NSHNANTIAULYDINTINRR MR A UMY

a

Y1YTING WauaU

>N o,

1
a 4

‘3‘1/1mﬁwuéﬁﬁudawﬁwaqmsﬁﬂmmmﬁﬂqmﬂ‘%ag@nwmmamumﬂ’m%m
ANUNIYNINEIFERTADUNAADT NATTIAINTTUADUNIADS
ANIEIAINTIUANANT THIAINTAIUNINERY
Un1sfnw 2564

AUAVEYRIMIAIN TN INE R

PERFORMANCE IMPROVEMENT OF CMS SIMULATION VIA LOOP
TRANSFORMATION

Mr. Teerit Ploensin

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in Computer Science
Department of Computer Engineering
Faculty of Engineering
Chulalongkorn University
Academic Year 2021

Copyright of Chulalongkorn University

Thesis Title PERFORMANCE IMPROVEMENT OF CMS SIMULATION
VIA LOOP TRANSFORMATION

By Mr. Teerit Ploensin
Field of Study Computer Science
Thesis Advisor Associate Professor Krerk Piromsopa, Ph.D.

Thesis Co-advisor Assistant Professor Norraphat Srimanobhas, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Ful-

fillment of the Requirements for the Master’s Degree

Dean of the Faculty of Engineering

(Professor Supot Teachavorasinskun, D.Eng.)

THESIS COMMITTEE

................................. Chairman

(Assistant Professor Natawut Nupairoj, Ph.D.)

................................. Thesis Advisor

(Associate Professor Krerk Piromsopa, Ph.D.)

................................. Thesis Co-advisor

(Assistant Professor Norraphat Srimanobhas, Ph.D.)

................................. External Examiner

(Assistant Professor Jittat Fakcharoenphol, Ph.D.)

iv

318 widAuAug: MaifiuaussausvesIiiaestieaeasiiunsuasgy. (PER-
FORMANCE IMPROVEMENT OF CMS SIMULATION VIA LOOP
TRANSFORMATION) o.91U5nw1Inenanuswan : 5. a5, 1n3n Asuslan,

2. AUSNENINGITNUTIIN : WA, 9. USWNS AsuluNY 71 AN,

3wawﬁwu§mm§ﬁﬂLauamﬁmaaﬂ%’mﬂﬁmﬂmﬁmﬂisaw%mmmgﬂ ienns
avaznIsUTTINaNavedaued dmsuidndnasnugdludieueagendwis lny
¥nsleuadnuUssavsnameiiand waznamsvineuvedusunsuluBanssouy
Tnawmafiamaiiialszavsnmuesguilidenldie walianisulasiiaenndeaiuguly
qugﬂmwmam?{au w3 sUiUUNTRUadfukuUAUENTUS Fsl¥donrisaes
WuefiunisulasuudnludiiunssuaunsusEllanavesreulniass 91nns
nnassdEmedndinalldmansenudenanisnaeseiland Snsadsanunsaciia

UsANTAMU09IN15VIN UL UTENT I UL VDI NAR D NAE

'
=

AR AFINITUADUNILADS aedevelldm
an97173%0 ANeFEnS agllove o.USnwman
ADUNNDS

UnsAnwn 2564 ALY B.AUSNWITIL e

##6170192021: MAJOR COMPUTER SCIENCE

KEYWORDS: COMPILER / LOOP OPTIMIZATION / SOURCE-TO-SOURCE

TRANSFORMATION
TEERIT PLOENSIN : PERFORMANCE IMPROVEMENT OF CMS SIM-
ULATION VIA LOOP TRANSFORMATION. ADVISOR : ASSOC.PROF.
Dr. KRERK PIROMSOPA, Ph.D., THESIS COADVISOR : ASST PROF Dr.
NORRAPHAT SRIMANOBHAS, Ph.D., 71 pp.

High performance processor can tackle bottleneck issues by increasing vec-
tor lengths and leveling effectiveness of memory hierarchies to address these issue.
Manual optimization of code is a difficult task when having multiple architecture-
dependent transformation. Our goal is to develop a tool that performs source code
transformation based on loop optimization techniques, since a loop plays an impor-
tant role in improving of performance in scientific simulation software. We imple-
ment an source-to-source transformation tool based libTooling, a Clang’s library,
based on polyhedral model to simplify a loop transformation of CMSSW building
pipeline. The tool also can be used for automatically transformation. The results

show that any simple loop transformations can trigger other optimizations in com-

pilers.
Department: Computer Engineering Student’s Signatare
Field of Study: Computer Science Advisor’s Signature

Academic Year: 2021 Co-advisor’s signature

Vi

Acknowledgements

I would like to say thank you to Professor Krerk Piromsopa, my advisor, for guiding
me into the compiler and high-performance field and giving me a chance to start graduate
school in computer science. When I find myself lost with my research or even lost with the
understanding of the theory, he always encourages me and gives me motivation. His ideas
on research are extremely outstanding and his guidance on how to do research is extraor-
dinary. We can talk with him not only about research and academics but also about how
to manage your life, and how to change our perspective of thinking to each environment,
which is all valuable for all moments in our time. Even now I adopt all of his teachings
to be aware of every step of the learning process. Moreover, I would like to special thank
you to Professor Norraphat Srimanobhas, my co-advisor, who gave me the opportunity to
work on CMS software, and for all the guidance that he has given me during the time of

my graduate study.

I thanked my beloved family who supports me in higher education, especially during
the master’s degree, and they always encourage me to go on with the research and for

always listening to every complaint and problem on my problem.

I want to say thank you to my SPA lab friends for helping with the complex process of
doing things inside the university, exchanging ideas, and discussing together in our group

meeting.

CONTENTS

Page

Abstract (Thai) i i i ittt ittt i it ettt et eennneaeens iv
Abstract (English) i ittt i ittt ittt ittt eanseas v
Acknowledgementsttt e vi
Contentso ittt ittt ettt et ettt vii
Listof Tables i it ittt e it ittt e e ettt teeennoaeees ix
Listof Figuresttt ittt tioenteentonossoeasseas X
1 Introduction ittt eeeeeneoeeeeeennens 1
1.1 The Compact Muon Solenoid 2

1.2 Problemstatement 3

1.3 Goals e e 4

2 Backgroundof Study ¢t vttt it et i e s et s e e 5
2.1 Compiler Optimization 5

2.2 Vectorization 7

2.3 Vectorizable Code 8

24 DataDependency 8

2.5 Loop Optimization 10

2.6 Polyhedral Model 13

2.7 The Design of an Optimizing Compiler 15

2.8 Source to Source Transformation 16

3 Literature Review i it ittt ittt e ettt et e e 18
3.1 Tools for The Source-to-Source Transformation 19

3.2 ProfilingTools 24

Page
4 Methodologyttt it ittt teeneneneneanas 27
4.1 Concept Overview oo it e 27
4.2 Supported Transformations o ... 28
43 SystemDesign 30
4.4 System Implementation 33
4.5 Performance Analysis 33
S Resultsttt ittt ittt 34
5.1 Preliminary Results, 34
5.2 System Integration Testing Results 36
6 Summary &Discussion i i i i i e e 39
6.1 Summary of Findings 39
6.2 Limitationofthetool 40
6.3 Future Work 41
Referenceso i ittt it ittt ittt ittt it e e i e 42
AppendiX . . .ottt e e e e e et e 47
Apppendix A AppendixSample 47
A.l CMakeList 47
A.2 Pythonscripting 50
A.3 Source-to-source transformationtool 52
Apppendix B List of Publications 60
B.1 International Conference Proceeding 60

Biography i i i e e e e e e 61

LIST OF TABLES

Table Page
3.1 Summary of existing tools for performing source-to-source transformation. . . 24
5.1 The number of benchmark programs that can be applied with loop optimizations. 34

52

53

54

5.5

Number of instructions executed for a selection of functions from
CMSSW_10_2_3 compiled withGCC 7.3.1.. 35
Average execution times of repeatedly selected loop patterns in nanoseconds
of CMSSW_10_2_3 compiled withGCC7.3.1. 36
Time spent of called function in CMSSW_10_6_8 compiled with GCC 7.4.1
via igprof performance profiling 38

Time usage measurement per 100 events in seconds on CMSSW_10_2_3. .. 38

LIST OF FIGURES

Figure Page
1.1 The modular architecture of CMSSW framework. 3
2.1 Three main phases of classical compiler design 6
2.2 Comparison of execution between scalar sequential (scalar) and vector-

23
3.1
32
33
4.1
4.2

4.3
5.1

ization computation. Source: https://lappweb.in2p3.fr/~paubert/

ASTERICS_HPC/6-6-1-985.htmlt i i viiiin .. 7
Three main phases of modern compilerdesign. 15
The high-level architecture of OP2-Clang 21
ROSE compiler infrastructure 22
Overview of meta-level program in OpenC++ compiler 23

Overview of module usage during the source-to-source transformation process. 27
The high-level architecture of the source-to-source transformation tool using

Clang’s libraries. 32
The full sequence of steps when compiling a C/C++ program. 32

Physics result among loop optimization and original code 37

Chapter I

INTRODUCTION

For scientific applications, computational cost and time are mostly dedicated to pro-
gramming loops. Scientific simulation code and its mathematical models are steadily
evolved to new insights and requirements. Consequently, loop optimization is signifi-
cantly important for improving execution time and reducing loops overhead. Thus, many

techniques are specifically used to provide high-performance code.

Loop optimization [1; 2] can be described as a sequence of specific loop transfor-
mations that performs to the source code or intermediate representation of their languages.
Normally, a transformation must preserve all dependencies. Compilers have a wide range
of loop optimizations, which are different. For instance, compiler directives are used to
transform from a sequential loop into a parallel one (i.e. OpenMP [3]). Directives for
loop optimizations, such as vectorizing, are implemented in most mainstream compilers.
Directives are popularly used by many scientific application, because of the ease of use
without to modify source code of the relevant loops [4; 5]. Although compiler directives
are uncomplicated to use, they are specific to a compiler (i.e. unrolling a loop in GCC
uses #pragma GCC unroll n, while Clang uses # pragma clang loop unroll_count(n)).
Compilers will either perform the transformation automatically or upon request via the
command-line flag. Nevertheless, compilers may achieve significantly lower performance
than those of manually optimized programs [6]. Moreover, not many loop transformations
have been implemented in compilers. The most common implemented transformation is
loop unrolling [7; 8]. Typically, other optimizations can be triggered by using compiler op-
tions such as compiler directives, or manually code transformation. Therefore, one of the
simplest ways to practically optimize a loop is to restructure the source program by either
permuting or skewing the loop. A better approach is to search for restructuring techniques
that enable other optimizations while preserving the semantics of the original source code.

This thesis investigates the use of these techniques by making manual changes, examining

whether or not the optimizations can be done by the compilers, and comparing run-time

performance among them.

1.1 The Compact Muon Solenoid

The Compact Muon Solenoid (CMS) [9; 10] is one of the particle detectors that is
designed to detect particles from the collision produced by Large Hardron Collider (LHC).
It is used to study extra dimensions and particles which may include dark matter. The
detector contains a sequence of subsystems in layers of increasing distance to the minor
interaction points. The detected particles by the detector are muons, photons and charged
hadrons. Each layer of the detector has measurement properties of specific particle, and

this is able to identify the particle type.

