

การขยายตัวแบบภาษาโดยใชน้ําหนักความใกลชิดของคํา
เพื่อหาความสัมพันธของชุดคําในการคนคืนสารสนเทศ

นาย สมพงษ กิตตินราดร

วิทยานิพนธนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
สาขาวิชาวิทยาศาสตรคอมพิวเตอร ภาควิชาวิศวกรรมคอมพิวเตอร

คณะวิศวกรรมศาสตร จุฬาลงกรณมหาวทิยาลัย
ปการศึกษา 2549

ลิขสิทธิ์ของจุฬาลงกรณมหาวิทยาลัย

 EXTENDING LANGUAGE MODELS WITH

TERM PROXIMITY WEIGHT TO UTILIZE TERM SET RELATION
IN INFORMATION RETRIEVAL

Mr. Sompong Kittinaradorn

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in Computer Science

Department of Computer Engineering
Faculty of Engineering Chulalongkorn University

Academic Year 2006
Copyright of Chulalongkorn University

vi

Acknowledgements

I would like to express sincere gratitude to my advisor Ajarn Athasit Surarerks,
Ph.D. and co-advisor Ajarn Nakornthip Prompoon for their invaluable advices and their
peer reviews of this research work. I also would like to express special thanks to Associate
Professor Wanchai Rivepiboon, Ph.D, Associate Professor Somchai Prasitjutrakul for their
sharp and thoughtful comments, and Assistant Professor Arnon Rungsawang, Ph.D. of
Kasetsart University for reviewing and commenting on this work and for his kind provision
of TREC database for the experiments. There is no doubt in my mind that without their
kind assistance, this thesis would not have been possible.

It is my hope that this research would contribute to the development of information
retrieval research in the Thai society, small it may be though.

Last but not least, the work would not have been accomplished without strong
support from my family.

Table of Content

THAI ABSTRACT……………………………………………………………………….....................iv
ENGLISH ABSTRACT………………………………………………………………………..............v
ACKNOWLEDGEMENTS…………………………………………………………………..……….vi
TABLE OF CONTENT….…………………………………………………………………..……….vii
TABLE OF TABLES ….…………………………………………………………………..………….ix
TABLE OF FIGURES..…………………………………………………………………...……...........x

CHAPTER 1..1
INTRODUCTION ..1

1.1. BACKGROUND AND IMPORTANCE..1
1.1.1. Co-concurrency Frequency Approach ..2
1.1.2. N-gram Approach ...2
1.1.3. The WordNet Approach ...3
1.1.4. Association Rules Mining Approach ..3
1.1.5. Unsupervised Learning of Dependency..3
1.1.6. Cognitive Approach..4

1.2. RESEARCH OBJECTIVES...4
1.3. RESEARCH SCOPE..5
1.4. BASIC AGREEMENT ...5

1.4.1. Language Model/Query Likelihood Setting ...5
1.4.2. TREC 7-8 Experiment Environments...6
1.4.3. Lemur Project Development Toolkit ..6
1.4.4. C++ Programming ..6

1.5. RESEARCH LIMITATIONS ...6
1.5.1. Thai Language Issue ...6
1.5.2. Comparison Issue ...6

1.6. DEFINITIONS..7
1.7. EXPECTED BENEFITS ...8
1.8. RESEARCH METHODS ..8

1.8.1. Literature Survey ..8
1.8.2. Approach Formulation..9
1.8.3. Preliminary Assumption Assessment ...9
1.8.4. Model Conceptualization & Theorization ..9
1.8.5. Experimental Planning..9
1.8.6. Experimental Groundwork ...9
1.8.7. Run Experiments ..9
1.8.8. Evaluation Techniques..10
1.8.9. Analysis & Conclusion ...10

1.9. RESEARCH PRESENTATION STEPS..10
CHAPTER 2 ...11

2.1. CAPTURING TERM RELATIONS ..11
2.1.1. Hyperspace Analogue to Language (HAL) & Information Flow11
2.1.2. Unsupervised Learning of Term Dependencies..13

2.2. MEASURING RETRIEVAL PERFORMANCES ...18
2.2.1. Relevant Document Return (rel_ret) ..18
2.2.2. Interpolated Recall - Precision Averages..18
2.2.3. Mean Average Precision (non-interpolated) ...19
2.2.4. Precision After X Documents ...19
2.2.5. R-Precision ...19

CHAPTER 3 ...20

viii

3.1. OVERVIEW OF RESEARCH METHODS ...20
3.2. APPROACH FORMULATION ..21

3.2.1. Flow of thoughts & flow of words..21
3.2.2. Term Weight...24
3.2.3. Term Direction ...24
3.2.4. Term Dependency/Term-Concept Contribution ...25
3.2.5. Heuristics Rules ..25
3.2.6. Methodology: Probabilistic Form of Local Term Importance ..27

3.3. EXPERIMENTATION OBJECTIVE ...30
3.4. HYPOTHESIS ..30
3.5. EXPERIMENTAL SETUP ..30

3.5.1. Document Collections ..30
3.5.2. Database ...31
3.5.3. Query Sets...31
3.5.4. Toolkits...31

3.6. EXPERIMENTATION STEPS ...32
3.6.1. Prepare Test Database: ...32
3.6.2. Prepare queries: ..32
3.6.3. Compute idf-dd weights for query terms: ...32
3.6.4. Pass weighted queries to retrieval engine: ..34
3.6.5. Evaluate retrieval results: ...35

CHAPTER 4..36
4.1. EVALUATION OF EXPERIMENTAL RESULTS ...36
4.2. COMPARISON WITH EXISTING STANDARDS ...38
4.3. RESULT ANALYSIS ..44

CHAPTER 5 ...46
5.1. CONCLUSION ...46
5.2. COMMENTS..47
5.3. RECOMMENDATIONS ...47

REFERENCES ...48
APPENDICES ..51
APPENDIX A ...51

8.1. A.1. BOOLEAN MODEL..51
8.2. A.2. VECTOR SPACE MODEL ...51
8.3. A.3. PROBABILISTIC MODEL..52
8.4. A.4. LANGUAGE MODEL..53

APPENDIX B..57
APPENDIX C ...63
APPENDIX D ...70
APPENDIX E..71
APPENDIX F..72

ix

Table of Tables

Table 3.2 outlines the hypotheses and test strategies. ..30
Table 3.3 shows details of the three document collections ..31
Table 3.4 shows the details of threedb database..31
Table 4.1 shows the evaluated results of experimental runs using the f(idf, dd)
weighting scheme with TREC 7 and TREC 8 query sets. The evaluation computation
is done by trec_eval.exe program...36
Table 4.2 shows the break-down of the number of result counts on three measurement
criteria and their combination for 100 query sets (ALL), TREC 7 query set (50), and
TREC 8 query set (50). ..37
Table 4.3 shows information retrieval performance increase from using f(idf,dd)
weighting. The baseline in this case is the results from idf weighting scheme. Query set
is from TREC 7..39
Table 4.4 shows information retrieval performance increase from using f(idf,dd)
weighting. The baseline in this case is the results from idf weighting scheme. Query set
is from TREC 8..40
Table 4.5 shows comparative results on TREC 7..41
Table 4.6 shows retrieval performances from using idf-based and f(idf,dd) weighting
against the baseline result compared on TREC 8..42
Table 4.7 shows the R-precision after X number of returned documents for TREC 8
query set. ..44

x

Table of Figures

Figure 1.1: A query example with an established linkage. Stop words are in brackets.3
Figure 2.1 illustrates an example of total inclusion that leads to maximum information
flow from satellites to the combined concepts of space and program. ...13
Figure 2.2 compares the three language models of unigram, bi-gram and dependency
model. Terms in brackets are stop words...14
Figure 2.3: (a) An example of a dependency cycle: given that P(d23) is smaller than
P(d12) and P(d13), d23 is removed (represented as dotted line). (b) An example of a
dependency crossing: given that P(d13) is smaller than P(d24), d13 is removed.........................18
Figure 2.4: Approximation algorithm of dependency parsing ..18
Figure 3.2 shows topic 402 of TREC 8. The description part is used in our example to
plot a line chart...22
Figure 3.3 shows the line chart of a porter-stemmed version of topic 402 from TREC 8.
The circled areas cover terms in the same group as the head words which make the
peaks of the graph. The labeled figures are the IDF weights of the respective terms.22
Figure 3.4 illustrates a line chart of a sentence: What language and culture differences
impede the integration of foreign minorities in Germany? The terms have been
stemmed by Porter algorithm. ...23
Figure 3.5 illustrates the line chart of peak words, removing satellite words from the
graph to adjust the positions between the PEAK points. ..28
Figure 3.6: Diagram shows the four steps in the experimentation of the new idf-dd
weighting effects on ad hoc information retrievals. ...33
Figure 3.7: The parameter file used by RetEval.exe. The testrun8nostops.qry input file
contains query terms weighted by the new weighting scheme. ..34
Figure 4.1: Pie chart showing that out of 100 query topics (TREC 7 & TREC 8
combined), 57 yield positive results, 27 negative and the rest 16 neutral.38
Figure 4.2 (a), above , shows a graph comparing R-precisions of baseline, idf, and
f(idf,dd) results, and (b), below, shows comparisons by Recall-Precision Averages.
Queries used from TREC 8. ...43
Figure F.1: A diagram showing an input query file in BasicDocStream class format
going through an application TestTermWeightApp.exe, which invokes
TermweightQueryRep class library and outputs a transformed query file structured to
conform to the WeightedDocStream class...72

 CHAPTER 1
INTRODUCTION

1.1. Background and Importance
In Information Retrieval (IR), terms constitute fundamental building blocks.

Terms carry different importance weights and how they are measured would directly
influence the overall performance of a retrieval engine. The term weighting scheme
tf*idf (term frequency, inverse document frequency) has been used extensively to
estimate the semblance of term importance. The tf usually represents a local property
from a query or a document and the idf is a global property obtained statistically from
a document collection. The assumption upon which the scheme is developed is that all
terms are independent of one another. Relating term importance is no novel efforts.
But to date, the twin issues of term weights and term relationship seem to have been
addressed separately.

This study proposes a new approach that the importance of a term is
determined by how much it contributes to the concepts that the text communicate to
readers. Concepts are represented by emphasized terms and the degree of a term’s
contribution to a concept, i.e. a key word, justifies the former term’s presence. Put it
another way, terms depend on concepts.

Based on the approach, a model has to be developed to capture term
dependencies from the local context. From the term dependency, together with the
weight, i.e. the idf in this case, term importance is computed. In the conventional
scheme, the function tf*idf is used to compute term importance. In the approach
proposed here, it is f(idf, dd) where dd is dependency degree extracted and computed
from the context as a local property. The idf remains a global property. The local
property tf is implicitly retained. Furthermore, the function f(idf, dd) is developed in
probability form unlike the tf*idf, which has been formulated intuitively and
empirically. Our research problem: How to define the function f(idf,dd).

Two points have to be made clear from the outset:

Firstly, this model requires a mechanism to estimate the weights of individual
terms as a global property. In the experiments conducted in this research, the idf is
picked for the global term weighting. The efficiency of the model is therefore
determined to a certain extent by the efficiency of the idf term weighting. The model,
however, is flexible enough to support other term weighting schemes.

Secondly, this thesis does not propose improving ad hoc information retrieval
by query weighting. The query weighting is used for the experimentation just to prove
the efficiency of the new scheme. It is hoped that the work can be a step towards
applying it to other IR areas.

Extracting term dependencies from a text and applying it in an IR task, has
either been lacking or largely ineffective. This, despite the general acceptance that
term dependency is an indispensable consequence of language use [3]. At the heart of
most engines, some forms of idf or tf*idf have been employed. The vector space

2

model [1] represents a document or query by a multi-dimensional vector of isolated
terms. Okapi BM25 of the probability model also uses tf and document length (dl)
from local text as local properties and employ idf and average document length
statistics from a document collection as global properties [4].

The language modeling approaches to IR has the design ability to allow for
seamless incorporation of term dependency, prompting a surge in the number of
researches to incorporate term dependency properties. These proposed extensions to
and/or enhancement of language models are evident in a broad range of IR domains,
including ad hoc information retrieval and query expansion. Some of them have
produced impressive results, testifying to the belief that term dependency has strong
potentials to bring retrieval powers to a new level of sophistication.

