
การเพิม่ข้อมลูสาํหรับระบบประมวลภาษาธรรมชาตภิาษาไทยโดยใช้การแบง่เปน็โทเค ็
นทีแ่ตกตา่งกัน

นายปฐวี ปราการกมานันท์

วทิยานพินธน์ ี้ เปน็สว่นหนึง่ของการศกึษาตามหลักสตูรปรญิญาวศิวกรรมศาสตรมหาบัณฑติ
สาขาวชิาวศิวกรรมคอมพวิเตอร์ ภาควชิาวศิวกรรมคอมพวิเตอร์

คณะวศิวกรรมศาสตร์ จฬุาลงกรณม์หาวทิยาลัย
ปกีารศกึษา 2564

ลขิสทิธ ิข์องจฬุาลงกรณม์หาวทิยาลัย

DATA AUGMENTATION FOR THAI NATURAL LANGUAGE

PROCESSING USING DIFFERENT TOKENIZATION

Mr. Patawee Prakrankamanant

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering Program in Computer Engineering

Department of Computer Engineering

Faculty of Engineering

Chulalongkorn University

Academic Year 2021

Copyright of Chulalongkorn University

Thesis Title DATA AUGMENTATION FOR THAI NATURAL LAN-

GUAGE PROCESSING USING DIFFERENT TOKENIZA-

TION

By Mr. Patawee Prakrankamanant

Field of Study Computer Engineering

Thesis Advisor Assc. Prof. Atiwong Suchato, Ph.D.

Thesis Co-advisor Ekapol Chuangsuwanich, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Master’s Degree

. .
Dean of the Faculty of

Engineering

(Prof. Supot Teachavorasinskun, D.Eng.)

THESIS COMMITTEE

. Chairman

(Assc. Prof. Proadpran Punyabukkana, Ph.D.)

. Thesis Advisor

(Assc. Prof. Atiwong Suchato, Ph.D.)

. Thesis Co-advisor

(Ekapol Chuangsuwanich, Ph.D.)

. External Examiner

(Prachaya Boonkwan, Ph.D.)

iv

ปฐวี ปราการกมานันท์ : การเพิม่ข้อมลูสาํหรับระบบประมวลภาษาธรรมชาตภิาษา
ไทยโดยใช้การแบง่เปน็โทเคน็ทีแ่ตกตา่งกัน. (DATA AUGMENTATION FOR

THAI NATURAL LANGUAGE PROCESSING USING DIFFERENT TO-

KENIZATION) อ.ทีป่รกึษาวทิยานพินธห์ลัก : รศ. ดร.อตวิงศ์ สชุาโต, อ.ทีป่รกึษา
วทิยานพินธร์ว่ม : อ. ดร.เอกพล ชว่งสวุนชิ 54 หน้า.

การทำให้เปน็โทเคน็ (tokenization) เปน็หนึง่ในข้ันตอนการดำเนนิการเบื้องต้น
(pre-processing) ในระบบของแบบจำลองแบง่ประเภทข้อความ (text classification

model) และเปน็สว่นหนึง่ท ีส่ง่ผลตอ่ประสทิธภิาพของแบบจำลอง แตอ่ยา่งไรกต็ามการทำให้
เปน็โทเคน็ ไมใ่ชป่ญัหาทัว่ไปสำหรับ noisy text หรอื ภาษาทีไ่มม่ขีอบเขตของคำ (word

boundary) ทีชั่ดเจนเชน่ ภาษาไทย ในการศกึษานี้เราได้นำเสนอวธิกีารเพิม่ข้อมลู (data

augmentation) เพ ือ่เพ ิม่ความคงทน (robustness) และประสทิธภิาพโดยการใช้การทำให้
เปน็โทเคนหลากหลายรปูแบบ (multi-tokenization) เราวัดผลบนแบบจำลองแบง่ประเภท
ข้อความภาษาไทย จากผลการศกึษาพบวา่แบบจำลองทีถ่กูเรยีนร ู้ด้วยการเพิม่ข้อมลูทีเ่รานำ
เสนอน้ัน สามารถคงทนตอ่ การตัดคำทีผ่ดิพลาด และสามารถใช้รว่มกับ การเพิม่ข้อมลูแบบ
อืน่ด้วย

ภาควชิา วศิวกรรมคอมพวิเตอร์ ลายมอืช ือ่นสิติ

สาขาวชิา วศิวกรรมคอมพวิเตอร์ ลายมอืช ือ่อ.ทีป่รกึษาหลัก

ปกีารศกึษา 2564 ลายมอืชือ่อ.ทีป่รกึษารว่ม

v

6170204021: MAJOR COMPUTER ENGINEERING

KEYWORDS: MACHINE LEARNING / NATURAL LANGUAGE PROCESS-

ING / TOKENIZATION

PATAWEE PRAKRANKAMANANT : DATA AUGMENTATION FOR

THAI NATURAL LANGUAGE PROCESSING USING DIFFERENT TOK-

ENIZATION. ADVISOR : ASSIST. PROF. ATIWONG SUCHATO, Ph.D.,

THESIS CO-ADVISOR : EKAPOL CHUANGSUWANICH, Ph.D., 54 pp.

Tokenization is one of the most important data pre-processing steps in the

text classification task and also one of the main contributing factors in the model

performance. However, getting good tokenizations is non-trivial when the input is

noisy, and is especially problematic for languages without an explicit word delimiter

such as Thai. Therefore, we proposed an alternative data augmentation method to

improve the robustness of poor tokenization by using multiple tokenizations. We

evaluated the performance of our algorithms on different Thai text classification

datasets. The results suggested our augmentation scheme makes the model more

robust to tokenization errors and can be combined well with other data augmentation

schemes.

Department : Computer Engineering Student’s Signature .

Field of Study : Computer Engineering Advisor’s Signature .

Academic Year : 2021 Co-advisor’s signature

CONTENTS

Page

Abstract (Thai) . iv

Abstract (English) . v

Contents . vi

List of Tables . viii

List of Figures . x

1 Introduction . 1
1.1 Motivation . 1

1.2 Research Questions . 3

1.3 Objectives . 3

1.4 Scope Of Work . 4

2 Background Knowledge . 5
2.1 Supervised Learning . 7

2.2 Neural Network Model . 8

2.3 Recurrent Neural Network . 12

2.4 Metrics . 12

3 Related Works . 15
3.1 Dictionary-based Tokenization . 15

3.2 Machine Learning-based Tokenization 18

3.3 Masked Language Model Augmentation 19

3.4 Word Embedding Dropout . 20

4 Proposed Method . 21
4.1 Noising Word Segmentation . 21

4.2 Tokenization-based Augmentation . 22

vii
Page

5 Experimental Setups . 24

6 Results & Discussions . 28
6.1 Performance with and without data augmentation 28

6.2 Effect of the amount of randomness 29

6.3 Robustness to tokenization errors or mismatch 29

6.4 Conclusions . 33

References . 38

LIST OF TABLES

Table Page
2.1 Confusion metric . 13

3.1 Example of Longest matching tokenize, “ปา้ยกลับรถ”, to be

(“ปา้ย”,“กลับ”,“รถ”) with vocabulary {“ปา้”, “ปา้ย”, “กลับ”, “รถ”} 16

3.2 Maximum matching “ไปหามเหส”ี to be (“ไป”,“หา”,“มเหส”ี) with vocab-

ulary {“ไ”, “ป”, “ห”, “า”, “ม”, “เ”, “ส”, “ ี ”, “ไป”, “หา”, “หาม”, “เห”,

“ส”ี, “มเหส”ี} . 17

3.3 How to created vocabulary from raw text “Aaabdaaabac” with Byte-pair

encoding . 18

3.4 “Hello world” is tokenized with a subword tokenization method that has

various possible token sequences. 18

5.1 Thai language data used in this study . 24

6.1 F1-scores of models trained with tokenization-based augmentation on

Truevoice, Wisesight1000, and Wongnai dataset 29

6.2 (Truevoice) The results of the text classification model using different

augmentation techniques. Bold denotes the best performance in the

dataset, while _underline denotes the best performance in the block. . . . 30

6.3 (Wisesight1000) The results of the text classification model using dif-

ferent augmentation techniques. Bold denotes the best performance in

the dataset, while _underline denotes the best performance in the block. 31

6.4 (Wongnai) Selected results of the text classification model using dif-

ferent augmentation techniques on the Wongnai dataset. Bold denotes

the best performance in the dataset, while _underline denotes the best

performance in the block. All underline results are statistically signifi-

cant compared to their respective non-tokenization-based-augmentation

baselines using the McNemar’s test (p > 0.05). 32

ix
Page

6.5 Raw text and tokenized text from main tokenizer that model without

augmentation predicted wrong. However, model trained with augmen-

tation can predict the right label. The red is a token from main tokenizer

that the different from human expert. 33

6.6 (Truevoice) The performance of different augmentation strategies on

mismatch/errorful tokenization settings. 34

6.7 (Wiseight1000) The performance of different augmentation strategies

on mismatch/errorful tokenization settings. 35

6.8 (Truevoice) The performance of the text classification model (swallow

model) when we changed tokenizer of test set 36

6.9 (Wisesight1000) The performance of the text classification model

(swallow model) when we changed tokenizer of test set 37

LIST OF FIGURES

Figure Page
1.1 An overview of our data augmentation method. In this example “เตมิเงนิ