1.1.1 Event Simulation via The CMS Software

To encourage a predictions of physics phenomena and to understand the result from
collision of the detector response, all simulation events are built from measured data to
identify interaction processes. Scientific simulation code, created by physicists, is grad-
ually developed to insightful study. The CMS Software (CMSSW) [11] is one of the
overall collection of software frameworks, written in the C++ programming language, by
which CMS reconstruction, simulation, and offline analysis are performed. It provides
an efficient structural code in Object-Oriented Programming (OOP) design for reusing
in several projects and shared algorithm development. In [12], the authors investigated
that the CMSSW requires optimization to fit the resource budget which allows a single
event to process faster. They also analyzed the CMSSW release with external packages
have approximately 1.5 million lines of code. Moreover, they investigated the limitation of
practical experience in the high-energy physics community in producing high-quality and
high-performance designs for object-oriented C++ applications. Optimizing the CMSSW
is therefore necessary. In such a framework, short-running tasks produce longer time
consumption by the framework itself and long-running tasks can prevent compiler opti-

mization.

1.1.2 Modular Architecture of the Framework

CMSSW [13] contains a number of modules that integrated into the executable cm-
sRun. The framework loads the plug-in and instantiates the module when it is called by the
configuration file which can be configured by user in python language to module-specific
parameter sets. Nevertheless, these cannot be reconfigured during the job being process.
When a job is submitted, the framework normally manages to instantiate the modules. A
part of code described in the configuration file is dynamically loaded. With the modular

design, it should be easy to ingrate a third-party tool with the existing architecture.

A 1 > Module > Module
Input Source '

Event and Event
Setup

Config file

Database

Figure 1.1: The modular architecture of CMSSW framework.

1.2 Problem statement

Loops in the CMSSW written by physicists sometimes have a form that is cumber-
some to be optimized by the compiler. Many optimizations by a compiler cannot directly
perform on such loops. In this case, we can write a normal loop and let compilers optimize
it with generating platform-specific vector instructions. However, compilers is not smart
as it is. Thus, rewriting them into appropriate pattern via loop optimization is considered,
such as Polyhedral Model, a framework for performing loop transformation. In order to
achieve the goal, the main contribution of this thesis is a source code transformation tool

for optimizing the loop part in the CMSSW via loop transformations.

1.3 Goals

The purpose of this thesis is to build the source-to-source translator tool. The tool
should be able to transform nested loops by applying the Polyhedral Model. The tool in

this context should be able to:

* Generate C++ code with desired loops transformation.
* Be able to integrate with the CMS software and to be used by non-expert users.

* Be used as a study tool to investigate on intermediate representation of source pro-

gram.

Chapter 11

BACKGROUND OF STUDY

The previous chapter explains the motivation for performance improvement of
CMSSW. As a result, the problem statements by which we describe, we will apply com-
piler optimization techniques to improve the execution time of the system. However, each
optimization technique is different; for instance, specifying a directive can trigger a par-
allel code (i.e. OpenMP) [14] or using a domain-specific language to avoid the complex
procedure. Then, common optimization techniques are provided. Moreover, we discuss

which optimization seems to be an appropriate approach in our scenario.

Because most of the vectorization or some optimization task is relying on data de-
pendencies among programming statements, for example, loop optimization or automation
vectorization, this chapter presents data dependency which is the basis of compiler opti-
mization. Importantly, automatic vectorization is plays an important role in our work since
we will trigger it via a loop transformation. Thus, this chapter also describes the context

of the technology in more detail.

2.1 Compiler Optimization

Firstly, we start with the concept of compiler optimization. Compiler optimization,
commonly mentioned in textbook [2], is generally a sequence of optimizing transforma-
tions or algorithms that produce a semantically equivalent program that executes faster

than the original one.

2.1.1 Compilers

A compiler is a computer program that processes a programming language into ma-
chine understandable language. This process consists of three procedures as shown in

Figure 2.1.

* First, the compiler frontend checks the grammar and syntax of the source code.
Then, it converts the source code and builds an intermediate representation of its
language binding to the programming source code. This phase contains lexical,

syntax and semantic analysis, which we know as the tokenization phase.

* Then, generated tokens from the previous step are converted to Intermediate Repre-
sentation (IR) where major optimization happens. An optimizer pass at the backend

performs on this part.

* Finally, the result from the previous step which is optimized IR is transformed to

target architecture. This is known as the code generation phase.

In addition, the optimizer is either responsible for a variety of optimization or trans-
formation, such as dead code elimination or code smell deletion. However, optimizations

not only occur at optimizer but also can be added to compiler frontend.

Input source code—»‘ Frontend | Optimizer { Backend J—» Machine code

Figure 2.1: Three main phases of classical compiler design

Most common compilers contain various optimization techniques in the optimizer,

which are described in the following detail:

* A combination of loop transformations, included interchange, unrolling, switching,

etc.
* Dead code elimination is a techniques to reduce code size of unused code.

* Inline expansion is a technique that a body statement replaces to a function call.

These presented list are most common techniques that are implemented in most com-

pilers. Also, compilers apply them during compilation phase. Moreover, there are other

optimizations or passes can be applied by a user using flags. This thesis, we will only
focus on loop optimization which transform a loop into a sequence of vector operations,

thus further detail is given within the next section.

2.2 Vectorization

Vectorization is a task where mathematical operation in a loop in source code is
performed the same operation in parallel by special vector hardware in CPUs. Modern
high-performance architectures improve their performance by expanding vector length and
additionally improving memory hierarchies in order to gain high performance result [15].
Specialized instructions are used for vector operations, known as Single Instruction Mul-
tiple Data (SIMD). It is not only useful for scientific applications but also for multimedia
applications. If such a language implementation can use SIMD instructions, this brings to

significantly improve of performance.

Scalar Vectorized
| Ssisn{Fa(miminin
operation

Time

[NOOMCoM
vy X MMMMMMNM

Figure 2.2: Comparison of execution between scalar sequential (scalar)
and vectorization computation. Source: https://lappweb.in2p3.fr/
~paubert/ASTERICS_HPC/6-6-1-985.html

Recently, vectorization is an important feature in boosting the performance of HPC
applications. Continuously increasing vector length can create more opportunities in the
optimization process of those applications. A compiler is able to automatically vectorize
their code as part of optimization process. Nevertheless, complex code makes imperfectly
vectorization. Moreover, inefficient utilize of memory and cache decrease performance

obtained by vectorization. This thesis will focus on vectorization or optimization from

https://lappweb.in2p3.fr/~paubert/ASTERICS_HPC/6-6-1-985.html
https://lappweb.in2p3.fr/~paubert/ASTERICS_HPC/6-6-1-985.html

compiler perspective where by code in a manner of vectoization is possible. With the
simply code, a compiler can generate vector instruction from such code to take advantage

of vector hardware.

2.3 Vectorizable Code

This section, we describe about vectorizable code in term of a loop. Since, vector-
ization mostly happens in the loop. For any compiler to perform vectorization, the loop
must pass the basic requirements for vectorizable loop. Any loop that does not pass these

requirements may not possible to do.

The basic requirements for vectorizable loops are given below:

* A loop number must be countable at runtime. It means that the total number of loop

iterations need to be specified before a loop executes.

* A statement inside a loop need to be a single control flow. Because, branching or

conditional statement prevent code from being vectorized.

* A loop should not contain function calls, because there is a complicated jumping

condition between stack and memory.

2.4 Data Dependency

Previously, we conceptualized vectorization technology that evaluates code in paral-
lel version instead of sequential one. Nevertheless, the original order of a loop may change
due to the transformation. If the result of previous iteration depends on the next compu-
tation of iteration, in this case, the automatic vectorization will lead to incorrect results.
This is known as data dependency [16] which occurs when an instructions use a register
of memory location which other instructions uses. Dependency between statements af-
fects the compiler’s ability to optimize code for parallelism or vectorization. So to get the

maximum benefit from optimization code, data dependency should be carefully managed.

Thus, dependency analysis is used to analyze data dependencies between instructions.

Three types of dependencies are:

1. True (Flow) dependence, known as read-after-write, exists when an instruction
depends on a previous instruction’s result.
X = 1;
z =X + 1;
The second instruction uses x after the first instruction writes. This kind of depen-

dency is not vectorizable.

2. Anti-dependence, known as write-after-read, exists when instruction stores after
another instruction uses it.

X + 1;

X = 2;

<
I

The third instruction writes to x after the second instruction reads it. This kind of
dependency is vectorizable. A input value is used to be an input in previous iteration,

then it used to write to the next iteration.

3. Output dependence, known as write-after-write, exists when two instructions write

the same memory location. It affects final output of a variable writes to it.

X = 1;
y =X + 1;
X = 2;

The second and fourth instructions read an difference result due to differently store
value into x. This occurs when multiple iterations can alter the single variable.

Thus, this kind of dependency is not vectorizable.

10

2.5 Loop Optimization

Loops mainly have an impact on the performance of many programs. They are the
part where execution time is mostly spent on. Therefore, loop optimization has been stud-
ied to make it faster. It is a classical subject of study [1; 2]. In addition, a combination
of loop transformations can be considered to be loop optimization. A transformation of
source program is an operation where it converts the input program and generates an-
other program with equivalent to the original. Generally, loop transformations work on
reshaping iteration space to gain more data locality of the target architecture. Almost of
loop transformations are a technique that is designed to make vectorization or another op-
timization possible because sometimes the loops can not directly vectorize or optimize

until applying another transformation before.

2.5.1 Loop Unrolling

Loop unrolling [1; 2; 17] is the simplest loop optimization by unrolling to avoid
jumps instructions to execute. When an unrolled loop body statement is duplicated with
the same number of the loop incremental. This number is called unroll factor. However,
when the conditional variables of loops are not known at compiler time, a compiler adds
a remaining part below the unrolled loop to handle them during execution time.

// Original
void OriginalLoop(int n) {
for(int i = 0; i < n; i++) {

statement (i);

// Loop Unroll
void LoopUnrolling(int n) {
for (int i = 0; i < n-2; i+=2) {
statement (i);

statement (i+1);

for (int i = n - (n & 2); i < n; i++) {

statement (i);

11

Listing 2.1: Example of loop unrolling

2.5.2 Index Set Splitting

Index Set Splitting [18] proposed by M. Griebl, P. Feautier, and C. Lengauer, is a
method in which the loop nest’s parallelism is maximized. They introduce it as a pre-
possessing state for the polyhedral model optimization. This method is also known as a
technique that divides a loop containing conditional expressions into several loops with
less complex control flow [19]. The algorithm tries to distinguish the iteration space into

individually parts. Then, the splitting loop can improve parallelism.

As well as in [20], they purpose a new extension of the CLooG’s algorithm that
divides the outer loop into small parts to removes loop bounds generated from code gen-
eration. The loop bounds sometimes blocks the compiler from others optimization, such

as vectorization.