Apart from that, a number of researches address the issue of term weighting
together with term dependency. These recent researches propose alternatives to the
use of idf (or tf*idf), contending that term relationship or context should be taken into
account in measuring term weights. The alternatives include the use of association
rules mining [4, 5] and the context term model [7].

That said, the fundamental issue of how to effectively and efficiently
determine term relations remains largely unsettling. This point can be amplified by a
quick survey of related IR researches. A list of researches, categorized by how they
implement term dependency in support of their models, is summarized as follows:

1.1.1. Co-concurrency Frequency Approach

Term co-concurrency has also been used extensively to derive term
relations in a number of studies [11]. Typically, the frequency of term con-
concurrences observed from a certain text, which can be a whole document, a
passage or a sentence or a window of a fixed length to provide an input to a
function to calculate the strength of term relationship:

∑
=),(

),()|(
1

21
12

i
co ttf

ttfttP , where f(t1,t2) is the frequency of the t1 and t2 co-

concurrences.

1.1.2. N-gram Approach

In language modeling approaches to IR, a multinomial model P(w|d) is
estimated over terms in each document d in an indexed, searchable collection
and used to assign the likelihood of a query terms q=q1,q2…qn. The likelihood
that the query belongs to the language model of the document is estimated
by ∏=

=
n

i
i dqPdqP

1
)|()|(. The posterior probability of the a document,

)()|()|(dPdqPqdP ∝ , is used to rank documents. The probability equation,

∏=
=

n

i
i dqPdqP

1
)|()|(, known as the unigram model, assumes that each qi is

independent from one another in the query. Initial efforts to introduce term
dependency include the bi-gram [8] and bi-term models [9]. Dependency links
are introduced to pairs of adjacent words in the bi-gram model and to pairs of
adjacent or more distant terms in the bi-term model. Experimental results

3

showed no significant improvements, mainly because the links are arbitrarily
introduced and also because they are restricted to pairs of words [10]. The
assumption of the bi-gram model that dependency must occur between
adjacent terms is also too rigid.

1.1.3. The WordNet Approach

This school exploits term links stored in a handcraft thesaurus, such as
WordNet. Voorhees was the first to exploit WordNet for query expansion [12].
Liu et al. [13] also use WordNet to disambiguate word senses of query terms
and from the determined word senses, its synonyms, hyponyms as well as their
compound words are considered to be candidates for additions to the query.
Mandela et al. [14] use both WordNet and automatically constructed thesauri,
Cao et al. combine the strength of handcraft WordNet and co-concurrence
information and neatly integrate the component into the language model [15].

1.1.4. Association Rules Mining Approach

Possas et al. proposed in [5] the Set-based Model, in which sets of
correlated terms are computed from association rules mining using collection-
wide co-concurrency frequency statistics. In a more recent work, [16]
proposed Maximal Term-set which applies similar association rules techniques
to restructure Web queries.

1.1.5. Unsupervised Learning of Dependency

Gao, et al. adopts the approach in their work on Dependency Language
Model for Information Retrieval [10]. Fixing the pitfalls of bi-gram and bi-
term language modeling approaches, Gao, et al. use dependency links between
pairs of words for a linkage represented by an acyclic, planar undirected
graph.

To find the strongest linkage in a query, the model requires a dependency
link-annotated training data, which is lacking. They solve the problem via an
EM-like technique to learn the parameters of their parsing model from an
algorithm to remove the weaker of the cyclic and crossing links. The
procedure has an O(n2) complexity, where n is the number of terms in a query.

Substantial experimental gains are reported for the approach.
Unfortunately, it requires an unsupervised learning method to establish the
most probable linkage [17].

Figure 1.1: A query example with an established linkage. Stop words are in brackets.

 CHAPTER 2
RELATED WORKS AND THEORIES

2.1. Capturing Term Relations
To our knowledge, there has been no work that takes up the same approach

as this study’s. Nonetheless, the approach is directly or indirectly influenced
by a number of works that address the issue of term dependency. Some of the
works are listed here:

2.1.1. Hyperspace Analogue to Language (HAL) &
Information Flow

HAL is a cognitively motivated representation of the way human derives a
new concept via an accumulation of experiences of contexts in which the
concept appears. The accumulation is represented in a HAL matrix of words.
Constructing a HAL matrix is done by sliding a fixed l-sized window through
a corpus of text, one word at a time. Statistic counts of a term co-occurring
with others are accumulated in the course of the scan, and recorded in the
matrix. The co-occurrence strength is inversely proportionate to the distance
between the two terms in the same window.

In this way, a term or concept has multi-dimensional vectors of terms, and
their respective co-occurrence weights. If the weights are above a non-zero
threshold, they are considered to be meaningful quality properties of the
concept.

In HAL, concepts can be combined. In addition, information can flow, i.e.
a concept can be inferred from another (or from combined concepts). The
degree of the information flow can also be computed.

The approach is explained in details in [18, 19, and 20]. Here we
summarized the key concepts in the subsequent subsections.

Combining Concepts

A simple way to combine concepts is to add together the vectors of their
quality property weights. A more complicated way is to classify one concept
by its higher tf*idf as the dominant term, heuristically weigh up its property
weights, and give additional weights to the intersecting properties of the two
terms.

Let 〉〈= npcpcpc wwwc 12111 ,...,1 be the concept of the dominant term,
〉〈= npcpcpc wwwc 22212 ,...,2 the concept of the other term, where n is the

dimensionality of the HAL space, and wcjpi is the weight of property i of term
cj. Let QP(c) denote the quality properties of term c, and 21 cc ⊕ denote the
resulting combined concept. Combining them takes the four following steps:

12

Step 1 Re-weigh c1 and c2 to assign more weights to the properties of the
former concept

k
wMax
ww

k

i
i

pc

pc
pc

)(
*

1

1
1

1
1

l
l +=

and

k
wMax
ww

k

i
i

pc

pc
pc

)(
*

2

2
2

2
2

l
l += where

2121 and)0.1,0.0(, llll >∈

For example, if 5.01 =l and 4.02 =l , property weights of c1 are
transferred to interval [0.5, 1.0] and property weights of c2 are transferred to
interval [0.4, 0.8], thus scaling the dimensions of the dominant concept higher.

Step 2 Strengthen the weights of the intersecting properties by a
multiplierα .

,*,*|))()((221121 iiii pcpcpcpcii wwwwcQPpcQPp αα ==∈∧∈∀
 0.1 >αwhere

Step 3 Compute property weights in the combined concept 21 cc ⊕

piccipip wwccw i 221)(+=⊕ , where ni ≤≤1

Step 4 Normalize the resulting vector of 21 cc ⊕ , which, in turn, can be
composed to another concept by the same heuristic. For the new concept, the
degree of dominance is computed from the average of their tf*idf figures.

Information Flow

Barwise and Seligman have proposed an account of information flow (IF)
that lays down a theoretical foundation for establishing informational
inferences between concepts [2]. For example, satellitesprogramspace −|,
denotes that “satellites” can be inferred from the combined concept “space
program”. Bruza et al. [19] developed a heuristic way to compute the degree
of information flows between concepts. The HAL space is used to represent
the information states of concepts or combined concepts with respect to a
given text corpus. The degree of information flow between “satellites” and the
combined concept of “space” and “program” is directly related to the degree
of inclusion between the respective information states. Inclusion is a relation

13

⊆ over the concept space. Inclusion in the example can be denoted by
satellitesprogramspace ⊆⊕

Figure 2.1 illustrates an example of total inclusion that leads to maximum information
flow from satellites to the combined concepts of space and program.

Their work can be summarized as follows:

The initial HAL space is filtered to keep only the quality properties with
strong co-occurring ties to the concept.

The degree of information flow is defined by

λ>⊕− ⊆
≤≤

)(degree iff |,
1

 ...1 ji
ki

k ccjii where λ is a threshold value.

This is computed by the summation of the weights of all intersecting
quality properties divided by the summation of the weights of all the quality
properties of ci. The function is denoted below.

∑
∑

∈

∧∈
⊆

≤≤
=⊕

)(

))()((

1
)(degree

ik

ki

ji

li

cQPp
pc

cQPcQPpl
pc

ji
ki w

w
cc

2.1.2. Unsupervised Learning of Term Dependencies

Unsupervised learning is an alternative way of capturing term
dependencies at the sentence level. In their proposal for the Dependency
Language Model [10], Gao et al. adopt the methodology to train a parsing
model on a linkage L, a representation of term dependencies. The linkage, a
set of links or pairs of words, is an acyclic, planar and undirected graph to
conform to general linguistic characteristics. The Viberti iterative training
procedure (an approximation of the EM training) is used for joint optimization
of the parsing model and the training data.

14

Dependency Language Model

The Dependency Language Model is summarized here before we move to
the central issue of unsupervised learning methodology:

The classic unigram model measures a query similarity to a document by
the probability P(Q|D) where D is the language model of a particular
document and Q is a sample of the language model. Assuming that all terms
are independent, we have the probability ∏=

=
mi

i DqPDQP
...,2,1

)|()|(, where

qi is a query term and i is term count. To handle term dependencies, N-gram
models have been proposed on the assumption that a term depends on N terms
preceding it. The bi-gram model, for an example, has the probability equation
denoted by

∏
=

−=
mj

j DqqPDqPDQP j

...2

),|()|()|(11

The model has failed to achieve consistent improvements in IR. In
Dependency Language Model, dependencies are not restricted to adjacent
terms. A dependency structure L is an acyclic, planar, undirected linkage
comprised of links (or pairs of terms) and unlike N-gram models, the
dependency structure is made explicit. Thus the original probability is
extended into the probability)|,(DLQP or),|()|(DLQPDLP where L is the
linkage. The probability),|()|(DLQPDLP is an approximation by maximum
likelihood estimation, i.e. only the most probable link is used for further
computation.

),|()|()|(DLQPDLPDQP = such that L =)|(maxarg QLPL

Figure 2.2 compares the three language models of unigram, bi-gram and
dependency model. Terms in brackets are stop words.

15

The probability),|(DLQP is then decomposed as follows:

∏
∈

=
Lji

ijh DLqqPDqPDLQP
),(

),,|()|(),|(

∏
∈

=
Lji i

ji
h

DLqP
DLqqPDqPDLQP

),(),|(
),|,()|(),|(

∏
∈

=
Lji ji

jji
h

DLqPDLqP
DLqPDLqqPDqPDLQP

),(),|(),|(
),|(),|,()|(),|(

Moving the nominator term P(qj|L,D) out of the product operator and
approximating it to P(qj|L,D), the equation can be written as follows:

∏∏
∈≠

=
Lji ji

ji

hj

jh
DLqPDLqP

DLqqPDqPDqPDLQP
),(),|(),|(

),|,()|()|(),|(

And

∏∏
∈=

=
Lji ji

ji

mi

i
DLqPDLqP

DLqqPDqPDLQP
),(...1),|(),|(

),|,()|(),|(

Substituting P(Q|L,D) in),|()|()|(DLQPDLPDQP = and taking log, the
equation has changed to

∑∑
∈=

++=
Lji

ji

mi

i DLqqMIDqPDLPDQP
),(...1

),|,()|(log)|(log)|(log

 where
)|()|(

),|,(log),|,(
DqPDqP

DLqqPDLqqMI
ji

ji
ji =

Each of the three parts on the right-handed side of the equation can be
interpreted as follows:

• Log P(L|D) represents the linkage factor which is zero in the
unigram and bi-gram model because in the two models P(L|D) is
the only event and equal to 1.

• The part ∑
= mi

i DqP
...1

)|(log represents the probability of the language

model generating each term qi. This is the same as the unigram
language model.

• MI(qi,qj|L,D) represents dependence relations for term pairs. It can
be mapped to ∏

=

−

mj

j DqqP j

...2

),|(1 in the bi-gram probability

∏
=

−=
mj

j DqqPDqPDQP j

...2

),|()|()|(11

16

Gao et al. point out that the unigram and bi-gram models are special cases
of their dependency language model.

