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Abstract 

Systems-investigation of aberrant signaling in immune cells of SLE mouse model" 

~ a' l.q 1 d ~fQ.lQ,lcSd 

~~fW1HHl !l~:;::~ ,m"~lJflJUJ1'Wm~'Utl~ ~~flttl~Utl~tl Stimulator of interferon genes (Sting) !lJ'W~J~'U~W'W!tl 

Autoimmune diseases occur when the immune cells react against self-antigens and subsequently lead 

to inflammation in the tissues. The interactions between genetics and environmental triggers regulate the 

phenotypes and outcome of the diseases. Type I interferon has been shown as one of the most crucial cytokines 

involving in the pathogenesis of autoimmune diseases such as systemic lupus erythematosus (SLE) and 



rheumatoid arthritis (RA). SLE is a chronic systemic autoimmune disease which can result in autoantibody 

production and fatal glomerulonephritis. Activation via nucleic acid sensors can induce the production of type 

I interferon from dendritic cells and promote SLE severity. Stimulator of interferon genes (Sting) is a 

cytoplasmic DNA sensor that signals downstream to enhance type I interferon production after its activation. 

Recently, it was shown that a gain mutation in the STING gene resulting in over-activity of the IFN pathway 

can cause familial inflammatory syndrome with lupus-like manifestations in humans. However, the functional 

studies of Sting in different autoimmune mouse models suggest the conflicting roles of Sting in the pathogenesis 

of autoimmune diseases. In order to determine if Sting participates in lupus pathogenesis, the Fcgr2b-deficienct 

mice (lupus mouse model) were bred with Sting-deficient mice to create the double-deficient mice. In the 

absence of Sting, the Fcgr2b-deficient mice do not develop fatal glomerulonephritis and autoantibodies. The 

original knowledge from this study is a proof of concept for targeting Sting as a future promising treatment in 

autoimmune diseases. 

Fc gamma receptor lIb deficient mice, a Systemic Lupus Erythematosus mouse model, susceptible to 

cecal ligation and puncture sepsis after preconditioned with double separated doses of endotoxin due to 

the prominent macrophage exhaustion 



" Q.td, gJ"IVQ,I 
fl'.i~'Y1'(;H)~ !'lJl ~~fl'Um1~ macrophage paralysis 

Q..I ~ Q.I 0' I ~ 3J
~~'U'U immune-exhaustion lmY~J'YI~~tl~'Ul"~!fl~"lfl macrophage paralysis N~f11'j'YI~~tl~Uff~~''H 

iI '" "I "" 'I iI.'1 1 '" '" 'I ~I ....FcGRIIb f11'jfl'U'H1mllJN~lJfl~'lJtl~ FcGRIIb ~'U~lJJEJ 'jflltlffUtl~tlm""~lJ'U'Y1'U1'Y1 t'Uf11'j!Hl'j~J~U~~ 

Repeated bacterial infection in patients with Systemic Lupus Erythematosus (SLE) is common and 

sepsis is the leading causes of death. Despite proper responses to a single bacterial infection, the repeated 

infection might lead to immune exhaustion and severe sepsis. Then the bacterial susceptibility was tested with 

cecal ligation and puncture (CLP) after immune exhaustion induced by the 2-separated-doses of endotoxin 

(LPS) in FcGRIlb-/- mice and wild type (WT) control. 

In the comparison with wild type group, the prominent serum cytokine after 1 st LPS injection followed 

by the apparently lower cytokines after 2nd LPS administration, cytokine exhaustion, was demonstrated in 

FcGRllb-l- mice. Subsequently, CLP was conducted after double doses of LPS preconditioning to test the 



immune suppressIOn. Indeed, a higher mortality rate and a more severe sepsis (bacterial burdens, serum 

cytokines and organs injury) at 18h of CLP demonstrated in FcGRIIb-/- mice. Because macrophages are the 

major immune cells responsible for sepsis immune responses, we tested in vitro. Interestingly, the stimulation 

with separated 2 doses of LPS in bone marrow-derived macrophage from FcGRIlb-/- mice showed the higher 

cytokines responses after the 1
st 

LPS stimulation in comparison with WT cells but the cytokines level were 

lower than WT cells after the 2
nd 

LPS stimulation, supplementary to the in vivo results. 

In conclusion, macrophage exhaustion was easier inducible in FcGRIlb-/- cells in parallel to the 

immune paralysis, highly susceptible to CLP, in FcGRIlb-/- mice compare with wild type group. These implied 

the importance of the repeated infections in patients with SLE, especially with FcGRIlb polymorphisms. 
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CHAPTER II 

Investigation of aberrant signaling in immune cells of SLE mouse model 

Introduction 

"" .1 ""1 0' 0' & ~I 1'lI "" '1 ~ h1 10 'lI .'fr;..j~lJfWl ~tJ!'i!'Wl~ B lG)f&'nHl~~ macrophage lG)f~~ G)f\lllJ'Wr;..j~'Yll mf)~ t':ifl autoimmune 'IJ'W t~ (I) 'W'l1\1~lJff 

d '1 1 'lI d '" 'lI.'1 ' 1 d d 'lI <iFcgr2b-/- 'il~1Jtllf)1':iUff~\I'lJtl\l t':ifl f)~lflfJ\lf)iJJ:.;!lJ1fJ SLE tlfJl\l1J1f) (1) U~~ 'W'l1\1 Fcgr2b-/- 'Yl1Jtll~'WtlfJf) 

&YllJ1':i\l i'il 1 'lflfl ~ tllf)1':i l'l1 iJ tllJ ntll ':i fl Rheumatoid arthritis 1~fJf)1':i Q~ collagen (collagen-induced arthritis) 

'1 d - <u h1 'lid" 1 0'9 0 "" <u ...t d ~ h1 "" 
SLE U~~ Rheumatoid arthritis t~fJ'Ylr:l1'ilfJW\l t~1JlJ':i~ffiJf)1':iW t'Wf)1':i'Yll\ll'W1'ilm'Wtl'Yl'il~fl'f)EJ1f)~ tf)m':i!f)~ 

. .­
hfl1'W'l1\1 Fcgr2b-/-lJlUtl1 1~fJ'WiJl1 interleukin-17 signaling pathway iJfl111JrllflqJl?1tli'lf)nlfl~ lupus 

nephritis 1'U'l1\1~1Tff Fcgr2b-/- (5) U~~l?1tlf)1':ilfl~ rheumatoid arthritis 1'W lm~~ collagen-induced arthritis 1'W 

" , 
'l1\1 Fcgr2b-/- 195'W n'W (6) 'W tl f) 'illf)U!':iltJ\lffllJ1':i\l 1i''l1\1 ~1Tff Fcgr2b-/- 1 'W f)n11ltJ!-Wtl~mn f)~ If)f)n!fl~ !':ifl 
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9J .d. J I I d iI - iI c:i d
'Wf)fHJ1fl TLRs mn, f11 'j!'WlJlJlfl'U'W'Uf)~ RNA-sensing 1lJt(1fJ(1f)(I1WlfW MDA5 flmlJl'Ji:lm:;;\9j'Whrl1\j'lltllu 

"" "". 1 )j II] "' • II] cl ~I d "' 
tW'W~iJf)~\9lf) DNA-sensing lJmfJ(1 IFII6, !'lff) rJ'Jff HHV8 U~:;; CMV (14-16) mJ1~ !'Jf1~lmlJ'W'Vl'Vl'JliJfl'W 

I ,.,,, it 

UllJlC)}~f111m.,j'1l'iJ IU fl~ iflfll'J!n~1 'JflU 1~ .,j'm.!~uemnjl 'tJ~f111lJ~.uU ~~IU f11'J~\PlJU l1f1Ciiui'mnhflIU 

'VlHltJ'J~u adaptor~t1t1fl11 STING (Stimulator of interferon genes) (18-20) UeJfl'illfl~ STING cr~t~U 

http:tJ~f111lJ~.uU
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Materials and Methods 

Animal and animal models 

Fcgr2b-/- mice on C57BLl6 background were provided by Bolland S. (NIH, Maryland, USA). Sting­

/- mice were provided by Paludan (Aarhus University, Aarhus, Denmark). Wild type mice were purchased 

from the National Laboratory Animal Center, Nakompathom, Thailand. The Fcgr2b-/- mice were bred with 

Sting-/- mice to create double deficient mice and their littermate controls. The animal protocols were 

approved by Faculty of Medicine, Chulalongkom University followed the National Institutes of Health (NIH) 

criteria. 

Survival study 

The double deficient mice will be aged and observed the survival rates compared to their littermates. 

If the mice can survive up to 12 months, the mice will be euthanized to collect the tissues (kidney, spleen, 

bone marrow, and sera) for further analysis. 

Flow cytometry analysis 

The collected spleens were harvested and incubated with collagenase D at 37 c for 30 minutes to isolate 

splenocyte. The splenocytes were stained with flow antibody. The flow cytometry analysis was performed 

using BD LSR-II and FlowJo software. The dead cells were excluded from the analysis. 

Autoantibody testing 

The collected sera of the mice at the age of 6 months were tested for anti-nuclear antibody (Hep-2 

cells; immunofluorescence) and anti-dsDNA (ELISA). The sera were diluted into different dilution factors. 
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Histopathology 

The kidneys were fixed in 4%paraformaldehyde and subsequently were stained with H&E and PAS. 

The pathology grading will be blinded analysis by the experience nephrologist. 

Real-time peR 

The RNA from kidneys was isolated usmg Trizol. The DNase-treated RNA was purified using 

RNeasy isolation kit. The conversion of RNA to cDNA using iScript RT Supermix (Biorad) was performed . 

The gene expression profiles were tested using SsoAdvanced Universal SYBR Green Supermix. The 

sequences of primers tested are followed: 

Statistical analysis 

Significant difference of survival rates is tested by Log-rank test. The comparison between groups is 

examined by T -test. 
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Results 

Increase of survival rates of the Fcgr2b-deficient mice in the absence of Sting 

The Fcgr2b-deficient mice start to die at the age of 6 months and the survival rates drop to 22 .2% by 

12 month old while the survival rates of double deficient mice are 77.7% (p<O.OO 1). The effect of one allele of 

Sting to survival rates of Fcgr2b-deficient mice does not show significant difference (p=O.6) (Figure I). 

Survival Curve 

1.0 
R2(ko) 

R2(ko)Sting(het)co 0.8 
.~ R2(ko)Sting (mut) >... 
:::I 0.6 
(/j 

I: 
0 0.4+=i 
(,,) 
ns... 

u.. 0.2 

0.0 
0 1 2 3 4 	 5 6 7 8 9 10 11 12 


Months 


Figure 1 Increase of survival rates of the Fcgr2b-deficient mice in the absence of Sting 

The survival of the mice was observed until 12 month old. The absence of Sting increase survival of 

Fcgr2b-/- mice (p<O.OOI , N=9 per group). 



7 

• 

Sting deficiency diminishes fatal glomerulonephritis in the Fcgr2b-deficient mice 

The kidney staining of Fcgr2b-deficient mice shows inflammatory cell infiltrations, enlarged 

glomeruli and crescentic glomeruli . In the absence of Sting, the Fcgr2b-deficient mice do not develop 

glomerulonephritis (Figure 2). 

'NT Fcgdh -1- F cgrlh -: 
: 
-.S:ing -:-

I 

- ~ -- -

" . 

• . 
, t"" ~ .... ... 

~• . -,i ) 

Figure 2 Sting deficiency diminishes fatal glomerulonephritis in the Fcgr2b-deficient mice 

Decrease autoantibody production in the double deficient mice 

Antinuclear antibody (ANA) and anti-dsDNA production decreases in the Sting and Fcgr2b double 

deficient mice (Figure 3A, 3B). 
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A wr Fcgr2b -/- Fcgr2b -/- .Sting -/­

B 
• AnthlsDNA Antibudies 

0.45 0.39875 

0.4 

0.35 

0.26475 
0 .3 

o2S 
O.ISI 

0 .2 

0.1 5 

0 .1 
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Figure 3 Decrease autoantibody production in the double deficient mice 

• 
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The sera of the mice were collected at the age of 6 months to test for antinuclear antibody (Figure 3A, 

representative of mice (N=3/group) and anti-dsDNA (Figure 38, N=6/group, p<O.O I) .. 

Decrease CXCLIO expression in the kidneys of the double deficient mice 

Sting-mediated signaling induces type I interferon production and leads to the increase of interferon 

inducible gene expression. We determined whether the interferon signature genes in the kidneys will diminish 

in the Fcgr2b-double deficient mice. Surprisingly, only CXCLI 0 expression was decreased in the double-

deficient mice compared to Fcgr2b-deficient mice, but the MX I, ISG 15 and IFNU expression were increased 

(Figure 4). 