// Original
void OriginalLoop(int n) {
for(int i = 0; i < n; i++) {
for (int j = 0; j <m; j++ {

statement (i,j);

// Index Set Splitting
void ISS(int n) {
for (int i = 0; i < k; i++) {
for (int j = 0; j <m; j++) {

statement (i, j)

12

for (int i = k; i < n; i++) {
for (int j = 0; j <m; j++) {

statement (i, j)

Listing 2.2: Example of Index Set Splitting

2.5.3 Loop Interchange

Loop interchange [1; 17] changes the indices of the nested loop by swapping an inner
loop to an outer loop. Interchanging the loop can improve the access pattern. However,
there is some consideration that loop interchange may give in worse performance due to
cache performance. Loop interchange is legal when the interchanged loop uses a non-

computed value.

// Ovriginal
void OriginalLoop (int n) {
for (int i = 0; i < n; i++) {
for (int j = 0; j <m; j++) {

statement (i, j);

// Loop Interchange
void LooplInterchange(int n) {
for (int j = 0; j <m; j++) {
for (int i = 0; i < n; i++) {

statement (i, j);

Listing 2.3: Example of Loop Interchange

13

2.5.4 Loop Skewing

Loop skewing [17] is the loop transformation that changes the basis of the execution
of an inner loop relates to an outer loop to exploit wavefront parallelism. This is very
useful transformation in case the inner loop is depending on the outer loop which blocks

it from running in parallel.

// Original
void OriginalLoop (int n) {
for (int i = 0; i < n; i++) {
for (int j = 0; j <=i; j++) {

statement (i, j);

// Loop Skewing
void LoopSkewing(int n) {
for (int i = 0; i < n; i++) {
for (int j = i; j <= 2%i; j++) {

statement (i, j—i);

Listing 2.4: Example of Loop Skewing

2.6 Polyhedral Model

Polyhedral model [21; 22] is an abstraction of nested loops with loop transforma-
tions in mathematical model. In general, a loop transformation can be represented in term
of an affine transformation. For example, skewing is the change of basis of original de-
pendency to obtain wavefront parallelism. Thus, the loop transformation is performed on
the iteration space. Moreover, we can easily legality of transformation via composition

of iteration space. Nested loops commonly are able to represent such model. Then, it

14

represent loop condition and its iteration as points inside representation object.

As aresult, polyhedral model is used to perform a loop modeling and apply any loop
transformation on it. Moreover, there is a study that nested loop auto-vectorization can be

guided by polyhedral model [23].

High-level concept of polyhedral model relies on three steps:

* representing the original code into the geometrical view called iteration space;
» performing a geometrical transformation in this space;

 converting the set of iteration domain back to generate code.

2.6.1 Correctness of Transformation

This section is a summary of Cooper’s work [24]. There are two considerations for
the correctness of a compiler. First, target code that is generated by the compiler should
remain the same meaning as the original. Any operations integrated into the compiler
must handle this as a baseline. In an optimizing perspective, the result generated from
the compiler should have lower or equal time or space consumption. As a result, each
operation uses code for some part of a program as an input, then it generates code with
the same part. The output of optimizing compiler is better by some performance metric.
There is the statement of the notion of observational equivalence introduced by Plotkin to

formalize this notion [25].

For two expressions, M and N, we say that M and N are closely equivalent if
and only if, in any context C where both M and N are closed (that is, have no
free variables), evaluating C[M] and C[N] either produces identical results or

neither terminates.

Especially, most compilers aim to improve time and space consumption of the pro-

gram as much as possible. Preserving program equivalence is also important. Two pro-

15

grams between transformed and original ones should be equivalent to the same input. In
this thesis, we do not focus on how the transformed program maintain mathematical cor-
rectness but focus on the conservation of physics simulation compared to the original one.

As a result, physics result validation will use as the correctness of transformation.

2.7 The Design of an Optimizing Compiler

Currently, a modern compiler supports multiple languages or target architectures.
Mostly, the compiler frontend can parse in many languages, and the backend can be specif-
ically written for any target. This brings to the new design whereby the compiler uses a
common code representation in its optimizer, as known as an intermediate representation,

as represented in Figure 2.3.

e ~ Ty

86
C C Frontend ’ Backend xB6
N/ |

S Ty
S N PowerPC
C++ —* C++ Frontend FAP{ Optimizer > Backend —* PowerPC

L N N (8= ——

' A 1 77 R -

Fartran ARM
—
Fortran Frontend *| Backend ARM
N

Figure 2.3: Three main phases of modern compiler design

It takes maintainability that the skill required to implement in each part are differ-
ent. This simplifies the workflow for developers to enhance or maintain their part of the

compiler.

Many compilers have commonly optimization such as loop optimization (i.e. un-
roll, interchange), automatic vectorization, and data-flow optimization (i.e. constant prop-
agation, dead code elimination). In compilers, there are static performance analyses and
heuristics that handle possibilities to apply optimization to a program. Moreover, they

provide options using directives or flags to indicate operation from code. However, all

16

available optimization possibilities or even the new design, still have limitations where

every compiler’s decision is not obviously optimal.

2.7.1 Limitations

Compilers can automatically tackle performance improvement of a program via
static performance analyses and heuristics. However, they still fail to apply optimiza-
tions due to both indicators. There is a source-to-source transformation technique that no
longer depends on the compiler’s indicator. Since it gives a good balance among possi-
bilities to optimize code and expressiveness of the technique. Moreover, the optimization
only occurs in the frontend phase. However, not many tools support building frontend
optimization due to the reality that it is extremely hard to handle correctness of a pro-
gram. Support tools for building source-to-source transformator for C-family languages
were difficult. Thus, this thesis aims to optimize the specific framework in scientific soft-
ware using the source-to-source transformation. The main goal is to preserve the original
source program in terms of meaning as much as possible. The following sections will de-
scribe various approaches and tools for building the source-to-source transformation tools.

Also, related works will be discussed in brief details.

2.8 Source to Source Transformation

A source-to-source transformation [26; 27] is the method of taking one of a program
as an input and generating another representation of it as an output with the same mean-
ing. It mostly belongs to a compiler frontend. The goal is clearly to optimize, refactor, or
migrate from one language to another language. For example, a user has a set of C++ code
and performs the source-to -source transformation on it using some tool, and the result-
ing output is optimized C++ code to earn advantage of a loop transformation approach.
Unlike the general compiler is responsible for converting a high-level programming lan-
guage to a machine code that is binary, the source-to-source compiler is to convert one
source code from one programming language to another language which is the same level

of compilation [28; 29].

17

Any transformation can be done manually, but it can be integrated into a compiler as
an automation procedure by modifying the compiler’s data structure (e.g. abstract syntax

tree) or conveniently using patterns or templates of source code fragmentation [30].

2.8.1 Abstract Syntax Tree

Abstract Syntax Tree (AST) [31] is a data structure that represents the structure
of a program in a tree representation. The AST is an entry for semantic analysis of a
program. Usually, semantic analysis is a compiler process where it parses a program to
collect necessary information from the program. For example, it includes type checking,
or even a variable is declared before use. Thus, the AST can be used to represent most

procedural languages.

There are three types of elements in the AST mainly used in this thesis as described

below:

* Declaration is a statement for name, type, and value of a symbol. Symbols also are

sub-elements such as constants, variables, and functions.

* Statement indicates an action to be carried out that changes the state of the program

such as loops, conditions, and return statements.

» Expression is acombination of operations and values that is evaluated due to specific

rules. The result of evaluation is an integer, floating point, or string.

Chapter 111

LITERATURE REVIEW

From previous chapter, we present background of study that is important to know
for loop optimization and source code transformation. Even we want to propose a new tool
to help physicists or developers who work on a physics simulation to optimize their code.
This tool must be a source-to-source translator tool which is able to automatically trans-
form source code. Thus, this chapter provides the survey of existing tools that can perform
the source-to-source transformation. Then, we will only choose a tool that matches our

criteria.

The literature review includes several frameworks using a compiler frontend to per-
form the source code transformation known as the source-to-source compiler. Moreover,
there are many compilers that can perform these transformations by their optimizer mod-
ule. Therefore, the main purpose is to find the compiler or framework that will be best

match with the following criteria:

* The compiler or framework has to generate an AST, and we need an output code to

remain at source level with unspecified compiler intermediate representation (IR).

* The compiler or framework has to generate output code as source level and not in a

compiler-specific.

* The compiler or framework is able to perform source-to-source transformation on

C++ language.

* The compiler or framework is able to integrate with the CMS Software (CMSSW).

Moreover, working on performance tuning, profiler and analyzer tools need to be

consider. They can be helpful in finding bottleneck part and clear up these performance

19

issue. This chapter also provides the profiling tools that currently used for CMSSW which
are IgProf, Valgrind(Callgrind and MemCheck), and CMS’s time report.

3.1 Tools for The Source-to-Source Transforma-
tion

There are a number of available compiler that is specialized at source-to-source
transformation, but only some number can match with our criteria. In this section, we
compare and present a list of main tools or compilers that are able to perform source-to-

source.

3.1.0.1 Clang

Clang [8; 32; 33], a cross-platform C/C++/Objective-C developed by Apple, is a
compiler frontend which is responsible for tokenization and generating intermediate rep-
resentation of C/C++ languages. Clang also gives libraries to parse and interact with C/

C++/0Objective-C code at abstraction levels. It is important to note on these modules:

* Driver, Clang’s executable is a small driver that manages execution of other tools.
We only use it to run other tools such as parsing AST to feed to next the stand alone

tool.

* Preprocesing, this stage is responsible for macro expansion, tokenization of the

input source program and managing declared directive or preprocessors.

* Parsing and Semantic Analysis The input file is parsed during this stage, convert-
ing the token from before step into intermediate representation called parse tree.
It also use semantic analysis to identify types for expressions. Moreover, this stage
manage to provide warning or error at compile time of the program. The result from

this stage is an Abstract Syntax Tree (AST).

* Code Generation and Optimization These stages handle to translate the AST from

the previous step into another Intermediate Representation (IR) which is used for

20

backend side. This phase manage to optimize generated code and handling target-

specific code generation.

Clang also provides interface to write a standalone tool for semantic and syntactic
information from program. Moreover, it underling framework provides the tool that sup-
ports to run tools over single file, or multiples files and independently of the system like

LibTooling.

Clang/LLVM’s Tooling library (libTooling) [34; 35] contains source-to-source
transformation abilities, but it has demonstrated of using as source refactoring and code
generation task [36]. There are works with LibTooling which demonstrates its use for the
source-to-source transformation using annotations or flags which we will describe in the

next section.

Canonical example when to use LibTooling:

* asimple syntax checker

* refactoring tools

3.1.1 OP2-Clang

OP2-Clang [37] is a source-to-source translator implemented using LibTooling. The
tool can specifically generate target platform code such as SIMD, OpenMP, CUDA and
the combination with MPI. By design, it is easy to maintain and extend their tool to use
to generate new parallelization and optimization for hardware target for their source code.
For use case study of their work, it is used for generating parallel code of Airfoil CFD and

Tsunami simulation application via OP2’s API.