Parsing Model

To compute the values for P(L|D) in II and MI(qi,qj|L,D) in III, Gao et al.
have developed a parsing model to extract dependency links from query and
documents. Unfortunately, the model requires unsupervised learning of L for
the estimation of their parameters.

The development of such a parsing model is described in this subsection.

P(L|D), which is actually P(L|Q,D), can be approximated by a parsing
model of P(L|Q). Let L be a set of probabilistic dependencies, i.e. links, and l
be a link, Ll∈ and assumes that the dependencies are independent from one
another, the parsing model can be developed from P(L|D).

∏
∈

=
Ll

QlPQLP)|()|(

P(l|Q) is estimated on a linkage-annotated training data, which is still
lacking. Suppose such linkage-annotated training data is readily available, the
estimation can be acquired from a pseudo probability function

),(
),,(),|(

ji

ji
ji

qqC
RqqCqqRF = where C(qi,qj,R) is the number of times that qi

and qj have links in the annotated training data and C(qi,qj) is the number of
times that the two terms appear in the same sentences. The normalization of
the function to make it a real probability is ignored as it will have no effects on
the ranking results. Thus,

),|()|(ji qqRFQlP ∝

and.

∏∏
∈∈

∝==
Lji

ji

Ll

qqRFDlPDQLPDLP
),(

),|()|(),|()|(

Due to data sparseness, interpolation and back-off techniques are also
applied in the Dependency Language Model.

For MI(qi,qj|L,D), if (qi,qj) is not seen in document D, the value is zero.
The values of the seen dependency link is estimated as

),|(),|(
),|,(log),|,(

DLqPDLqP
DLqjqiPDLqqMI

ji
ji =

 =
)/),(*,(*)/),*,((

/),,(log
NRqCNRqC

NRqqC
jDiD

jiD

17

),(*,),*,(

),,(log
RqCRqC

NRqqC
jDiD

jiD
=

where CD(qi,qj,R) denotes the count of the link (qi,qj) in the document D,
and N = CD(*,*,R).

The obvious problem with the above model is that there is no ready
availability of training documents which are annotated by dependency links.
Gao et al. solves the problem by creating a link-annotated training corpus.

Creating a Dependency Link-Annotated Training Data

Gao et al. uses a Viberti iterative training procedure (an approximation of
EM training) for joint optimization of the parsing model and the linkage of the
training data. Three steps are needed for the implementation of the principle:

Step 1: Initialization

 A N-sized window is used to determine the initial parameters. N is set at 3
in the Dependency Language Model experiments. Given a word trigram (w1,
w2, w3), the initial links are arbitrarily set as l12, l13, and l23. The links are used

as inputs to equations ∏
∈

=
Ll

QlPQLP)|()|(and
),(

),,(),|(
ji

ji
ji

qqC
RqqCqqRF = to

compute the linkage probability.

Step 2: (Re-)parsing the corpus

Use the Yuret algorithm [28] to select the most probable linkages from
sentences in the training data. The parser successively eliminates the weaker
of the conflicting links from the parsing model, resulting in an updated set of
links

Step 3: Re-estimating parsing model parameters

With the updated set of links, re-estimate the parsing model parameters.
Steps (2) and (3) are iterated until the improvement to the probability is less
than a threshold. The algorithm does not guarantee an optimal outcome and its
operating complexity is O(n2).

18

Figure 2.3: (a) An example of a dependency cycle: given that P(d23) is smaller than
P(d12) and P(d13), d23 is removed (represented as dotted line). (b) An example of a
dependency crossing: given that P(d13) is smaller than P(d24), d13 is removed.

Figure 2.4: Approximation algorithm of dependency parsing

2.2. Measuring Retrieval Performances
Following is a brief explanation of the key measures adopted by trec_eval.exe for

the experiments:

2.2.1. Relevant Document Return (rel_ret)

This is a general measure of how many relevant documents are
returned. It is interpreted with figures on the number of retrieved documents,
and the number of relevant documents (num_rel) in the collection. Recall rate
= rel_ret/num_rel. All values are totals over all queries being evaluated.

2.2.2. Interpolated Recall - Precision Averages

Interpolated Recall – Precision Averages at 0.00, at 0.10 ..., at 1.00
measures precision (percent of retrieved documents that are relevant) at
various recall levels (after a certain percentage of all the relevant documents
for that query have been retrieved). “Interpolated” means that, for example,

19

precision at recall 0.10 (i.e., after 10% of relevant documents for a query have
been retrieved) is taken to be MAXIMUM of precision at all recall points that
is greater than or equal to 0.10. Values are averaged over all queries (for each
of the 11 recall levels). These values are used for Recall-Precision graphs.

2.2.3. Mean Average Precision (non-interpolated)

MAP over all relevant docs. The precision is calculated after each
relevant doc is retrieved. If a relevant doc is not retrieved, its precision is 0.0.
All precision values are then averaged together to get a single number for the
performance of a query. Conceptually this is the area underneath the recall-
precision graph for the query. The values are then averaged over all queries.

2.2.4. Precision After X Documents

Precisions measured at 5 docs, at 10 docs ..., at 1000 docs. The
precision (percent of retrieved docs that are relevant) after X documents
(whether relevant or non-relevant) have been retrieved. Values averaged over
all queries. If X docs were not retrieved for a query, then all missing docs are
assumed to be non-relevant.

2.2.5. R-Precision

Precision after R measures precision after R documents have been
retrieved, where R is the total number of relevant docs for a query, i.e. R =
num_rel. Thus if a query has 40 relevant documents, then precision is
measured after 40 documents, while if it has 600 relevant documents,
precision is measured after 600 docs. This avoids some of the averaging
problems of the “precision at X docs” values in (2.2.4) above. If R is greater
than the number of docs retrieved for a query, then the non-retrieved
documents are all assumed to be non-relevant.

 CHAPTER 3
RESEARCH METHODS

3.1. Overview of Research Methods

Analyse, define
 feasible solutions

 Experiment planning

Experiment Preparation

 Experimentation

Conclusion

[Experiment results]

[Fail to improve significantly]

Problem
Statement

Hypotheses

Results

 Test application

 Evaluation reports

Experiment plan

 Analysis report

[Fine turning required]

 Fine tune, modify test application

Thesis

 How to compute
term importance

1. IDFfunction
2. HAL-based concept

3. Pythagoras
4. Interpolation

5. Evaluation Measures

Related theories

 Result Evaluation

 Result Analysis

[Unsure]

 Observe possible term properties using graph

Formulate heuristics, methodology

Figure 3.1 shows the overall picture of the research methods.

21

Formulating, testing and verifying a new approach is an iterative process. As
shown in the above figure the research method starts with a problem statement and
preliminary survey of related theories. In our case, the new approach is intuitively
inspired by the general characteristics of language expression and refined through
observations of charts of text. The thinking is that ranking term importance by sorting
the idf weights of terms is one dimensional, ignoring another dimension of term
positions in an expression of concepts. The charts, coupled with some imagination
and background geometric theories, have been helpful in the formulation and
reformulation process. Once the approach stabilizes, the next steps are to design and
plan IR experiments, prepare the experimentation, conduct the experiments, evaluate
and analyze the results. The steps continue to iterate until experimental results
confirm the soundness of the approach.

The research methods are explained in more details in the following
subsections.

3.2. Approach Formulation
3.2.1. Flow of thoughts & flow of words

Intuitively, a flow of ordered terms in a written sentence reflects the
writer’s flow of thoughts. When a writer wants to make a point, the chance is
that he would choose a more elegant, less common word to emphasize his
idea. Syntactical rules of a language also forces him to position supportive
words in the neighborhood of the key word and when he pauses to make
another important point, a different type of terms would be chosen to join two
groups of words that represent two ideas.

If the semantic importance of each term can be somehow measured, the
weights of the key terms will be highest, followed by those of the supportive
terms and the pause words. In this study, the idf term weighting is adopted as
an indirect way of measuring term importance.

The presence of the supportive terms depends on the existence of the key
words that the former support. Hence, the key terms are “dependable words”,
the satellite and supportive terms are “dependant words”. The pause words are
actually the “stop words” in the information retrieval discipline.

Understanding a message is a reversed process. A reader notices the
dependable words, the dependant terms and their relationship, and the least
important pause words, to help him grasp the points conveyed.

It is this generalized way of communications with which this research
approach the problem of capturing term dependency and measuring its
importance in term of its contribution to the key concept.

Note that the idf term weighting is a global property of individual terms as
averaged statistically from a document collection. The implications: it is static
with respect to a corpus of documents; each term is independent of one
another and so is its importance. The assumptions may not be realistic. A term
is the basic unit of a language and a concept is explained by either a term or a

22

combination of terms. Thus the importance of a term is determined by the
different roles that it plays in different contexts. In fact, its importance can be
described by the degree to which the term contributes to the concept of a text
message. It is this kind of term importance that is the subject of our study.

Taking the description part of topic 402 from TREC 8 as a sample, the
flow of thoughts can be represented in the figure 3.3.

Figure 3.2 shows topic 402 of TREC 8. The description part is used in our example to
plot a line chart.

Figure 3.3 shows the line chart of a porter-stemmed version of topic 402 from TREC 8.
The circled areas cover terms in the same group as the head words which make the
peaks of the graph. The labeled figures are the IDF weights of the respective terms.

Without any knowledge on the term semantics, the following can be
observed and derived from the graph:

23

Dependable words are represented by peaks. If a line is drawn across the
graph, the obvious peaks in the upper part will be “genetics”, “influence”,
“genetics”, “environment”, and “behavior”. The less obvious are “happen”,
“field”, “study”, and “person”.

The circled areas show the dependant terms of some of the dependable
words; “genetics”:{“behavioral”, “genetics”}, “influence”:{“relative”,
“influence”}, “environment”:{“environment”, “factor”}, “behavior”:{“an”,
“individual”, “behavior”}.

Stop words are in the set {“is”, “in”, “the”, “of”, “to”, “of”, “the”, “of”,
“an”, “on”, “or”}.

Citing a porter-stemmed version of topic 401 as another shorter example,
we plot the following graph. Similar conclusions can be drawn from it.

Figure 3.4 illustrates a line chart of a sentence: What language and culture differences
impede the integration of foreign minorities in Germany? The terms have been stemmed
by Porter algorithm.

Noticeably, the term “differ” (stemmed from “difference”) should not be
classified as a stop word despite its bottom shape because its weight is too
high for that. The criteria to determine a stop word is therefore multiple ones,
the bottom shape and the weight of the term. In the case of the term differ, we
may consider it a fluctuation and assume that it belongs to the peak word set
“impede”:{“language”, “culture”, “difference”}.

In the following text, the study uses dependable word, dependable term,
peak word, peak term, head word and head term interchangeably.
Interchangeable words for dependant word are supportive words, supportive
terms, satellite words and satellite terms. And stop words are sometimes called
pause words in this thesis.

The above illustrations reveal three possible properties of a term: term
weight, term dependency and term direction.

26

Rule 1 A sentence or phase is made of one or more set of terms. Each term
set is represented by the most important term, the head word.

Rule 2 The term sets are separated from one another by stop words.
Members of the same term set are associated to the head word. Each has its
degree of dependency on the head word, measurable by the length of the
distance from the head word to the member word. Four possible cases for a
stop word:

Case I: It serves as words that join two concepts together,

Case II: It is just a pause word, an intermission in an expressed flow of
thoughts,

Case III: It is a syntactical word required by grammatical rules but carries
with it little or no semantics, and

Case IV: It is a member of a term set. This can happen in a broken
expression or in cases where stop words are removed in a filtering mechanism.

For the first three cases, we can estimate that the boundary terms are
negligible as we are interested in only their roles to separate one concept from
another. Uncertainty arises in the fourth case, what can be assumed is that it
can belong to either of the preceding or the next concept term set.

One criteria that can be used to guess (the very same manner a reader
makes his guess) if the boundary term is a genuine one which is negligible
(case I, case II, and case III in rule 4) or a term member of a concept group
(case IV) is to see the weight of the term. For that, a threshold is required. The
basis idea is that if the DOWNUP vertex is deep enough it should serve as a
bound of a term group; otherwise it is a group member. A rule based on term
weighting is required to handle the case.