7 ~----------------------------------------------

6 +-------------------~--------------------------

4 +-------------------i ~':l,i-----------

.WT 

3 • 	 RlKO 

R2KO,StingKO 
2 +---------------­

o 

CXCLIO Mxl ISG15 IFN 
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Figure 4 Decrease CXCL 10 expressions in the kidneys of the double deficient mice 

Interferon inducible gene expression was tested from the kidneys of wild type, Fcgr2b-/-, and Fcgr2b-/-Sting­

/- mice. Only CXCLl 0 mRNA expression was reduced in the group of double-deficient mice compared to 

Fcgr2b-deficient mice (N=5/group, p<O.OI). 

Discussion 

The data from this study confirm the hypothesis that Sting-mediated signaling participates in the 

pathogenesis of the Fcgr2b-deficient mice. The blocking Sting pathway may alleviate lupus phenotypes and 

probably be worth to develop therapeutic drug target. Unexpectedly, most of the interferon-inducible gene 

expressions do not decrease, except CXCLlO. Contrary, the increase expression of Mxl and IFNU suggests 

the interferon-independent mechanisms of Sting signaling in lupus development of Fcgr2b-deficient mice. 

This intriguing effect of Sting signaling is worth to explore in details to better understand the immunological 

mechanisms of Sting in autoimmune development and other inflammatory diseases. 
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In order to understand the immunological importance of Sting in lupus Fcgr2b-deficient mice, the 

flow cytometry will be analyzed from the splenocytes of affected mice and their controls. Furthermore, the in 

vitro culture of bone-marrow derived dendritic cells with Sting ligands will be performed and tested for the 

differentiation, activation stage and cytokine production. In addition, the proteomic analysis of kidney tissue 

from these mice will be performed to discover the new unbiased Sting-signaling pathway. 

The translational knowledge from this study will lead to design therapeutic drug for SLE patients. 
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CHAPTER III 


Fc gamma receptor lIb deficient mice, a Systemic Lupus Erythematosus mouse model, susceptible to 

cecal ligation and puncture sepsis after preconditioned with double separated doses of endotoxin due to 

the prominent macrophage 

"'11 'Jj'YIvHHI.;jhHY!tlhrmnmf)tl ~lY!t1fll''J'\Jl Y!~1 ~U FcGRIIb IflY! fl1UJl'l-m'l.;j'\Jf).;jfll'l~v'U;f)i u fl'j::lAm~ f)y!~ 1£.1 

huY! tl fll'lfjflllil::lm::th1Nlu'I1'Jj'YIY!tlf).;j\J .;j~uldf).;j'lllfl.f111:: Macrophage exhaustion" 

Introduction 

Systemic Lupus Erythematosus (SLE), the autoimmune disease with multi-factorial pathogenesis (I , 

2) leads to multi-organs injury, showed a higher prevalence in Asia in comparison with other regions of the 

world (3-5). The defect of Fc gamma receptor lIb (FcGRllb), the only inhibitory signaling receptors in the 

FcGR family , is one of the genetic susceptibility to SLE (2, 6). Interestingly, FcGRIIb polymorph isms also 

demonstrated the high prevalence in Asia which might due to the protective effect of the gene for malarial 

infection (7). Coincidentally, the association with FcGRllb polymorph isms in patients with SLE in Asia 

Pacific region is also common (3-5 , 8). Perhaps FcGRIIb polymorph isms could protect malaria in this region 

but, on other side of the coin, people with this immunological defect might easier develop SLE. In any case, 

sepsis, the systemic immune responses to the severe infection, is one of the important causes of death in 

patients with SLE (9). Indeed, the high susceptibility to bacterial sepsis in patients with SLE is well-known (9­

13). However, there are debates whether the susceptibility to infection in patients with SLE is due to the de 



34 

novo defects of IlTImune response or immunosuppressive drugs. Unfortunately, the data on untreated 

symptomatic patients with SLE is very limited (14). Hence, the studies of infection in FcGRlIb-/- mice, one of 

the established SLE mouse model (6), could be resemble to untreated patients with SLE, especially with 

FcGRllb polymorph isms. 

FcGRs binds with Fc portion of immunoglobulin mediate antigen uptake and cellular responses (15). 

In the mouse, FcGRs are classified into three activation receptors (FcGRI, FcGRIII, FcGRIV) and only one 

inhibitory receptor (FcGRllb) (16). The deficiency of all classes of FcGR in mice (FcGR -/-) protected from 

sepsis (17) and FcGRIIb-/- mice response well to the gram positive bacterial infection due to the effective 

bacterial killing (18). Nevertheless, a more severe sepsis with the cytokines stonn demonstrated in FcGRIlb-/­

mice with the bacterial antigen preconditioning before bacterial administration. This data supported the 

overshoot cytokines responses after the repeated antigen exposures due to the lack of inhibitory signaling in 

these mice (18). On the other hand, FcGRllb-/- mice are protected from Plasmodium and Mycobacterium 

infection (7, 19), the inhibitory signaling defect seems to enhance the activating signaling and show a benefit 

in these infections. However, the susceptibility of FcGRlIb-/- mice to polymicrobial sepsis is never tested. 

Interestingly, sepsis-induced immune exhaustion or immunoparalysis, the high susceptibility to 

secondary infection after sepsis, has been recognized as an important sepsis complication (20, 21) and was 

demonstrated by several mouse and human models (22-26). In contrast, the preconditioning of LPS, a single 

or multiple doses, for 24h before CLP ameliorates sepsis severity in wild type mice has been showed in 

previous publications (27, 28). Despite the demonstrated protective effect to sepsis after 1 day of LPS 

preconditioning, we hypothesized that the immune exhaustion after LPS administration might existed in the 
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earlier period and the repeated endotoxin exposure might mimic the repeated infection in patients. 

Subsequently, we selected the preconditioning with double doses of LPS with 5 days separation followed by 

CLP at 12h after the 2
nd 

dose of LPS to demonstrate the ilTUUune exllaustion in our models. Of note, half-life 

of the important LPS-induced cytokines (TNF-U, IL-6 and IL-I0) is approximately 0.5-1.5h (29), then at l2h, 

approximately 8 times of the half-life, should be adequate for avoiding the effect of these cytokines to the 

subsequent CLP surgery. 

On the other hand, the lower macrophage inunune responses, especially cytokines production, after 

repeated LPS activation is demonstrated, and was known by several terms such as "macrophage paralysis" or 

"macrophage exhaustion" or "macrophage tolerance" or "endotoxin tolerance" (30-32). Although, the 

association between inununoparalysis and macrophage exhaustion IS not clearly demonstrated (31), it is 

possible that macrophage exhaustion might cause ineffective organisms clearance and increase infection 

susceptibility compatible with the definition of "inununoparalysis". 

Indeed, macrophage contains both activating and inhibitory FcGRs which competing for inunune 

complex ligands and the direction of this balance determines the direction of the cell responses (16, 33). We 

hypothesize that the defect in the inhibitory signaling of FcGRIIb-/- mice might result in a prominent response 

but is easier exhausted after repeated stimulation. Then we test inununoparalysis of FcGRllb-/- mice in vivo 

and macrophage exhaustion in vitro, respectively. 

http:0.5-1.5h
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Materials and Methods 

Animal and animal models 

FcGR1lb-/- mIce on C57BLl6 background were provided by Bolland S. (NIH, Maryland, USA). 

Other mice were purchased from the National Laboratory Animal Center, Nakompathom, Thailand. Female, 

8- and 24-week-old C57BLl6 mice were used in the experiments. The animal protocols were approved by 

Faculty of Medicine, Chulalongkom University followed the National Institutes of Health (NlH) criteria. 

Cecal ligation and puncture model 

Polymicrobial sepsis was induced by Cecal ligation and puncture model (CLP) slightly modified from 

the previous publication (29). Briefly, cecum were ligated at 10 mrn from cecal tip with silk 2-0, punctured 

twice with a 21-gauge needle then gently squeezed to expel a small amount of fecal materials through an 

abdominal incision under isoflurane anesthesia. The incisions were closed with 2 layers by nylon 4-0 and 

normal saline (NSS) at 2 mllkg was administered subcutaneously for the fluid replacement. 

Cecal ligation and puncture with endotoxin pre-conditioning model 

Because LPS induced-imrnuno-suppression is demonstrated (34, 35) and used as a sepsis-induced 

immunoparalysis model (26), we follow the principle in our experiments. In our model, the immunoparalysis, 

a condition susceptible to an infection, was tested by the severity of polymicrobial infection from CLP 

. surgery. Endotoxin (LPS) of Escherichia coli 026:B6 (Sigma-Aldrich, St. Louis, USA) was administered 

intraperitoneally at 5 days (-120h) and 12h (-12h) before CLP surgery at the dose of 0.8 g/kg (approximately 

20 ~g per 25 g mouse) and 4 g/kg (approximately 100 ~g per 25 g mouse) , respectively. Subsequently, CLP 

was performed as previously mentioned . 
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To measure inflammatory cytokines after LPS injection, 50 ~l of blood was collected through tail 

veIn nicking at Oh (2h before LPS administration) and at I, 3 and 6h after. In addition, in separated 

experiments, blood from tail vein nicking was also collected before CLP (Oh) and at 3h and 6h to measure 

time-courses of bacterial burdens and serum cytokines after CLP surgery. Otherwise, blood was collected 

through cardiac puncture at sacrifice time under isoflurane anesthesia at 18h or 96h after CLP for sepsis injury 

analysis or survival test, respectively. 

Blood chemistry, supernatant media analysis and urine protein 

For the natural history of FcGRIIb-/- mice, serum from tail vein nicking and spot urine was collected 

once a month from 2 to 12-month-old. Serum and urine creatinine were measured by (QuantiChrom 

Creatinine Assay, DICT-500, BioAssay, CA, USA). Spot urine protein was measured by Bradford protein 

assay. Urine protein creatinine index (UPC!), a representative of 24h urine protein, were measured from spot 

urine by equation; urine protein/urine creatinine. 

Serum cytokines after LPS were measured by Luminex-based multiplex technology mUlti-analysis 

panels 8-plex cytokines assay (Bioplex, Bio-RAD, CA, USA) to explore the panel of pro and anti ­

inflammatory cytokines (TNF-U, IL-6, IL-I~, IFN-y and IL-2, IL-4, IL-5, IL-I 0, respectively) according to 

the manufacturer's protocol. Then the selected important cytokines (TNF-U, IL-6, 1L-I0) were measured by 

ELISA assay (ReproTech, NJ, USA) in supernatant media and in mouse serum after CLP surgery. Organs 

injury was determined by blood urea nitrogen (QuantiChrom Urea Assay, DIUR-500, BioAssay), serum 

creatinine (Scr) (QuantiChrom Creatinine Assay, DICT -500, BiaAssay), alanine transaminase (AL T) 

(EnzyChrom ALT assay, EALT-I00, BioAssay) and lactate dehydrogenase (LDH) (EnzyChrom LDH assay, 
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EDLC-IOO, BioAssay). Blood bacterial burdens were detennined by plating a serial volume of blood into 

blood agar (Oxoid, Hampshire, UK) at 37 DC then counted bacterial colonies after 24h of incubation. For blood 

polymorphonuclear cell (PMN) and mononuclear cell count, 5 /.ll of blood mixed in 85 J.!l of 3% acetic acid 

for the hemolytic reaction and total leukocytes was counted by a hemocytometer. In parallel, blood smeared 

on a glass slide was stained by Wright stain and counted with xl 00 magnification in 100 fields to detennine 

the percentage of PMN and mononuclear cells. The total number of cells was calculated by total leukocyte 

count from hemocytometer multiplied by the percentage of cells from the Wright stain glass slide. 

Anti-dsDNA antibodies 

Anti-dsDNA antibodies were measured by coating ELISA plates with salmon spenn DNA as 

published previously (36). In short, salmon spenn DNA (Life Technologies, Invitrogen TM, MA, USA) passage 

through a 45-mm filter (Minisart, Sartorius, Gennany) for selecting double stranded DNA then coated into 

ELISA plate with the dose at 100 ~g/plate. The plates were dry, blocked and incubated with serial dilutions 

of serum for I hour at 37D C then peroxidase conjugated Fab'2 goat anti-mouse IgG 112,000 in 1 % bovine 

serum albumin (BSA) in phosphate buffer solution (PBS) followed by TMB peroxidase substrate (Biolegend, 

California, USA). The plate was developed in the dark room for 10 min then added TMB stop solution and 

read with microplate photometers with a wavelength at 410 nrn. 

Bone Marrow Derived Macrophages 

Macrophages were derived from bone marrows (BM) follow the established procedure (37). In short, 

BM cells from FcGRllb-/- and wild type mice obtained from femurs were centrifuged at 1,000 rpm in 4 DC for 

10 min. Then cell were incubated in high glucose DMEM supplement with 10% fetal bovine serum (FBS), 1% 
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penicillin/streptomycin, HEPES with sodium pyruvate and 20% L929-conditioned media in a humidified 5% 

CO, incu?ator at 37 ° C for 7 days. The cells were harvested at the end of the culture period using very cold 

PBS and confinned macrophage phenotype with anti-F4/80 and anti-CD II c antibodies (BioLegend, CA, 

USA). 