In this work, they utilize Clang’s LibTooling for the source-to-source transformation.
LibTooling has an API to perform operations over source code with the modification via

the AST. The tool is starting by utilizing of Clang’s parser to parse and generate AST of

21

the source code. The next phase of their tool involves transforming task on the AST with
specifying target. After that, the transformed AST is generated back to optimized source

code. The overall architecture of OP2-Clang is shown in the red box in the Figure 3.1 [37]

[unstructured mesh problem J:>| OP2 Application (C/C++ API))

(Phase 1) AST analysis and data collection
[T

oP2-Cl
ang (Phase 2) Target Specific Code Generators

[openmp [sivD | MPI | cupA |- New? ||
S =/

N / (“/
Moadified Target Specific Optimized o Sr:izzz:g;l: :STE::@S
0OP2 Application Application Files P

JL CUDA)(MPH—CUDA)

penMP Other

.

Conventional Compiler + Compiler Flags
(e.g. lcc, nvec, pgce, ifort, gfortran)
I MPI

New ?

| Parallel executable J

Figure 3.1: The high-level architecture of OP2-Clang

As shown in the figure 3.1, The tool is designed in modular design to support for
generating SIMD vectorization and CUDA code. An idea of SIMD vectorization is to gen-
erate an automatic vectorized code during compilation phase with a C/C++ compiler. The
function itself needs to parse via Clang’s parser to gain its AST information to transform
the element function. Clang’s AST matcher is used to specify a part of tree in binding
with the function signature. Then, it is replaced by the desired subscription to expose

vectorization. Finally, vectorizable AST is generates back to vectorizable code.

3.1.2 Scout

Scout [38] is a source-to-source transformator for SIMD optimizations, e.g., auto-
vectorization. Scout provides a compiler directive to trigger vectorization via a pragmatic
flag where users need to annotate their own. Scout also gives both command line and
graphical user interfaces to use. It utilizes the Clang front-end interface to build an AST

from source code. Then, the AST is converted by an operation to optimize AST. Finally,

22

the optimized AST is converted back to source code. Scout is compatible with SIMD
instructions set like SSE or AVX. There are two main methods before the actual vectoriza-
tion starts. First, the loop body is modified by loop unswitcing , function inlining to move
some invariant statement to outside of it. Consequently, the loop is able to unroll from the
inner side. Then, the resulting loop is vectorized using unroll and jam technique. Scout
has a C front-end and a function to perform vectorization transformation. In addition, it

cannot be integrated into other frameworks.

3.1.3 ROSE

ROSE [39] is a compiler under the license of BSD (Berkeley Software Distribu-
tion) that is designed for source-to-source transformation task. The motivation to develop
this framework is to make a compiler to provide a meaningful source representation of
the post-transformation changes comparing to intermediate representation one. Since the
traditional compiler provide the result in extremely difficult representation. As a result,
ROSE is developed to be source-to-source compiler that can parse C/C++ and Fortran.
ROSE’s API also supports both analyze, modify and rewrite to generate code after modi-
fication. ROSE provides libraries that make it easy to build wide range of tasks for opti-
mizing source-to-source compiler. Nevertheless, ROSE can handle C/C++ language, but

it is a really black box that is not flexible to modify.

- EDG Front- -
—> end/Open Fortran — Unparser
Parser

Figure 3.2: ROSE compiler infrastructure

Transformed
Code

3.14 OpenC++

OpenC++ [40] is also under the license of BSD. It is an open-source refactoring
library and C++ compiler front-end. It is implemented to help programs to easily analyze

C++ code or to perform source-to-source transformation. The flow of OpenC++ works by

23

writing meta-level program, which adds the method to translate or analyze any C++ code.

Then, OpenC++ compiler compiles code and links it to a compiler plug-in [41].

As a result, developers can simply implement their own transformation tools. They
also can define new object, new syntax, and new annotation. Moreover, there are very
useful tools to develop a analyzing tool for source code such as tool for producing the

class-inheritance graph of a C++ program [41]. See figure 3.3.

base-evel program .cc ———=> OpenC++ compiler | ———=>{ C++ compiler | ————> oo

Figure 3.3: Overview of meta-level program in OpenC++ compiler

However, it is maintained by a group of volunteers, but it has not been updated since

2004. Regrading to the tool, it only handles C++ and is depend on its compiler.

3.1.5 DMS Software Re-engineering Toolkit

Design Maintenance System Software Re-engineering Toolkit [42] is a commercial
compiler frontend. The compiler allows developer to apply source-to-source pattern trans-
formations, then re-generate transformed source text. It can also be used to construct se-
mantic analyzer to find issues and apply restructuring an existing body statement to resolve
those issues. It provides a wide range of front-ends for most commonly used programming

languages including C++, Java, C# and COBOL.

3.1.6 Summary

Table 3.1 presents a summary of previous introducing tools and their abilities to
handle our criteria. We can see that LLVM/Clang is the only one which matches our
criteria to handle C++ project in CMSSW. In addition, it is an open-source that allows us
to modify what could manage certain applications for a loop transformations. Others are

commercial or can not handle the three criteria required for us.

C++ C Sozlor_ce— Documentation
source
LLVM/Clang v v v v
Scout v v v -
OP2-Clang v v v -
ROSE v v v v
OpenC++ v - v -

24

Table 3.1: Summary of existing tools for performing source-to-source trans-

formation.

3.2 Profiling Tools

Profiling is a process of software that evaluates space (memory) or time consump-

tion of a program, the usage of instruction and duration of each function calls. There are

profilers and libraries of different system.

The following tools are profilers which are mostly used for C/C++ languages.

* The GNU gprof profiler [43] is the standard profiling tool for C/Unix. It is used for

sampling and functional instrumentation to perform the profiling.

* OProfile [44] relies on hardware performance counters when measuring the perfor-

mance of an application.

* Intel VTune [45] is a closed source tool that relies on hardware performance counters

and timers. It provides the execution time spent in part of code.

* IgProf [46] is a profiler that can measure performance and memory of program.

Benefit of using IgProf is completely operation in use.

25

In profiling method, it can figure out the parts that are time consuming and need to
be optimized called hot spot. The profiling data give you high of resource usage (where
resource is memory, CPU cycles and etc.), so you can know that where the problem has
to consider. It leads you to focus on the correct point in the software for an optimization
task. You can also measure and re-measure to verify your performance improvement.
This always makes your program execution faster which is desired. Most of profiling tools
work via a dynamic analysis. It is a process that they measure live executing program. In
very large projects, profiling can help you find many other statistics through which many

potential bugs can be spotted and sorted out.

3.2.1 Igprof

IgProf [46] is light weight profiler using in CMSSW community. L Tuura et al. [47]
described that the main benefits of IgProf are lightweight, efficiency, and speed. More-
over, their work show that the performance profiler consumes only 40 MB for memory
usage which can be neglected. The memory profiler consumes approximately 500 MB.

Moreover, it is significantly faster than Valgrind and Callgrind.

This command below is to obtain profile statistics files. If you have run Igprof in
performance profile (-pp) mode:

igprof —d —pp —z —o igprof.pp.gz myApp argl >& igtest.pp.log &

If you run igprof in memory profiling (-mp) mode:

igprof —d —mp —z —o igprof.mp.gz myApp argl >& igtest.mp.log &

The result file consists of three sections which are flat profile (cumulative), flat pro-

file (self) and call tree profile (cumulative).

3.2.2 Callgrind

Callgrind [48] is a profiler that collects a very precise number of instructions exe-

cuted, relationship between function with call counts and source line. It can also simulate

26

L1/L2 caches and measure cache hits/misses. The Callgrind tool counts function called
and instruction executed in each call. Thus, we use Callgrind for both cache and CPU pro-
filing. In addition, Callgrind results can be alternatively displayed by KCachegrind [49]

as an analysis GUL

To run your software to start profiling, you need to use the command below:

valgrind —tool=callgrind myApp arg

The command above will run normally with a bit slowly due to instrumentation.

When it finished, it shows shortly the total number of events:

==22417== Events : Ir

==22417== Collected : 8239568
==22417==

==22417== refs: 8,239,568

Valgrind will write the output file named callgrind.out.id. Then you run an annota-
tion on this output file to display:

callgrind_annotate ——auto=yes callgrind.out.id

The output with annotation gives instruction executed and displays the sorted list of func-
tion in highest to lowest counts. Your bottleneck function will be listed at top of file. For
showing cache hits/misses, you can use with the simulate-cache option like this:

valgrind —tool=callgrind —simulate —cache=yes myApp arg

To conclude the chapter, the literature review of this the thesis provides briefly un-
derstanding related tools for source-to-source transformation, mainly the Clang compiler
frontend and its infrastructure. Since, it is selected to be a suitable tool that matches our
criteria. Moreover, we also describe the profiler tools which are using for performance

tuning.

Chapter 1V

METHODOLOGY

This chapter describes a proposed method, the design of the source-to-source trans-
formation tool for integrating with the building process of CMSSW, and the interface of
the Clang compiler to build a tool. As described in the earlier chapter, LibTooling has
a convenient interface to perform operations over source code. Thus, it’s suitable for the
task of refactoring or code modification in this context of the problem. Next section, we
will discuss our design in the high-level concept of the source-to-source transformation

tool.

4.1 Concept Overview

This section presents an overview of module usage involved in a source-to-source
process. The section also gives more details on transformation and supported loop trans-

formations via the process.

P T f G t
arse Abstract Syntax Tree TansTo, Abstract Syntax Tree enerate

Figure 4.1: Overview of module usage during the source-to-source transfor-
mation process.

Basically, a compiler frontend will parse the source code into an Abstract Syntax
Tree, sometimes it is known as an intermediate representation. During the process, when
there is a need to transform or change some part of code, a transformer operates on the
AST using a visitor or matcher pattern to find a node that requires changes. In the end, the

modified AST is generated back to the source file via a rewriter module.

28

4.2 Supported Transformations

In this section, we describe the high-level concept of loop transformation on the AST.
Most of the loop transformations mentioned in the background section can be directly done

through the AST. There are brief details for loop transformation below.

ForStmt
|—DeclStmt
| ‘—=VarDecl

| ‘—IntegerLiteral

s s

|-BinaryOperator °'_Bool’ ’<
| |—ImplicitCastExpr ’int’ <LValueToRValue>
| | ‘—DeclRefExpr ’int’ lvalue Var ’i’ ’int’
int’ 12

s

| ‘—IntegerLiteral
|-UnaryOperator ’int’ postfix ’'++°
| ‘—DeclRefExpr ’int’ lvalue Var ’'i’ ’int’
‘—~ForStmt

|-DeclStmt

| ‘“—VarDecl j ’int’ cinit

| ‘—~IntegerLiteral ’int’ 0

s

|-BinaryOperator ’_Bool’ ’<

3

| |-ImplicitCastExpr ’“int’ <LValueToRValue>
| | ‘—DeclRefExpr ’“int’ lvalue Var ’j’ ’int’
| ‘—~IntegerLiteral ’int’ 12

)

|-UnaryOperator ’int’ postfix ’'++°

| ‘—DeclRefExpr ’int’ lvalue Var ’j’ ’int’
‘—DeclStmt
‘—~VarDecl temp ’int’ cinit

‘—~IntegerLiteral “int’ O

Listing 4.1: A nested loop in a pare tree representation

4.2.1 Index Set Splitting

Index Set Splitting is the technique where a loop is split into multiple loops with
different condition statements. To transform with these criteria, the whole loop needs

to be duplicated, then the condition statements are changed to match the criteria of the

29

transformation. Pseudo code is described below.