Rule 3 A concept group may contain a number of smaller concept groups.
Visualizing this scenario, one can notice that for a high hill in a graph, there
are smaller hills on both sides of the sides of the highest one. These smaller
hills with their respective peaks and bottoms can be considered errors or
smaller concepts. In this study, they will be smoothed and are considered as
just group members of the umbrella concept.

Applying the rules to our example, the results are as follows:

There are six hill tops, indicating six concepts. They are represented by
“language”, “culture”, “impede”, “integration”, “minority” and “Germany”.
By setting a threshold for the higher peaks, i.e. the more important concepts,
one may obtain “impede”, “integration”, and “minority” as the peak terms of
the outstanding concepts. The terms “language” and “culture” have their status
approximated to simple members of the concept represented by “impede”. As
it can be seen from the graph representation, all the other terms except
boundary terms (stop words) belong to one term set or another.

27

The boundary words appear to be “what”, “and”, “differ”, “the”, “of” and
“in”. Through an algorithm based on the weights of these terms, “differ” is
reclassified as an ordinary group member. The list is thus shortened to {what,
and, the, of, in}.

Now, we have three outstanding concepts represented by “impede”,
“integration”, and “minorities”: “impede”: {“language”, “culture”,
“difference”, “impede”}; “integration”: {“impede”}; and “minorities”:
{“foreign”,”minorities”, “germany”}.

If the threshold of peaks is moved up to the effect that there is only one
peak represented by “impede”, there will be two satellite groups, one on the
left side and the other on the right. On the left side the set is comprised of
{“language”, “culture”, “difference”}, and on the right side it is
{“integration”, [“of”], “foreign”, “minorities”, [“in”], “germany”}.

3.2.6. Methodology: Probabilistic Form of Local Term
Importance

We apply a probabilistic approach to the problem of measuring the
contribution that a term makes to the key concept of the text. Here are the
implementation steps:

Step 1: Determine Global Peak

Determine the key concept term, also referred to as global peak in the
following text. The global peak is the term with the highest idf weight.

Step 2: Determine Local Peaks

Set a threshold to determine the peak terms or terms with PEAK direction
state. In our implementation the threshold is set at 0.6 * top idf term weight as
the threshold for peak terms should weigh above 0.5* top idf term weight..
The UPDOWN terms above the threshold are re-classified as the PEAK ones.
Except for the global peak, all the other PEAK terms are called local peaks.

Step 3: Compute Local Peak Contribution Strengths

We first set the window frame for all the PEAK terms, global or local. The
baseline on the y-axis is moved up from zero to the minimum idf weight of the
PEAK terms. The positions of the terms whose idf weights are below the
baseline are dropped to the effect that the frame horizontal length shrinks from
text length to text length minus the counts of non-PEAK terms.

For each local peak, calculate the probability of its importance
(contribution strength) to the global peak, denoted by p. Since the probability
p cannot be directly computed, we resort to computing its opposite probability

28

q, standing for the probability of its negligibility by the global peak. Then, we
have

(4) 1 qp −=

We resort to (2) to compute the dependency link. We also normalize the
output w from (2) to ensure it falls in [0,1]. Hence, we have

(5) factor ion normalizat theis where1 norm
norm

wp −=

To compute w in (5), we define α in (2) as follows:

peakweightminpeakweightmaxsizeksorderedpea
sizeksorderedpea

−+
=

.
.α , where

orderedpeaks.size is the number of peak terms, maxpeakweight the idf weight
of the global peak term and minpeakweight the minimum local peak weight
term.

We also substitute ∆idf with the difference of idf weights between the
global peak and the local peak under consideration, and substitute ∆pos with
the adjusted positional distance between the two terms. By adjustment, the
positions of non-peak terms are not counted.

To compute norm in (5), we use (2) and substitute ∆idf and ∆pos with the
count of all the peak terms (orderedpeaks.size) and the difference between
max_peakweight and min_peakweight, i.e.

norm=α *orderedpeaks.size()+(1-α)*(maxpeakweight-minpeakweight (6)

Figure 3.5 illustrates the line chart of peak words, removing satellite words from the
graph to adjust the positions between the PEAK points.

29

Step 4: Group Terms into Frames

Terms are grouped by their proximate concept terms, i.e. local peaks. In
our implementation, we identify the term with the lowest idf weight between
two adjacent local peaks as the demarcation between term sets. The lower
bound of a frame is the idf weight of local peak of the term set and the lower
bound of all frames is set to be 1 in idf unit. Terms below the lower threshold
is considered to be stop words and has zero probability. The horizontal lines of
a frame are discounted by the number of the terms with zero-probability. The
upper bound of a frame is determined by the maximum local peak weights
which is equal to the global peak weight.

Step 5: Compute Term Contributions To Local Peak

By the same token as term weight computation in Step 3, (2), (4), and (5)
are used to calculate member term contribution to the local peak of the same
set.

The parameter α for a frame is substituted in (2) by falpha as follows:

winlenholdpausethreseakweightmaxp

winlenfalpha
+−

= , where winlen is the

count of terms in the term set minus the number of the members with zero
probability, i.e. those below the lower bound, maxpeakweight is the top idf
weight, and pausethreshold is the lower-bound threshold which is set to 1.

Substitution of ∆idf is straightforward. Like the substitution of ∆pos in
Step 3, the distance has to be discounted. In this case, the positional distance is
discounted by the count of zero-probability terms lying between the term and
the local peak.

The normalization factor in this case is defined by the following equation:
fnorm = falpha*winlen+(1-falpha)*(maxpeakweight-pausethreshold) (7)

We obtain the probability p by applying (5) and (6).

Step 6: Get Conditional Probability

The probability output from (4) and (5) are used as inputs to compute the
probability of term importance in relation to the key concept term as follows:

Let pglobal and plocal be the probability outputs from (4) and (5), we have the
final probability pfinal as follows:

pfinal = pglobal*plocal (8)

30

In the subsequent sections, we describe experimentation objective, strategies,
methods and environments to test the new term weighting scheme proposed in this
research. They make crucial, integral parts of the research.

3.3. Experimentation Objective
The objective of the experiments is to show that queries for an ad hoc

information retrieval would produce better retrieval results if they are re-weighted
under the new approach towards dependency-related term importance.

3.4. Hypothesis
Query terms are normally weighted by the counts of each (the tf concept) by a

retrieval engine. A retrieval engine assumes that the counts reflect the importance the
user attaches to the respective terms. Our hypotheses are listed in the table below.

Table 3.2 outlines the hypotheses and test strategies.

 Hypothesis Test Strategy

1 Each term carries with it different
importance to the query concept and
if estimated by the proposed f(idf,dd)
function, such term weights could
yield a better results in the same ad
hoc information retrieval experiment
environments.

Compare retrieval results by unaltered,
original queries with those by queries
whose terms are weighted via the
proposed scheme.

In the former case, the weight is tf*1.

In the latter case, the weight is
tf*computed weight.

2 The term weights computed by our
scheme is more effective in
improving retrieval results than the
idf term weighting because the
former is a local property reflecting
the strength of each term’s
contribution to the query concept
while the latter is a global property
from document collections.

Compare ad hoc information retrieval
results by queries whose terms are
tagged with the idf global weight, with
those by the queries whose term
weights are computed by the f(idf,dd)
function.

3.5. Experimental Setup
3.5.1. Document Collections

Three TREC collections are used for the experiments. They are
combined to make a large database. The collections are:

a. The Financial Times (FT) collection on disk 4,

31

b. Foreign Broadcasting Information Services (FBIS) on disk 5,

c. The Los Angeles Times news collection on disk 5

Details of the collections are shown in the following table.

Table 3.3 shows details of the three document collections
Collection Number of

Documents
Avg Doc
Length (word)

Max Doc
Length (word)

FBIS 130,471 516 139,709

FT 209,097 394 16,021
LA 131,896 505 24,653

3.5.2. Database

The three document collections are used to build index of a
combined database. The index type is inverted index (term to document
index). The database is also comprised of document-to-term index (dt).
The indices support term positions. The database is built by
BuildIndex.exe application which is bundled with Lemur Toolkit. The
following table shows essential details of the test database.

Table 3.4 shows the details of threedb database.

3.5.3. Query Sets

Only the medium-sized description part of the TREC 7 &
TREC 8 query sets is used. TREC 7 query topics ranges from topic 351
to 400 and TREC 8 sets cover another 50 queries from topic 401 to
500. Each query is comprised of three parts: title, description and
narration. The narration part is the longest of the three.

3.5.4. Toolkits
IR Development Toolkit

Lemur Toolkit Version 4.2 (please refer to Appendix E) is used
for use and development for the experiment. The toolkit provides
development platform on both Linux and Windows. This project uses

Database Name Threedb.ifp
Database Type Inverted index
Document-term index size 0.98KB
Inverted index size 9.11MB
Stemming Porter
Stop list None
of documents 348,503
of terms 165,744,766
of unique terms 407,659
Average document length 475

32

the Windows-platform version of its codes, the console application
development options using C++, and the standalone application as
against another option of experimenting it on Web platform.
Evaluation

Evaluation is done by trec_eval.exe, a standalone application
distributed free of charge by NIST to IR research community. The
application fully supports TREC formats.

3.6. Experimentation Steps
Five steps are involved in the experimentation of the idf-dd weighting

scheme:

3.6.1. Prepare Test Database:

Objective: To build test database

Procedures: Parse document collections to build an inverted index files
for the database. Porter stemming is used to reduce the database index
files. No stop word list is used.

Input: Three document collections, Financial Times, LA Times, and
Foreign Broadcasting Service (FBIS), from disk 4, disk 5.

Output: threedb test database

Application: BuildIndex.exe, an application provided under the Lemur
Toolkit.

3.6.2. Prepare queries:

Objective: To prepare queries for ad hoc information retrieval
operations

Procedures: Parse query topics 401-450 with Porter stemming. A
TREC query topic is divided into three parts: topic, description and
narration. Only the description part is used in the experiments. The
parsed queries are saved to a file.

Input: Query topics (TREC 8) items 401-450

Output: A file saved with Porter-stemmed queries.

Application: A parsing application developed within the Lemur
development framework, for this research.

3.6.3. Compute idf-dd weights for query terms:

Objective: To compute and assign query term weights.

33

Run Parse_queries[Porter Stemming]TREC 7,8 query topics Formatted stemmed queries

Run IDF-DD Term Weighting IDF-DD weighted queries

[Itest with baseline]

RunRetEval.exe
RetEval parameters

TREC-formatted
retrieval results

Run trec_eval.exe

Result evaluation
 file

 Step2:
 - Compute IDF-DD weights
 for query terms,
 - Replace original term weight (1)
 with new probability weights ([0,1])

 This step is skipped if we test with
 baseline operation. In that case,
 TREC 7, 8 query topics will serve
 as input to RetEval.exe.

 Step4:
 Evaluate retrieval results
 using trec_eval.exe provided
 by NIST for IR researches

 Step 1:
 Parse Trec 7, 8 queries:
 - Porter stemming,
 - No stop word list

Compute document representation

Initialize retrieval model[Language model-query likelihood]

Compute query represenation

Scoring

Save retrieval results to file

 Step3:
 Pass weighted queries to
 RetEval.exe to produce
 retrieval results.

 RetEval.exe is bundled with
 Lemur Toolkit
 The application is modified to
 accept weights in decimal
number.

[test with new weighting scheme]

Document
collections

Figure 3.6: Diagram shows the four steps in the experimentation of the new idf-dd
weighting effects on ad hoc information retrievals.

Procedures: Run TestTermWeightApp.exe, an application developed in
the research to compute f(idf,dd) term weights for query terms. The
input is the parsed queries from Step 2. The probability weights replace
the value 1 for each term. Term order is retained. (See Appendix F for
more implementation details.)

34

Input: Formatted Porter-stemmed queries

Output: A file of queries with terms weights computed by f(idf,dd)

Application: TestTermWeightApp.exe developed for this research

3.6.4. Pass weighted queries to retrieval engine:

Objective: To retrieve documents from the retrieval engine.