Macrophage endotoxin tolerance protocol 

Macrophage endotoxin tolerance protocol followed the protocols from the previous publications (38, 

39). Briefly, endotoxin (LPS) Escherichia coli 026:B6 (Sigma) at lO or lOO ng/ml was used to activate 

macrophage Ix10
5 

cells/well in 96 well polystyrene tissue culture plate. To see the difference between single 

or double LPS stimulations, 2 groups of experiments were perfonned. For the single LPS stimulation 

(NILPS), there was no endotoxin at the 1
st 

24h of the incubation then the plate was washed with phosphate 

buffer solution (PBS), refilled fresh media and treated with LPS at 10 ng/ml (NILPS 1 0) or 100 ng/ml 

(NILPS I 00). For the double LPS stimulation (LPS/LPS), LPS at 10 or 100 ng/ml was treated for the 1
st 

24h 

and treated with the 2
nd 

dose of LPS at 10 ng/ml or lOOng/ml as indicated. The culture supernatant was 

collected at I, 2, 4, 6 and 24h after the 2
nd 

LPS incubation in all groups and stored at -80°C until cytokine 

detennination by ELISA assays (ReproTech). After the incubation, cell viability was measured by MTS assay 

(One Solution Cell Proliferation Assay, Promega Corporation, WI, USA) according to the manufacturer's 

instruction (40). In short, 20 III of MTS was added to the culture plates for 2h at 37°C in 5% C02 incubator 

then read with microplate photometers with a wavelength at 450 nm. All in vitro experiments demonstrated 

cell viability more than 95% (data not showed). 
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Macrophage intracellular killing activity and phagocytosis protocol 

The protocol followed the previous publication (41). 8M derived macrophage at Ixl0
5 

cells in 200 ul 

of DMEM per well were dispensed into the flat bottom 96-well plate and incubated at 37 °C in a humidified 

5% (v/v) CO2 incubator for 24 h, before gently washing with culture media to remove non-adherent cells. 

Subsequently, the cells with endotoxin (LPS) Escherichia coli 026:B6 (Sigma) at lO or 1,000 ng/ml, LPS 1 0 or 

LPSIOOO, respectively, and incubated with Ix 107CFU of E.Coli per well. 

Then after 15 min of incubation, supernatants were aspirated and cells were washed gently with 

DMEM to remove un-ingested microorganisms . The supernatant and well washing fluids, containing the non­

phagocytized E. Coli, were combined, plated in serial dilutions on Tryptic soy agar plates and counted for 

bacterial colonies for the representative of the non-phagocytic bacteria which reversed correlated with the 

phagocytic activity. On the other hand, the cellular part, phagocytosed macrophage, was further incubated 

with 200 ul of DMEM for 2h to determine intracellular bacterial killing activity. The wells were gently 

scraped and washed with 200 ml distilled H20 to induce cell lysis and the serial dilution of the lysate were 

plated on Tryptic soy agar, incubated at 37 °C for 16 h and determine the bacterial colony count. The number 

of bacteria from the cell lysate represented the intracellular killing activity. 

Statistical analysis 

Data are shown as the mean ± SE and differences between groups were examined for statistical 

significance usmg the unpaired Student t-test or one-way analysis of variance (ANOVA) with Tukey's 

comparison test for the analysis of experiments with 2 and 3 groups, respectively. Survival analyses were 

evaluated using the log-rank test by observation and recorded every 6-24h then all mice were sacrifice at 96h 



41 

after CLP. P values < 0.05 were considered statistically significant. SPSS 11.5 software (SPSS Inc., Chicago, 


IL, USA) was used for all statistical analysis. 


Results 


Fc gamma receptor lIb deficient mice susceptible to cecal ligation and puncture sepsis in symptomatic 


SLE mice and asymptomatic SLE group preconditioned with LPS 


At 24-weeks-old, FcGRIlb-/- mice showed increased anti-dsDNA with proteinuria but normal kidney 

function as evaluated by serum creatinine (Scr) (Fig 1). This natural history allows the experiments in 2 

groups of mice in correspondence with patients with SLE; asymptomatic genetic prone group (8-weeks-old) 

and symptomatic proteinuria group (24-weeks-old). To see the susceptibility to bacterial sepsis without LPS 

preconditioning in these 2 groups, CLP surgery was performed in comparison with age-matched wild type 

control. In the absence of LPS, only symptomatic, but not asymptomatic, FcGRIIb-/- mice showed higher 

sepsis mortality rate compare with wild type (Fig 2A, B) supports the correlation between SLE disease 

activity and infection susceptibility (9). 



42 

-e- Fc-yRllb +1+A 0.8 P < 0.001B FcyRllb -1­

0.6 
:i 
'C 
C»
E 0.4-... 
u 
en 0.2 

0.0 
-2 0 2 4 6 8 10 12 14 

Age (months) 

8 
150 

~ FcyRllb +1+ 
#B FcyRllb -1­

100 

(3 

Il ­
=> 


50 


0 
-2 0 2 4 6 8 10 12 14 

Age (months) 

C 5 	 ## 
~ FcyRllb +1+ 

.-,4 B FcyRilb -1­
«l:,
z 	 ..... 3c 	 )(
III 

"9 	 0 

;; 	~2 c « 	a 
C 


-1 
 ##; P<O.OO1 

0 
-2 0 2 4 6 8 10 12 14 

Age (months) 

Figurel. The natural history of FcGRllb-/- and wild type (FcGRllb+/+) mice as determined by serum 

creatinine (Scr). urine protein creatinine index (Upel) and anti-dsDNA (n=4-5/groups) . 

Then we test the effect of LPS preconditioning in asymptomatic mice and determine the severity of 

immunoparalysis by the mortality rate of CLP surgery (20, 21). 
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Figure 2. Survival analysis ofcecal ligation and puncture (CLP) sepsis surgery in asymptomatic FcGRllb-/­

mice (8-wk-old) (A) and symptomatic, proteinuria positive but normal serum creatinine, FcGRllb-/- mice (24­

wk-old) (B) in comparison with age-matched wild type mice (FcGRllb+/ +). 

Although the high CLP mortality rate found in both wild type and FcGRIlb-/- mice after LPS-

preconditioning, FcGRIIb-/- showed the higher mortality rate. Whereas all wild type and FcGRIlb-/- mice die 

within nh and 36h, respectively, in CLP with LPS, the survival rate at 30% and 22% found in wild type and 

FcGRIIb-/- mice, respectively, in CLP alone (Fig 3A, B). These results supported the immunoparalysis occur 

in both wild type and FcGRIIb-/- mice after LPS preconditioning but FcGRIlb-/- mice showed the more 

severe immunoparalysis (Fig 3C). 
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The cytokine responses after LPS injections and after superimposed by cecal ligation and puncture 

The luminex-based multiplex system was used to explore the difference in the cytokines responses 

after LPS administration between asymptomatic FcGRlIb-/- mice versus wild type. Among the pro-

inflammatory cytokines (TNF-U, IL-6, IL-j ~ and IFN-V)' we found that most of the pro-inflammatory 

cytokines, except for TNF-U, were significantly higher in FcGRIlb-/- mice at lh after the I st dose of LPS 

administration (Fig 4A-C). TNF-U, IL-6, IL-l ~ and IFN-Y at Ih after LPS administration in FcGRIIb-/­

mice and wild type were 21,851±3,200, 3,525±117, 350±38, 21±2 pg/ml and 12,453±3,925, 2,301±157, 

54±11, 3±1 pg/ml, respectively. In parallel, for the anti-inflammatory cytokines (IL-2, IL-4, IL-5 and IL-lO), 

all of these cytokines, except for IL-5, were higher in FcGRIIb-/- mice at the 151 h after the 151 dose of LPS 

(Fig 4D-F). In detail, IL-2, IL-4, IL-5 and IL-IO at I h after LPS administration in FcGRIlb-/- mice and wild 

type were 26.2±3.4, IO.8±l.J, 34.5±3.5, 958±I06 pg/ml and 12.6±3.3, 3±0.4, 27.1±3.6, 575±I04 pg/ml, 

respectively. These results supported the prominent cytokines responses in FcGRIIb-/- mice reported 

previously (18). Interestingly, at Ihand/or 2h of the 2
nd 

LPS administration with the 5 times higher dose of 

LPS, all of these cytokines, except for IL-I ~ and IL-5, were significantly lower than the 151 administration in 

FcGRIlb-/- mice (Fig 4). In contrast, in wild type mice, only IFN-y, IL-2, IL-4 and IL-I 0 were lower and IL­

1~ was higher in some time-point of 2
nd 

LPS administration compared with the matched time-point of the 151 

LPS injection (Fig 4). The endotoxin tolerance, determined by the lower cytokines responses after 2
nd 

dose of 

LPS, was easier demonstrated in FcGRIIb-/- mice compare with wild type. Moreover, the severity of 

st nd
endotoxin tolerance, determined by the cytokine level difference after matched time-point of 1 and 2 LPS 

administration, was higher in FcGRIIb-/- mice (Fig 4 inset graph). 
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nd
It is interesting to note that, even with the 5 times higher LPS dose of 2 LPS administration, most 

cytokines level was lower than the I st dose implied endotoxin tolerance status III both FcGRIIb-l- and wild 

type mice. Subsequently, we tested the severity of polymicrobial infection in these mice with CLP surgery and 

selected to explore only frequently mentioned sepsis cytokines (TNF-U, IL-6 and IL-IO) in vivo. 
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injury after 18h of wild type (FcGRl1b+I+) and FcGRJJb-l- as demonstrated hy serum creatinine (Scr) (G) 

and alanine transaminase (ALT) (H) was showed. (n= 5-71 time-point and group) 

Interestingly, bacterial burdens in FcGRIIb-/- mice were higher than wild type in all selected time-

points (3, 6 and 18h) after CLP (Fig SA). Blood bacterial count (xl0
2 

CFU/ml) in FcGRIlb-/- mice and wild 

type at 3,6 and 18h were 3.1±0.3, 7.6±1.l, 964± 137 and O.6±0.2, 3.3±O.6, 518± 73, respectively. 

Moreover, pro-inflammatory cytokines (TNF-U and IL-6) and anti-inflammatory cytokine (IL-IO) 

were higher in wild type mice at 3 and 6h and only 3h after CLP, respectively (fig 5B-D). Serum TNF-U, IL­

6 and IL-IO at 3h and 6h in FcGRIlb-/- versus wild type were 48±9, and 80±7.1, 69±9 and 145±18, 71±6 and 

104±4 pgfml versus 120±24 and 211±49, 124±24 and 235±33, I02±7 and 170±36 pgfml, respectively. In 

contrast, at 18h after CLP, all of these cytokines and most of the organs injury biomarkers (Scr for kidney 

injury and ALT for liver injury) were higher in FcGRIIb-/- mice (Fig 5B-H). Despite the prominent responses 

to LPS in FcGRIIb-/- mice mentioned earlier, cytokines responses at the early phase of CLP after LPS 

preconditioning were stun in comparison with wild type implied the more severe immunoparalysis. 

Perhaps, severe immunoparalysis at the early phase of sepsis might associate with the higher bacterial 

burdens leading to the higher sepsis severity (Fig 5) and mortality rate (Fig 3C) in FcGRIIb-/- mice. 

Bone marrow derived macrophage of FcGRIlb-/- mice showed higher cytokine responses in the single 

incubation of LPS but lower responses in the double incubation of LPS 

The previous results demonstrated that FcGRlIb-/- mice, an inhibitory signaling deficiency, showed a 

very high initial response, but subsequently follow with a more apparent exhaustion after LPS stimulation. 
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Figure 6. The cytokine responses in supernatant media from macrophages of FcGRJIb-l- or wild type 

(FcGRJIb+I+) after activated with only once low dose LPS (NILPSIO) as measured by TNF-a (A), IL-6 (B), 

IL-IO (C) and after activated with twice low dose LPS (LPSIOIIO) as measured by TNF-a (D), /L-6 (E), IL­

10 (F) was showed. (Separated experiments were done in triplicate) 
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In parallel with the in vivo results, higher cytokines, at least in some time-points (3-24h), found in the 

1
51 

supernatant of FcGRIIb-/- macrophages with the single low dose LPS (non LPS at the 24h of the 

incubation followed by LPS dose at I 0 ~glml ; N/LPS 1 0) (Fig 6A -C). Then TNF-a and IL- IO, but not IL-6, 

was lower in the double low dose of LPS stimulation (LPS 1 0 ~g!ml for 24h then washed and add the same 

2
nd 

dose; LPS 1011 0) (Fig 6D-F). Then, a higher dose of LPS was used. Once again, FcGRlIb-/- macro phages 

showed the higher responses than wild type in the single high dose of LPS (NILPS I 00) (Fig 7 A-C). But the 

cytokines responses of macrophages primed with the high dose of LPS seems to depend on doses of the 2
nd 

LPS. In high LPS followed by low dose LPS (LPS I 0011 0), all cytokines were detected at the low level (Fig 

7D-F) and the difference between wild type and FcGRllb-/- cells were subtle. But the apparent lower TNF-U 

and IL-IO in FcGRlIb-/- cells appeared again with the higher 2
nd 

dose of LPS (LPS 100/1 00) (Fig 7G-I). To 

clarify the macrophage exhaustion, the lower cytokines level after double LPS exposure compare with single 

LPS exposure, the cytokines level after single and double LPS exposure at 6 and 24h was demonstrated (Fig 

8). With the double low dose of LPS (LPS I 011 0), macrophage exhaustion could be demonstrated with only 

the lower TNF-a in wild type cell but lower both TNF-a and IL-IO in FcGRIIb-/- macrophages (Fig 8A-C). 