ISS (u) (u is the vertex where the tree starts)
if outer ForStmt is found then
tmp = ForStmt
change the condition of the loop to splitting point
insert tmp into starting point of the loop
else

return

4.2.2 Skewing

The procedure of skewing transformation can be divided into two parts which are the
inner of a nested loop and the body statement inside the parse tree of the loop mentioned
in4.1. For an inner loop, we can represent the high level of parse tree as below. Therefore,

we will interested in a child forStmt node since it is the inner loop.

In addition, skewing is the technique that rearranges its array access. Consequently,
the declaration reference expression needs to be changed on the parse tree. Thus, the
transformation is a text replacement of those values to match the criteria of skewing trans-

formation.

For a body statement tree traversing, we use a recursively depth-first search to find

array access for the body statement inside a loop. Pseudo code is described below.

30

REC(u) (u is the vertex where the search starts)
if (visited[u] is ImplicitCastExpr) then
change the basis of index by i + j
return
else
get children statement as v
if v is null
continue

REC(v)

END REC()

4.3 System Design

The tool entry is to parse source code. Then, parsed source code is generated as an
AST via a parser of Clang. It holds AST nodes in ASTContext. This AST contains the

collection of required information such as data types, statements to use for tree matching.

Next, the LibTooling library provides the ASTConsumer interface which is an ab-
stract interface that allows us to inherit and override a few methods of it to gain AST
information in the desired way. Then, the consumed AST is modified via AST’s opera-

tion.

ASTConsumer has many methods to read the AST. Clang also provides Han-
dleTranslationUnit(ASTContext) is invoked when AST is parsed. In our case, we
should look for loops in any function. Clang has another class for finding such loops:
clang::ast_matchers::MatchFinder::MatchCallback. 1t is a callback function when the

matching node is successfully found in the AST.

Thus, to transverse all the AST operations, the RecursiveAST Visitor, MatchFinder,
and TranslationUnitDecl classes are all used for building the tool which are described in

the following steps:

31

1. Firstly, AST is generated from an input source, then it is passed to an implementation
of another interface. When writing the tool-based libTooling, the entry point of the
AST is FrontendAction which is the class that gives specific actions for execution.
Clang provides the ASTFrontendAction interface to run tools over the AST which
responsible for executing the action. Thus, we can extend ASTFrontendAction to

implement our own logic of transformation.

2. Next, a method to detect part of the AST is implemented which is used for handling
statements and function declarations contained loops to transform. This method is
basically done by implementing RecursiveAST Visitor interface to pull out the rele-
vant information from the AST. Moreover, it is possible to gain AST’s information

via MatchFinder as well.

3. Then, an desired operation is applied to the AST. This method is done by the imple-
mentation of ASTConsumer interface which is used to specify modification on the
AST. Finally, Rewriter interface is implemented to modify the input source code.
It is also responsible for code generation task to generate code back to high-level

source language.

The design briefly shows how source-to-source transformation based-LibTooling
works as a standalone tool. First, we perform an analysis of the AST and find out where
to apply transformations, then the Rewriter is used to apply transformations. We imple-
ment this tool as a preprocessor that processes source code to transform specific loops
before compilation. Figure 4.2 and 4.3 represent the way source-to-source transformation

performs the action at the preprocessing stage.

Unoptimized C++ Code

Preprocessor
Using
LibTooling

Clang's AST

l

ASTFrontendAction

}

ASTConsumer
(generic actions on the AST)

l

MatchFinder
(find all unoptimized loops)

!

Rewriter
(remove and insert new code)

Optimized C++ Code

32

Figure 4.2: The high-level architecture of the source-to-source transforma-
tion tool using Clang’s libraries.

Preprocessor

[source-to-source
transformation)

C/C++ unoptimized
code

h 4

C/C++ optimized

<

code

Figure 4.3: The full sequence of steps when compiling a C/C++ program.

GCC/Clang

33

4.4 System Implementation

We have provide system implementation details in appendix part. This section just

shortly tells the step of the implemenation below:

1. Loop matches
2. AST traversal
3. AST operation

4. Code generation

4.5 Performance Analysis

There are three different tools for performance analysis which are the CMS frame-
work, IgProf, and Callgrind. CMSSW provides timing and memory measurement tools
that allow us to execute to measure memory usage and time consumption. However, IgProf
is used for providing a precise level of detail. The use of IgProf is mainly in performance
mode to measure the time of source transformation. Moreover, Callgrind is used for a very

precise executed instruction counting.

Chapter V

RESULTS

5.1 Preliminary Results

Most compilers contain command-line options to control code generation by select-
ing a sequence of compiler optimizations that aim to maximize performance or to reduce
code size as an alternative. Usually, CMSSW is compiled using the GNU GCC compiler
by default with level two optimization (-O2). The -O level option tells GCC to turn on
compiler optimization when the specified value of level is in effect. With gcc -O2, the
compiler will explicitly invoke level two optimization, which improves the performance

of the output binary, while avoiding numerical accuracy issues.

From evaluating optimizations that apply to several loops in the DataFormats/
TrackReco and the DataFormats/Candidate package for reconstructed data. The cur-
rent packages consist of 35 loops targeting the 3 different loop optimization discussed in
the previous section. Table 5.1 represents an overview of the loop optimizations and the

number of test programs that target these optimizations.

Number of an
Loop optimization optimized
pattern
Loop unrolling 25
Index set splitting 9
Loop reordering 1

Table 5.1: The number of benchmark programs that can be applied with loop
optimizations.

35

Loop
Function name Initialization Optlmlz.a tions
(Skewing +
Splitting)
fillCovariance 49,617,744 13,250,193
TrackExtra 24,437,033 20,044,796
TrackBase 11,768,945 7,108,025
VertexCompos-
itePtrCandidate 11,995,424 2,249,142
VertexCompos-
iteCandidate 62,268 58,788

Table 5.2: Number of instructions executed for a selection of functions from
CMSSW_10_2_3 compiled with GCC 7.3.1.

5.1.1 Evaluation

First, we analyze our performance by using Callgrind, a profiling tool, to collect the
number of instructions executed. For all events in the result refers to instruction fetch.
Table 5.2 represents results for a selection of functions contained loops. The results are

divided into two parts: initialization and loop optimizations.

GCC compilation option is used (e.g.,gcc -02) to select fewer optimizations. Nev-
ertheless, manually applying loop optimizations to high-level source code is significantly
smaller. As you can see in Table 5.2, the number of instruction executed in total by selected
function which calls from caller is significantly reduced. This is because loop optimiza-
tions might enable other loop optimizations. In our case, loop optimizations that applied
in test programs are designed to let the compiler translate it into platform-specific vector
instructions. Other than that, with appropriate data structures, the compiler can generate
more instruction-level parallelism by loop unrolling. The unrolled loops use fewer instruc-
tions, because they reduce the number jump instruction. Thus, there are fewer loop tests

and branches.

Even though GCC’s optimization can improve performance in application, there

36

Optimization description Inigﬁgza- Oplt;(l)l;)iszed Speed up
Index set Splitting 125.34 79.67 1.57
Unrolled with directive 122 76.34 1.59
Loop reordering 112 64.67 1.73

Table 5.3: Average execution times of repeatedly selected loop patterns in
nanoseconds of CMSSW_10_2_3 compiled with GCC 7.3.1.

are many conditions to consider. In most cases, GCC needs to confirm that there is no
loop-carried dependencies, which would prevent consecutive iterations. Thus, loop in a

program needs to be restructured to improve loop performance.

Then, we evaluate the performance improvement in terms of timing speed up. Table
5.3 shows the average execution time per event processed has been improved both high-
level loop optimizations, which are index set splitting, loop reordering, and low-level loop

optimization, which is being done at code generation phase.

5.2 System Integration Testing Results

This section shows the measure of efficiency in our source-to-source transformation
tool using test cases from the whole DataFormats package which contains many kinds of

loops such as nested loop, for, while loops etc.

Our tool is able to parse the whole DataFormats that are written in C++ language.
Parsing time is not our point of interest, so we will not measure then at this point. The
experiment focuses on the performance impact of transformed loops. Also, the correctness
of simulation results should preserve as well as the original one. The next section we will

discuss on the correctness of physics results.

37

5.2.1 Correctness

To validate the correctness of our transformations, the result of physics simulation
should be the same meaning as original one. In our tool, the transformation algorithm
with an underlying polyhedral model generates correct code before building and compiling
the whole package. We then build our experiment package from transformed original
source code. The result from the Figure 5.1 shows transformed code does not change the
simulation of the physics result when compared to the original one. We can see in Figure
5.1 that both versions of the source code give the same result.

METPhi | METPhi | NumberOfPVix_offline Number0fPVtx_offline
Entries 5355 _ Entries 5498
Mean -0.004701 = Mean 26.61
Std Dev 1.581 Std Dev 6139

140

120

Number of Events
@
&
3

w LoopOpt
Entries 5498
Mean 26.608
RMS 13899

100 Entries 5355 |
-0.00470079 250
1.58083

80

T TTT]
n
38
3
LTI T[T T[T T[T T[T T

I
[

|
)

|
o
N
(3}

z &=
et
TR
]
=
S i
=Y

0000 Ao

NP oRaNED® o

|
)

|
N

|
o
N

3)

Figure 5.1: Physics result among loop optimization and original code

5.2.2 Performance

The profitability tests are performed where the loop transformation process increases
or decreases the performance in the case where time consumption in function contained
loops. As one can see from Table 5.4, we get signification time improvement for loop
splitting and loop skewing. However, we did not achieve significant speedups for loop
skewing alone. Normally, loop skewing aim to reshape the iteration space to find possible
parallelism. However, this transformation does not gain benefit from compiler optimiza-
tion in GCC version 7.4.1. It produces target code that differs significantly in term of

performance. Consequently, this gave the result in slower of applying loop skewing alone.

Then, we investigate overall runtime performance through minor change of loop

38

Loop opti-
. cle qe e mizations
Function Initialization (Skewing + Speed up
Splitting)
fillCovariance 1.35 1.09 1.24
Ver-
tex::fillCovariance 1.08 0.75 1.44
TrackEx-
tra:: TrackExtra 0.75 0.65 1.15
Track-
Base:: TrackBase 0.30 0.30 1.00
GsfCompo- 0.46 0.46 1.00
nent5D::covariance
VertexCompos-
itePtrCandi-
date::fill Vertex 1.52 1.92 0.77
Covariance

Table 5.4: Time spent of called function in CMSSW_10_6_8 compiled with
GCC 7.4.1 via igprof performance profiling

transformations to our source programs. The amount of improvement is shown in Table
5.5. The result shows that there is slightly runtime improvement after we apply a sequence

of loop transformation into our source programs.

Loop
Initialization optimizations

Batch (-02) (Skewing +

Splitting)
Trial 1 106.49 105.34
Trial 2 107.88 103.24
Trial 3 111.08 107.46
average 108.48 105.34

Table 5.5: Time usage measurement per 100 events in seconds on
CMSSW_10_2_3.