ทไีรถกูหักเงนิท่กุท”ี, can be tokenized as “เตมิ | เงนิ | ทไีร | ถกูหัก | เงนิ ่ | ทกุท”ี

using the main tokenizer and the other tokenizers can be used to create

various token sequences. We trained the model using the vocabulary

from the main tokenizer on the combined dataset. 3

2.1 Overview of text classification system . 6

2.2 Example of text classification model that predict star score from yelp’s

dataset text review. 6

2.3 Neural network (a) operation in node (neuron) (b) Overview of neural

network that has 2 hidden layers . 9

2.4 Structure of Recurrent Neural Network (RNN) 13

2.5 Comparison between Recurrent Neural Network (RNN), Long short-

term memory (LSTM) and Gate Recurrent Unit (GRU) 13

3.1 example of machine learning based tokenization (adapted from AttaCut

[Chormai et al. (2019)]) . 19

4.1 An example sentence “เข้า เวบ็ไซต์ ไมไ่ด้ แต ่ เลน่วอสแอป๊ได้คะ ชว่ยเชค็ให้
หนอ่ย” (I can’t access the website, but I can use WhatsApp. please

check) is tokenized with different tokenizers (Maximum Matching,

Longest Matching, Neural-based tokenizer) which are word level to-

kenizers. The red highlight word “วอสแอป๊” should be single token

from raw text. However, maximum matching and longest matching al-

gorithms can not segment to single token. 22

4.2 An example sentence “ข้าราชการได้รับการหมนุเวยีนเปน็ระยะ” is tok-

enized as “ข้าราชการ|ได้รับ|การ|หมนุเวยีน|เปน็ระยะ”. After adding noise,

it becomes “ข้าราชการไ|ด้รับ|การ|หมนุเวยีนเ|ปน็ระยะ”. 23

6.1 F1-score vs λ in the Truevoice dataset . 32

6.2 F1-score vs λ in the Wisesight1000 dataset 32

Chapter I

INTRODUCTION
1.1 Motivation

Natural language processing (NLP) is one of the subfields of artificial intelli-

gence (AI) and linguistics that study intercommunication between humans and com-

puters and how computers analyze human language. The examples of NLP systems

help to solve the problems such as text classification, part of speech tagging, named

entity recognition, machine translation, etc. The core of NLP system usually uses a

machine learning model which is why the NLP system has to preprocess data before

feeding it to the machine learning model.

Tokenization is the first process of text data analysis and is a common problem

in text classification. In the tokenization process, the algorithm tries to segment

sentences into useful tokens sequentially such as characters, words, and subwords

[Zhang et al. (2015); Joulin et al. (2017)]. In deep learning, tokens are usually fed to

the embedding layers followed by other layers such as multilayer perceptron (MLP)

[Iyyer et al. (2015)], convolutional neural network (CNN) [Chen (2015)], and long

short-term memory (LSTM) network [Liu et al. (2016a)].

Tokenization in English is a trivial problem because it has white-space for

separating words into sentences, while tokenization in Thai, Chinese, Japanese,

and other languages with no distinct word boundaries is more challenging. The

tokenization choice of a system has a significant impact on the performance of text

classification. For Thai, different tokenization methods such as maximum match-

ing, longest matching, and supervised machine learning have been widely used to

tokenize and address these problems. For instance, in Thai language, there are am-

biguous homographs such as “ตากลม”, which can be tokenized into two ways; “ตา-
กลม” (round eyes) or “ตาก-ลม” (feel the wind). Tokenization in noisy text data

2

such as text in non-official websites and social text also pose a significant prob-

lem. We often see these internet variant informal text chatting in Thai such as “มาก
กก” (lotssss, the final consonant duplicated for emphasis) of the official spelling of

the same word “มาก”. This word can be wrongly tokenized as “มาก” (very) and

“กก” (root) [Heigold et al. (2018)]. The word embedding that is trained from other

datasets might not be satisfied due to out-of-vocabulary (OOV). There are works

that have been demonstrated to solve this problem such as robust tokenizer [Re-

mus et al. (2016)], tokenizer with POS tagging [Liu et al. (2020)], and robust word

embeddings [Wang et al. (2020)].

To improve the robustness of underperforming tokenization on the natural lan-

guage processing model, we applied various types of tokenization to the noisy text

data, serving as a data augmentation, which helps increase the model’s robustness.

Data augmentation is one of the famous techniques to increase the performance and

generalization of machine learning models. Augmentation techniques are used to

increase the amount of data by adding slightly modified copies or newly created

data from existing data [Goodfellow et al. (2016)]. In computer vision, data aug-

mentations are done almost everywhere to get the effect of a larger training data

to make models generalize better. In the natural language processing (NLP) field,

conversely, it is hard to augment text due to the high complexity of language. By

changing a single word, the surrounding context will be totally different. However,

these different tokenizations could be alternatively used to generate more data for

the Thai NLP model.

For this reason, we proposed a novel data augmentation method for Thai lan-

guage by using different and possibly errorful tokenizations to improve the Thai

text classification. The data augmentation system in our study is shown in Fig. 1.1.

Different tokenization methods were used to augment the data while keeping the

vocabulary fixed. This can be used to train different kinds of models. To handle

potential OOVs from different tokenization outputs, we also used character embed-

dings to augment the word representation. The results from our experiments showed

3

that augmenting the dataset in this way can improve text classification performance

and robustness in several model settings and datasets.

Figure 1.1: An overview of our data augmentation method. In this example
“เตมิเงนิทไีรถกูหักเงนิท่กุท”ี, can be tokenized as “เตมิ | เงนิ | ทไีร | ถกูหัก | เงนิ ่ |
ทกุท”ี using the main tokenizer and the other tokenizers can be used to create
various token sequences. We trained the model using the vocabulary from
the main tokenizer on the combined dataset.

1.2 Research Questions

1. Can data augmentation from different tokenization improve NLP classifica-

tion model’s performance?

2. Can data augmentation from different tokenization improve robustness for er-

ror tokenization of NLP classification model?

1.3 Objectives

1. To improve NLP classification model performance by using data augmenta-

tion from different tokenization.

2. To improve robustness for error tokenization of NLP classification model by

using data augmentation from different tokenization.

4

1.4 Scope Of Work

This experiment was only focus in Thai language datasets.

Chapter II

BACKGROUND KNOWLEDGE
Tokenization

Tokenization is one step of pre-processing data in NLP system before feeding it

to a machine learning model. Tokenization process is breaking raw text to sequence

of tokens. Tokens can be sentences, words or characters. Tokenization processes

raw text data to be meaningful information.

Token Representation

After tokenization process, a sequence of tokens that represent raw text is ob-

tained. However, tokens are still text information. They cannot be fed to machine

learning models because only numerical features are allowed. Token is changed

to a numerical feature by using token representation. Tokens are represented with

sparse representation such as Term-document matrix, Co-occurrence matrix, Pos-

itive Pointwise Mutual Information (PPMI), and Term Frequency–Inverse Docu-

ment Frequency (TF-IDF) [Jurafsky and Martin (2009)] or dense representation

such as SVD-based method [Jurafsky and Martin (2009)] or Word2Vec (embed-

ding) [Mikolov et al. (2013b,a)]. NLP models that use neural network architecture

in the main structure of the model usually use embedding to represent tokens.

Embedding

Embedding is one of the famous token representations used in neural network

models. Mechanism of embedding uses token’s one-hot encoding multiplied with

embedding matrix to create dense vector representation. Output vector of embed-

ding must be significantly smaller than one-hot encoding vector. Embedding is

usually used in word level tokens (word embedding). The recent of research that

improved word embedding such as Skip-gram [Mikolov et al. (2013b)] and CBOW

[Mikolov et al. (2013a)].

6

Classification Model

Classification model is the machine learning model that predicts the class of a

given data point. In Fig 2.1, text classification model in NLP is demonstrated. For

example, the text classification model tries to predict star score from review text

in yelp (restaurant review website), that labels of this text classification model are

shown in Fig 2.2. Classification model predicts the probability of each class.

Figure 2.1: Overview of text classification system

Figure 2.2: Example of text classification model that predict star score from
yelp’s dataset text review.

