d;. It
follows that 0 = w?+3m? = 3%1d2 +3*1 153 = 3241¢2 (mod 32"**1), 50 2r; +1 < 2e.
Since 2r; + 1 is odd, 2r; + 2 < 2e;. Thus, 0 = w? + 3m? = 32142 + 321+l =
3211t1g2 (mod 3*112) s = 0 (mod 3) which contradicts because 3 { s;. Hence, we
have the claim. By Lemma 8, * — n = 0 (mod 3¥) is solvable for all k£ € N. Also
23 —n = 0 (mod 3%) has a solution, say ¢’. Then 3 | ¢, so 3% | (¢)3. It follows that
3% | n which contradicts n is a cubic free integer.

Therefore, every prime factor of n must be congruent to 1 modulo 3, by Lemma
7, we can conclude that n = 1 (mod 3). Since the cubes modulo 9are 1 or8 n=1
or 8 (mod9). If n =8 (mod 9), we have n = 2 (mod 3) which contradicts the

previous calculation. Hence, n = 1 (mod 9). []
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Academic Year 2019
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Project Advisor Professor Dr. Yotsanan Meemark
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Mathematics, Department of Mathematics and
Computer Science, Faculty of Science,
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Background, Rationale and Scope

A polynomial f(z) in Z[z] is intersective if f (x) does not have an integer root but do
have a root modulo m for all positive integers m. Intersective polynomials provide
an example of a Van der Corput set [2]. Berend and Bilu [1] gave a criterion to decide
if the polynomial f(z) € Z[x] has a root modulo every positive integer by using the
Galois group of f(x) .They applied their results to show that f(z) = (z* — 19)(z* +
x+ 1) has a root modulo m for every positive integer m. Their proof involved Galois
theory, and some results from algebraic number theory, namely, discriminant and
resultant.

Later, Hyde et al. [3] used only Hensel’s lemma in elementary number theory

to gave a characterization for a cubic free positive integer n such that (23 —n) (2?4 3)
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is an intersective polynomial. Their main theorem is as follows.

Theorem. Let n be a cubic free. Then f(z) = (x* — n)(z* + 3) is intersective if and

only if nis of the form 9k +1 and every prime factor of n is congruent to 1 modulo 3.

This provides an infinite family of intersective polynomials.

In this project, we plan to use elementary number theory to determine other
infinite families of intersective polynomials. For example, we study the polynomials
of the form (z* — n)(2* + 3') and (2® — n)(z* + 3m?) where n is a cubic free positive
integer and ¢, m are positive integers. We wish to obtain some characterizations

similar to Hyde’s.

Objectives

To determine families of intersective polynomials of the forms (2 — n)(z? + 3') and
(3 — n)(z* + 3m?) where n is a cubic free positive integer and ¢, m are positive

integers.

Project Activities

1. Review some background in number theory on polynomials modulo m.
2. Study intersective polynomials from [1], [2] and [3].

3. Find conditions on n,t and m such that the polynomials (x* — n)(z? + 3') and

(23 — n)(2* + 3m?) are intersective.

4. Write the report.



Duration

13

Procedue

August 2019 — April 2020

1.Review some  back-
ground in number theory
on polynomials modulo

m.

Nov. | Dec. | Jan. | Feb.

2.Study intersective poly-

nomials from [1],[2] and

[3].

3.Find conditions on n,t
and m such that the poly-
nomials (3 — n)(z? + 3%)
and (23 —n)(x?+3m?) are

intersective.

4 Write the report.

Benefits

Obtain some characterizations of n,t and m such that the polynomials (2% —n)(z?* +

3t and (2% — n)(2? + 3m?) are intersective.

Equipments
1. Computer
2. Paper
3. Printer

4. Stationery
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