Chapter VI

SUMMARY & DISCUSSION

6.1 Summary of Findings

To conclude, we study the concepts of existing loop optimization techniques. We
present novel code transformations, which resolve into better loop optimizations of large
complicated software like CMSSW. We investigate the optimization level two option of
GCC compiler in CMSSW. Since level two optimization (-02) is a full set optimization.
The compiler will highly generate optimized code. However, we find from the case study
that using -O2 in CMSSW is not an effective solution for the program speed. An important
problem is that using -O2 alone does not normally give the expected performance without
invoking other optimization techniques. The reason is that compiler cannot simplify the
complexity of loops. Thus, it does not gain any benefit from this option. Consequently,
we apply a sequence of loop transformation in out case study. This allows compiler to
perform better optimizations. Our measurement is based on speed up and the number of

instruction executed.

From the proof of concept, we then build the tool for performing transformation
task. Consequently, this experiment shows that the tool is possible to transform nested
loops successfully. First, it looks up a loop that matches to our criteria and applies appro-
priate transformation. Moreover, we showed that our transformation tool can be used for

CMSSW scenario.

As aresult, the tool can successfully transform the loop into an appropriate form for
compiler to optimize it. In this case, GCC translates it into platform-specific vector instruc-
tions. Therefore, the loop is vectorized during compilation phase. Moreover, the tool does
not affect physics simulation results which is represented in the Figure 5.1. From loop op-
timization perspective, the source code remains the same in meaning, but the performance

gain is slightly different where loop transformation is better in improving performance.

40

However, the result as shown in 5.5, we cannot say that the amount of improvement is
gained from loop transformation since CMSSW is organized in many modules working

together. Moreover, the per module time of CMSSW cannot subtract from IgProf profiler.

6.2 Limitation of the tool

There is a limitation to loop skewing and index set splitting. The pattern needs to
be aligned with the following form. So, the matcher in the tool can match the parsing tree

from source program.

for(int i = 0; i < n; i++) {
for (int j = 0; j <m; j++ {

statement (i, j);

Moreover, the body statement inside the loop needs to contain only one statement
with a two-dimensional access pattern or else it will meet the exception case of the pro-
gram. Skewing transformation cannot apply since the body statement is too complicated

for the program to handle like the example below.

for(index i = 0; i < dimension4dD; ++i) {

for (index j = 0; j <= i; ++j) {

if(i == dimension || j == dimension) {
covariance_[idx ++] = 0.0;
} else {

covariance_|[idx ++] = err(i, j);

41

6.3 Future Work

In the future, we aim to add more transformation possibilities for the same loop
pattern. Also, it includes more deeply nested than double loops such as triple nested loops

with three different indices variable.

Furthermore, the modern compiler architecture has many embedded optimization
techniques inside. Consequently, loop optimization can also perform during the compila-
tion phase via optimizer in the compiler backend pass. Thus, we can add more optimization

in both compiler’s frontend and backend.

[1]

(2]

(3]

(4]

[5]

[6]

[7]

(8]

[9]

[10]

REFERENCES

R. Allen and K. Kennedy, Optimizing Compilers for Modern Architectures: A

Dependence-Based Approach. Morgan Kaufmann Publishers, 2001.

D. F. Bacon, S. L. Graham, and O. J. Sharp, “Compiler Transformations for High-
Performance Computing,” ACM Comput. Surv., vol. 26, p. 345-420, Dec. 1994.

L. Dagum and R. Menon, “OpenMP: an industry standard api for shared-memory
programming,” Computational Science & Engineering, IEEE, vol. 5, no. 1, pp. 46—
55, 1998.

I. J. Bertolacci, M. M. Strout, B. R. de Supinski, T. R. W. Scogland, E. C. Davis,
and C. M. Olschanowsky, “Extending OpenMP to Facilitate Loop Optimization,” in
IWOMP, 2018.

M. Kruse and H. Finkel, “User-Directed Loop-Transformations in Clang,”
2018 IEEE/ACM 5th Workshop on the LLVM Compiler Infrastructure in HPC

(LLVM-HPC), pp. 49-58, 2018.

L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam, P. Sadayappan,
and N. Vasilache, “Loop Transformations: Convexity, Pruning and Optimization,”

ACM SIGPLAN Notices, vol. 46, pp. 549-562, 05 2011.

“Loop-Specific Pragmas.” [Online]. Available from: https://gcc.gnu.org/

onlinedocs/gcc/Loop-Specific-Pragmas.html. [Accessed July 3, 2020].

“Code Transformation Metadata.” [Online]. Available from: https://11lvm.org/

docs/TransformMetadata.html#loop-unrolling. [accessed July 3, 2020].

S. Chatrchyan et al., “The CMS Experiment at the CERN LHC,” JINST, vol. 3,
p- S08004, 2008.

I.-M. Gregor and A. Straessner, The LHC Detectors, pp. 57-94. Cham: Springer

International Publishing, 2015.

https://gcc.gnu.org/onlinedocs/gcc/Loop-Specific-Pragmas.html
https://gcc.gnu.org/onlinedocs/gcc/Loop-Specific-Pragmas.html
https://llvm.org/docs/TransformMetadata.html#loop-unrolling
https://llvm.org/docs/TransformMetadata.html#loop-unrolling

43

[11] A. Petrilli and A. Hervé, “CMS Computing Model: The "CMS Computing Model
RTAG”,” 12 2004.

[12] L. A. Tuura, V. Innocente, and G. Eulisse, “Analysing CMS software performance
using IgProf, OProfile and callgrind,” J. Phys. Conf. Ser., vol. 119, p. 042030, 2008.

[13] The CMSSW Documentation Suite, The CMS Offline Workbook, [accessed June

23, 2020]. [Online]. Available from: https://twiki.cern.ch/twiki/bin/

view/CMSPublic/WorkBook.

[14] OpenMP Architecture Review Board, “OpenMP application program interface ver-
sion 5.0,” 11 2018.

[15] Y. Lebras, “Code optimization based on source to source transformations using pro-

file guided metrics,” July 2019.

[16] J. Hennessy, Computer Architecture : A Quantitative Approach. San Francisco, CA:

Morgan Kaufmann Publishers, 2003.
[17] E. Laforest, “Ece 1754 survey of loop transformation techniques,” 2010.

[18] M. Griebl, P. Feautrier, and C. Lengauer, “Index set splitting,” International Journal

of Parallel Programming, vol. 28, pp. 607-631, 2004.

[19] C. Barton, A. Tal, B. Blainey, and J. N. Amaral, “Generalized index-set splitting,” in
Compiler Construction (R. Bodik, ed.), (Berlin, Heidelberg), pp. 106—120, Springer
Berlin Heidelberg, 2005.

[20] H. Razanajato, V. Loechner, and C. Bastoul, “Splitting Polyhedra to Generate More
Efficient Code,” Jan. 2017.

[21] C. Bastoul, “Code Generation in the Polyhedral Model Is Easier Than You Think,” in

PACT’ 13 IEEE International Conference on Parallel Architecture and Compilation

Techniques, (Juan-les-Pins, France), pp. 7-16, September 2004.

[22] M. Griebl, C. Lengauer, and S. Wetzel, “Code Generation in the Polytope Model,”
in In IEEE PACT, pp. 106-111, IEEE Computer Society Press, 1998.

https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBook
https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBook

44

[23] K. Trifunovic, D. Nuzman, A. Cohen, A. Zaks, and I. Rosen, “Polyhedral-model

guided loop-nest auto-vectorization,” in Proceedings of the 2009 18th International

Conference on Parallel Architectures and Compilation Techniques, PACT ’09,

(USA), p. 327-337, IEEE Computer Society, 2009.

[24] K. Cooper, K. Mckinley, and L. Torczon, “Compiler-based code-improvement tech-
niques,” pp. 3—4, 06 2020.

[25] G. Plotkin, “Call-by-name, call-by-value and the A-calculus,” Theoretical Computer

Science, vol. 1, no. 2, pp. 125 — 159, 1975.

[26] D. B. Loveman, “Program Improvement by Source-to-Source Transformation,” J.

ACM, vol. 24, p. 121-145, Jan. 1977.
[27] M. Ward, “Proving program refinements and transformations,” 1986.

[28] S. Malabarba, P. Devanbu, and A. Stearns, “Mohca-java: a tool for c++ to java con-

version support,” 04 1999.

[29] P. Bhatt, H. Taneja, and K. Taneja, “Ssccj: System for source to source conversion

from c++ to java for efficient computing in iot era,” 2020.

[30] R.Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier, “Spoon: A li-
brary for implementing analyses and transformations of java source code,” Software:

Practice and Experience, vol. 46, 08 2015.

[31] D. Thain, Introduction to Compilers and Language Design. United States: Douglas
Thain, 2020.

[32] “New LLVM C Family Front-end.” https://llvm.org/devmtg/2007-05/

09-Naroff-CFE.pdf. Accessed: 2021-07-25.

[33] “Clang: A C Language Family Front-end for LLVM.” http://www.clang.llvm.
org. Accessed: 2021-01-28.

https://llvm.org/devmtg/2007-05/09-Naroff-CFE.pdf
https://llvm.org/devmtg/2007-05/09-Naroff-CFE.pdf
http://www.clang.llvm.org
http://www.clang.llvm.org

45

[34] “How To Setup Clang Tooling for LLVM.” [Online]. Available from: https:
//clang.llvm.org/docs/HowToSetupToolingForLLVM. html. [Accessed June

22, 2020].

[35] G. Balogh, G. Mudalige, I. Reguly, S. Antao, and C. Bertolli, “Op2-clang: A source-

to-source translator using clang/llvm libtooling,” pp. 59-70, 11 2018.
[36] E. Bendersky, “Modern source-to-source transformation with tooling,” 2014.

[37] G. Balogh, G. Mudalige, I. Reguly, S. Antao, and C. Bertolli, “Op2-clang: A source-
to-source translator using clang/llvm libtooling,” in 2018 IEEE/ACM 5th Workshop

on the LLVM Compiler Infrastructure in HPC (LLVM-HPC), pp. 59-70, Nov 2018.

[38] O.Kirzikalla, K. Feldhoff, R. Miiller-Pfefferkorn, and W. E. Nagel, “Scout: A Source-

to-Source Transformator for SIMD-Optimizations,” in Euro-Par 2011: Parallel

Processing Workshops (M. Alexander, P. D’Ambra, A. Belloum, G. Bosilca, M. Can-

nataro, M. Danelutto, B. Di Martino, M. Gerndt, E. Jeannot, R. Namyst, J. Roman,
S. L. Scott, J. L. Traff, G. Vallée, and J. Weidendorfer, eds.), (Berlin, Heidelberg),
pp. 137-145, Springer Berlin Heidelberg, 2012.

[39] D. Quinlan and C. Liao, “The ROSE source-to-source compiler infrastructure,”

in Cetus users and compiler infrastructure workshop, in conjunction with PACT,

vol. 2011, p. 1, Citeseer, 2011.