Language Model

Language model is the model that predicts words. Language model tries to

find patterns in human language and predicts the probability of the next word from

information of the previous word by using conditional probability. Language model

generates sentences from the start token only (generative model). However, the

model has limited capacity to use previous words, so language model use N-gram

method in conditional probability, as shown in Equation 2.1.

7

P (w1, w2, . . . , wn) =

n∏
i=1

P (wi|wi−1, wi−2, . . . , w1) (2.1)

When wi is ith token in token sequence, P (w1, w2, . . . , wn) is probability to gen-

erate w1, w2, . . . , wn token sequence.

2.1 Supervised Learning

Supervised learning is the most popular approach that used in various tasks.

This learning method required the solution (always called labels or ground truth) to

teach the model. When the data fed into the model, it will learn to solve the tasks

based on the labels of each data. For this reason, the labels must be cleaned and

corrected to make the model understand the correlation between data and labels.

The examples of the most important supervised learning algorithms are following ;

[Goodfellow et al. (2016)]

• Linear Regression

• Logistic Regression

• Decision Trees and Random Forests

• k-Nearest Neighbors

• Support Vector Machines (SVMs)

• Neural Networks

Unsupervised Learning

For unsupervised learning, this learning system does not require the labels of

data (often called unlabeled data). Unsupervised learning tries to learn without a

teacher. This approach provides useful clues for how to group examples in repre-

sentation space.

8

• Clustering

– K-Means

– Hierarchical Cluster Analysis (HCA)

• Anomaly detection and novelty detection

– One-class SVM

– Isolation Forest

• Visualization and dimensionality reduction

– Principal Component Analysis (PCA)

– Kernel PCA

– t-distributed Stochastic Neighbor Embedding (t-SNE)

2.2 Neural Network Model

An artificial neural network learning algorithm, neural network, or deep neu-

ral network, is a computational learning system that uses a network of functions

to understand and translate a data input of one form into a desired output, usually

in another form, as shown in Fig 2.3. The concept of the artificial neural network

was inspired by human biology and the way neurons of the human brain function

together to understand inputs from human senses. Neural networks are one of many

tools and approaches used in machine learning algorithms. The neural network it-

self may be used as a piece in many different machine learning algorithms to process

complex data inputs into a space that computers can understand.

Activation Function

Activation functions or transfer functions are designed to convert an input sig-

nal of a node in a neural network to an output signal. Activation function gives the

neuron know the bounds of the value whether the neuron should activate or not.

Moreover, these functions aim to map between the inputs and response variables.

9

Figure 2.3: Neural network (a) operation in node (neuron) (b) Overview of
neural network that has 2 hidden layers

The activation function can be divided into two types which are linear activation

function and non-linear activation function.

Linear Activation Function

A linear activation function is a straight line function where activation is pro-

portional to the input, as shown in Equation 2.2.

F (x) = x (2.2)

10

when x is input, F (·) is a linear activation function.

The linear function is designed for a non-complex model because it has a poly-

nomial of one degree. For this reason, this function is limited in their complexity

and no ability to learn the complex neuron. The output of this function can be any

value without boundary.

Non-linear Activation Function

The non-linear activation functions are the most used activation function.

These functions make the model to generalize or to deal with complexity between

the output. In this experiment, main non-linear activation functions uesd are sig-

moid, tanh, ReLU, and softmax activation functions.

In Sigmoid or logistic activation function, in the case of choosing Sigmoid

function as an activation function is because the output value after passing the Sig-

moid function exists between 0 to 1. Thus, it is always used to predict the probability

as an output. Due to this, the probability exists only between the range of 0 and 1.

The Sigmoid function is shown in Equation 2.3.

F (x) =
1

1 + e−x
(2.3)

when x is input, F (·) is a sigmoid activation function.

Tanh or hyperbolic tangent activation function is similar to Sigmoid function

but Tanh function is more wide-ranging from -1 to 1. The advantage is this function

supports negative input and it can also produce negative output. The Tanh function

is shown in Equation 2.4.

F (x) = tanh(x) = ex − e−x

ex + e−x
(2.4)

11

when x is input, F (·) is the Tanh activation function.

Notice that the Sigmoid and Tanh activation function are used in a feed-

forward neural network.

ReLU or Rectified Activation Function Linear Unit is the most used activation

function. ReLU is a half rectified look like a linear function but it is a nonlinear

function. The output value of this function will be zero if the input value is negative.

For the positive input value, the output will be obtained from a linear function. The

range of ReLU is from 0 to infinite, as shown in Equation 2.5

F (x) = max(0, x) (2.5)

when x is input, F (·) is ReLU activation function.

Softmax Activation Function always used in a classification task. Softmax

converts the input logits into probabilities that sum to one. The output of this func-

tion is a vector that represents the probability distributions of a list of potential

outcomes, as shown in Equation 2.6.

F (x)k =
exk∑n
i=1 e

xi
(2.6)

when x is input, F (·)k is kth index of Softmax activation function.

Objective Function

The cost function, lost function, objective function, or criterion is the function

that we want to minimize or maximize to measure the performance of the machine

learning model. Cost function estimates the error between the prediction results and

the actual values. The value of cost function is present in the form of a single real

12

number. There are many types of the cost function in machine learning but some

details about the cost function used in this study is described here.

Cross-Entropy

Cross-Entropy is a cost function for a classification model. The cost function

can be used for a binary classification task and a multi-class classification task. The

cost computed for every output vector component is independent which does not

affect the other values.

LCE = −
2∑

i=1

ti log (F (s)i) (2.7)

when LCE is Cross-Entropy loss, ti is the label of data point with i label (ti ∈

{0, 1}), F (·) is sigmoid or softmax activation function (binary classification task

uses sigmoid activation function and multi-class classification task uses softmax

activation function).

2.3 Recurrent Neural Network

Recurrent Neural Network (RNN) is a type of neural network model that

model’s input have sequence, order or time-step information such as language model

[Jozefowicz et al. (2016); Zoph et al. (2016)], text classification model [Liu et al.

(2016b)]. The basic structure of RNN model is shown in Fig 2.4. RNN models use

output of previous time steps to be input [Medsker and Jain (2001)]. The famous

RNN model has 2 types that are Gate Recurrent Unit (GRU) [chung2014empirical]

and Long short-term memory (LSTM) [Malhotra et al. (2015)], as shown in Fig 2.5.

2.4 Metrics

Our experiment used metrics for classification task. We evaluated in a differ-

ent metric including precision, recall, f1-score, and accuracy. The details of each

type of measurement are described separately in each section.

13

Figure 2.4: Structure of Recurrent Neural Network (RNN)

Figure 2.5: Comparison between Recurrent Neural Network (RNN), Long
short-term memory (LSTM) and Gate Recurrent Unit (GRU)

Predicted classes
Actual classes Positive Negative

Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Table 2.1: Confusion metric

Accuracy

Accuracy is the most intuitive performance measurement and it is simply a

ratio of correctly predicted observations to the total observations. The definition of

accuracy is shown in Equation 2.8.

Accuracy =
TP + TN

TP + TN + FP + FN (2.8)

Precision

Precision is the ratio of positive observations correctly predicted to the positive

total predicted observations. The definition of precision is shown in Equation 2.9.

14

Precision =
TP

TP + FP (2.9)

Recall

Recall or sensitivity is the ratio of positive observations correctly predicted to

the all actual class - yes in observations, The definition of recall is shown in Equation

2.9.

Recall = TP
TP + FN (2.10)

F1-score

F1-score is the weighted average of precision and recall, as shown in Equation

2.11

F1-score =
2(

1
Precision + 1

Recall
) = 2

(Precision · Recall
Precision + Recall

)
(2.11)

Chapter III

RELATED WORKS
3.1 Dictionary-based Tokenization

Dictionary-based tokenization uses a pre-existing vocabulary. The vocabu-

lary lists all tokens that will be used for tokenization. Different algorithms have

been proposed to provide word boundaries based on the vocabulary such as maxi-

mum matching and longest matching [Haruechaiyasak et al. (2008)]. They rely on

heuristics such as preferring the minimal amount of words or preferring the longest

words, respectively. The vocabulary can be derived from real words [Fan et al.

(2008); Mikolov et al. (2013a)], subwords (such as syllables) [Van Heerden et al.

(2017)], or learned from data [Sennrich et al. (2015); Wu et al. (2016)]. Recent

trends have been more focusing on learning subword tokenization without the need

to rely on human experts. Vocabulary can be learned from the dataset by using

Byte-Pair Encoding (BPE), which creates tokens from the frequency of sticky bytes

(in Thai language equals one character). However, word and subword tokenizers

can segment a sentence into many types of token sequences [Kudo (2018a)]. From

this problem, we used a language model to sample a candidate of token sequence

such as SentencePiece [Kudo and Richardson (2018b)] and Stochastic tokeniza-

tion [Hiraoka et al. (2019)]. However, dictionary-based tokenizers usually have

some out-of-vocabulary problems because they are unlikely to correctly anticipate

all possible tokens in the actual usage.