Procedures: Run RetEval.exe provided by the Lemur Toolkit. The
application is modified to accept weights in double. The application
will call Lemur libraries to initialize the retrieval method class, and the
specific language model according to a user-defined parameter file.

Input: A file of queries with idf-dd term weights, a parameter file
specifying that language model retrieval engine with query likelihood
scoring, Dirichlet prior smoothing technique in interpolation mode will
be used. Result set is pre-set at 1,000, Dirichlet Prior parameter set at
default 1,000. In Lemur implementation, the query likelihood scoring
method is an option of the KL-Divergence retrieval engine.

Output: A file containing retrieval results in TREC format

Application: A modified version of RetEval.exe

F
i

<parameters>
<retModel>kl</retModel>
<index>C:\TrecDatabase\ThreeDB\threedb.ifp</index>
<textQuery>C:\TrecDatabase\Bin\workspace\testrun8nostops.qry</textQuery>
<resultFile>C:\TrecDatabase\Bin\RESULTTESTRUN8</resultFile>
<resultFormat>trec</resultFormat>
<resultCount>1000</resultCount>
<useWorkingSet>0</useWorkingSet>
<workingSetFile>D:\TrecD4\FT\worksetfile.txt</workingSetFile>
<feedbackDocCount>0</feedbackDocCount>
<feedbackTermCount>0</feedbackTermCount>
<smoothSupportFile>C:\TrecDatabase\Bin\smoothtext.txt</smoothSupportFile>
<smoothMethod>dir</smoothMethod>
<smoothStrategy>interpolate</smoothStrategy>
<adjustedScoreMethod>ql</adjustedScoreMethod>
<JelinekMercerLambda>0.5</JelinekMercerLambda>
<DirichletPrior>1000</DirichletPrior>
<discountDelta>0.7</discountDelta>
<queryUpdateMethod>rm2</queryUpdateMethod>
<feedbackCoefficient>0</feedbackCoefficient>
<feedbackTermCount>10</feedbackTermCount>
<feedbackProbThresh>0.001</feedbackProbThresh>
<feedbackProbSumThresh>1</feedbackProbSumThresh>
<feedbackMixtureNoise>0.5</feedbackMixtureNoise>
<emIterations>0</emIterations>
</parameters>

igure 3.7: The parameter file used by RetEval.exe. The testrun8nostops.qry

nput file contains query terms weighted by the new weighting scheme.

35

3.6.5. Evaluate retrieval results:

Objective: To evaluate retrieval results by comparing outputs to expert
choices.

Procedures: Run the trec_eval.exe application provided by NIST to IR
research community. The application will compute key measurement
criteria including the mean average precision, R-precision and the
number of relevant documents returned by the queries.

Input: A file containing retrieval results in TREC format

Output: A file detailing the evaluation of retrieval results, also in
TREC format.

Application: trec_eval.exe

 CHAPTER 4
EXPERIMENTAL RESULTS

AND EVALUATION

4.1. Evaluation of Experimental Results
 Evaluation by trec_eval.exe program of experimental runs shows significant
performance improvements of the ad hoc information retrieval conducted within the
framework of the query likelihood ranking method of the language model when the
proposed f(idf, dd) weighting scheme is applied to the input queries from TREC 7 and
TREC 8 sets of queries. The interpolation version of weighting functions is adopted in
the experimentation (equation (2) in Chapter 3).

The overall retrieval results with the new weighting scheme beat the baseline
results by all key measurements, namely the number of relevant documents returned,
the mean average precision (MAP), the R-precision, the interpolated recall-precision
averages, and the precision after X documents.

For TREC 7 and TREC 8 query sets respectively, map increases strongly by
16.12% and 15.74%, R-precision 12.52% and 8.40%, number of relevant document
return -1.62% and 9.14%. Measurements by Interpolated recall-averages precision
and precision after X docs are also in the black. The results are shown in the following
table.

Table 4.1 shows the evaluated results of experimental runs using the f(idf, dd) weighting scheme
with TREC 7 and TREC 8 query sets. The evaluation computation is done by trec_eval.exe
program.
 Measurements TREC 7 TREC 8

Relevant doc return -1.62 9.14
Mean average precision 16.12 15.74
R-precision 12.52 8.40
ircl_prn.0.00 0.04 1.87
ircl_prn.0.10 17.04 4.61
ircl_prn.0.20 7.30 17.80
ircl_prn.0.30 8.97 22.03
ircl_prn.0.40 24.06 14.53
ircl_prn.0.50 37.21 19.70
ircl_prn.0.60 41.04 50.25
ircl_prn.0.70 100.77 54.62
ircl_prn.0.80 59.38 32.41
ircl_prn.0.90 -25.93 33.51
ircl_prn.1.00 N.A. 20.83
P5 6.06 12.50
P10 7.69 9.29
P15 1.68 4.43
P20 6.45 4.32
P30 7.34 4.72
P100 4.12 2.19
P200 0.41 3.52
P500 -0.56 10.30
P1000 -1.56 9.19

37

By way of counting the number of positive, negative and neutral results by
query, it can also be shown that the new scheme weighting has produced a higher
percentage of gains vis-à-vis loss. The break-down of the counts are shown in the
table in figure 15. Note that combined counts are based on the following criteria:

1. Positive Counts: It is so defined if the result is positive by at least
one of the three measurements and there must be no negative
measurements at all,

2. Negative Counts: If the result is negative by at least one
measurement standard and there must be no positive measurements
at all,

3. Neutral Counts: If the results are mixed or neutral by any
measurements or both.

The pie chart in figure 4.1 illustrates the break-down of the combined
results for TREC 7 and TREC 8 query sets. The total number of queries used
is 100.

Table 4.2 shows the break-down of the number of result counts on three measurement criteria
and their combination for 100 query sets (ALL), TREC 7 query set (50), and TREC 8 query set
(50).

ALL
Measurement Positive Negative Neutral
Relevant doc return 54 30 16
Mean average precision 62 38 0
R-precision 51 31 18
Combined Counts 57 27 16
TREC 7
Relevant doc return 27 18 5
Mean average precision 30 20 0
R-precision 25 16 9
Combined Counts 26 14 10
TREC 8
Relevant doc return 27 12 11
Mean average precision 32 18 0
R-precision 26 15 9
Combined Counts 31 13 6

38

Figure 4.1: Pie chart showing that out of 100 query topics (TREC 7 & TREC 8
combined), 57 yield positive results, 27 negative and the rest 16 neutral.

4.2. Comparison with Existing Standards
As it is known, the idf weight computing scheme is the current standard in IR.

In language modeling approach to IR, however, the idf computation gives way to
probabilistic computation that makes use of only the term counts (as an input to the
calculation of probability). Given that, the f(idf,dd) implementation is run against the
baseline with each query term weight equal to 1 unit for a term, and the idf weighted
implementation which re-weights the terms in accordance with the global property
derived from document collection.

 As expected, the comparison shows that the f(idf,dd) weighting scheme
outperforms both the baseline and the idf-weighting significantly, confirming the
experimental hypothesis (refer to Chater 3 on Research Methods). The results are
shown in table 4.3, 4.4, 4.5 and 4.6.

 Table 4.3 compares the f(idf-dd) results to those of the idf-based results for 50
queries from TREC 7 set. Table 4.4 makes the same comparison for TREC 8 query
set. Table 4.5 and table 4.6 compares the idf-based and the f(idf-dd) results against the
baseline results with term weight unit equal to 1 for each term. The comparison in
table 4.5 is based on TREC 7 query set while table 4.6 is based on TREC 8 query set.

 Figure 4.2 (a) compares the interpolated recall-precision averages of the
baseline, the idf-based and the f(idf,dd) retrieval results for TREC 8, and (b) which
makes comparisons by R-precision standard.

39

Table 4.3 shows information retrieval performance increase from using f(idf,dd) weighting. The
baseline in this case is the results from idf weighting scheme. Query set is from TREC 7.

IDF-based
Probability

IDF-DD
Interpolation

Standard
Measure

TREC 7
Query

Scores Scores %Change
Num_q 351-400 50.00 50.00 0.00
Num_ret 351-400 50,000.00 50,000.00 0.00
Num_rel 351-400 4,226.00 4,226.00 0.00
Num_rel_ret 351-400 1,420.00 1,576.00 10.98592
Map 351-400 0.14 0.15 9.10
R-prec 351-400 0.19 0.20 7.21
ircl_prn.0.00 351-400 0.63 0.67 7.79
ircl_prn.0.10 351-400 0.35 0.38 11.35
ircl_prn.0.20 351-400 0.24 0.26 7.75
ircl_prn.0.30 351-400 0.17 0.18 7.25
ircl_prn.0.40 351-400 0.13 0.15 8.72
ircl_prn.0.50 351-400 0.09 0.11 12.29
ircl_prn.0.60 351-400 0.08 0.08 6.29
ircl_prn.0.70 351-400 0.05 0.05 -0.19
ircl_prn.0.80 351-400 0.03 0.03 -6.93
ircl_prn.0.90 351-400 0.01 0.01 0.00
ircl_prn.1.00 351-400 0.00 0.00 N.A.
P5 351-400 0.35 0.42 20.69
P10 351-400 0.32 0.36 13.75
P15 351-400 0.29 0.32 10.08
P20 351-400 0.27 0.30 8.39
P30 351-400 0.23 0.26 12.52
P100 351-400 0.13 0.15 9.57
P200 351-400 0.09 0.10 6.37
P500 351-400 0.05 0.05 6.65
P1000 351-400 0.03 0.03 10.92

40

Table 4.4 shows information retrieval performance increase from using f(idf,dd) weighting. The
baseline in this case is the results from idf weighting scheme. Query set is from TREC 8.

TREC 8 IDF-based Probability IDF-DD Interpolation Standard
Measure

Query
Topic

Scores Scores %Chg

Num_q 401-450 50.00 50.00 0.00
Num_ret 401-450 49,127.00 50,000.00 1.78
Num_rel 401-450 4,522.00 4,522.00 0.00
Num_rel_ret 401-450 1,701.00 1,959.00 15.17
Map 401-450 0.17 0.20 13.34
R-prec 401-450 0.22 0.24 10.86
ircl_prn.0.00 401-450 0.59 0.71 19.93
ircl_prn.0.10 401-450 0.40 0.46 12.89
ircl_prn.0.20 401-450 0.31 0.35 14.10
ircl_prn.0.30 401-450 0.25 0.29 16.40
ircl_prn.0.40 401-450 0.18 0.20 12.98
ircl_prn.0.50 401-450 0.14 0.16 11.51
ircl_prn.0.60 401-450 0.11 0.12 8.52
ircl_prn.0.70 401-450 0.07 0.08 3.77
ircl_prn.0.80 401-450 0.05 0.05 5.44
ircl_prn.0.90 401-450 0.02 0.03 40.11
ircl_prn.1.00 401-450 0.02 0.02 9.43
P5 401-450 0.38 0.47 24.47
P10 401-450 0.34 0.40 18.34
P15 401-450 0.29 0.35 17.65
P20 401-450 0.28 0.31 12.14
P30 401-450 0.23 0.27 13.34
P100 401-450 0.14 0.16 13.73
P200 401-450 0.10 0.11 12.14
P500 401-450 0.06 0.07 15.37
P1000 401-450 0.03 0.04 15.29

41

Table 4.5 shows comparative results on TREC 7

T 7 Baseline IDF Probability IDF-DD Interpolation Standard
Measure Query Scores Scores %Chg Scores %Chg

num_q 351-400 50 50.00 0.00 50.00 0.00
num_ret 351-400 50,000 50,000.00 0.00 50,000.00 0.00
num_rel 351-400 4,226 4,226.00 0.00 4,226.00 0.00
num_rel_ret 351-400 1,602 1,420.00 -11.36 1,576.00 -1.62
map 351-400 0.13 0.14 6.43 0.15 16.12
R-prec 351-400 0.18 0.19 4.95 0.20 12.52
ircl_prn.0.00 351-400 0.67 0.63 -7.19 0.67 0.04
ircl_prn.0.10 351-400 0.33 0.35 5.11 0.38 17.04
ircl_prn.0.20 351-400 0.24 0.24 -0.41 0.26 7.30
ircl_prn.0.30 351-400 0.17 0.17 1.60 0.18 8.97
ircl_prn.0.40 351-400 0.12 0.13 14.12 0.15 24.06
ircl_prn.0.50 351-400 0.08 0.09 22.19 0.11 37.21
ircl_prn.0.60 351-400 0.06 0.08 32.70 0.08 41.04
ircl_prn.0.70 351-400 0.03 0.05 101.16 0.05 100.77
ircl_prn.0.80 351-400 0.02 0.03 71.25 0.03 59.38
ircl_prn.0.90 351-400 0.01 0.01 -25.93 0.01 -25.93
ircl_prn.1.00 351-400 0.00 0.00 N.A. 0.00 N.A.
P5 351-400 0.40 0.35 -12.12 0.42 6.06
P10 351-400 0.34 0.32 -5.33 0.36 7.69
P15 351-400 0.31 0.29 -7.63 0.32 1.68
P20 351-400 0.28 0.27 -1.79 0.30 6.45
P30 351-400 0.25 0.23 -4.61 0.26 7.34
P100 351-400 0.14 0.13 -4.97 0.15 4.12
P200 351-400 0.10 0.09 -5.61 0.10 0.41
P500 351-400 0.05 0.05 -6.77 0.05 -0.56
P1000 351-400 0.03 0.03 -11.25 0.03 -1.56

42

Table 4.6 shows retrieval performances from using idf-based and f(idf,dd) weighting against the
baseline result compared on TREC 8.