[40] “OpenC++ Home Page.” [Online]. Available from: https://chibash.github.

io/public/opencxx/. [accessed August 12, 2021].

[41] S. Chiba, “A metaobject protocol for C++,” in Proceedings of the Tenth

Annual Conference on Object-Oriented Programming Systems, Languages, and

Applications, OOPSLA °95, (New York, NY, USA), p. 285-299, Association for
Computing Machinery, 1995.

[42] “DMS software reengineering toolkit home page.” [Online]. Available from: http:
//www.semanticdesigns.com/Products/DMS/DMSToolkit . .html. [Accessed

August 10, 2021].

https://clang.llvm.org/docs/HowToSetupToolingForLLVM.html
https://clang.llvm.org/docs/HowToSetupToolingForLLVM.html
https://chibash.github.io/public/opencxx/
https://chibash.github.io/public/opencxx/
http://www.semanticdesigns.com/Products/DMS/DMSToolkit.html
http://www.semanticdesigns.com/Products/DMS/DMSToolkit.html

[43]

[44]

[45]

[40]

[47]

[48]

[49]

46

S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A call graph exe-

cution profiler,” in Proceedings of the 1982 SIGPLAN Symposium on Compiler

Construction, SIGPLAN 82, (New York, NY, USA), p. 120-126, Association for
Computing Machinery, 1982.

“OProfile home page.” [Online]. Available from: https://oprofile.

sourceforge.net. [Accessed July 10, 2020].

“Intel VTune Performance Analyzer home page.” [Online]. Available from: https:

//software.intel.com/en-us/vtune. [Accessed July 10, 2020].
G. Eulisse and L. Tuura, “IgProf profiling tool,” 2005.

L. Tuura, V. Innocente, and G. Eulisse, “Analysing cms software performance us-
ing igprof, oprofile and callgrind,” Journal of Physics: Conference Series, vol. 119,

p. 042030, 07 2008.

J. Weidendorfer, ‘“Sequential Performance Analysis with Callgrind and

KCachegrind,” in Tools for High Performance Computing (M. Resch, R. Keller,

V. Himmler, B. Krammer, and A. Schulz, eds.), (Berlin, Heidelberg), pp. 93-113,
Springer Berlin Heidelberg, 2008.

“KCachegrind home page.” https://sourceforge.net/projects/

kcachegrind. Accessed: 2021-01-28.

https://oprofile.sourceforge.net
https://oprofile.sourceforge.net
https://software.intel.com/en-us/vtune
https://software.intel.com/en-us/vtune
https://sourceforge.net/projects/kcachegrind
https://sourceforge.net/projects/kcachegrind

Appendix I

RELATED SOFTWARE SOURCE CODE

A.1 CMakelList

This given list below is CMakeLists for the standalone clang tool.

cmake_minimum_required (VERSION 3.0)

set (CMAKE_CXX_STANDARD 14)
set (CMAKE_CXX_STANDARD_REQUIRED ON)
project (S2S)

HHHA RS H U RS HHHBHHH A RS H U RS HHHBHHH A B HH R B HH B A HH AR S H B R HH R RS HH 1S
base
HHEHHHHHHAHAHAHBHR AR AR AR AR HAHRFHH AR AR H SRR AR AR AR RS

set (CMAKE_CONFIGURATION_TYPES ”Debug; Release” CACHE STRING ”Configs” FORCE)
set (CMAKE_SUPPRESS_REGENERATION TRUE)

##H#HH SRS R R R R
setting Project informations

HAEHHAHHAHFHHAHHAH IR AR HAH AR AR AR AR AR R AR R R R R A R R

Clang libraries

set (LIBRARY_LIST clangFrontend clangSerialization clangDriver

clangParse clangRewriteFrontend clangStaticAnalyzerFrontend clangSema)

set (LIBRARY_LIST ${LIBRARY_LIST} clangAnalysis clangEdit clangAST

clanglLex clangBasic clangTooling clangRewrite clangASTMatchers clangToolingCore)
set (COMPONENT_LIST mcparser bitreader support mc option)

HAHHHAHHHH A HAH AR AR AR AR H A H AR R R AR R R R R R
generate makefiles

HAHFHAHHHHHHAHAHAHAH AR HAH AR AR AR AR AR R R R

48

find_package (LLVM REQUIRED CONFIG)
message (STATUS ”Found LLVM ${LLVM_PACKAGE_VERSION } ")
message (STATUS ”Using LLVMConfig.cmake in: ${LLVM_DIR}”)

include_directories (${LLVM_INCLUDE_DIRS })
message (STATUS ”Found LLVM Include ${LLVM_INCLUDE_DIRS}”)
include_directories (${CLANG_INCLUDE_DIRS })
message (STATUS ”Found Clang Include ${LLVM_INCLUDE_DIRS }”)

if (LLVM_BUILD_MAIN_SRC_DIR)
include_directories (${LLVM_BUILD_MAIN_SRC DIR }/tools/clang/include)
include_directories (${LLVM_BUILD_BINARY_DIR }/tools/clang/include)
endif ()
link_directories (${LLVM_LIBRARY_DIRS })
add_definitions (${LLVM_DEFINITIONS })

add_definitions (

—D__ STDC_LIMIT_MACROS
—-D__STDC_CONSTANT MACROS
)

add_executable (clang —skewing skewing.cc)

add_executable (clang—splitting splitting.cc)

foreach (exec_name
clang —skewing
clang—splitting

)

if (”${CMAKE_CXX COMPILER ID}” STREQUAL “MSVC”)
foreach (link_lib IN LISTS LIBRARY_LIST)
target_link_libraries (${exec_name} optimized ${link_1lib })
target_link_libraries (${exec_name} debug ${link_lib })
endforeach ()
else ()
target_link_libraries (${exec_name} ${LIBRARY_LIST})
set (CMAKE_CXX FLAGS ”${CMAKE CXX FLAGS} —std=c++14 —Wno—unused—parameter
—fno—strict —aliasing —fno—exceptions —fno—rtti”)
#set (CMAKE_EXE_LINKER FLAGS ”"—static —static —libgcc —static —libstdc++")
endif ()

#1lvm_map_components_to_libnames (1lvm_libs ${COMPONENT_LIST })

49

#itarget_link_libraries (${exec_name} ${1lvm_libs })
target_link_libraries (${exec_name}
LLVMXS86AsmParser # MC, MCParser, Support, X86Desc, X86Info
LLVMX86Desc # MC, Support, X86AsmPrinter, X86Info
LLVMX86AsmPrinter # MC, Support, X86Utils
LLVMX86Info # MC, Support, Target
LLVMXS86Utils # Core, Support
LLVMipo
LLVMScalarOpts
LLVMInstCombine
LLVMTransformUtils
LLVMAnalysis
LLVMTarget
LLVMOption # Support
LLVMMCParser # MC, Support
LLVMMC # Object, Support
LLVMObject # BitReader , Core, Support
LLVMBitReader # Core, Support
LLVMCore # Support
LLVMSupport
)

endforeach ()

message (STATUS ”User selected libraries = ${LIBRARY_LIST}”)
message (STATUS ”User selected components = ${COMPONENT_LIST}”)
message (STATUS ” = ${1lvm_libs }”)

Listing A.1: CMakeList for building Clang libTooling

This given list below is to generate a compilation database for CMSSW.

cmake_minimum_required (VERSION 3.0.0)
project (CMSSW)

Bring headers into the project

include_directories (
”/work/home/ tploensin /CMSSW_10_6_8_patchl_Newl/src”
”/work/app/cms/slc7_amd64_gcc700/cms/cmssw—patch/CMSSW_10_6_8_patchl/src”
”/work/app/cms/slc7_amd64_gcc700/1lcg/root/6.14.09 — pafccj3/include”
”/work/app/cms/slc7_amd64_gcc700/external /pcre/8.37 — pafccj/include”

”/work/app/cms/slc7_amd64_gcc700/external /boost/1.67.0 — pafccj/include”

50

”/work/app/cms/slc7_amd64_gcc700/external /bz21ib/1.0.6 — pafccj/include”
”/work/app/cms/slc7_amd64_gcc700/external/clhep/2.4.0.0 — pafccj/include”
”/work/app/cms/slc7_amd64_gcc700/external/gsl1/2.2.1 —nmpfii2/include”
”/work/app/cms/slc7_amd64_gcc700/external/libuuid/2.22.2 — pafccj/include”
”/work/app/cms/slc7_amd64_gcc700/external /tbb/2019_U3—pafccj/include”
”/work/app/cms/slc7_amd64_gcc700/external /xz/5.2.2 — pafccj/include”
”/work/app/cms/slc7_amd64_gcc700/external/zlib —x86_64/1.2.11 — pafccj/include”
”/work/app/cms/slc7_amd64_gcc700/external /md5/1.0.0 — pafccj/include”
”/work/app/cms/slc7_amd64_gcc700/external /OpenBLAS/0.3.5 — nmpfii2/include”
”/work/app/cms/slc7_amd64_gcc700/external /tinyxml2/6.2.0 — pafccj/include”

Export compile commands
set (CMAKE_EXPORT COMPILE COMMANDS ON)
set (CMAKE_CXX_STANDARD 17)

file (GLOB source

2 ER)

*k.CC

” g Cpp”

”DataFormats /*x/%.cc”

add_executable (Server ${source_files })

Listing A.2: CMakeList for building compilation database in CMSSW

A.2 Python scripting

The python script below is used for running the tool for CMSSW project.

import sys

import getopt
import subprocess
import os

import glob
basepath = ’/work/home/tploensin/CMSSW_10_6_8_patchl/src/DataFormats’

path_executable =

51

>/work /home/ tploensin /CMSSW_10_6_8_patchl/src/clang—transform/build/’

path_compile_commands =

>/work/home/ tploensin /CMSSW_10_6_8_patchl/src/build/compile_commands.json’

exclude_path = [’/work/home/tploensin/CMSSW_10_6_8_patchl/src/DataFormats/Provenance ’,
>/work/home/ tploensin /CMSSW_10_6_8_patchl/src/DataFormats/ParticleFlowReco ’,
>/work/home/ tploensin /CMSSW_10_6_8_patchl/src/DataFormats/ParticleFlowCandidate ’]

def get_target_file ():
file_list = []
for dir_name in os.listdir (basepath):
dir_path = os.path.join(basepath, dir_name)
if not os.path.isdir(dir_path):
continue
print(dir_path)
for sub_dir_path in os.listdir (dir_path):
sub_path = os.path.join(basepath, dir_name, sub_dir_path)

if (sub_dir_path == ’src ’):
for src_name in os.listdir (sub_path):
path = os.path.join(sub_path, src_name)

compilation_db = "—p * + path_compile_commands

if (src_name.endswith(’.cc’)):

s

file_list.append(path + + compilation_db)

return file_list

def run(argv):

L)

inputfile =
outputfile =
try :

opts, args = getopt.getopt(argv, “hi:o:”, [7ifile=", “ofile="])
except getopt.GetoptError:

print (’test.py —i <inputfile > —o <outputfile >")

sys.exit(2)
for opt, arg in opts:

if opt == "—h’:

print(’test.py —i <inputfile > —o <outputfile >")

sys.exit()

52

elif opt in ("—i”, "——ifile ”):
inputfile = arg
elif opt in ("—0”, "——ofile”):

outputfile = arg
for file in get_target_file ():

print (" Process: 7 + file)

s s s s

cmd = path_executable + inputfile + + file + + outputfile

popen = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True)
popen. wait ()

popen. stdout.read ()

print (” Finished! \n”)

”

if __name__ == ”__main__

29

run(sys.argv[1l:])
Listing A.3: Python script to process the whole CMSSW'’s dataformats pack-

age

A.3 Source-to-source transformation tool

This section provides an interface and implementation for the source-to-source

translator. The tool contains below list.

e commonAction

skewingTool
* splittingTool

* main

Next, the commonAction part is entry that the source file is comsumed by the AST-
Conusmer of Clang’s tooling. The ToolName mentioned in the code can be replace by

your specific action.