Longest Matching

Longest matching is one of algorithms for word segmentation that is

dictionary-based tokenization. Longest matching tries to segment the longest pos-

sible word with a greedy algorithm [Meknavin et al. (1997)]. The example of seg-

mentation raw text, “ปา้ยกลับรถ”, with longest matching is shown in Table 3.1.

16

Table 3.1: Example of Longest matching tokenize, “ปา้ยกลับรถ”, to be
(“ปา้ย”,“กลับ”,“รถ”) with vocabulary {“ปา้”, “ปา้ย”, “กลับ”, “รถ”}

character is in dictionary ? token
ป F ้ายกลับรถ
ป้ F ายกลับรถ
ปา้ T ยกลับรถ ปา้
ปา้ย T กลับรถ ปา้ย
ปา้ยก F ลับรถ ปา้ย
ก F ลับรถ ปา้ย
กล F ับรถ ปา้ย
กลั F บรถ ปา้ย
กลับ T รถ ปา้ย
กลับร F ถ ปา้ย, กลับ
ร F ถ ปา้ย, กลับ
รถ T ปา้ย, กลับ, รถ

Maximum matching

Maximum matching is one of algorithms for word segmentation that is

dictionary-based tokenization. Maximum matching tries to segment raw text to

be the fewest tokens that are possible words with dynamic programming. Maxi-

mum matching uses distance function (d(i, j)) to calculate the number of tokens in

Equation 3.1. The example of segmentation raw text, “ไปหามเหส”ี, with maximum

matching is shown in Table 3.2.

d(i, j) =


1 if i = 1& text[1 : j] ∈ V

1 +mink=1,..,i−1(d(k, i− 1)) text[i : j] ∈ V

∞ otherwise

(3.1)

when V is vocabulary, and text[i : j] is characters between ith to jth.

17

Table 3.2: Maximum matching “ไปหามเหส”ี to be (“ไป”,“หา”,“มเหส”ี) with
vocabulary {“ไ”, “ป”, “ห”, “า”, “ม”, “เ”, “ส”, “ ี ”, “ไป”, “หา”, “หาม”, “เห”,
“ส”ี, “มเหส”ี}

d(i, j) ไ ป ห า ม เ ห ส ี
index j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9
i = 1 1 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞
i = 2 2 ∞ ∞ ∞ ∞ ∞ ∞ ∞
i = 3 2 2 2 ∞ ∞ ∞ ∞
i = 4 3 ∞ ∞ ∞ ∞ ∞
i = 5 3 ∞ ∞ ∞ 3
i = 6 3 3 ∞ ∞
i = 7 4 ∞ 4
i = 8 4 ∞
i = 9 ∞

Subword Tokenization

Subword tokenization is a famous tokenization of machine translation models

that use Transformer-based architecture. Subword tokenization tries to split prefix,

subfix, and meaning from the original word. For example, “usefulness” is seg-

mented to be “useful” and “ness”. Subword tokenization creates vocabulary from

Byte-Pair Encoding (BPE). Byte-Pair Encoding is a simple data compression tech-

nique that iteratively replaces the most frequent pair of bytes in a sequence with a

single or unused byte [Kudo and Richardson (2018b); Le et al. (2018)]. We showed

how to create vocabulary in Table 3.3. However, subword tokenization can segment

raw text to token sequence variously, as shown in Table 3.4. Kudo and team used the

Unigram Language Model (ULM) to control the subword tokenizer. We collected

token sequences from tokenizer by sampling. ULM creates a probabilistic model

from Equation 3.2 and ULM is trained with loss function in Equation 3.3.

P (x1, x2, . . . , xM) =
∏M

i=1 P (xi)

∀xi ∈ V ,
∑

x∈V P (x) = 1
(3.2)

when x1, x2, . . . , xM is token sequence, V is vocabulary, P (xi) is probability to

have xi token in token sequence.

18

Table 3.3: How to created vocabulary from raw text “Aaabdaaabac” with
Byte-pair encoding

Old text new token new text
1 Aaabdaaabac Z→ aa ZabdZabac
2 ZabdZabac Y→ ab ZYdZYac
3 ZYdZYac X→ ZY XdXac

all Token Z→ aa, Y→ ab,
X→ ZY or X→ aaab

L = −
|D|∑
s=1

log(P (X(s))) = −
|D|∑
s=1

log

 ∑
x∈S(X(s))

P (x)

 (3.3)

when L is negative maximum likelihood (loss function), Xs is sth token se-

quence in dataset D.

Table 3.4: “Hello world” is tokenized with a subword tokenization method
that has various possible token sequences.

Subwords (_ means spaces) Vocabulary id sequence
_Hell / o / _world 13586, 137, 255
_H / ello / _world 320, 7363, 255
_He / llo / _world 579, 10115, 255
_ / He / l / l / o / _world 7, 18085, 356, 356, 137, 255
_H / el / l / o / _ / world 320, 585, 356, 137, 7, 12295

3.2 Machine Learning-based Tokenization

To reduce the OOV problem of dictionary-based methods, a machine learning

model can be used to segment tokens from a sentence with a regression model. Ma-

chine learning-based tokenizer is widely used in languages that do not have white-

space to split words such as Thai [Kittinaradorn et al. (2018); Jousimo et al. (2017)],

Japanese [Hanlon (2018)], and Chinese [Huang et al. (2007)]. For deep learning

models, the model architecture is usually a neural network with characters as input

and character level output [Kittinaradorn et al. (2018)]. The example of machine

learning-based tokenizer is shown in Fig 3.1. Recent works used other information

to improve the model, including syllable embedding [Chormai et al. (2019)] and

POS tagging [Heigold et al. (2018); Remus et al. (2016); Liu et al. (2020)].

19

Figure 3.1: example of machine learning based tokenization (adapted from
AttaCut [Chormai et al. (2019)])

3.3 Masked Language Model Augmentation

The masked language model (MLM) is a type of deep learning-based language

model that is trained by predicting the masked word within a sentence [Devlin et al.

(2018)]. The MLM has been used to perform data augmentation by masking certain

words in a sentence and have the MLM predict a new word to provide a slightly

modified copy of the sentence [Wu et al. (2019a); Shi et al. (2019); Park and Ahn

(2019)].

For Thai language, the appropriate choice of the MLM model is Wangchan-

BERTA [Lowphansirikul et al. (2021)]. WangchanBERTA is a RoBERTa-based

architecture model [Liu et al. (2019)] which was trained on a 75.8 GB dataset of

Thai and English text. WangchanBERTA is considered state-of-the-art in many

20

Thai NLP tasks due to the model and dataset used in the training process.

In this study, we also investigated how MLM interacts with our proposed

tokenization-based augmentation. The pre-trained WangchanBERTA was used for

augmentation by randomly masking tokens in the dataset. For text classification

tasks, naive implementation of this kind of augmentation can potentially flip the la-

bel. For example, “This soup is very good” can be augmented into “This soup is not

good,” changing the underlying sentiment. To alleviate this problem, we followed

previous works where the WangchanBERTA model was adapted to different do-

mains [Gururangan et al. (2020)] to provide label-dependent mask prediction [Wu

et al. (2019b)] for each dataset.

3.4 Word Embedding Dropout

Dropout is a popular regularization technique for deep neural networks [Hin-

ton et al. (2012); Srivastava et al. (2014)] where network unit outputs are randomly

masked (dropped) during training. It prevents overfitting and efficiently provides a

way of approximately combining exponentially many different neural network ar-

chitectures. The term “dropout” refers to dropping out units (hidden and visible) in

a neural network, along with all its incoming and outgoing connections.

In a model with discrete inputs such as words, dropout can be used in the

embedding layer by dropping the same words throughout the sequence, i.e., we drop

word types at random rather than word tokens. For example, the sentence “the

dog and the cat” might become “- dog and - cat” if “the” is chosen to be dropped

[Stafylakis and Tzimiropoulos (2018)].

Just like the MLM augmentation, we also performed experiments on word em-

bedding dropout as another technique that can be used with or without our proposed

augmentation method.

Chapter IV

PROPOSED METHOD
The main problem in Thai tokenization is the lack of explicit word boundaries.

Many researchers have studied extensively on improving the tokenization perfor-

mance [Kittinaradorn et al. (2018); Jousimo et al. (2017); Chormai et al. (2019)]. In

this study, we proposed an alternative method for augmenting data by using multiple

standard tokenization algorithms (e.g., maximum matching and longest matching).

In order to improve the performance of text classification tasks, the model would

be more robust to segmentation errors in test data by using multiple segmentation

methods. The issue of word segmentation on strange words is shown in Fig 4.1. Us-

ing different word segmentation techniques can yield vastly different results, some

of which might be the correct segmentation. Thus, we hypothesized that augment-

ing the training data with different tokenization methods might make the model

more robust by allowing the model to pick up the correct segmentation and also be

more resistant to segmentation noise.