Interestingly, macrophage exhaustion, lower cytokine in double LPS exposure compare with single 

LPS, could be demonstrated only by TNF-a and IL-IO in FcGRIlb-/- cells but with TNF-a alone for wild type 

cell with the double low dose of LPS (LPS 1 011 0) (Fig 8A-C). On the other hand, with the higher dose of LPS 

stimulation, the exhaustion could be demonstrated in all cytokines in FcGRlIb-/- cells but only in some 

condition in wild type cell (Fig 8D-F). 
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Figure 7. The cytokine responses in supernatant media from macrophages of FcGRl/b-l- or wild type 

(FcGRlIb+I+) after activated with only once high dose LPS (NILPSiOO) as measured by TNF-a, JL-6, IL-iO 

(A-C) and double LPS doses, low and high dose LPS (LPSiOOl iO and LPSi OOli 00, respectively), (D-F) were 

demonstrated. (Separated experiments were done in triplicate) 
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Figure 8. The macrophage endotoxin tolerance emphasized by the difference in cytokine responses (TNF-a, 

IL-6, IL-10) in supernatant media from macrophages ofFcGRllb-l- or wild type (FcGR1lb+I+) after activated 

with only once low dose (NILPS10) versus twice low dose ofLPS (LPS10I/0) (A-C) and the difference among 

only once high dose (NILPS100) versus twice high and then low dose ofLPS (LPS/00I10) versus twice high 

dose ofLPS (LPSlOOl lOO) (D-F) were demonstrated. (Separated experiments were done in triplicate) 



53 

Macrophage exhaustion could not be demonstrated by IL-6 responses both in wild type and FcGRIlb­

/- cells with double low dose LPS stimulation. In parallel, with the comparison among single high dose LPS 

(N/LPSIOO) with double LPS dose with low and high 2
nd 

LPS dose (LPSIOO/IO and LPSIOO/lOO, 

respectively), macrophage exhaustion could be shown by all cytokines despite a less prominent in IL-6 

response of the wild type cell (Fig 8D-F). It seems the macrophage exhaustion occur in both knock-out and 

wild type cells but more prominent in FcGRIIb-/- cells. 

In contrast, the phagocytosis and killing activity of FcGRllb -/- macrophages were better than wild 

type cells and there was a non-significant exhaustion in phagocytosis and killing activity after LPS stimulation 

(Fig 9). Although, the killing activity of FcGRIIb -/- macrophage should be able to control sepsis severity, 

perhaps the more severe bacterial sepsis severity in FcGRIIb -/- mice might due to the lower number of 

mononuclear cell after sepsis (Fig 5). 
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Discussion 

FcGRIlb deficiency is one of the genetic defects of SLE and FcGRIIb polymorphism with a lower 

gene activity commonly reported in patients with SLE in Asia (3-5, 8). Additionally, sepsis is the leading 

cause of death in patients with SLE (9). We showed a high susceptibility to CLP in symptomatic SLE mice 

but not in asymptomatic group in comparison with age-match wild type control. In asymptomatic genetic 

prone mice, the high susceptibility to CLP was showed only after with repeated endotoxin induced 

immunoparalysis. The more severe macrophage paralysis in FcGRIIb-/- macrophages might responsible for 

the more immunoparalysis in mice leading to higher sepsis severity after CLP surgery. 

The susceptibility to bacterial infection in patients with SLE is associated with several factors; 

immunosuppressive drugs, activity of disease, organs involvement, etc (9). Studies on FcGRlIb-/- mice allow 

for exploring SLE without several confounding factors, especially immunosuppressive drugs. As expected, the 

higher mortality rate of sepsis was showed in 24-wk-old FcGRlIb-/- mice, positive proteinuria but normal Scr 

classified into symptomatic SLE group, in comparison with age-matched wild type mice. These results 

supported the association between SLE disease activity and bacterial infection susceptibility reported 

previously (9). Interestingly, the mortality rate of sepsis without LPS preconditioning in asymptomatic 8-wk­

old FcGRIIb-/- mice, positive anti-dsDNA without proteinuria, did not different to wild type mice supported 

the effective immune responses to bacterial infection previously published (18). 
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More prominent endotoxin-induced immunoparalysis in FcGRIIb-/- mice demonstrated by the 

high mortality rate of CLP sepsis 

The immunoparalysis was induced by the double separate LPS administration and the severity of 

immunoparalysis, the condition with a more susceptible to infection, was determined by the severity of CLP 

sepsis (20). With this model, there was a higher mortality rate of CLP after LPS preconditioning compare with 

NSS placebo control within either 8-wk-old FcGRlIb-/- or wild type mice demonstrated immunoparalysis 

occur in both groups. Nevertheless, FcGRllb-/- mice showed a higher mortality rate than wild type implied a 

more severe immunoparalysis. 

Despite immunoparalysis could be demonstrated by several biomarkers (42), cytokines responses are 

frequently used. Then we tested cytokines responses in panels of pro- and anti- inflammatiory cytokines, 

TNF-U, IL-6, IL-t~, IFN-Y and IL-2, IL-4, IL-S, IL-lO, respectively, with luminex-based measurement in 

mice with double doses of LPS administration. Most of the cytokines selected to measure were mainly 

produced by macrophage except for IFN-y and IL-S which produced prominently by NK cell or T cell and 

mast cell, respectively. With double dose of LPS administration by the 2
nd 

dose of the S times higher than the 

Ist dose, all of these cytokines response after the 2
nd 

LPS stimulation were not higher than the responses after 

1stthe LPS dose. These results suggested immunoparalysis in both FcGRIIb-/- and wild type mice. 

Interestingly, in comparison with wild type mice, most of the pro- and anti-inflammatory cytokins, except for 

IL-S, were higher in FcGRlIb-/- mice after the 1
st 

LPS stimulation, implied the vigorous cytokines responses 

in FcGRIIb-/- mice. Then after 2
nd 

LPS administration, all cytokine except for IL-l ~ and IL-S were lower 

than the Ist responses in both wild type and but with a more prominent difference, demonstrated by the 
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st nd
cytokine difference between 1 and 2 LPS administration, in FcGRIIb-l- mice. These results demonstrated a 

more severe inununoparalysis In FcGRlIb-/- group. Of note, most of these cytokines produced from 

macro phages except for IL-5 and IFN-y which produced mainly from mast cell and NK. cell, respectively. 

Although functional FcGRIIb expression on mast cell (43) and murine NK. cell (44) were reported, IFN-y, but 

not IL-5, response differently between FcURIIb-/- and wild type mice. These implied the difference of 

FcGRIIb function between these cells. More experiments needed but out of the scope of this article. 

Nevertheless, the double LPS preconditioning seems to affect CLP severity. At the initial time-point 

ofCLP surgery, 12h after 2
nd 

dose ofLPS, there was non-difference in TNF-U, IL-6 and IL-IO between LPS 

preconditioning and NSS control (data not showed) supported by the base-line value before CLP surgery 

(Figure 5). Interestingly, blood bacterial burdens were higher with the lower of these cytokines in FcGRIlb-/­

mice compare with wild type at 3h and 6h after CLP surgery. However, at 18h after CLP the sepsis severity 

was more severe in FcGRlIb-/- mice as demonstrated by bacterial burdens, cytokines and organs injury. 

Perhaps, the initial cytokine responses were needed for the initial innate inunune responses to control the 

infection and the loss of the initial control in FcGRIIb-/- mice due to LPS preconditioning induced a more 

severe sepsis. These results support the importance of the initial bacterial control, especially in patients with 

SLE and lor FcGRIlb polymorphism. 

More prominent immunoparalysis in FcGRIlb-/- macrophage demonstrated by cytokine 

responses after LPS stimulation 

The LPS induction in vitro alters macrophage characteristics from classical pro-inflammatory 

macrophage responses into a less pro-inflanunatory stage of the macrophage (38) implied the importance of 
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macrophage in immunoparalysis. With the double low doses of LPS (LPSIOIlO), macrophage exhaustion 

could be demonstrated in both FcGRIIb-/- and wild type but cytokines production after 2
nd 

dose of LPS was 

lower in FcGRIIb-/- macrophages. Moreover, the exhaustion seems to be more apparent with the higher 1" 

dose of LPS which needed the higher 2
nd 

dose of LPS to re-stimulate. With the initial high dose of LPS 

followed by a low dose (LPS 1 00/ I 0), only subtle cytokines responses were demonstrated. But with the larger 

2
nd 

LPS dose (LPSIOO/IOO), the difference between FcGRlIb-/- and wild type appeared again. However, 

FcGRllb-/- macrophages produced less cytokines levels after 2
nd 

dose of LPS either with high or low LPS 

doses. Then LPS could induce a more apparent macrophage paralysis in FcGRllb-/- cells resulted in 

immunoparalysis state in mice which demonstrated by the higher eLP sepsis severity. 

In conclusion, we demonstrated the impact of the repeated infection in patients with SLE through the 

eLP preconditioning with LPS in FcGRIIb-/- mice. Despite a good response to the only once bacterial 

infection in FcGRUb-/- mice, the responses to the repeated exposure might be impaired lead to a more severe 

bacterial burdens and infection. The repeated infection in patients with SLE could be more severe due not 

only to hyperimmunoglobulin induced hyper-immuneresponse and sepsis (18), but also from immunoparalysis 

with the higher bacterial burdens as currently demonstrated. In the translational aspect, we suggested that the 

repeated infection in patients with SLE should be vigorously concerned and the FcGRllb polymorphism 

screening in Asian patients with SLE might be a useful clinical practice. 
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The next fmal part of the project is the experiments to see if macrophage of FcGRITb knock-out which 

demonstrated exhaustion but intact killing activity show shorter half-Life in comparison with wild type cell. If the 

last experiment results go along with the hypothesis then FcGRIIb knock-out mice will be susceptible to sepsis due 

to macrophage exhaustion and shorten half Life of macrophage which will be stronger support our in vivo results. 

Regarding to the translation, the exploration of FcGR polymorphisrns in patients with SLE might be 

beneficial for the prediction of sepsis and might require a more aggressive antibacterial drug at the beginning of the 

simple infectious diseases. More studies will be needed. 
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Abstract 

Autoimmune diseases occur when the immune cells react against self-antigens and subsequently 

lead to inflammation in the tissues . The interactions between genetics and environmental triggers 

regulate the phenotypes and outcome of the diseases. Type I interferon has been shown as one of 

the most crucial cytokines involving in the pathogenesis of autoimmune diseases such as systemic 

lupus erythematosus (SLE) and rheumatoid arthritis (RA). SLE is a chronic systemic autoimmune 

disease which can result in autoantibody production and fatal glomerulonephritis. Activation via 

nucleic acid sensors can induce the production of type I interferon from dendritic cells and promote 

SLE severity. Stimulator of interferon genes (Sting) is a cytoplasmic DNA sensor that signals 

downstream to enhance type I interferon production after its activation . Recently, it was shown that 

a gain mutation in the STING gene resulting in over-activity of the IFN pathway can cause familial 

inflammatory syndrome with lupus-like manifestations in humans. However, the functional studies of 

Sting in different autoimmune mouse models suggest the conflicting roles of Sting in the 

pathogenesis of autoimmune diseases. In order to determine if Sting participates in lupus 

pathogenesis, the Fcgr2b-deficienct mice (lupus mouse model) were bred with Sting-deficient mice 

to create the double-deficient mice. In the absence of Sting, the Fcgr2b-deficient mice do not 

develop fatal glomerulonephritis and autoantibodies. The original knowledge from this study is a 

proof of concept for targeting Sting as a future promising treatment in autoimmune diseases. 
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6. ~1'ElfiultJ~~~lr1~n'l1rubb'Cl~~ltJ'El~1.jjlwm~19tJ ( List of Abbreviations) 

SLE, Systemic lupus Erythematosus; Fcgr2b, Fc gamma receptor lib; Sting; type I interferon , 