53

#include “clang/Frontend/FrontendAction.h”

#include “tool.h”

class Action : public clang:: ASTFrontendAction {
public:

using ASTConsumerPointer = std::unique_ptr<clang :: ASTConsumer >;

Action(bool DoRewrite, const std::string &RewriteSuffix)
DoRewrite (DoRewrite), RewriteSuffix (RewriteSuffix) {}

ASTConsumerPointer CreateASTConsumer(clang :: CompilerInstance &Compiler,

Ilvm :: StringRef Filename) override {

return std :: make_unique <ToolName :: Consumer >(DoRewrite, RewriteSuffix);

private:

bool DoRewrite;

std :: string RewriteSuffix;
}s

Listing A.4: clang::ASTFrontendAction for the tool

Finally, we implement our logic under MatchCallback, because the transformation

occurs only if the matcher can find the specific pattern given by a user.

The pattern that we need to specify for the matcher interface is given below.

54

/! clang —format off
const auto Matcher =
forStmt(isExpansionInMainFile (),
hasDescendant (
forStmt (
hasLooplInit(
declStmt (hasSingleDecl (varDecl (). bind (”initVar™)))),
hasIncrement (unaryOperator (hasOperatorName ("++"7),
hasUnaryOperand (declRefExpr(to(varDecl (). bind(”incVar”)))))),
hasCondition (binaryOperator (hasOperatorName (" <="),
hasLHS (ignoringParenImpCasts (declRefExpr (
to(varDecl (). bind(”condVar”))))),
hasRHS (expr ()))))
.bind (" inner ”)))
.bind (" outer”);

/! clang—format on

MatchFinder.addMatcher (Matcher , &Handler);

Listing A.5: Matcher expression in term of Clang’s Tooling

The equivalent expression to the high-level is:

for (int i = 0; i < n; i++) {
for (int j = 0; j <= 1i; j++) {

statement (i, j)

Next, the action for splitting needs to implement over the MatchResult from the

matcher. The list is given below.

// Runs the MatchHandler’s action.
void run(const MatchResult &Result) {

auto &Context = %xResult.Context;

55

/# Loop transformation algorithm start here... 3%/
const auto &Stmt = Result.Nodes.getNodeAs<clang :: ForStmt >(” outer ”);

assert(Stmt != nullptr);

clang :: CharSourceRange forStmtRange = clang:: CharSourceRange :: getTokenRange (
Stmt—>getLocStart (), Stmt—>getLocEnd());

std :: string Str =
clang :: Lexer :: getSourceText(forStmtRange , Context.getSourceManager (),
Context.getLangOpts ())
.str();

if (Str.find (DIMENSIONS) != std::string ::npos) {
transformSplitting (Str, Stmt, DIMENSIONS, Context);

if (Str.find (DIMENSIONS 4D) != std::string::npos) {
transformSplitting (Str, Stmt, DIMENSIONS 4D, Context);

}

if (Str.find (DIMENSIONS_5) != std::string ::npos) {
transformSplitting (Str, Stmt, DIMENSIONS_5, Context);

}

void transformSplitting (std::string loopCondition, const clang:: ForStmt sxstmt,
std::string dimension, clang:: ASTContext &Context) {
findAndReplaceAll (loopCondition , dimension, "< 2;”);
const auto BeginLocationStmt = stmt—>getBeginLoc ();
const auto FixItStmt = clang:: FixItHint:: Createlnsertion (

BeginLocationStmt, loopCondition + “\n”);

const auto Init = stmt—>getlnit ();

const auto EndLocationlnit = Init—>getLocEnd();

const clang:: SourceRange SourceRange(EndLocationlnit, EndLocationlnit);
const auto FixItlnit =

clang :: FixItHint:: Createlnsertion (EndLocationInit, ”+2”7);

auto &DiagnosticsEngine = Context. getDiagnostics ();

RewriterPointer Rewriter;

if (DoRewrite) {

Rewriter

const auto ID
clang :: DiagnosticsEngine :: Warning ,
”This should probably be transformed via
DiagnosticsEngine . Report(BeginLocationStmt ,

DiagnosticsEngine . Report(EndLocationlInit ,

if (DoRewrite) {

assert (Rewriter != nullptr);

Rewriter —>WriteFixedFiles ();

createRewriter (DiagnosticsEngine ,

56

Context);

DiagnosticsEngine . getCustomDiagID (

splitting ”);

ID). AddFixItHint (FixItStmt);

ID). AddFixItHint (FixItInit);

Listing A.6: Splitting action implements on Clang’s tooling interface

The given list below is a listing of skewing action.

void run(const MatchResult &Result) {

auto &Context x«Result. Context;

// match inner loop

const auto &Stmt

assert(Stmt != nullptr);

const auto Init Stmt—>getlnit ();

const auto Cond Stmt—>getCond ();

const auto Body Stmt—>getBody ();

// extract lhs value from loop’s condition

Ilvm :: StringRef ref

Result.Nodes. getNodeAs<clang :: ForStmt >(”inner ”);

clang :: Lexer :: getSourceText(

clang :: CharSourceRange :: getCharRange (Cond—>getLocStart (),
Cond—>getLocEnd ()),

Context.getSourceManager (),

auto LhsCondVar = ref.str().substr (0, 1);

const auto EndLocationCond

const auto FixItCond

clang :: FixItHint :: Createlnsertion (EndLocationCond,

Context.getLangOpts ());

Cond—>getLocEnd ();

72%7);

57

// FIXME: change hard code to use variable from syntax tree

const auto EndLocationInit = Init—>getLocEnd();

const clang:: SourceRange SourceRange(EndLocationlnit, EndLocationlnit);
const auto FixItlnit =

clang :: FixItHint:: Createlnsertion (EndLocationInit, "+i7);

auto &DiagnosticsEngine = Context. getDiagnostics ();

RewriterPointer Rewriter;
if (DoRewrite) {

Rewriter = createRewriter (DiagnosticsEngine, Context);

const auto ID = DiagnosticsEngine.getCustomDiagID (
clang :: DiagnosticsEngine :: Warning ,

”This should probably be transformed via skewing”);

DiagnosticsEngine . Report(EndLocationCond, ID). AddFixItHint(FixItCond);
DiagnosticsEngine . Report (EndLocationInit, ID). AddFixItHint(FixItInit);
auto exitCond = false;

handleBodyStmt(Body, DiagnosticsEngine, exitCond);

if (DoRewrite && exitCond) {
assert (Rewriter != nullptr);

Rewriter —>WriteFixedFiles ();

void handleBodyStmt(const clang:: Stmt sstmt,
clang :: DiagnosticsEngine &DiagnosticsEngine ,
bool &exitCond) {
std :: string type = stmt—>getStmtClassName ();

if (type == ”BinaryOperator”) {
auto cs = llvm::dyn_cast<clang:: BinaryOperator >(stmt);
for (auto child : cs—>Stmt:: children ()) {
if (child == NULL)

continue ;

handleBodyStmt(child , DiagnosticsEngine , exitCond);

58

} else if (type == "CXXOperatorCallExpr”) {

auto cs = llvm::dyn_cast<clang :: CXXOperatorCallExpr >(stmt);
for (auto child : cs—>Stmt:: children ()) {
if (child == NULL)

continue ;

handleBodyStmt(child , DiagnosticsEngine , exitCond);

}
else if (type == “ImplicitCastExpr”) {
auto cs = Illvm::dyn_cast<clang:: ImplicitCastExpr >(stmt);

for (auto child : c¢cs—>Stmt:: children ()) {
if (child == NULL)

continue ;

auto childCS = 1llvm::dyn_cast<clang :: DeclRefExpr>(child);
std :: string childType = child —>getStmtClassName ();

if (childType == "DeclRefExpr”) {
handleBodyStmt(child , DiagnosticsEngine , exitCond);
break ;
}
}
else if (type == "DeclRefExpr”) {
auto cs = llvm::dyn_cast<clang:: DeclRefExpr >(stmt);
auto varName = cs—>getNamelnfo (). getAsString ();
if (varName == 7j”) {
const auto EndLocationCond = cs—>getEndLoc ();
const auto FixItCond =

clang :: FixItHint :: CreateReplacement (EndLocationCond , ”j—i”);
const auto ID = DiagnosticsEngine.getCustomDiagID (

clang :: DiagnosticsEngine :: Warning ,

”This should probably be transformed via skewing”);
DiagnosticsEngine . Report (EndLocationCond, ID). AddFixItHint(FixItCond);
exitCond = true;

}
else if (type == ”CompoundStmt”) {
auto cs = llvm::dyn_cast<clang :: CompoundStmt>(stmt);

for (auto child : c¢s—>Stmt:: children ()) {
if (child == NULL)

continue ;

handleBodyStmt(child , DiagnosticsEngine , exitCond);

Listing A.7: Skewing action implements on Clang’s tooling interface

59

Appendix I1

LIST OF PUBLICATIONS

B.1 International Conference Proceeding

1. Ploensin, T., Piromsopa, K., & Srimanobhas, N. (2021). Code Transformation
Impact on Compiler-based Optimization: A Case Study in the CMSSW. In 2021
11th International Conference on Applied Physics and Mathematics ICAPM 2021).
Shanghai, China. https://doi.org/10.1088/1742-6596/1936/1/012023

61
Biography

Teerit Ploensin was born in Saraburi on May, 1996. He graduated from Princess
Chulabhorn College school and then went to Chulalongkorn University where he received
B.Sc in Physics. His field of interest includes various topics in optimization, software

engineering, web development, and cloud technology.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Chapter I Introduction
	The Compact Muon Solenoid
	Problem statement
	Goals

	Chapter II Background of Study
	Compiler Optimization
	Vectorization
	Vectorizable Code
	Data Dependency
	Loop Optimization
	Polyhedral Model
	The Design of an Optimizing Compiler
	Source to Source Transformation

	Chapter III Literature Review
	Tools for The Source-to-Source Transformation
	Profiling Tools

	Chapter IV Methodology
	Concept Overview
	Supported Transformations
	System Design
	System Implementation
	Performance Analysis

	Chapter V Results
	Preliminary Results
	System Integration Testing Results

	Chapter VI Summary & Discussion
	Summary of Findings
	Limitation of the tool
	Future Work

	References
	Appendix Sample
	CMakeList
	Python scripting
	Source-to-source transformation tool