T 8 Baseline IDF Probability IDF-DD Interpolation
Standard
Measure

Query Scores Scores %Chg Scores %Chg

num_q 401-450 50 50 0.00 50.00 0.00
num_ret 401-450 50,000 49127 -1.75 50,000.00 0.00
num_rel 401-450 4,522 4522 0.00 4,522.00 0.00
num_rel_ret 401-450 1,795 1701 -5.24 1,959.00 9.14
map 401-450 0.17 0.1732 2.12 0.20 15.74
R-prec 401-450 0.23 0.2201 -2.22 0.24 8.40
ircl_prn.0.00 401-450 0.69 0.5892 -15.05 0.71 1.87
ircl_prn.0.10 401-450 0.44 0.4041 -7.34 0.46 4.61
ircl_prn.0.20 401-450 0.30 0.3086 3.25 0.35 17.80
ircl_prn.0.30 401-450 0.23 0.2451 4.83 0.29 22.03
ircl_prn.0.40 401-450 0.17 0.1772 1.37 0.20 14.53
ircl_prn.0.50 401-450 0.13 0.1433 7.34 0.16 19.70
ircl_prn.0.60 401-450 0.08 0.1091 38.45 0.12 50.25
ircl_prn.0.70 401-450 0.05 0.0742 49.00 0.08 54.62
ircl_prn.0.80 401-450 0.04 0.0496 25.57 0.05 32.41
ircl_prn.0.90 401-450 0.02 0.0182 -4.71 0.03 33.51
ircl_prn.1.00 401-450 0.01 0.0159 10.42 0.02 20.83
P5 401-450 0.42 0.376 -9.62 0.47 12.50
P10 401-450 0.37 0.338 -7.65 0.40 9.29
P15 401-450 0.33 0.2947 -11.23 0.35 4.43
P20 401-450 0.30 0.28 -6.98 0.31 4.32
P30 401-450 0.25 0.2347 -7.60 0.27 4.72
P100 401-450 0.16 0.1398 -10.15 0.16 2.19
P200 401-450 0.11 0.0997 -7.69 0.11 3.52
P500 401-450 0.06 0.0566 -4.39 0.07 10.30
P1000 401-450 0.04 0.034 -5.29 0.04 9.19

43

Figure 4.2 (a), above , shows a graph comparing R-precisions of baseline, idf, and
f(idf,dd) results, and (b), below, shows comparisons by Recall-Precision Averages.
Queries used from TREC 8.

44

4.3. Result Analysis
The experimental results as evaluated by IR standards show the following

points:

1. The f(idf,dd) approach performs exceptionally well in the area of average
precisions. MAP jumps by 16.12% and 15.74% over the baseline for
TREC 7 and TREC 8 respectively. R-precisions also improved
significantly, 12.52% and 8.40% for TREC 7 and TREC 8 respectively. In
contrast, the number of relevant document returns failed to improve
consistently in the TREC 7 and TREC 8 runs. The improvement
percentage is greater for TREC 8, at 9.14%, and is negative at -1.62% for
TREC 7. The number of relevant document returns is indicative of the
recall performance of a retrieval engine. In modern IR, precisions are more
important than recall as it is difficult for users to sense recall performance
than to evaluate precisions.

2. Given the chart in figure 4.2(a), the Precision After X for TREC 8
strongly improves in the initial stages of receiving documents: 12.50%
after the first five documents returned, followed by 9.29% after 10
returned documents, 4.43 % after 15 returns, 4.32% after 20 and 4.72%
after 30. Similar situation can be seen from TREC 7, although less
obvious.

The results show that the f(idf,dd) weighting does improve the precisions for
the first groups of documents returned, which is a desirable situation for ad hoc
information retrieval.

Table 4.7 shows the R-precision after X number of returned documents for
TREC 8 query set.

Evaluation by the interpolated recall-precision averages cannot be used
to analyze the particular point as its computation will always lead to
higher percentage increase at its following stage. (Refer to Evaluation
Measures in Chapter 2 for explanation).

3. Given figure 4.1 illustrating a pie chart of gains and losses counted by
TREC 7-TREC8 queries, 57 out of 100 weighted queries result in better

After X docs Query topics Precision
P5 401-450 12.50
P10 401-450 9.29
P15 401-450 4.43
P20 401-450 4.32
P30 401-450 4.72
P100 401-450 2.19
P200 401-450 3.52
P500 401-450 10.30
P1000 401-450 9.19

45

performance, 27 in negative changes, and 16 mixed. The factors that may
affect the efficiency of the f(idf,dd) efficiency and caused the negative
results are as follows:

a. The scheme counts on the idf weight as a global property input in
its function. Hence, its efficiency is determined to a certain extent
by the idf weighting. As it is generally known, the idf is just an
indicator of term importance. By its definition, the idf weight is
simply a figure showing how often it appears in a document
collection. No more, no less. As mentioned in the early chapter, the
idf weight is adopted because it is the de facto standard for term
weighting but this can be replaced by another term weighting in our
model.

b. Stemming may affect the term weights. Stemming is primarily
aimed at reducing the index size of a document database but one of
its side effects is to distort the weight of some terms. For instances,
“us” is the stemmed word from both “useful” and “US” and “am”
is the stemmed word for “(I) am” and “(PAN) AM”. In the
experiments for this thesis, porter stemming is used as is. There are
no other mechanisms to distinguished capitalized letters or words
from lower case terms. Abbreviations are also treated as simple
terms.

c. The weighting of terms is done on the query part in the
experiments. Although this is sufficient in proving the hypothesis
based on the assumption that weighting of document terms are
transparent, the full capacity of the f(idf, dd) term weighting would
likely be demonstrated if and when the approach is also applied to
the computation of document representation which is specific to
different IR models. Applying the term weighting scheme on the
document representation side, is beyond the objective and scope of
the research.

 CHAPTER 5
CONCLUSION AND COMMENTS

5.1. Conclusion
The master thesis proposes a novel approach that the importance of a term in a

sentence is determined by the level of its contribution to the text concept, also
represented by a term. The level can also be seen as a kind of relations between
depending terms and the concept term.

We compute the term importance by first compute a
idfposw ∆−+∆= *)1(* αα function which measures the term negligibility. The

input function ∆idf is the unsigned difference between the idf weight of the term and
its reference concept term and the ∆pos function computes a dependency distance
between them. Like idf, the former is a global term weighting property and the latter a
local property measured from an adjusted positional distance between the term and
the respective reference concept. For the sake of convenience, the inverse function of

idfposw ∆−+∆= *)1(* αα will be referred to as f(idf,dd).

Based on a graphical illustration of dependency links, the thesis proposes an
interpolated function to compute the localized term weights,

idfposw ∆−+∆= *)1(* αα where ∆pos is the adjusted term position distance and
∆idf is the difference between the term weight and the weight of its reference concept
term. The term weight input is a global property and is interpreted to be idf term
weight in this research. The computed value is then transformed into a probability
format using the notion p = 1-q where p is the probability of the term contribution to
the key concept and q is the opposite probability that the term can be neglected for its
great distance from the concept term. The q is computed from w with normalization.
In the last step, conditional probability is employed to handle cases where there are
multiple concept terms, the most important of which is classified as global concept
term (global in the context of the particular text).

To our knowledge, the proposed f(idf,dd) function and its underlining
approach is novel in that term dependency is re-interpreted, term importance weights
are extracted as local property, and that the computation requires only marginal costs
with O(mn) complexity, where m is the number of iterations required, and n is the
length of the text.

The new approach is implemented in an experimentation design to test if
query terms once weighted under the f(idf,dd) scheme will yield better ad hoc
information retrieval results than normal query terms. In the experimentation, three
cases are tested:

1. Query terms are passed as they are to retrieval engine. In practice, query
terms carry the equal weight of 1. This is the baseline design.

2. Query terms are first weighted by the idf method before they are passed to
the retrieval engine. In practice, we are passing the weight as a global

47

property (the idf is statistically derived from a document collection) to the
retrieval engine.

3. Query terms are first weighted by the f(idf,dd) which localizes the idf
weights, before they are passed to the retrieval engine.

For all three scenarios, the tf is implicitly retained by the number of terms sent.
(i.e., some terms appear once each while the others appear more frequently in
the query.). How the retrieval engine computes document representation from
document and collection terms is assumed to be transparent in this
experimentation.

The experiments are conducted within the language modeling framework
using query likelihood scoring method and Dirichlet prior smoothing technique. They
produce convincing gains for the new approach compared to the baseline and the idf-
based results. Improvements are all-round significant given the results of all essential
evaluation standards and are particularly outstanding in the precision area. Using
TREC 7 and TREC 8 query sets, the experiments report a 16.12% and 15.74%
increases in mean average precision (MAP) respectively. The f(idf,dd) function also
outperforms the idf-based scheme by 9.10%, and 13.34% for TREC 7 and TREC 8
query sets respectively.

5.2. Comments
 This research work is not about refining query terms to improve ad hoc
information results. Refining term weights employed in the experimentation is just a
mean to prove the new proposition. Rather, this work is about a novel approach to
compute term importance from the perspective that firstly, individual terms are basic
language units and a tool to constitute to concepts. Secondly, terms are related to
serve the purpose of clarifying the points to an audience. Thirdly, term importance,
and hence its term weight, can be viewed in the said context. Fourthly, term
importance should be localized as a term can carry different importance depending on
the role it plays in a text, and fifthly, this local property should come into play in IR.
The outcome of the work, however, can be extended to use in other IR applications.

5.3. Recommendations

 Extending IR models to support the f(idf,dd) term weighting. The assumption
is that retrieval performance should be further enhanced if the scheme is integrated
into the models from the level of preprocessing all the way to the computation of
document representation and query/document ranking.

 REFERENCES

1. Salton, G. and McGill, M. J. Introduction to Modern Information Retrieval,
1st edition. McGraw-Hill, New York, 1983

2. Barwise, J. and Seligman, J. Information Flow: The Logic of Distributed
Systems, Cambridge Tracts in Theoretical Computer Science
Series. Cambridge University Press, UK, 1997

3. Nanas, N., Uren, V., and Roeck, A.D. Building and Applying a Concept
Hierarchy Representation of a User Profile. Annual ACM
Conference on Research and Development in Information
Retrieval, Proceedings of the 26th Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval, 2003: 198-204.

4. S. Robertson, S. Walker, S. Jones, M.Hancock Beaulieu, and M. Gatford.
Okapi at TREC 3. NIST Special Publication 500-226: Overview
of the Third Text Retrieval Conference (TREC-3), 3rd Annual Text
Retrieval Conference, NIST - Gaithersburg, Maryland, 1994: 109-
126.