~ 'J 'W11 ';j'~ n-el1J Lif'elLi-'fl-l 
I 1-' 1 I I 

1. UVI-Wl (Introduction) ~--lmhd~--lbi1'ElVll'lJ'El--l~'El':l'VibfO)tJn~vllm~~9mnri'El'W fO)'Jl~~l~rubb'Cl~Yl~l
~ ~ 

'lJ'El--lU~Vll i ~ '1u~:;~-l ~bb'Cl:;"lJ'El'L1 b'lJ ~m ~~r.ftJ ~fi ~1 b il'Wm ~1r.ftJ L~tJ ~ rU'Vl ~'l1lj bb'Cl~/Vl1'El bb'W'J'Vll--l 

fO)'Jl~~~~-Wl~11.jjl'Wn1~~r.ftJ U~:;LtJ'l!tI~fO)l~~ltO)~1~fu "''Cl'" 

Fcgr2b b1J'W Fc receptor ~vllV1~1~fO)'JUfO)~bb'Cl:;tJuJ--lm~vll--ll'W'lJ'El--lb'l!'Cl'Cl1'Wil--ln1tJ• 

L~'EltJ'El--l n'Whn~b'l!'Cl ~~ Ll n n ~:;~'WJ'W~'ElU~'W'El--l!?l'El i?l'J m'~~'Wbb'Cl~vll--ll'Wb~~~"'Wb~ tJ--l'EltJl--l b~ tJ'J L~tJ~1~ 
~ q q 

~1~1~Lln~Ub~1~Jll'J~un~1~b~'ElVl~~i?l'Jm:;~'Wbb~'J r?l--lJ'Wl'WVI~~un~tO)ln Fcgr2b (Fcgr2b-/- ) ~-lnm~ 
vll--l1'W'lJ'El--lb'l!'Cl~~~ln&j~un~n~m'UYn~ B b'l!'Cl~bb'Cl~ macrophage ' b'l!'Cl~ ~--lbU'W~'ClvllHhn~L~fO) 

autoimmune ~"'W1~ (1) l'W'VI~~u~ Fcgr2b-/- to):;n'Ellmnb~~--l'lJ'El-lhfO)1n~b~tJ--lnu~thtJ SLE 'EltJl-:j~ln (1) 
, 

'I """" "c; '1" ~ c!j ... 'i' 'i' ""0bb'Cl:; b'WVI~ Fcgr2b-/- 'Vl~'ElliJ'W'EltJn~l~l~Ll'Vll bVlbn~'EllmnVl~'El'Wnu b~fO) Rheumatoid arthritis b~tJn1~'U~ 

collagen (collagen-induced arthritis) 'W'ElntO)lntffO)'Jl~&j~un~'lJ'El--lu'W Fcgr2b n~1~1~Ll'V'lu1~1'W~thtJ'l!1'J 

b'El b~m'J~i--lfO)'W1'VltJ~ dJ'W SLE (2-4)* r?l--lJ'WL~ b~'Clci'~--l bU'WL~b~'Cl~ bVl~l:;~~~lV1ful.jjl'Wm~~n'l11n'Cl1n n1~ 

bn~hfO) autoimmune disease i-lhfO) SLE bb'Cl~ Rheumatoid arthritis L~tJ~M9m'El--l1~nu~~~Un1~ru1'W 
~ 

n1~vll--ll'W~9m~'El~tO)~~n'l11n'Cl1nmnn~hfO)l'WVI~ Fcgr2b-/- ~lbb~'J L~tJ'V'IU~l interleukin-17 signaling 

pathway nfO)'Jl~~l~~!?l'Eli-lmnn(?J lupus nephritis l'WVI~~u~ Fcgr2b-/- (5) bb'Cl~!?l'Eln'"mn~ 

rheumatoid arthritis l'WL~b~'Cl collagen-induced arthritis 1'WVI~ Fcgr2b-/- b"1l'Wn'W (6) 'W'ElntO)lntfb~ltJ--l 
~l~l~LlH'VI~~U~ Fcgr2b-/- 1'Wm~~r.fm~'El~n'l11n'Cl1nmnn~hfO) SLE bb'Cl:;-WlfO)'Jl~l~1~J'W~lu~~iJn~1.jj 

1'Wn1~fn'l11~lhtJL~fO) SLE !?l'El111 

m~bbM1--l'El'Eln'lJ'El--l TLR9 bb'Cl~ TLR7 n~'Cl!?l'Elm~vll1ihn~hfO)'ClU~bb'Cl~m~~~l--l 
, " 

~ 

autoantibody (7-9) 'W'ElntO)ln TLRs bb~'J, n1nYl~~ln~'W'lJ'El--l RNA-sensing L~b'Clf1'Cl'EltJl--lb'll'W MDA5 n 

(10) DNA 

metabolism 1'W'VI'W~'lJ1~U'W Trex-1 (11) bb'Cl:; DNase (12, 13) nvll1{,hn~L~fO)'Clu~1~b'VIiJ'El'Wn'W 'W'ElntO)lnci'
~ ~ 

1'W~thtJ SLE n~~'JtO)'V'IU~liJn1~~~l--lbb'El'W~U'El~!?l'El DNA-sensing L~b'Clf1'Cl IFI16, b~"'El1'Jf~ HHV8 bb~~ 
CMV (14-16) 'EltJl--lhn~l~ bU'W~'Vl~lun'W~l'El1n1~'lJ'El--ll~f01 SLE to)~b~~fO)'Jl~r'Wbb~--l~'W'EltJl--lntrtJ~1~'1!1'W 
~:;VI~1--lm~~~b~"'EltO)lnbf~!?l1--l1 b'll'W CMV bb'Cl~ EBV (14, 17) to)~b~'W1~~1~'El~'Clbm;htfu--l~"1~b~'W~--lfO)'Jl~ 

b~m,ILm~~VI~l--l n1~~(?Jb~"'El1'Jf~, boD'Wb'l!'Bf'lJ'B--l m~il'J fO)~~nl'Wb6Jl'Cl~bb'Cl~mnn(?Jl~fO)~U~ bb!?l~--ln~~J'W 

http:bb'Cl:;-WlfO)'Jl~l~1~J'W~lu~~iJn~1.jj
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U9'1u'WntJ-.l 1~il nld'A m~I~i'111i1'Vld'IU~-.lU'VlU I 'Vllb~~nf11n"lJ'eJ-.l DNA-sensing b~ lf111~~'el~1 'W cytoplasm 

"lJ'el-.l b'l1f1~~liJ~ f1 I?i'fl nldbn ~bfl~ul:'1~"f'elhi lLf1~9 'W~-.lU9'1U'WfI'"J1~ b~1191'Wnf11n~i'111i1 bn i91Ud'1 n{]nlnl1t1n 

til1u~ 1"1'd 1~}i'W~-.ll'Wnld'tr~'Wli1"1~'Wfm~nbd'1"11'Wnl d'fm~1 ~thtJbl"1~ul:'11 'W'el'W 11"1 [;l 

Li91tJ~'d1u DNA-sensing L~bf111f1~Qnnd::;~'Wbi91tJ Interieron (IFNs) 9::;~-.l~'lJ'lJlru~h'W 
'Vl1-.lLUd'~'W adaptor ~~tJn~1 STING (Stimulator of interieron genes) (18-20) 'W'eln91nt1 STING tJ-.lb'lJ'W 

b~lf1nf1~91lU'W~I~fUnld'd''d~~'d'lJ'el-.l1'dfl:'1bbf1::; membrane "lJ'el-.l host ~-.l"lJU'd'Wnld't19::;nd::;~'W1i1bn i91nld'~i'l, , 

Interieron (21) f?1-.ltX'W STING ~-.lbU'Wb~bf111f1~'dbb'Vl'W~1~funld'Am~1~-.lU'VllJ1'Vl'lJ'el-.l DNA-sensing 

pathway ~lil~f1I?i'elnldbni91bfl~ul:'1~"f'el1~ 

'l.I I L I 

~ .::!:I ..:S I 4 ..c:;:,I q Q.<o" ~Q 0..:::. ~_ 


2. b'W'elld''el-.l (Main Body) 'l1-.lnf11'dmd1tJf1::;b'eltJ!?HntJ'dnU'dfii911b'W'Wnld''d9tJ (Materials & Method) 

~f1md'~~tJ (Results) "1f1"1 

Materials and Methods 

Animal and animal models 

Fcgr2b-J- mice on C57BLJ6 background were provided by Bolland S. (NIH, Maryland , USA). Sting-J­

mice were provided by Paludan (Aarhus University, Aarhus, Denmark) . Wild type mice were 

purchased from the National Laboratory Animal Center, Nakornpathom, Thailand . The Fcgr2b-J­

mice were bred with Sting-J- mice to create double deficient mice and their littermate controls . The 

animal protocols were approved by Faculty of Medicine, Chulalongkorn University followed the 

National Institutes of Health (NIH) criteria. 

Survival study 

The double deficient mice will be aged and observed the survival rates compared to their 

littermates. If the mice can survive up to 12 months, the mice will be euthanized to collect the 

tissues (kidney, spleen, bone marrow, and sera) for further analysis. 

Flow cytometry analysis 

The collected spleens were harvested and incubated with collagenase D at 37 c for 30 minutes to 

isolate splenocyte. The splenocytes were stained with flow antibody. The flow cytometry analysis 

was periormed using BD LSR-II and FlowJo software. The dead cells were excluded from the 

analysis. 

http:1~}i'W~-.ll
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Autoantibody testing 

The collected sera of the mice at the age of 6 months were tested for anti-nuclear antibody 

(Hep-2 cells; immunofluorescence) and anti-dsDNA (ELISA) . The sera were diluted into different 

dilution factors. 

Histopathology 

The kidneys were fixed in 4%paraformaldehyde and subsequently were stained with H&E 

and PAS. The pathology grading will be blinded analysis by the experience nephrologist. 

Real-time peR 

The RNA from kidneys was isolated using Trizol. The DNase-treated RNA was purified using 

RNeasy isolation kit. The conversion of RNA to cDNA using iScript RT Supermix (Biorad) was 

performed. The gene expression profiles were tested using SsoAdvanced Universal SYBR Green 

Supermix. The sequences of primers tested are followed: 

Statistical analysis 

Significant difference of survival rates is tested by Log-rank test. The comparison between 

groups is examined by T-test. 
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Result 

Increase of survival rates of the Fcgr2b-deficient mice in the absence of Sting 

The Fcgr2b-deficient mice start to die at the age of 6 months and the survival rates drop to 22.2% 

by 12 month old while the surv ival rates of double deficient mice are 77.7% (p<O.001) . The effect of 

one allele of Sting to survival rates of Fcgr2b-deficient mice does not show significant difference 

(p=O.6) (Figure 1). 

Survival Curve 

1.0 
R2(ko) 
R2(ko)Sting(het)ca 0.8 

.~ R2(ko)Sting (mut)>
'­
::::J 0.6 
I/) 

c::: 
0 
:;:; 0.4 
<J 
ca 
'­u. 0.2 

0.0 
0 1 2 3 4 5 6 7 8 9 10 11 12 

Months 

Figure 1 Increase of survival rates of the Fcgr2b-deficient mice in the absence of Sting 

The survival of the mice was observed until 12 month old. The absence of Sting increase survival of 

Fcgr2b-/- mice (p<O.001, N=9 per group) . 
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Sting deficiency diminishes fatal glomerulonephritis in the Fcgr2b-deficient mice 

The kidney staining of Fcgr2b-deficient mice shows inflammatory cell infiltrations, enlarged 

glomeruli and crescentic glomeruli . In the absence of Sting, the Fcgr2b-deficient mice do not 

develop glomerulonephritis (Figure ::2). 

'VT Fcgr2b-i - Fcgr2b-/-.Sting _i _ 

Figure 2 Sting deficiency diminishes fatal glomerulonephritis in the Fcgr2b-deficient mice 

Decrease autoantibody production in the double deficient mice 

Antinuclear antibody (ANA) and anti-dsDNA production decreases in the Sting and Fcgr2b double 

deficient mice (Figure 3A, 38). 
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Figure 3 Decrease autoantibody production in the double deficient mice 

The sera of the mice were collected at the age of 6 months to test for antinuclear antibody 

(Figure 3A, representative of mice (N=3/group) and anti-dsDNA (Figure 38, N=6/group, p<0.01) 

Decrease CXCL 10 expression in the kidneys of the double deficient mice 

Sting-mediated signaling induces type I interferon production and leads to the increase of 

interferon inducible gene expression. We determined whether the interferon signature genes in the 

kidneys will diminish in the Fcgr2b-double deficient mice. Surprisingly, only CXCL 10 expression 

was decreased in the double-deficient mice compared to Fcgr2b-deficient mice, but the MX1 , 

-.\ 
ISG 15 and I FNU expression were increased (Figure 4). 
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Figure 4 Decrease CXCL 10 expressions in the kidneys of the double deficient mice 

Interferon inducible gene expression was tested from the kidneys of wild type, Fcgr2b-/-, and 

Fcgr2b-/-Sting-/- mice . Only CXCL 10 mRNA expression was reduced in the group of double­

deficient mice compared to Fcgr2b-deficient mice (N=5/group, p<O.01). 