4.1 Noising Word Segmentation

To simulate an errorful tokenization process, we moved the segmented word

boundary either forward or backward. The shifting boundary can be moved forward

or backward by 1 character token from the original word boundary. The shifting

probability is set to λ, with equal probability of shifting forward, psf , or backward,

psb, (psf = psb = λ/2). The noising process is illustrated in Fig 4.2. This pro-

cess should provide additional robustness for wrongly tokenized words. Noted that

when the word boundary is shifted, it usually causes the affected tokens to become

OOVs. This can be considered as token-based dropout (rather than the typical type-

based embedding dropout). In order to get the best performance from this noisy

tokenization-based augmentation method, the corresponding model should be able

to provide meaningful OOV word embeddings, such as using character-based em-

22

Figure 4.1: An example sentence “เข้า เวบ็ไซต์ ไมไ่ด้ แต ่ เลน่วอสแอป๊ได้คะ ชว่ย
เชค็ให้หนอ่ย” (I can’t access the website, but I can use WhatsApp. please
check) is tokenized with different tokenizers (Maximum Matching, Longest
Matching, Neural-based tokenizer) which are word level tokenizers. The
red highlight word “วอสแอป๊” should be single token from raw text. How-
ever, maximum matching and longest matching algorithms can not segment
to single token.

beddings in conjunction with word embeddings.

4.2 Tokenization-based Augmentation

The algorithm for augmenting the training data using different tokenization is

outlined in Algorithm 1. We started with a main tokenizer that is used to segment the

data and create the vocabulary. Afterwards, other tokenizers were used to segment

the data in order to augment the training set. Additional segmentation noise can

be applied to this augmented data. Note that the augmentation tokenizers can also

include the main tokenizer if additional noising is desired.

23

Figure 4.2: An example sentence “ข้าราชการได้รับการหมนุเวยีนเปน็ระยะ” is
tokenized as “ข้าราชการ|ได้รับ|การ|หมนุเวยีน|เปน็ระยะ”. After adding noise, it
becomes “ข้าราชการไ|ด้รับ|การ|หมนุเวยีนเ|ปน็ระยะ”.

Algorithm 1 Tokenization-based augmentation algorithm
Set: training set D = ∅, Vocabulary V = ∅
Input: add_noise, shifting probability λ, main tokenizer and set of aug-
mentation tokenizers
Output: D,V
for each sentence s in dataset do

tok_seq_main = tkzmain(s)
for each token tok in tok_seq_main do

V = V ∪ {tok} // generate the vocabulary
end for
for each tokenizer tkzaug in augmentation tokenizers do

tok_seq = tkzaug(s) // create different token sequences
if add_noise then

tok_seq = shift_boundary(tok_seq, λ) // noise the segmentation
end if
D = D ∪ {tok_seq} ∪ {tok_seq_main}

end for
end for

Chapter V

EXPERIMENTAL SETUPS
In this section, we present the setup used in our experiments. All text classi-

fication tasks were evaluated on precision, recall, and F1-score.

Datasets

We used three classification benchmark datasets [cstorm125 and lukkiddd

(2020)] which are all informal texts with different writing styles. The datasets in-

cluded Truevoice (customer service chat log), Wisesight1000 (social media), and

Wongnai (restaurant review). The detail of the datasets is shown in Table 5.1

Table 5.1: Thai language data used in this study
Dataset Detail Objective Size Label

Truevoice Informal, Customer service Intent 16k 7
Wongnai Informal, Restaurant review Sentiment 40k 5

Wisesight1000 Informal, Conversation/opinion Sentiment 1k 4

Truevoice

Truevoice data is an informal text data which is provided by True Corporation.

It contains logs from a call center service. This dataset is often used to benchmark

Thai text classification. The goal is to predict the intent of the customer from the

seven possible classes. The main tokenizer for this data was Deepcut [Kittinaradorn

et al. (2018)] provided in PyThaiNLP [Wannaphong Phatthiyaphaibun (2016)].

Wisesight1000

Wisesight1000 dataset is a subset of the Wisesight dataset [Suriyawongkul

et al. (2019)] which is text scraped from social media. The data has four labels

(question, positive, negative, and neutral) with 250 samples each. These one thou-

sand samples have manually segmented word boundaries which were considered as

the main tokenizer segmentations.

25

Wongnai

Wongnai data is a collection of user generated restaurant reviews from

www.wongnai.com [Wongnai (2018)]. The data contains textual reviews with a

rating (a score 1 to 5). The goal is to predict the rating from the review. In consid-

eration of the more standard nature of this text, maximal matching with the default

dictionary from PyThaiNLP was used as the main tokenizer. Since the labels for

the official test sets were not available, we split the training set into train-val-test

with a ratio of 75:10:15.

Tokenizers

The PyThaiNLP library was used to implement all tokenization methods. We

considered three different tokenizations: (1) the main tokenization method (MT),

(2) maximum matching (MM), and (3) longest matching (LG). Tokenization noise

can be applied to any of the three tokenization methods, denoted as “Method_λ”,

where λ is the noise rate. We set λ to 0.5 in almost experiments except Effect of the

amount of randomness experiment.

Text classification model

The machine learning model used with our method can be any text classifica-

tion model. However, since our augmentation method can potentially create OOV

word tokens, our method suits models that have some potential to differentiate be-

tween different OOV words. To this end, we chose char-word embedding [Lertpiya

et al. (2020)] to create the token representation (vtok) from both the words (w) and

the characters in each word (w = {c1, c2, . . . , cNw
}).

The characters and word tokens are converted into vectors {vc1, vc2, . . . , vcNw
}

and vw, via embedding layers respectively. The character embeddings in each word

are fed into a Bi-directional Gated Recurrent Unit (BiGRU) which summarizes the

character embeddings for the word. The word embeddings are concatenated with

the first and the final output of the BiGRU as shown in Equation 5.1.

26

hc,F = GRUforward({vc1, vc2, . . . , vcNw
})

hc,B = GRUbackward({vcNw
, vcNw−1, . . . , v

c
1})

vtok = vw ⊕ hc,B ⊕ hc,F

(5.1)

where hc,F is the final output of the forward direction GRU, hc,B is the final

output of the backward direction GRU, and ⊕ denotes concatenation.

The vtok for each token in the sentence are then fed to another BiGRU and then

to a dense layer with a softmax activation function to predict class labels, so called

the BiGRU model.

We also tried a simpler shallow model where all of the vtok are averaged into a

single vector which is then passed through a dense layer with a softmax activation

function.

The BiGRU and shallow models used a word embedding size of 256, character

embedding size of 256, character-level GRU hidden layer size of 64. The main

BiGRU model used a GRU hidden layer size of 64. The models were trained using

the Adam optimizer with a learning rate of 0.001. The vocabulary was selected

from the top 80 % of the training tokens in terms of frequency.

In addition, ULMFiT [Howard and Ruder (2018)] and WangchanBERTa

were chosen and used in the PyThaiNLP classification benchmark [Lowphan-

sirikul et al. (2021)] to represent strong baselines for our train-test split

(train:valid:test=75:10:15). We used the following training scripts for thai2fit [Pol-

panumas and Phatthiyaphaibun (2021)] 1 and WangchanBERTa [Lowphansirikul

et al. (2021)]2. For the WangchanBERTa baseline, there are many possible base-

lines. Some version of WangchanBERTa is trained with SentencePiece segmenta-

tion which is a sub-word segmentation method. The tokenization in the Sentecne-
1https://github.com/cstorm125/thai2fithttps://github.com/cstorm125/thai2fit.
2https://github.com/vistec-AI/thai2transformershttps://github.com/vistec-AI/

thai2transformers.

27

Piece model is done using the ULM [Kudo (2018b); Kudo and Richardson (2018a)].

To add noise in the segmentation one can sample from the ULM for multiple seg-

mentations. Another way to use WanghchanBERTa is used the model pre-trained

on the word level segmentation (wangchanberta-wiki-newmm). Preliminary exper-

iments showed that the word level model performed better with our augmentation

scheme and thus chosen as the WangchanBERTa baseline. It also served as a more

comparable baseline to other methods since they were work wll on the word level.

Chapter VI

RESULTS & DISCUSSIONS
This chapter presents our experimental results and ablation studies. We firstly

discussed the effect of performing tokenization-based augmentation on different

datasets and classification models. Then, we compared the effect of different aug-

mentation strategies and studied how they interact with each other. We also showed

that our augmentation method can provide additional robustness against errorful to-

kenizations and discussed why our method can be helpful. We performed studies

on the choice of λ.