5. Possas, B., Ziviani, N., Meira Jr., W., Ziviani, N., Ribeiro-Neto, B. Set-Based
Model: A New Approach for Information Retrieval. Annual ACM
Conference on Research and Development in Information
Retrieval, Proceedings of the 25th Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval, 2002: pp 230-237.

6. Kim, Hee-soo, Choi, I., Kim, M. Refining Term Weights of Documents Using
Term Dependencies. Annual ACM Conference on Research and
Development in Information Retrieval, Proceedings of the 27th
Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2004: 552-553.

7. Pickens, J., MacFarlane, A. Term Context Models for Information Retrieval.
Conference on Information and Knowledge Management,
Proceedings of the 15th ACM international conference on
Information and knowledge management, 2006: 559-566.

8. Song, F. and Croft, B. A General Language Model for Information Retrieval.
Conference on Information and Knowledge Management,
Proceedings of the Eighth International Conference on Information
and Knowledge Management, 1999: 316-321.

9. Srikanth, M. and Srikanth, R. Biterm Language Models for Document
Retrieval. Annual ACM Conference on Research and Development
in Information Retrieval, Proceedings of the 25th Annual

49

International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2002: 425-426.

10. Gao, J., Nie, J., Wu, G., Cao, G. Dependence Language Model for Information
Retrieval. Annual ACM Conference on Research and Development
in Information Retrieval, Proceedings of the 27th Annual
International ACM SIGIR Conference on Research and
Development in Information, 2004: 170-177.

11. Schutze, H. and Pedersen, J.O. A Co-occurrence-based Thesaurus and Two
Applications to Information Retrieval. Information Processing and
Management, volume 33, issue 3, 1997: pp 307-318.

12. Voorhees, E. Query Expansion Using Lexical Semantic Relations. Annual
ACM Conference on Research and Development in Information
Retrieval, Proceedings of the 17th Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval, 1994: 61-69.

13. Liu, S., Liu, F., Yu, C., and Meng, W. An Effective Approach to Document
Retrieval via Utilizing WordNet and Recognizing Phrases. Annual
ACM Conference on Research and Development in Information
Retrieval, Proceedings of the 27th Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval, 2004: 266-272

14. Mandala, R., Tokunaga, T., and Tanaka, H. Ad Hoc Retrieval Experiments
Using WordNet and Automatically Constructed Theasuri. NIST
Special Publication 500-242, The Seventh Text REtrieval
Conference (TREC 7), 1998: 475-481.

15. Cao, G., Nie, J.Y., Bai, J. Integrating Word Relationships into Language
Models. Annual ACM Conference on Research and Development
in Information Retrieval, Proceedings of the 28th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2005:298-305.

16. Possas, B., Ribeiro-Neto, B., Ziviani, N., Meira Jr, M. Maximal Termsets as a
Query Structuring Mechanism. Conference on Information and
Knowledge Management, Proceedings of the 14th ACM
International Conference on Information and Knowledge
Management, 2005: 287-288.

17. Metzler, D., Croft, W. B. A Markov Random Field Model for Term
Dependencies. Annual ACM Conference on Research and
Development in Information Retrieval, Proceedings of the 28th
Annual International ACM SIGIR Conference on Research and
Development in information Retrieval, 2005: 472-479

18. Burgess, C., Livesay, K. and Lund K. Explorations in Context Space: Words,
Sentences, Discourse, Discourse Processes, 25(2&3)(1998): 211-

50

257.

19. Bruza P., Song, D. Inferring Query Models by Computing Information Flow.
Conference on Information and Knowledge Management,
Proceedings of the Eleventh International Conference on
Information and Knowledge Management, 2002: 260-269.

20. Bai, J., Song, D., Bruza, P., Nie, J.Y., Cao, G. Query Expansion Using Term
Relationships in Language Models for Information Retrieval.
Conference on Information and Knowledge Management,
Proceedings of the 14th ACM International Conference on
Information and Knowledge Management, 2005: 688-695.

21. Lund, K. and Burgess C. Producing High-dimensional Semantic Spaces from
Lexical Co-occurrence. Behavior Research Methods, Instrument, &
Computers, 28(2)(1996): 203-208.

22. Zaki, M. J. Generating Non-Redundant Association Rules. Conference on
Knowledge Discovery in Data, Proceedings of the Sixth ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2000: 34–43.

23. Salton, G. and Lesk, M. E. Computer Evaluation of Indexing and Text
Processing. Journal of the ACM (JACM), 15(1)(1968): 8-36.

24. Dominich, S. A Measure Theoretic Approach to Information Retrieval. IRFest,
Information Retrieval Festival, University of Glasgow, Scotland,
July 24, 2005.

25. Robertson, S. E., and Sparck Jones, K. Relevance Weighting of Search Terms.
Journal of the American Society for Information Science 27, 1976:
129-146.

26. Ponte, J. M. and Croft, W.B. A Language Modeling Approach to Information
Retrieval. Annual ACM Conference on Research and Development
in Information Retrieval, Proceedings of the 21st Annual
International ACM SIGIR Conference on Research and
Development in Information, 1998: 275-281.

27. Zhai, C. and Lafferty, J. Model-based Feedback in the KL-divergence
Retrieval Model. Conference on Information and Knowledge
Management, Proceedings of the Tenth International Conference
on Information and Knowledge Management, 2001: 403-410.

28. Yuret, Deniz. Discovery of Linguistic Relations Using Lexical Attraction, Ph.
D. thesis, Department of Electrical Engineering and Computer
Science, MIT, 1998.

29. Lavrenko V. A. Generative Theory of Relevance, Ph. D. thesis, Computer
Science, Graduate School, University of Massachusetts Amherst,
2004.

APPENDICES

 APPENDIX A
INFORMATION RETRIEVAL MODELS

This appendix briefly reviews the more prominent information retrieval

models that have been developed and put into practices: the Boolean Model, the
Vector Space Model, the Probabilistic Model and the language modeling approach to
Information Retrieval.

8.1. A.1. Boolean Model
A simple retrieval model based on the set theory and Boolean algebra, the

Boolean model was adopted by many of the early commercial systems for its intuitive
concept. In this system, a user issues a query comprised of terms joined together with
logical operators (¬∨∧ ,,). The query, for an example, [q = cba kkk ¬∨∧ ()] can be
written in a disjunctive normal form (DNF) as)0,0,1()0,1,1()1,1,1(∨∨ . Each of the
three components is a binary weighted vector of the tuple (ka,kb,kc).

Its retrieval strategy is based on binary decision criterion, i.e. the document is
predicted to be either relevant or not relevant. The model has been criticized for
returning too few or too many documents in response to a query.

8.2. A.2. Vector Space Model
The vector model was proposed by Salton [2, 25]. The model is based on a

similarity function whereby documents are ranked by their relative degrees of
similarity to a user query. Documents and queries are seen as vector of distinct terms
in the collection and the scoring function is the scalar product of the document and the
query vectors.

||||
),(

qd
qdqdsim

j

j
j rr

×

•
= =

The weighting of each term is calculated from its frequency within the

document tf, multiplied by the inverse document frequency idf, which indicates its
importance within the collection.

Let freqi,j be the frequency of the term ki in the document dj, then the

normalized frequency of the term is given by
ji

ji
ji

freq
freqf

l ,max

,
, = , where maxl freqi,j is the

frequency of any term l in document j, which has the maximum occurrence frequency
in the document.

Further, let idf be the inverse document frequency for term ki. The idf is given
by

i

i
n
Nidf log=

∑∑
∑

==

=

t

i

t

i

t

i

qiji

qiji

ww

ww

1
2

1
2

1

,,

,,

*

*

52

The two leads to what has become the following best known term-weighting

scheme.
i

jiji
n
Nfw log,, ×=

The model, still one of the most popular today for its good performance, rests
on the application of such mathematical terms as linear space, vector and inner
product, to denote its underlying concepts. However, the mathematical meanings of
these concepts have not been preserved. Rather they are used as mere computational
constructs or metaphors [24].

Term independence is strictly assumed in the standard vector space model.

8.3. A.3. Probabilistic Model

The theoretical drawback of the vector space model has led to the introduction
of the classical probabilistic model, which is based on intuition and strong probability
foundation.

The model, introduced by [25] in 1976, sees ad hoc information retrieval as a
task to retrieve documents “relevant” to a user query, which reflects information
needs. In this model, terms remain the basic components of a document and a query.

The assumption is for the system to pick a document, examine it and estimate
the probability of its relevance to a specific query. Using the Bayes’ Law, this
probability is given by

)(
)1|()1()|1(

j

j
j

dDP
RdDPRPdDRP v

r
v

=
===

=== , where “1” denotes positive or

relevant value of the R attribute and “0” means non-relevance.
The scoring function is the odds between the probability of relevance and the

probability of not relevance. Hence, the formula is given by

)0|(
)1|(

)0|()0(
)1|()1(

)|0(
)|1(),(

==
==

≈
===
===

=
==
==

=
RdDP
RdDP

RdDPRP
RdDPRP

dDRP
dDRPqdsim

j

j

j

j

j

j
j v

v

v

v

v

v

The above estimation is based on the fact that

)0(
)1(

=
=

RP
RP is a constant for any

d
v

 in the collection.
The above equation is further divided by a

)0|0(
)1|0(

==
==

RDP
RDP

v

v
 which is construed

to be the similarity value of an empty document, denoted by 0
v

. As a result of the
division, the equation has become the following:

)0|0(
)1|0(/

)0|(
)1|(),(

==
==

==
==

≈
RDP
RDP

RdDP
RdDPqdsim

j

j
j v

v

v

v

Assuming that the indexing terms are independent from one another, the
numerator of the right hand side of the equation can be further transformed into

∏∏
∉ ==

==
==
==

∈ Dk i

i

Dk i

i

ii RkP
RkP

RkP
RkP

)0|0(
)1|0(

)0|1(
)1|1(

 , where D is the set of all terms in the

document

53

The denominator is transformed into∏
∈ ==

==

Vk i

i

i RkP
RkP

)0|0(
)1|0(

, where V is the set of

all terms in the collection.

The division of the two expanded expressions leads to the following equation:

∏
∈

−

−
≈

Dk kk

kk
j

i qp
qpqdsim
)1(

)1(),(, where pk stands for P(ki=1|R=1), qk stands for

P(ki=1|R=0), 1 - pk stands for P(ki=0|R=1), 1-qk stands for P(ki=0|R=0)

Taking log, the equation turns into

)1log
1

(log),(
k

k

k

k

Dk
j

q
q

p
pqdsim

i

−
+

−
≈∑ ∈

A variant of the formula is to factor in the weights of terms in both the
document and the query. It is shown here as

)1log
1

(log),(
1

,,
i

i

i

it

i
jiqij

q
q

p
pwwqdsim −

+
−

×≈ ∑ =

According to the model, the key parameters that have to be specified are pi and
qi.. Since R is not known at start, pi and qi have to be estimated. The best guess for pi is
0.5 if the term is in the query and pi=qi otherwise. The estimate for qi is interesting as
it is approximated by

N
ni where ni is the number of documents which contain the term

ki and N the number of all documents in the collection. The similarity of qi to
document frequency is obvious.

The problem with the classical probability model is with the initial estimate
for pi, which is a result of the fact that R is not known. This information is updated by
term statistics in the documents retrieved by the query.

Efforts to introduce term dependence into the classical model have failed [29].
In fact, the key problem with the model is with the estimates related to the unknown
relevant variables, rather than the independence problem.

8.4. A.4. Language Model

The Language modeling approach has been successfully employed in areas
related to natural languages such as automatic speech recognition, natural language
processing, optical character recognition, handwriting recognition and machine
translation for about two decades before it was first introduced to IR by [26] in 1998.

The model is about estimating the likelihood or probability of a word string.
Formally, the probability of a word string is denoted by P(W) where W is a string of
words. What is wanted is the most likely W*, which will be acquired on the basis of
maximum likelihood estimation (MLE). In automatic speech recognition where the
language model was first adopted in the 80’s, the problem is to determine the W* that
best corresponds to the input acoustic signal by solving the following equation:

)|()(maxarg)|(maxarg*

)()(
WAPWPAWPW

AGenWAGenW ∈∈
== , where A denotes acoustic

signals and Gen(A) is a set of all possible strings W which may correspond to A.