I '11 'tI I 

3. 'f)JhJ~1tJ I ~r.nnw (Discussion) ~~n1~Vl~~'f)--1 I ~~n1~~r.ltJ'Vl1~vl--1'v1:hJ~ (vl--1VldJ'Ubb~~1~dJ'Uhj 

1?l1:hJ~:hJ:hJ~ty1'U~i,,1~)
d.9 

The data from this study confirm the hypothesis that Sting-mediated signaling participates in the 

pathogenesis of the Fcgr2b-deficient mice . The blocking Sting pathway may alleviate lupus 

phenotypes and probably be worth to develop therapeutic drug target. Unexpectedly, most of the 

interferon-inducible gene expressions do not decrease, except CXCL 10. Contrary, the increase 

expression of Mx1 and IFNU suggests the interferon-independent mechanisms of Sting signaling in 

lupus development of Fcgr2b-deficient mice. This intriguing effect of Sting signaling is worth to 
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explore in details to better understand the immunological mechanisms of Sting in autoimmune 

development and other inflammatory diseases. 

In order to understand the immunological importance of Sting in lupus Fcgr2b-deficient mice, the 

flow cytometry will be analyzed from the splenocytes of affected mice and their controls. 

Furthermore, the in vitro culture of bone-marrow derived dendritic cells with Sting ligands will be 

performed and tested for the differentiation, activation stage and cytokine production. In addition, 

the proteomic analysis of kidney tissue from these mice will be performed to discover the new 

01 ', unbiased Sting-signaling pathway. 


The translational knowledge from this study will lead to design therapeutic drug for SLE patients. 
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Abstract 
Repeated bacterial infection in patients with Systemic Lupus Erythematosus (SLE) is 

common and sepsis is the leading causes of death. Despite proper responses to a single bacterial 

infection, the repeated infection might lead to immune exhaustion and severe sepsis. Then the 

bacterial susceptibility was tested with cecal ligation and puncture (CLP) after immune 

exhaustion induced by the 2-separated-doses of endotoxin (LPS) in FcGRIIb-/- mice and wild 

type (WT) control. 

In the comparison with wild type group, the prominent serum cytokine after 1 sl LPS 

injection followed by the apparently lower cytokines after 2nd LPS administration, cytokine 

exhaustion, was demonstrated in FcGRIIb-/- mice. Subsequently, CLP was conducted after 

double doses of LPS preconditioning to test the immune suppression. Indeed, a higher mortality 

rate and a more severe sepsis (bacterial burdens, serum cytokines and organs injury) at I8h of 

CLP demonstrated in FcGRIIb-/- mice. Because macrophages are the major immune cells 

responsible for sepsis immune responses, we tested in vitro. Interestingly, the stimulation with 

separated 2 doses of LPS in bone marrow-derived macrophage from FcGRIlb-/- mice showed 

the higher cytokines responses after the 1 sl LPS stimulation in comparison with WT cells but the 

cytokines level were lower than WT cells after the 2nd LPS stimulation, supplementary to the in 

vivo results. 

In conclusion, macrophage exhaustion was easier inducible in FcGRIlb-/- cells in parallel 

to the immune paralysis, highly susceptible to CLP, in FcGRIIb-/- mice compare with wild type 

group. These implied the importance of the repeated infections in patients with SLE, especially 

with FcGRIlb polymorphisms. 
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~'J1:W~~~U1:W11-ii1'Wn1'J';)9~ u'Jd~"lltr~~1~rj1"'l~1~fu '1f:'1'1 

Systemic Lupus Erythematosus (SLE), the autoimmune disease with multi-factorial 

pathogenesis (1,2) leads to multi-organs injury, showed a higher prevalence in Asia in comparison 

with other regions of the world (3-5) . The defect of Fc gamma receptor lib (FcGRllb), the only 

inhibitory signaling receptors in the FcGR family , is one of the genetic susceptibility to SLE (2, 6). 

Interestingly, FcGRllb polymorph isms also demonstrated the high prevalence in Asia which might 

due to the protective effect of the gene for malarial infection (7). Coincidentally , the association with 

FcGRilb polymorphisms in patients with SLE in Asia Pacific region is also common (3-5, 8). Perhaps 

FcGRllb polymorph isms could protect malaria in this region but, on other side of the coin, people 

with this immunological defect might easier develop SLE. In any case, sepsis, the systemic immune 

responses to the severe infection, is one of the important causes of death in patients with SLE (9). 

Indeed, the high susceptibility to bacterial sepsis in patients with SLE is well-known (9-13) 

However, there are debates whether the susceptibility to infection in patients with SLE is due to the 

de novo defects of immune response or immunosuppressive drugs. Unfortunately, the data on 

untreated symptomatic patients with SLE is very limited (14) . Hence, the studies of infection in 

FcGRllb-/- mice, one of the established SLE mouse model (6), could be resemble to untreated 

patients with SLE, especially with FcGRilb polymorph isms. 

FcGRs binds with Fc portion of immunoglobulin mediate antigen uptake and cellular 

responses (15). In the mouse, FcGRs are classified into three activation receptors (FcGRI, FcGRIII, 

FcGRIV) and only one inhibitory receptor (FcGRllb) (16) . The deficiency of all classes of FcGR in 
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mice (FcGR -/-) protected from sepsis (17) and FcGRllb-/- mice response well to the gram positive 

bacterial infection due to the effective bacterial killing (18). Nevertheless, a more severe sepsis with 

the cytokines storm demonstrated in FcGRllb-/- mice with the bacterial antigen preconditioning 

before bacterial administration. This data supported the overshoot cytokines responses after the 

repeated antigen exposures due to the lack of inhibitory signaling in these mice (18). On the other 

hand, FcGRllb-/- mice are protected from Plasmodium and Mycobacterium infection (7, 19), the 

inhibitory signaling defect seems to enhance the activating signaling and show a benefit in these 

infections. However, the susceptibility of FcGRllb-/- mice to polymicrobial sepsis is never tested. 

Interestingly, sepsis-induced immune exhaustion or immunoparalysis, the high susceptibility 

to secondary infection after sepsis, has been recognized as an important sepsis complication (20, 

21) and was demonstrated by several mouse and human models (22-26). In contrast, the 

preconditioning of LPS, a single or multiple doses, for 24h before CLP ameliorates sepsis severity in 

wild type mice has been showed in previous publications (27, 28). Despite the demonstrated 

protective effect to sepsis after 1 day of LPS preconditioning, we hypothesized that the immune 

exhaustion after LPS administration might existed in the earlier period and the repeated endotoxin 

exposure might mimic the repeated infection in patients. Subsequently, we selected the 

preconditioning with double doses of LPS with 5 days separation followed by CLP at 12h after the 

2
nd 

dose of LPS to demonstrate the immune exhaustion in our models. Of note, half-life of the 

important LPS-induced cytokines (TNF-U, IL-6 and IL-10) is approximately O.5-1.5h (29), then at 

12h, approximately 8 times of the half-life, should be adequate for avoiding the effect of these 

cytokines to the subsequent CLP surgery. 

On the other hand, the lower macrophage immune responses, especially cytokines 

production, after repeated LPS activation is demonstrated, and was known by several terms such 

as "macrophage paralysis" or "macrophage exhaustion" or "macrophage tolerance" or "endotoxin 

tolerance" (30-32). Although, the association between immunoparalysis and macrophage 

exhaustion is not clearly demonstrated (31), it is possible that macrophage exhaustion might cause 

ineffective organisms clearance and increase infection susceptibility compatible with the definition 

of "immunoparalysis". 

http:O.5-1.5h
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Indeed, macrophage contains both activating and inhibitory FcGRs which competing for 

immune complex ligands and the direction of this balance determines the direction of the cell 

responses (16 , 33) . We hypothesize that the defect in the inhibitory signaling of FcGRllb-/- mice 

might result in a prominent response but is easier exhausted after repeated stimulation. Then we 

test immunoparalysis of FcGRllb-/- mice in vivo and macrophage exhaustion in vitro, respectively. 

'" 	 I I I 
~ 	 ~ • .::S. I..:::S -=i.o::::l Q/~.::i 0..::.. ...:::;), _ 

2. 	b'W'e)bJ''e)~ (Main Body) "l1~n~1'Jbl~ntJ~~b'e)tJ~bntJ'JnU'JD~1b'W'\.m1J''J'"ltJ (Materials & Method) 

~~n1J'~r.rtJ (Results) '1~'1 

Materials and Methods 

Animal and animal models 

FcGRllb-/- mice on C57BU6 background were provided by Bolland S. (NIH, Maryland, 

USA). Other mice were purchased from the National Laboratory Animal Center, Nakornpathom, 

Thailand. Female, 8- and 24-week-old C57BLl6 mice were used in the experiments. The animal 

protocols were approved by Faculty of Medicine, Chulalongkorn University followed the National 

Institutes of Health (NIH) criteria. 

Cecal ligation and puncture model 

Polymicrobial sepsis was induced by Cecal ligation and puncture model (CLP) slightly 

modified from the previous publication (29) . Briefly, cecum were ligated at 10 mm from cecal tip 

with silk 2-0, punctured twice with a 21-gauge needle then gently squeezed to expel a small 

amount of fecal materials through an abdominal incision under isoflurane anesthesia . The incisions 

were closed with 2 layers by nylon 4-0 and normal saline (NSS) at 2 ml/kg was administered 

subcutaneously for the fluid replacement. 

Cecal ligation and puncture with endotoxin pre-conditioning model 

Because LPS induced-immuno-suppression is demonstrated (34, 35) and used as a sepsis-

induced immunoparalysis model (26), we follow the principle in our experiments. In our model , the 

immunoparalysis, a condition susceptible to an infection, was tested by the severity of polymicrobial 

infection from CLP surgery. Endotoxin (LPS) of Escherichia coli 026:B6 (Sigma-Aldrich, St. Louis, 
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USA) was administered intraperitoneally at 5 days (-120h) and 12h (-12h) before CLP surgery at the 

dose of 0.8 g/kg (approximately 20 ~g per 25 g mouse) and 4 g/kg (approximately 1 00 ~g per 25 

g mouse), respectively. Subsequently, CLP was performed as previously mentioned. 

To measure inflammatory cytokines after LPS injection, 50 ~I of blood was collected 

through tail vein nicking at Oh (2h before LPS administration) and at 1,3 and 6h after. In addition, in 

separated experiments , blood from tail vein nicking was also collected before CLP (Oh) and at 3h 

and 6h to measure time-courses of bacterial burdens and serum cytokines after CLP surgery. 

Otherwise, blood was collected through cardiac puncture at sacrifice time under isoflurane 

anesthesia at 18h or 96h after CLP for sepsis injury analysis or survival test, respectively. 

Blood chemistry, supernatant media analysis and urine protein 

For the natural history of FcGRllb-/- mice, serum from tail vein nicking and spot urine was 

collected once a month from 2 to 12-month-old. Serum and urine creatinine were measured by 

(QuantiChrom Creatinine Assay, DICT-500, BioAssay, CA, USA). Spot urine protein was measured 

by Bradford protein assay. Urine protein creatinine index (UPCI), a representative of 24h urine 

protein, were measured from spot urine by equation ; urine protein/urine creatinine. 

Serum cytokines after LPS were measured by Luminex-based multiplex technology multi­

analysis panels 8-plex cytokines assay (Bioplex, Bio-RAD, CA, USA) to explore the panel of pro and 

anti -inflammatory cytokines (TNF-U, IL-6, IL-1~, IFN-y and IL-2, IL-4, IL-5, IL-10, respectively) 

according to the manufacturer's protocol . Then the selected important cytokines (TNF-U, IL-6, IL­

10) were measured by ELISA assay (ReproTech, NJ, USA) in supernatant media and in mouse 

serum after CLP surgery. Organs injury was determined by blood urea nitrogen (QuantiChrom Urea 

Assay, DIUR-500, BioAssay) , serum creatinine (Scr) (QuantiChrom Creatinine Assay, DICT-500, 

BiaAssay), alanine transaminase (ALT) (EnzyChrom ALT assay, EALT-100, BioAssay) and lactate 

dehydrogenase (LDH) (EnzyChrom LDH assay, EDLC-100, BioAssay). Blood bacterial burdens 

were determined by plating a serial volume of blood into blood agar (Oxoid , Hampshire, UK) at 

3rC then counted bacterial colonies after 24h of incubation. For blood polymorphonuclear cell 

(PMN) and mononuclear cell count, 5 /....ll of blood mixed in 85 /....ll of 3% acetic acid for the hemolytiC 

reaction and total leukocytes was counted by a hemocytometer. In parallel, blood smeared on a 
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glass slide was stained by Wright stain and counted with x100 magnification in 100 fields to 

determine the percentage of PMN and mononuclear cells. The total number of cells was calculated 

by total leukocyte count from hemocytometer multiplied by the percentage of cells from the Wright 

stain glass slide. 