6.1 Performance with and without data augmentation

In this part, our proposed data augmentation (with MM_0.5) were compared

on the three datasets (Truevoice, Wisesight1000, and Wongnai) using four differ-

ent classification models (GRU, shallow model, ULMFit, and WangchanBERTa).

As shown in Table 6.1, the F1-score for almost models showed the effectiveness of

our method. As expected, the smaller models (BiGRU and the shallow model) per-

formed competitively on short texts from Truevoice and Wisesight1000. Wangchan-

BERTA performed better on the longer texts from Wongnai or in low resource set-

tings of Wisesight1000. However, the performance of WangchanBERTA decreased

after augmentation for the Wisesight1000 and Wongnai datasets. This is expected,

since WangchanBERTA suffers from high OOV rate from the random augmenta-

tion, and the model itself lacks the mechanism to handle OOV token embeddings.

We then compared the performance of the models trained with different aug-

mentation strategies using the shallow model. This experiment has 3 main settings:

(1) only using tokenization-based augmentation, (2) tokenization-based augmenta-

tion and dropout (DO, word dropout rate = 0.5), and (3) tokenization-based augmen-

tation and MLM (MLM). As shown in Table 6.2, the performance can be improved

29

Table 6.1: F1-scores of models trained with tokenization-based augmenta-
tion on Truevoice, Wisesight1000, and Wongnai dataset

Model MM_0.5 Truevoice Wisesight1000 Wongnai
BiGRU 73.4 50.2 27.6

✓ 75.3 52.2 24.8
Shallow model 76.8 52.1 26.4

✓ 79.4 55.5 27.1
ULMFiT 79.3 48.1 42.2

✓ 80.9 56.1 46.3
WangchanBERTA 77.9 76.7 57.4

✓ 79.6 75.7 56.0

by combining different augmentation strategies but it depends on the combination.

After two augmentations, adding more augmented versions were not seem to im-

prove the performance.

6.2 Effect of the amount of randomness

In this part, we analyzed the effect of the randomness parameter λ and the

sensitivity of our method to hyperparameter. In this experiment, we trained mod-

els with MT_λ and MM_λ with λ = 0.1, 0.2, . . . , 1.0 and showed the performance

of the models on the test sets in terms of the F1-score. We chose to use the shal-

low model for simplicity and found λ around 0.8-1.0 gave the best performance for

the Truevoice dataset and around 0.2-0.3 for Wisesight1000 dataset, as shown in

Fig 6.1 and 6.2, respectively. The difference between the most suitable range of

λ for Truevoice and Wisesight1000 could be explained by the text writing style.

Truevoice data contains more typos and misspellings with extra characters which

causes the tokenization to be harder compared to Wisesight1000. In general, we

recommend 0.5 as a starting point, and can be additionally tuned if desired.

6.3 Robustness to tokenization errors or mismatch

In this experiment, we studied the effectiveness of the proposed augmentation

methods for increasing the robustness of the models against unseen and errorful to-

kenization. To simulate the scenarios where there are multiple possible outcomes

30

Table 6.2: (Truevoice) The results of the text classification model using dif-
ferent augmentation techniques. Bold denotes the best performance in the
dataset, while _underline denotes the best performance in the block.

Augmentation Test
DO MLM MM LG MT_0.5 MM_0.5 prec recall F1

Truevoice
80.2 74.4 76.8

With one tokenization-based augmentation
✓ 81.4 77.6 79.2

✓ 80.8 76.7 78.4
✓ 80.8 78.5 79.5

✓ 81.5 77.7 79.4
With two tokenization-based augmentations

✓ ✓ 80.9 78.0 79.1
✓ ✓ 81.4 78.9 79.9
✓ ✓ 80.7 77.0 78.6

✓ ✓ 81.4 78.8 79.8
✓ ✓ 81.3 78.4 79.6

✓ ✓ 81.7 78.8 80.1
With three tokenization-based augmentations

✓ ✓ ✓ 80.4 78.2 79.0
✓ ✓ ✓ 80.7 77.6 78.9
✓ ✓ ✓ 79.5 78.1 78.6

✓ ✓ ✓ 81.1 78.4 79.5
With four tokenization-based augmentations

✓ ✓ ✓ ✓ 79.8 77.9 78.6
With Dropout and a tokenization-based augmentation
✓ 79.6 75.5 77.1
✓ ✓ 81.4 77.1 78.9
✓ ✓ 81.5 76.5 78.6
✓ ✓ 80.9 77.7 79.1
✓ ✓ 81.0 77.1 78.8

With MLM and a tokenization-based augmentation
✓ 79.8 74.7 76.9
✓ ✓ 81.2 77.5 79.1
✓ ✓ 82.0 77.3 79.3
✓ ✓ 81.1 78.8 79.7
✓ ✓ 81.3 77.3 79.0

31

Table 6.3: (Wisesight1000) The results of the text classification model using
different augmentation techniques. Bold denotes the best performance in the
dataset, while _underline denotes the best performance in the block.

Augmentation Test
DO MLM MM LG MT_0.5 MM_0.5 prec recall F1

Wisesight1000
52.6 51.6 52.1

With one tokenization-based augmentation
✓ 49.7 50.7 50.2

✓ 49.8 50.7 50.2
✓ 50.6 51.5 51.1

✓ 57.0 54.0 55.5
With two tokenization-based augmentations

✓ ✓ 54.6 55.4 54.5
✓ ✓ 51.9 52.2 52.0
✓ ✓ 51.6 51.6 51.5

✓ ✓ 52.6 52.9 52.6
✓ ✓ 52.4 53.4 52.7

✓ ✓ 50.4 50.3 50.2
With three tokenization-based augmentations

✓ ✓ ✓ 51.2 51.5 51.3
✓ ✓ ✓ 50.2 52.0 50.5
✓ ✓ ✓ 51.7 51.6 51.3

✓ ✓ ✓ 54.0 54.2 53.9
With four tokenization-based augmentations

✓ ✓ ✓ ✓ 51.5 52.2 51.5
With Dropout and a tokenization-based augmentation
✓ 53.0 52.9 52.8
✓ ✓ 52.2 52.7 52.4
✓ ✓ 51.0 52.1 51.3
✓ ✓ 52.2 52.9 52.2
✓ ✓ 51.2 51.5 51.2

With MLM and a tokenization-based augmentation
✓ 52.3 50.9 51.2
✓ ✓ 51.8 52.1 51.9
✓ ✓ 50.6 50.9 50.7
✓ ✓ 51.6 52.2 51.6
✓ ✓ 50.3 50.8 50.4

32

Table 6.4: (Wongnai) Selected results of the text classification model using
different augmentation techniques on the Wongnai dataset. Bold denotes the
best performance in the dataset, while _underline denotes the best perfor-
mance in the block. All underline results are statistically significant com-
pared to their respective non-tokenization-based-augmentation baselines us-
ing the McNemar’s test (p > 0.05).

Augmentation Test
DO MLM MM LG MT_0.5 MM_0.5 prec recall f1

wongnai
baseline

✓ 24.4 24.8 24.6
With one tokenization-based augmentation

✓ ✓ 24.9 25.7 25.3
✓ ✓ 24.1 23.1 23.6

With two tokenization-based augmentation
✓ ✓ ✓ 24.7 24.2 24.4

With Dropout and a tokenization-based augmentation
✓ ✓ 24.7 24.7 24.7
✓ ✓ ✓ 24.7 25.7 25.2
✓ ✓ ✓ 25.1 24.5 24.8

With MLM and a tokenization-based augmentation
✓ ✓ 24.5 25 24.7
✓ ✓ ✓ 25.0 25.4 25.2

Figure 6.1: F1-score vs λ in the
Truevoice dataset

Figure 6.2: F1-score vs λ in the
Wisesight1000 dataset

of tokenizing difficult-to-tokenize sentences, we used tokenizers of different nature

(e.g. deep learning-based tokenizer, maximum matching, and longest matching) on

the training and test data, which tokenized differently. As demonstrated in Table 6.6

and 6.7, the selected results were obtained from the test set that used longest match-

ing with different tokenization noise (λ = 0.1, 0.4, and 0.7). We found the models

33

trained with MT_0.5 and MM_0.5 augmentation are robust against randomized to-

ken sequences. Upon further qualitative error analysis, we have found that the mod-

els trained with tokenization-based augmentation performed comparatively better

on sentences that were especially hard to tokenize. For example, “รบกวนสอบถาม
ตัวเพกเกจหนอ่ยครับ” was tokenized as “รบกวน|สอบถาม|ตัว|เพก|เกจ|หนอ่|ย|ครับ”. The

“เพก”, “เกจ”, “หนอ่”, and “ย” were bad tokens. They should be tokenized as “เพก
เกจ” and “หนอ่ย”).

Table 6.5: Raw text and tokenized text from main tokenizer that model with-
out augmentation predicted wrong. However, model trained with augmenta-
tion can predict the right label. The red is a token from main tokenizer that
the different from human expert.

raw text main tokenizer MM MM_0.5
Truevoice

รบกวนสอบถามตัว
เพกเกจหนอ่ยครับ

รบกวน|สอบถาม|ตัว|
เพก|เกจหนอ่|ย|ครับ F T

เม ือ่วานซมิมันหาย
จะไปรับซมิใหม ่

แถวบางนา-ตราดนี่
มร้ีานอย ูท่ ีไ่หนบ้างครับ

เมือ่|วาน|ซมิ|มัน|หาย
|จะ|ไป|รับ|ซมิ|ใหม|่

แถว|บาง|นา|-|ตราด|นี่
|ม|ีร้าน|อยู|่ที|่ไหน|บ้าง|ครับ

T T

Wisesight1000
กำลังสไิปๆนำบ่
ลางานเคงิม ื้อมา

กำลัง|ส|ิไป|ๆ|นำ|บ|่
ลา|งาน|เคงิ|มื้อ|มา T T

ใช้มาสคารา่เดอะเฟสชอป
แล้วจะสวยแบบนี้จรงิไหมคะ

ใช้|มาสคารา่|เดอะ|เฟส|ชอป|
แล้ว|จะ|สวย|แบบ|นี้|จรงิ|ไหม|คะ T T

ยดึแคก่ระเปา๋พอแล้วม้ัง
....

เหมอืนมอีะไรแอบแฟง 555

ยดึ|แค|่กระเปา๋|พอ|แล้ว|ม้ัง|
....

|เหมอืน|ม|ีอะไร|แอบ|แฟง|555
T T

6.4 Conclusions

We proposed an alternative data augmentation method by using multiple tokeniza-

tions to improve text classification models for Thai language. With this data aug-

mentation method, text classification models are more robust against poor tokeniza-

tion and can be combined with other text augmentation methods such as dropout and

MLM. Our augmentation method works especially well when the model can prop-

34

Table 6.6: (Truevoice) The performance of different augmentation strategies
on mismatch/errorful tokenization settings.

Training set Test set
DO MLM MM LG MT_0.5 MM_0.5 LG_0.1 LG_0.4 LG_0.7

Truevoice
With one tokenization-based augmentation

60.4 50.9 42.0
✓ 67.3 58.0 51.9

✓ 70.4 61.3 55.0
✓ 71.2 69.5 64.9

✓ 74.3 70.7 65.9
With Dropout and a tokenization-based augmentation
✓ 70.5 57.4 50.9
✓ ✓ 74.5 67.1 62.8
✓ ✓ 76.6 70.6 63.8
✓ ✓ 74.2 65.6 61.1
✓ ✓ 73.7 73.4 68.7

With MLM and a tokenization-based augmentation
✓ 69.3 60.5 56.1
✓ ✓ 71.2 60.8 55.1
✓ ✓ 71.8 63.1 57.1
✓ ✓ 75.7 74.2 70.8
✓ ✓ 76.5 74.6 71.0

erly handle OOVs. To improve the performance on the BERT-based model, further

improvement can be explored to improve the vocabulary coverage by adding new

embeddings in the pre-trained model.

35

Table 6.7: (Wiseight1000) The performance of different augmentation strate-
gies on mismatch/errorful tokenization settings.

Training set Test set
DO MLM MM LG MT_0.5 MM_0.5 LG_0.1 LG_0.4 LG_0.7

Wisesight1000
With one tokenization-based augmentation

48.2 38.1 32.7
✓ 51.5 47.3 38.9

✓ 50.3 43.6 37.3
✓ 45.2 41.8 40.3

✓ 47.9 42.0 35.7
With Dropout and a tokenization-based augmentation
✓ 46.2 40.2 36.8
✓ ✓ 52.5 45.1 40.2
✓ ✓ 51.7 42.9 35.5
✓ ✓ 45.2 43.0 40.6
✓ ✓ 50.1 41.9 41.7

With MLM and a tokenization-based augmentation
✓ 47.7 37.9 31.4
✓ ✓ 50.0 46.3 41.4
✓ ✓ 51.6 43.2 33.9
✓ ✓ 46.6 43.3 40.4
✓ ✓ 46.7 41.7 42.1

36

Table 6.8: (Truevoice) The performance of the text classification model
(swallow model) when we changed tokenizer of test set

Augmentation Test
DO MLM MM LG MT_0.5 MM_0.5 MM LG MT_0.5 MM_0.5

Truevoice
With one tokenization-based augmentation

75.5 75.3 63.5 61.2
✓ 79 78 64.3 65.3

✓ 78 77.8 62 64.4
✓ 77.9 73.9 71.7 71.6

✓ 80.1 79.3 71.5 71.4
With Dropout and a tokenization-based augmentation
✓ 76.5 76.2 62.7 60.9
✓ ✓ 78.9 77.9 64.6 65.1
✓ ✓ 78.2 77.7 62.9 64.8
✓ ✓ 78.5 78.1 71.9 71.5
✓ ✓ 79.3 78.5 58.9 71.8

With MLM and a tokenization-based augmentation
✓ 75.1 75.5 58.9 57.1
✓ ✓ 78.4 77.8 62.7 63.9
✓ ✓ 78.5 78.2 62.9 65.6
✓ ✓ 77.2 77.3 71.7 72.3
✓ ✓ 79.2 78.4 69.7 73.4

37

Table 6.9: (Wisesight1000) The performance of the text classification model
(swallow model) when we changed tokenizer of test set

Augmentation Test
DO MLM MM LG MT_0.5 MM_0.5 MM LG MT_0.5 MM_0.5

Wisesight1000
With one tokenization-based augmentation

48.2 47.4 41.7 36
✓ 51.4 49.9 42.4 42.9

✓ 52.1 51.8 41.3 41.7
✓ 48.3 48.6 44.7 46.6

✓ 49.9 46.3 44 42.7
With Dropout and a tokenization-based augmentation
✓ 47.8 46.3 47.1 40
✓ ✓ 52.5 49.8 45.1 42.3
✓ ✓ 51.9 51.1 43.2 41.9
✓ ✓ 51.9 49.1 43.2 48.2
✓ ✓ 51.7 48.2 43.8 47.7

With MLM and a tokenization-based augmentation
✓ 44.9 45.5 39.8 37.6
✓ ✓ 51.4 47.7 43.4 42.3
✓ ✓ 50.7 50.1 40.8 43.3
✓ ✓ 49.9 49.5 44.8 47.5
✓ ✓ 50.6 48.7 41.8 47.8

REFERENCES
Chen, Y. 2015. Convolutional neural network for sentence classification. Master’s

thesis, University of Waterloo.

Chormai, P., Prasertsom, P., and Rutherford, A. 2019. Attacut: A fast and accurate

neural thai word segmenter. arXiv preprint arXiv:1911.07056 (2019):

cstorm125 and lukkiddd 2020. Pythainlp/classification-benchmarks: v0.1-

alpha [Online]. Available from: https://doi.org/10.5281/zenodo.3852912

[2020,May].

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. 2018. Bert: Pre-training of

deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805 (2018):

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. 2008. Liblinear:

A library for large linear classification. the Journal of machine Learning

research 9 (2008): 1871–1874.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. 2016. Deep learning,

volume 1. MIT press Cambridge.

Gururangan, S., Marasović, A., Swayamdipta, S., Lo, K., Beltagy, I., Downey, D.,

and Smith, N. A. 2020. Don’t stop pretraining: Adapt language models

to domains and tasks. In Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics, pp. 8342–8360. Online: Asso-

ciation for Computational Linguistics.

Hanlon, C. 2018. Tokenization of japanese text: Using a morphological transducer.

(2018):

Haruechaiyasak, C., Kongyoung, S., and Dailey, M. 2008. A comparative study on

thai word segmentation approaches. In 2008 5th International Conference

on Electrical Engineering/Electronics, Computer, Telecommunications

and Information Technology, volume 1, pp. 125–128. :

39

Heigold, G., Varanasi, S., Neumann, G., and van Genabith, J. 2018. How ro-

bust are character-based word embeddings in tagging and MT against wrod

scramlbing or randdm nouse? In Proceedings of the 13th Conference of the

Association for Machine Translation in the Americas (Volume 1: Research

Track), pp. 68–80. Boston, MA: Association for Machine Translation in the

Americas.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R.

2012. Improving neural networks by preventing co-adaptation of feature

detectors. arXiv preprint arXiv:1207.0580 (2012):

Hiraoka, T., Shindo, H., and Matsumoto, Y. 2019. Stochastic tokenization with

a language model for neural text classification. In Proceedings of the

57th Annual Meeting of the Association for Computational Linguistics, pp.