Anti-dsDNA antibodies 

Anti-dsDNA antibodies were measured by coating ELISA plates with salmon sperm DNA as 

published previously (36) . In short, salmon sperm DNA (Life Technologies, Invitrogen™, MA, USA) 

passage through a 45-mm filter (Minisart, Sartorius, Germany) for selecting double stranded DNA 

then coated into ELISA plate with the dose at 1 00 ~g/plate . The plates were dry, blocked and 

incubated with serial dilutions of serum for 1 hour at 3rC then peroxidase conjugated Fab'2 goat 

anti-mouse IgG 1/2,000 in 1 % bovine serum albumin (BSA) in phosphate buffer solution (PBS) 

followed by TMB peroxidase substrate (Biolegend, California, USA). The plate was developed in the 

dark room for 10 min then added TMB stop solution and read with microplate photometers with a 

wavelength at 410 nm. 

Bone Marrow Derived Macrophages 

Macrophages were derived from bone marrows (BM) follow the established procedure (37). 

In short, BM cells from FcGRllb-/- and wild type mice obtained from femurs were centrifuged at 

1,000 rpm in 4 DC for 10 min. Then cell were incubated in high glucose DMEM supplement with 

10% fetal bovine serum (FBS), 1% penicillin/streptomycin, HEPES with sodium pyruvate and 20% 

L929-conditioned media in a humidified 5% CO2 incubator at 37 DC for 7 days. The cells were 

harvested at the end of the culture period using very cold PBS and confirmed macrophage 

phenotype with anti-F4/80 and anti-CD11c antibodies (BioLegend, CA, USA). 

Macrophage endotoxin tolerance protocol 

Macrophage endotoxin tolerance protocol followed the protocols from the previous 

publications (38, 39) . Briefly, endotoxin (LPS) Escherichia coli 026:B6 (Sigma) at 10 or 100 ng/ml 

was used to activate macrophage 1 x1 0
5 
cells/well in 96 well polystyrene tissue culture plate. To see 

the difference between single or double LPS stimulations, 2 groups of experiments were performed. 

For the single LPS stimulation (N/LPS), there was no endotoxin at the 1
51 

24h of the incubation then 
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the plate was washed with phosphate buffer solution (PBS), refilled fresh media and treated with 

LPS at 10 ng/ml (N/LPS10) or 100 ng/ml (N/LPS100). For the double LPS stimulation (LPS/LPS), LPS 

at 10 or 100 ng/ml was treated for the 1
51 

24h and treated with the 2
nd 

dose of LPS at 10 ng/ml or 

100ng/ml as indicated. The culture supernatant was collected at 1,2,4,6 and 24h after the 2nd LPS 

incubation in all groups and stored at -80°C until cytokine determination by ELISA assays 

(ReproTech). After the incubation, cell viability was measured by MTS assay (One Solution Cell 

Proliferation Assay, Promega Corporation, WI, USA) according to the manufacturer's instruction 

(40). In short, 20 J.lI of MTS was added to the culture plates for 2h at 3rC in 5% C02 incubator 

then read with microplate photometers with a wavelength at 450 nm. All in vitro experiments 

demonstrated cell viability more than 95% (data not showed). 

Macrophage intracellular killing activity and phagocytosis protocol 

The protocol followed the previous publication (41). BM derived macrophage at 1x10
5 

cells 

in 200 ul of OM EM per well were dispensed into the flat bottom 96-well plate and incubated at 37°C 

in a humidified 5% (v/v) CO2 incubator for 24 h, before gently washing with culture media to remove 

non-adherent cells. Subsequently, the cells with endotoxin (LPS) Escherichia coli 026:B6 (Sigma) at 

10 or 1,000 ng/ml, LPS10 or LPS1000, respectively, and incubated with 1x 10
7 
CFU of E.Coli per 

well. 

Then after 15 min of incubation, supernatants were aspirated and cells were washed gently 

with OMEM to remove un-ingested microorganisms. The supernatant and well washing fluids, 

containing the non-phagocytized E.Coli, were combined, plated in serial dilutions on Tryptic soy 

agar plates and counted for bacterial colonies for the representative of the non-phagocytic bacteria 

which reversed correlated with the phagocytic activity. On the other hand, the cellular part, 

phagocytosed macrophage, was further incubated with 200 ul of DMEM for 2h to determine 

intracellular bacterial killing activity. The wells were gently scraped and washed with 200 ml distilled 

HzO to induce cell lysis and the serial dilution of the lysate were plated on Tryptic soy agar, 

incubated at 37°C for 16 h and determine the bacterial colony count. The number of bacteria from 

the cell lysate represented the intracellular killing activity. 
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Statistical analysis 

Data are shown as the mean ± SE and differences between groups were examined for 

statistical significance using the unpaired Student t-test or one-way analysis of variance (ANOVA) 

with Tukey's comparison test for the analysis of experiments with 2 and 3 groups, respectively. 

Survival analyses were evaluated using the log-rank test by observation and recorded every 6-24h 

then all mice were sacrifice at 96h after CLP. P values < 0.05 were considered statistically 

significant. SPSS 11.5 software (SPSS Inc., Chicago, IL, USA) was used for all statistical analysis. 

Result 

Fc gamma receptor lib deficient mice susceptible to cecal ligation and puncture sepsis in 

symptomatic SLE mice and asymptomatic SLE group preconditioned with LPS 

At 24-weeks-old, FcGRllb-/- mice showed increased anti-dsDNA with proteinuria but normal 

kidney function as evaluated by serum creatinine (Scr) (Fig 1). This natural history allows the 

experiments in 2 groups of mice in correspondence with patients with SLE; asymptomatic genetic 

prone group (8-weeks-old) and symptomatic proteinuria group (24-weeks-old) . To see the 

susceptibility to bacterial sepsis without LPS preconditioning in these 2 groups, CLP surgery was 

performed in comparison with age-matched wild type control. In the absence of LPS, only 

symptomatic, but not asymptomatic, FcGRllb-/- mice showed higher sepsis mortality rate compare 

with wild type (Fig 2A, B) supports the correlation between SLE disease activity and infection 

susceptibility (9). 
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Figure 1. The natural history of FcGRllb-/- and wild type (FcGRllb+/+) mice as determined by 

serum creatinine (Scr) , urine protein creatinine index (UPCI) and anti-dsDNA (n=4-5/groups). 

Then we test the effect of LPS preconditioning in asymptomatic mice and determine the 

severity of immunoparalysis by the mortality rate of CLP surgery (20,21) . 
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Figure 2. Survival analysis of cecal ligation and puncture (eLP) sepsis surgery in asymptomatic 

FcGRllb-/- mice (8-wk-old) (A) and symptomatic, proteinuria positive but normal serum creatinine, 

FcGRllb-/- mice (24-wk-old) (8) in comparison with age-matched wild type mice (FcGRllb+/+). 

Although the high CLP mortality rate found in both wild type and FcGRllb-/- mice after LPS­

preconditioning , FcGRllb-/- showed the higher mortality rate . Whereas all wild type and FcGRllb-/­

mice die within 72h and 36h, respectively, in CLP with LPS, the survival rate at 30% and 22% found 

in wild type and FcGRllb-/- mice, respectively, in CLP alone (Fig 3A, B). These results supported 

the immunoparalysis occur in both wild type and FcGRllb-/- mice after LPS preconditioning but 

FcGRllb-/- mice showed the more severe immunoparalysis (Fig 3C). 

'. 
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Figure 3. Survival analysis of cecal ligation and puncture (CLP) sepsis surgery preconditioning 

with 2 separated doses of LPS at 120h and 12h prior to CLP, CLP in endotoxin preconditioning 

model, in comparison with normal saline (NSS) placebo injection within wild type mice 

(FcGRllb+/+) (AJ and FcGRllb-/- group (8) were showed. Survival analysis of CLP in endotoxin 

induced immunoparalysis model between wild type (FcGRllb+/ +) and FcGRllb-/- mice (C) was 

also demonstrated. 
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The cytokine responses after LPS injections and after superimposed by cecal ligation and puncture 

The luminex-based multiplex system was used to explore the difference in the cytokines 

responses after LPS administration between asymptomatic FcGRllb-/- mice versus wild type. 

Among the pro-inflammatory cytokines (TI\IF-U, IL-6, IL-1 Pand IFN-y), we found that most of the 

pro-inflammatory cytokines, except for TNF-U, were significantly higher in FcGRllb-/- mice at 1 h 

after the 1 st dose of LPS administration (Fig 4A-C). TNF-U, IL-6, IL-1 ~ and IFN-y at 1 h after LPS 

administration in FcGRllb-/- mice and wild type were 21,851 ±3,200, 3,525±117, 350±38, 21±2 

pg/ml and 12,453±3,925, 2,301 ±157, 54±11, 3±1 pg/ml, respectively. In parallel, for the anti­

inflammatory cytokines (IL-2, IL-4, IL-5 and IL-10), all of these cytokines, except for IL-5, were 

higher in FcGRllb-/- mice at the 1st h after the 1st dose of LPS (Fig 4D-F). In detail, IL-2, IL-4, IL-5 

and IL-10 at 1h after LPS administration in FcGRllb-/- mice and wild type were 26.2±3.4, 10.8±1.1, 

34.5±3.5, 958±106 pg/ml and 12.6±3.3, 3±0.4, 27.1±3.6, 575±104 pg/ml, respectively. These 

results supported the prominent cytokines responses in FcGRllb-/- mice reported previously (18) . 

Interestingly, at 1 hand/or 2h of the 2
nd 

LPS administration with the 5 times higher dose of LPS, all of 

these cytokines, except for IL- 'I ~ and IL-5, were significantly lower than the 1 st administration in 

FcGRllb-/- mice (Fig 4) . In contrast, in wild type mice, only IFN-y, IL-2 , IL-4 and IL-10 were lower 

and IL-1 ~ was higher in some time-point of 2
nd 

LPS administration compared with the matched 

time-point of the 1st LPS injection (Fig 4). The endotoxin tolerance, determined by the lower 

cytokines responses after 2
nd 

dose of LPS, was easier demonstrated in FcGRllb-/- mice compare 

with wild type. Moreover, the severity of endotoxin tolerance, determined by the cytokine level 

difference after matched time-point of 1st and 2
nd 

LPS administration, was higher in FcGRllb-/- mice 

(Fig 4 inset graph). 
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Figure 4. Serum cytokines in wild type (FcGRllb+I +) or FcGRllb-/- mice after at 1, 3 and 6h after 

1
st 

LPS injection (0.8 g/kg) and 2
nd 

LPS injection (4 g/kg) as measured by TNF-O, (A) , IL-6 (B), IL­

1/J (C), IFN-y (0), IL-2 (E) , IL-4 (F) , IL-5 (G) and IL-10 (H) was demonstrated. To emphasize the 

difference of serum cytokines after 1st and 2
nd 

doses of LPS, the delta change of serum cytokine 

response at the matched-time=points after both LPS injection was showed as inset graph . (n= 5-7 

per group) 

It is interesting to note that. even with the 5 times higher LPS dose of 2
nd 

LPS administration, 

most cytokines level was lower than the 1s t dose implied endotoxin tolerance status in both 
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FcGRllb-/- and wild type mice. Subsequently, we tested the severity of polymicrobial infection in 

these mice with CLP surgery and selected to explore only frequently mentioned sepsis cytokines 

Figure 5. The time-course of bacterial burdens after cecal ligation and puncture (CLP) in blood 

bacterial burdens (A), mononuclear cell (B), PMN (C), TNF-a (0), IL-6 (E), IL-10 (F) and the 

severity of organs injury after 18h of wild type (FcGR/lb+/+) and FcGR/lb-/- as demonstrated by 
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serum creatinine (Scr) (G) and alanine transaminase (AL T) (H) was showed. (n = 5-71 time-point 

and group) 

Interestingly, bacterial burdens in FcGRllb-/- mice were higher than wild type in all selected 

time-points (3, 6 and 18h) after CLP (Fig 5A). Blood bacterial count (x1 02 CFU/ml) in FcGRllb-/­

mice and wild type at 3, 6 and 18h were 3.1 ±0.3, 7.6±1 .1, 964±137 and 0.6±0.2, 3.3±0.6, 518±73, 

respectively. 

Moreover, pro-inflammatory cytokines (TNF-U and IL-6) and anti-inflammatory cytokine (IL­

10) were higher in wild type mice at 3 and 6h and only 3h after CLP, respectively (fig 5B-D) . Serum 

TNF-U, IL-6 and IL-10 at 3h and 6h in FcGRllb-/- versus wild type were 48±9, and 80±7.1, 69±9 and 

145±18, 71±6 and 104±4 pg/ml versus 120±24 and 211±49, 124±24 and 235±33, 102±7 and 

170±36 pg/ml, respectively. In contrast, at 18h after CLP, all of these cytokines and most of the 

organs injury biomarkers (Scr for kidney injury and ALT for liver injury) were higher in FcGRllb-/­

mice (Fig 5B-H). Despite the prominent responses to LPS in FcGRllb-/- mice mentioned earlier, 

cytokines responses at the early phase of CLP after LPS preconditioning were stun in comparison 

with wild type implied the more severe immunoparalysis . 