1620–1629. :

Howard, J. and Ruder, S. 2018. Universal language model fine-tuning for text

classification. arXiv preprint arXiv:1801.06146 (2018):

Huang, C.-R., Šimon, P., Hsieh, S.-K., and Prévot, L. 2007. Rethink-

ing chinese word segmentation: tokenization, character classification, or

wordbreak identification. In Proceedings of the 45th Annual Meeting

of the Association for Computational Linguistics Companion Volume

Proceedings of the Demo and Poster Sessions, pp. 69–72. :

Iyyer, M., Manjunatha, V., Boyd-Graber, J., and Daumé III, H. 2015.

Deep unordered composition rivals syntactic methods for text classifica-

tion. In Proceedings of the 53rd annual meeting of the association for

computational linguistics and the 7th international joint conference on

natural language processing (volume 1: Long papers), pp. 1681–1691. :

Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. 2017. Bag of tricks

for efficient text classification. In Proceedings of the 15th Conference of

the European Chapter of the Association for Computational Linguistics:

40

Volume 2, Short Papers, pp. 427–431. Valencia, Spain: Association for

Computational Linguistics.

Jousimo, J., Laokulrat, N., Carr, B., Thongthanomkul, E., and Satayamas, V. 2017.

Thai word segmentation with bi-directional RNN.

Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., and Wu, Y. 2016. Exploring

the limits of language modeling. arXiv preprint arXiv:1602.02410 (2016):

Jurafsky, D. and Martin, J. H. 2009. Speech and language processing: an

introduction to natural language processing, computational linguistics,

and speech recognition, 2nd Edition. Prentice Hall series in ar-

tificial intelligence. Prentice Hall, Pearson Education International.

ISBN 9780135041963. Available from: https://www.worldcat.org/oclc/

315913020 .

Kittinaradorn, R., Chaovavanich, K., Achakulvisut, T., and Kaewkasi, C. 2018. A

Thai word tokenization library using deep neural network.

Kudo, T. 2018a. Subword regularization: Improving neural network translation

models with multiple subword candidates. In Proceedings of the 56th

Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), pp. 66–75. Melbourne, Australia: Association for Com-

putational Linguistics.

Kudo, T. 2018b. Subword regularization: Improving neural network

translation models with multiple subword candidates. arXiv preprint

arXiv:1804.10959 (2018):

Kudo, T. and Richardson, J. 2018a. SentencePiece: A simple and language in-

dependent subword tokenizer and detokenizer for neural text processing.

In Proceedings of the 2018 Conference on Empirical Methods in Natural

Language Processing: System Demonstrations, pp. 66–71. Brussels, Bel-

gium: Association for Computational Linguistics.

41

Kudo, T. and Richardson, J. 2018b. Sentencepiece: A simple and language in-

dependent subword tokenizer and detokenizer for neural text processing.

arXiv preprint arXiv:1808.06226 (2018):

Le, Q. V., Luong, M.-T., Sutskever, I., Vinyals, O., and Zaremba, W. 2018. Neural

machine translation systems with rare word processing.

Lertpiya, A., Chalothorn, T., and Chuangsuwanich, E. 2020. Thai spelling correc-

tion and word normalization on social text using a two-stage pipeline with

neural contextual attention. IEEE Access 8 (2020): 133403–133419.

Liu, C., Wang, J., and Lei, K. 2016a. Detecting spam comments posted in micro-

blogs using the self-extensible spam dictionary. In 2016 IEEE International

Conference on Communications (ICC), pp. 1–7. :

Liu, H., Zhang, Y., Wang, Y., Lin, Z., and Chen, Y. 2020. Joint character-level word

embedding and adversarial stability training to defend adversarial text. In

Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,

pp. 8384–8391. :

Liu, P., Qiu, X., and Huang, X. 2016b. Recurrent neural network for text classifi-

cation with multi-task learning. arXiv preprint arXiv:1605.05101 (2016):

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettle-

moyer, L., and Stoyanov, V. 2019. Roberta: A robustly optimized bert

pretraining approach. arXiv preprint arXiv:1907.11692 (2019):

Lowphansirikul, L., Polpanumas, C., Jantrakulchai, N., and Nutanong, S. 2021.

Wangchanberta: Pretraining transformer-based thai language models.

arXiv preprint arXiv:2101.09635 (2021):

Malhotra, P., Vig, L., Shroff, G., Agarwal, P., et al. 2015. Long short term memory

networks for anomaly detection in time series. In Proceedings, volume 89,

pp. 89–94. :

42

Medsker, L. R. and Jain, L. 2001. Recurrent neural networks. Design and

Applications 5 (2001): 64–67.

Meknavin, S., Charoenpornsawat, P., and Kijsirikul, B. 1997. Feature-based thai

word segmentation. In Proceedings of Natural Language Processing Pacific

Rim Symposium, volume 97, pp. 41–46. :

Mikolov, T., Chen, K., Corrado, G., and Dean, J. 2013a. Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781 (2013):

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. 2013b. Distributed

representations of words and phrases and their compositionality. Advances

in neural information processing systems 26 (2013):

Park, D. and Ahn, C. W. 2019. Self-supervised contextual data augmentation for

natural language processing. Symmetry 11.11 (2019): 1393.

Polpanumas, C. and Phatthiyaphaibun, W. 2021. thai2fit: Thai language imple-

mentation of ulmfit [Online]. Available from: https://doi.org/10.5281/

zenodo.4429691 [2021,January].

Remus, S., Hintz, G., Biemann, C., Meyer, C. M., Benikova, D., Eckle-Kohler, J.,

Mieskes, M., and Arnold, T. 2016. Empirist: Aiphes-robust tokenization

and pos-tagging for different genres. In Proceedings of the 10th Web as

Corpus Workshop, pp. 106–114. :

Sennrich, R., Haddow, B., and Birch, A. 2015. Neural machine translation of rare

words with subword units. arXiv preprint arXiv:1508.07909 (2015):

Shi, L., Liu, D., Liu, G., and Meng, K. 2019. Aug-bert: An efficient data aug-

mentation algorithm for text classification. In International Conference in

Communications, Signal Processing, and Systems, pp. 2191–2198. :

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.

2014. Dropout: a simple way to prevent neural networks from overfitting.

The journal of machine learning research 15.1 (2014): 1929–1958.

43

Stafylakis, T. and Tzimiropoulos, G. 2018. Deep word embeddings for visual speech

recognition. In 2018 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pp. 4974–4978. :

Suriyawongkul, A., Chuangsuwanich, E., Chormai, P., and Polpanumas, C. 2019.

Pythainlp/wisesight-sentiment: First release [Online]. Available from:

https://doi.org/10.5281/zenodo.3457447 [2019,September].

Van Heerden, C., Karakos, D., Narasimhan, K., Davel, M., and Schwartz, R.

2017. Constructing sub-word units for spoken term detection. In 2017

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 5780–5784. :

Wang, H., Zhang, P., and Xing, E. P. 2020. Word shape matters: Robust ma-

chine translation with visual embedding. arXiv preprint arXiv:2010.09997

(2020):

Wannaphong Phatthiyaphaibun, C. P. A. S. L. L. P. C., Korakot Chaovavanich.

2016. PyThaiNLP: Thai Natural Language Processing in Python [Online].

Available from: http://doi.org/10.5281/zenodo.3519354 [2016,June].

Wongnai 2018. Wongnai/wongnai-corpus: Collection of wongnai’s datasets

[Online]. Available from: https://github.com/wongnai/wongnai-corpus

[2018,].

Wu, X., Lv, S., Zang, L., Han, J., and Hu, S. 2019a. Conditional BERT contextual

augmentation. In International Conference on Computational Science, pp.

84–95. :

Wu, X., Zhang, T., Zang, L., Han, J., and Hu, S. 2019b. Mask and infill: Ap-

plying masked language model for sentiment transfer. In Proceedings of

the Twenty-Eighth International Joint Conference on Artificial Intelligence,

IJCAI-19, pp. 5271–5277. : International Joint Conferences on Artificial

Intelligence Organization.

44

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun,

M., Cao, Y., Gao, Q., Macherey, K., et al. 2016. Google’s neural ma-

chine translation system: Bridging the gap between human and machine

translation. arXiv preprint arXiv:1609.08144 (2016):

Zhang, X., Zhao, J., and LeCun, Y. 2015. Character-level convolutional networks

for text classification. Advances in neural information processing systems

28 (2015): 649–657.

Zoph, B., Vaswani, A., May, J., and Knight, K. 2016. Simple, fast noise-

contrastive estimation for large rnn vocabularies. In Proceedings of the

2016 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, pp. 1217–

1222. :

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	CONTENTS
	Chapter I INTRODUCTION
	Chapter II BACKGROUND KNOWLEDGE
	Chapter III RELATED WORKS
	Chapter IV PROPOSED METHOD
	Chapter V EXPERIMENTAL SETUPS
	Chapter VI RESULTS & DISCUSSIONS
	REFERENCES