Perhaps, severe immunoparalysis at the early phase of sepsis might associate with the 

higher bacterial burdens leading to the higher sepsis severity (Fig 5) and mortality rate (Fig 3C) in 

FcGRllb-/- mice. 

Bone marrow derived macrophage of FcGRllb-/- mice showed higher cytokine responses in the 

single incubation of LPS but lower responses in the double incubation of LPS 

The previous results demonstrated thClt FcGRllb-/- mice, an inhibitory signaling deficiency, 

showed a very high initial response, but subsequently follow with a more apparent exhaustion after 

LPS stimulation . Because macrophage might be responsible for the exhaustion in vivo then we 

tested FcGRllb-/- macrophages response to endotoxin incubations in vitro in comparison with wild 

type cell . 
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Figure 6. The cytokine responses in supernatant media from macrophages of FcGR//b-/- or wild 

type (FcGR//b+/+) after activated with only once low dose LPS (N/LPS10) as measured by TNF-a. 

(A), IL-6 (8), IL-10 (C) and after activated with twice low dose LPS (LPS10110) as measured by 

TNF-a. (0), IL-6 (E), IL-10 (F) was showed. (Separated experiments were done in triplicate) 

In parallel with the in vivo results, higher cytokines, at least in some time-points (3-24h), 

found in the supernatant of FcGRllb-/- macrophages with the single low dose LPS (non LPS at the 

151 24h of the incubation followed by LPS dose at 10 j.lg/ml; N/LPS 10) (Fig 6A-C). Then TNF-a and 

IL-10, but not IL-6 , was lower in the double low dose of LPS stimulation (LPS 10 j.lg/ml for 24h then 

washed and add the same 2
nd 

dose ; LPS10/10) (Fig 6D-F). Then, a higher dose of LPS was used. 

Once again, FcGRllb-/- macrophages showed the higher responses than wild type in the single 

high dose of LPS (~I/LPS100) (Fig 7A-C). But the cytokines responses of macrophages primed with 



23 

the high dose of LPS seems to depend on doses of the 2
nd 

LPS. In high LPS followed by low dose 

LPS (LPS100/10), all cytokines were detected at the low level (Fig 7D-F) and the difference between 

wild type and FcGRllb-/- cells were subtle. But the apparent lower TNF-U and IL-10 in FcGRllb-/­

cells appeared again with the higher 2
nd 

dose of LPS (LPS100/100) (Fig 7G-I). To clarify the 

macrophage exhaustion, the lower cytokines level after double LPS exposure compare with single 

LPS exposure, the cytokines level after single and double LPS exposure at 6 and 24h was 

demonstrated (Fig 8) . With the double low dose of LPS (LPS10/10), macrophage exhaustion could 

be demonstrated with only the lower TNF-a in wild type cell but lower both TNF-a and IL-10 in 

FcGRllb-/- macrophages (Fig 8A-C). 

Interestingly, macrophage exhaustion, lower cytokine in double LPS exposure compare with 

single LPS, could be demonstrated only by TNF-a and IL-10 in FcGRllb-/- cells but with TNF-a alone 

for wild type cell with the double low dose of LPS (LPS1 0/1 0) (Fig 8A-C). On the other hand, with the 

higher dose of LPS stimulation , the exhaustion could be demonstrated in all cytokines in FcGRllb-/­

cells but only in some condition in wild type cell (Fig 8D-F). 
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Figure 7. The cytokine responses in supernatant media from macrophages of FcGR//b-l- or wild 

type (FcGR//b+I+) after activated with only once high dose LPS (NILPS100) as measured by TNF­

0. , IL-6, IL-10 (A-C) and double LPS doses, low and high dose LPS (LPS100110 and LPS1001100, 
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Figure 8. The macrophage endotoxin tolerance emphasized by the difference in cytokine 

responses (TNF-a, IL-6, IL-10) in supernatant media from macrophages of FcGRllb-l- or wild type 

(FcGRllb+I+) after activated with only once low dose (NILPS10) versus twice low dose of LPS 

(LPS10110) (A-C) and the difference among only once high dose (NILPS100) versus twice high 

and then low dose of LPS (LPS100110) versus twice high dose of LPS (LPS1001100) (O-F) were 

demonstrated. (Separated experiments were done in triplicate) 
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Macrophage exhaustion could not be demonstrated by IL-6 responses both in wild type and 

FcGRllb-/- cells with double low dose LPS stimulation. In parallel, with the comparison among 

single high dose LPS (N/LPS100) with double LPS dose with low and high 2nd LPS dose (LPS100/10 

and LPS100/100, respectively), macrophage exhaustion could be shown by all cytokines despite a 

less prominent in IL-6 response of the wild type cell (Fig 8D-F). It seems the macrophage 

exhaustion occur in both knock-out and wild type cells but more prominent in FcGRllb-/- cells . 

In contrast, the phagocytosis and killing activity of FcGRilb -/- macrophages were better 

than wild type cells and there was a non-significant exhaustion in phagocytosis and killing activity 

after LPS stimulation (Fig 9) . Although, the killing activity of FcGRilb -/- macrophage should be able 

to control sepsis severity, perhaps the more severe bacterial sepsis severity in FcGRilb -/- mice 

might due to the lower number of mononuclear cell after sepsis (Fig 5). 

, " 
1?11~~~:W~jlUVl i?l'l1~) 

FcGRilb deficiency is one of the genetic defects of SLE and FcGRilb polymorphism with a 

lower gene activity commonly reported in patients with SLE in Asia (3-5, 8). Additionally, sepsis is 

the leading cause of death in patients with SLE (9). We showed a high susceptibility to CLP in 

symptomatic SLE mice but not in asymptomatic group in comparison with age-match wild type 

control. In asymptomatic genetic prone mice, the high susceptibility to CLP was showed only after 

with repeated endotoxin induced immunoparalysis. The more severe macrophage paralysis in 

FcGRllb-/- macrophages might responsible for the more immunoparalysis in mice leading to higher 

sepsis severity after CLP surgery. 

The susceptibility to bacterial infection in patients with SLE is associated with several 

factors; immunosuppressive drugs, activity of disease, organs involvement, etc (9). Studies on 

FcGRllb-/- mice allow for exploring SLE without several confounding factors , especially 



27 

immunosuppressive drugs. As expected, the higher mortality rate of sepsis was showed in 24-wk­

old FcGRllb-/- mice, positive proteinuria but normal Scr classified into symptomatic SLE group, in 

comparison with age-matched wild type mice. These results supported the association between 

SLE disease activity and bacterial infection susceptibility reported previously (9). Interestingly, the 

mortality rate of sepsis without LPS preconditioning in asymptomatic 8-wk-old FcGRllb-/- mice, 

positive anti-dsDNA without proteinuria, did not different to wild type mice supported the effective 

immune responses to bacterial infection previously published (18). 

More prominent endotoxin-induced immunoparalysis in FcGRllb-/- mice demonstrated by 

the high mortality rate of CLP sepsis 

The immunoparalysis was induced by the double separate LPS administration and the 

severity of immunoparalysis, the condition with a more susceptible to infection , was determined by 

the severity of CLP sepsis (20) . With this model, there was a higher mortality rate of CLP after LPS 

preconditioning compare with NSS placebo control within either 8-wk-old FcGRllb-/- or wild type 

mice demonstrated immunoparalysis occur in both groups. Nevertheless, FcGRllb-/- mice showed 

a higher mortality rate than wild type implied a more severe immunoparalysis. 

Despite immunoparalysis could be demonstrated by several biomarkers (42), cytokines 

responses are frequently used. Then we tested cytokines responses in panels of pro- and anti­

inflammatiory cytokines, TNF-U, IL-6, IL-1~, IFN-y and IL-2, IL-4, IL-S, IL-10, respectively, with 

luminex-based measurement in mice with double doses of LPS administration . Most of the 

cytokines selected to measure were mainly produced by macrophage except for IFN-y and IL-S 

which produced prominently by NK cell or T cell and mast cell, respectively . With double dose of 

LPS administration by the 2nd dose of the S times higher than the 1
st 

dose, all of these cytokines 

response after the 2nd LPS stimulatiun were nol higller Ulall tile responses after the 1 st LPS dose. 

These results suggested immunoparalysis in both FcGRllb-/- and wild type mice. Interestingly, in 

comparison with wild type mice, most of the pro- and anti-inflammatory cytokins, except for IL-S, 

were higher in FcGRllb-/- mice after the 1
st 

LPS stimulation , implied the vigorous cytokines 

responses in FcGRllb-/- mice. Then after 2
nd 

LPS administration, all cytokine except for IL-1 ~ and 

IL-S were lower than the 1 st responses in both wild type and but with a more prominent difference, -. 
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demonstrated by the cytokine difference between 1S
\ and 2

r d 
LPS administration, in FcGRllb-/- mice . 

These results demonstrated a more severe immunoparalysis in FcGRllb-/- group. Of note, most of 

these cytokines produced from macrophages except for IL-5 and IFN-y which produced mainly 

from mast cell and NK cell, respectively. Although functional FcGRllb expression on mast cell (43) 

and murine NK cell (44) were reported, IFN-y, but not IL-5, response differently between FcGRllb-/­

and wild type mice. These implied the difference of FcGRilb function between these cells. More 

experiments needed but out of the scope of this article. 

Nevertheless, the double LPS preconditioning seems to affect CLP severity. At the initial 

time-point of CLP surgery, 12h after 2
nd 

dose of LPS, there was non-difference in TNF-U, IL-6 and 

IL-10 between LPS preconditioning and NSS control (data not showed) supported by the base-line 

value before CLP surgery (Figure 5) . Interestingly, blood bacterial burdens were higher with the 

lower of these cytokines in FcGRllb-/- mice compare with wild type at 3h and 6h after CLP surgery. 

However, at 18h after CLP the sepsis severity was more severe in FcGRllb-/- mice as demonstrated 

by bacterial burdens, cytokines and organs injury. Perhaps, the initial cytokine responses were 

needed for the initial innate immune responses to control the infection and the loss of the initial 

control in FcGRllb-/- mice due to LPS preconditioning induced a more severe sepsis. These results 

support the importance of the initial bacterial control, especially in patients with SLE and lor 

FcGRllb polymorphism. 

More prominent immunoparalysis in FcGRllb-/- macrophage demonstrated by cytokine 

responses after LPS stimulation 

The LPS induction in vitro alters macrophage characteristics from classical pro­

inflammatory macrophage responses into a less pro-inflammatory stage of the macrophage (38) 

implied the importance of macrophage in immunoparalysis . With the double low doses of LPS 

(LPS10/10), macrophage exhaustion could be demonstrated in both FcGRllb-/- and wild type but 

cytokines production after 2nd dose of LPS was lower in FcGRllb-/- macrophages . Moreover, the 

exhaustion seems to be more apparent with the higher 1 s\ dose of LPS which needed the higher 2
nd 

dose of LPS to re-stimulate . With the initial high dose of LPS followed by a low dose (LPS1 00/1 0), 

only subtle cytokines responses were demonstrated . But with the larger 2
nd 

LPS dose (LPS1 00/1 00), 
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the difference between FcGRllb-/- and wild type appeared again. However, FcGRllb-/­

macrophages produced less cytokines levels after 2
nd 

dose of LPS either with high or low LPS 

doses. Then LPS could induce a more apparent macrophage paralysis in FcGRllb-/- cells resulted 

in immunoparalysis state in mice which demonstrated by the higher CLP sepsis severity. 

In conclusion, we demonstrated the impact of the repeated infection in patients with SLE 

through the CLP preconditioning with LPS in FcGRllb-/- mice. Despite a good response to the only 

once bacterial infection in FcGRllb-/- mice, the responses to the repeated exposure might be 

impaired lead to a more severe bacterial burdens and infection. The repeated infection in patients 

with SLE could be more severe due not only to hyperimmunoglobulin induced hyper­

immuneresponse and sepsis (18), but also from immunoparalysis with the higher bacterial burdens 

as currently demonstrated. In the translational aspect, we suggested that the repeated infection in 

patients with SLE should be vigorously concerned and the FcGRllb polymorphism screening in 

Asian patients with SLE might be a useful clinical practice. 

The next final part of the project is the experiments to see if macrophage of FcGRllb knock-out 

which demonstrated exhaustion but intact killing activity show shorter half-life in comparison with wild 

type cell. If the last experiment results go along with the hypothesis then FcGRllb knock-out mice will be 

susceptible to sepsis due to macrophage exhaustion and shorten half life of macrophage which will be 

stronger support our in vivo results. 

Regarding to the translation, the exploration of FcGR polymorphisms in patients with SLE might 

be beneficial for the prediction of sepsis and might require a more aggressive antibacterial drug at the 

beginning of the simple infectious diseases. More studies will be needed. 
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