54

P(W)P(A|W) is derived from P(W|A) given the Bayes’ law which stipulates
that P(W,A)=P(A)P(W|A)=P(W)P(A|W) and the MLE principle which preserves
orders despite the removal of P(A) from the equation.

P(W) on the right-hand side of the equation is the source model and is called

language model. In this framework, some source generates W* with probability P(W)
and transmitted the word string through a noisy channel that transform the intended W
to the observation A with probability P(A|W).

The framework can be adopted in many other natural language processing

applications. The basic components are the language model (the source probability
distribution over a word string or P(W)), the transformation (A in the case of ASR),
and the noisy channel through which the transformation has to undergo.

In IR, the task is to retrieve a ranked list of relevant documents D given a

query Q. The retrieved documents are ranked by the posterior probability P(D|Q), i.e.,
the probability that D is generated from the observed Q. By applying Bayes’ rule and
dropping the constant denominator, we get P(D|Q)∝P(D)P(Q|D). We now have the
source-channel models for IR.

In practice, a uniform distribution of the prior probability P(D) is assumed, so

the ranking function only takes P(Q|D) into account. Since it is very difficult to
estimate P(Q|D) directly, P(Q|D) is usually approximated by P(Q|MD), where MD is
the language model trained on D. In experiments, a language model is estimated for
each document. Since the document is sometimes too small to train a reliable model,
smoothing techniques are also required.

When [26] introduced language modeling approaches to IR in 1988, their

original work considers a document or a query a vector of |V| binary values of V
where V is the set of distinct vocabulary or terms in the document collection. In the
work, the language model Md is a vector of |V| probabilities, one for each term v in V,
and two steps are involved: firstly, Md is derived statistically from the document, and
secondly, the query is observed for the probability that it is generated by Md.

The probability of the observed query being generated by the model is given

by

∏∏
∉∈

−×===
Qv

vd

Qv

vddd pppMqQP)1()|(,,
vv

 , where pd,v is the probability

of term v being present in the query.

The model is formally called a multiple Bernoulli language model, and
generally known as a “bag of words” model.

The multiple Bernoulli model soon gave way to the traditional language
modeling approaches widely used in the natural language processing field. Assuming
a different event space for variable Q (and document variable D), the model is named
multinomial LM in IR because Q is seen as a sequence of n random variables qi,
where n is the length of the query, and each qi variable can be assigned any word in V
as its value.

55

Owing to the sparse-data problem, most state-of-the-art language modeling
approaches to IR use unigram models and do not consider any dependency between
words.

Unigram is a special case of n-gram models. A unigram is the possibility of a

word given zero words preceding it. A bigram (2-gram model) is the possibility of a
word given one preceding word. A trigram is the possibility of a word given two
preceding words. An n-gram model is the possibility of a word given n-1 preceding
words. In the n-gram models, the preceding words must be adjacent to the present
word under consideration.

A typical unigram model used in IR is given here.

∏
=

===
n

i

qddd ippMqQP
1

,)|(vv , where iqdp , is the probability of the specific

language model generating the word qi at i in the query.

In a variant of the multinomial language model, the probability iqdp , is given
by

∑
∑

∈

∈−+=
cd

cd
vdvd

vd
d

tf

d
tfp

'

'
,',

,
|'|

)1(
||

λλ

Here λ is an empirical parameter used to control the variance in the estimator
and to allow for interpolation from the second part of the right hand side of the

equation. The part
∑
∑

∈

∈−
cd

cd
vd

d
tf

'

'
,'

|'|
)1(λ can be seen as a simple way to smooth pd,v.

The symbol tfd,v is the frequency of term v in document d.
|d| is the number of term in the document; and c is the set of all documents in the
collection.
 Language modeling approaches to IR may also be categorized by scoring
methods. The basic scoring method is to rank documents by estimating the probability
of the query being generated by the language model of a document and is therefore
called “query likelihood”.
 Another popular method is to derive a language model from the query and
compare it with the estimated language model of a document. Known as KL-
divergence (Kullback-Leibler divergence), the model computes the relative entropy of
the query and the document language models. Given two probability mass functions
p(x) and q(x) , the KL-divergence between p and q is defined as

)(
)(log)()||(

xq
xpxpqpD

x
∑=

Since the cross entropy)(log)(xqxp
x
∑− is always greater than the

entropy)(log)(xpxp
x
∑− , it can be shown that D(p||q) will always be positive. It is

zero if p(x) is equal to q(x), i.e. when the two models are the same.
The similarity (or difference) between the estimated query language model Qθ and the
estimated document language model Dθ , then the relevance value of d with respect to
q can be measured by the negative KL-divergence function [27]

56

))ˆ|(log)ˆ|(()ˆ|(log)ˆ|()||(Q
w

QD
w

Q wpwpwpwpqpD θθθθ ∑∑ −+=−

The second part of the right-handed side of the equation is a query-dependent
constant and can be dropped for the purpose of document ranking.

 APPENDIX B
EXPERIMENTAL RESULTS BY QUERIES

(TOPIC 351-360)

Table B.1 compares retrieval results of baseline, IDF-based and two IDF-DD weighting methods.

Baseline IDF-based Probability IDF-DD Pythagoras IDF-DD Interpolation Standard
Measures

Query
topic Score Score %Chg Score %Chg Score %Chg

num_ret 351 1,000.00 1,000.00 0.00 1,000.00 0.00 1,000.00 0.00

num_rel 351 48.00 48.00 0.00 48.00 0.00 48.00 0.00

num_rel_ret 351 23.00 25.00 8.70 26.00 13.04 26.00 13.04

map 351 0.20 0.19 -9.45 0.26 27.41 0.27 30.05

R-prec 351 0.29 0.33 14.26 0.33 14.26 0.33 14.26

bpref 351 0.25 0.26 5.37 0.30 19.11 0.30 20.51

recip_rank 351 1.00 0.50 -50.00 1.00 0.00 1.00 0.00

ircl_prn.0.00 351 1.00 0.67 -33.33 1.00 0.00 1.00 0.00

ircl_prn.0.10 351 0.67 0.63 -6.25 0.90 34.99 0.91 36.36

ircl_prn.0.20 351 0.67 0.56 -16.66 0.77 15.37 0.91 36.36

ircl_prn.0.30 351 0.23 0.38 62.48 0.50 116.64 0.54 132.11

ircl_prn.0.40 351 0.03 0.05 41.33 0.07 97.69 0.07 111.85

ircl_prn.0.50 351 0.00 0.03 N.A. 0.04 N.A. 0.04 N.A.

ircl_prn.0.60 351 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.70 351 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.80 351 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.90 351 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.1.00 351 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

P5 351 0.60 0.60 0.00 0.80 33.33 0.80 33.33

P10 351 0.60 0.60 0.00 0.90 50.00 0.90 50.00

P15 351 0.67 0.53 -20.01 0.67 0.00 0.67 0.00

P20 351 0.55 0.50 -9.09 0.60 9.09 0.60 9.09

P30 351 0.40 0.43 8.33 0.50 25.00 0.50 25.00

P100 351 0.16 0.17 6.25 0.17 6.25 0.18 12.50

P200 351 0.08 0.09 12.50 0.09 12.50 0.09 12.50

P500 351 0.04 0.04 11.11 0.04 22.22 0.05 27.78

P1000 351 0.02 0.03 8.70 0.03 13.04 0.03 13.04

num_ret 352 1,000.00 1,000.00 0.00 1,000.00 0.00 1,000.00 0.00

num_rel 352 246.00 246.00 0.00 246.00 0.00 246.00 0.00

num_rel_ret 352 7.00 6.00 -14.29 7.00 0.00 7.00 0.00

map 352 0.01 0.01 34.29 0.01 34.29 0.01 32.86

R-prec 352 0.02 0.02 20.20 0.02 20.20 0.02 0.00

bpref 352 0.02 0.02 13.54 0.02 8.33 0.02 10.42

recip_rank 352 1.00 1.00 0.00 1.00 0.00 1.00 0.00

ircl_prn.0.00 352 1.00 1.00 0.00 1.00 0.00 1.00 0.00

ircl_prn.0.10 352 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.20 352 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.30 352 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.40 352 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.50 352 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.60 352 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

58

Baseline IDF-based Probability IDF-DD Pythagoras IDF-DD Interpolation Standard
Measures

Query
topic Score Score %Chg Score %Chg Score %Chg

ircl_prn.0.70 352 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.80 352 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.90 352 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.1.00 352 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

P5 352 0.40 0.40 0.00 0.40 0.00 0.40 0.00

P10 352 0.20 0.30 50.00 0.30 50.00 0.30 50.00

P15 352 0.13 0.20 50.04 0.20 50.04 0.20 50.04

P20 352 0.10 0.20 100.00 0.20 100.00 0.20 100.00

P30 352 0.10 0.17 66.70 0.13 33.30 0.13 33.30

P100 352 0.04 0.05 25.00 0.05 25.00 0.05 25.00

P200 352 0.02 0.03 50.00 0.03 25.00 0.03 25.00

P500 352 0.01 0.01 0.00 0.01 0.00 0.01 0.00

P1000 352 0.01 0.01 -14.29 0.01 0.00 0.01 0.00

num_ret 353 1,000.00 1,000.00 0.00 1,000.00 0.00 1,000.00 0.00

num_rel 353 114.00 114.00 0.00 114.00 0.00 114.00 0.00

num_rel_ret 353 44.00 51.00 15.91 51.00 15.91 51.00 15.91

map 353 0.12 0.22 87.26 0.24 98.42 0.24 99.92

R-prec 353 0.26 0.39 49.96 0.40 53.31 0.41 56.65

bpref 353 0.24 0.28 18.84 0.34 41.04 0.34 42.00

recip_rank 353 1.00 0.50 -50.00 1.00 0.00 1.00 0.00

ircl_prn.0.00 353 1.00 0.75 -25.00 1.00 0.00 1.00 0.00

ircl_prn.0.10 353 0.41 0.67 64.45 0.59 45.76 0.58 43.88

ircl_prn.0.20 353 0.35 0.50 43.47 0.52 48.26 0.53 52.74

ircl_prn.0.30 353 0.20 0.47 135.55 0.48 139.43 0.49 141.92

ircl_prn.0.40 353 0.00 0.40 N.A. 0.42 N.A. 0.42 N.A.

ircl_prn.0.50 353 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.60 353 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.70 353 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.80 353 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.90 353 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.1.00 353 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

P5 353 0.60 0.60 0.00 0.80 33.33 0.80 33.33

P10 353 0.40 0.60 50.00 0.60 50.00 0.60 50.00

P15 353 0.40 0.67 66.68 0.47 16.68 0.47 16.68

P20 353 0.35 0.60 71.43 0.55 57.14 0.55 57.14

P30 353 0.33 0.57 70.03 0.53 60.01 0.53 60.01

P100 353 0.26 0.42 61.54 0.44 69.23 0.44 69.23

P200 353 0.18 0.26 45.71 0.26 45.71 0.26 45.71

P500 353 0.08 0.10 24.39 0.10 24.39 0.10 24.39

P1000 353 0.04 0.05 15.91 0.05 15.91 0.05 15.91

num_ret 354 1,000.00 1,000.00 0.00 1,000.00 0.00 1,000.00 0.00

num_rel 354 361.00 361.00 0.00 361.00 0.00 361.00 0.00

num_rel_ret 354 65.00 50.00 -23.08 61.00 -6.15 67.00 3.08

map 354 0.02 0.04 55.95 0.03 11.45 0.02 0.44

R-prec 354 0.11 0.12 7.69 0.09 -12.78 0.09 -12.78

bpref 354 0.10 0.09 -3.98 0.08 -15.02 0.09 -13.07

recip_rank 354 0.20 1.00 400.00 0.25 25.00 0.20 0.00

ircl_prn.0.00 354 0.20 1.00 392.37 0.35 73.76 0.33 64.11

ircl_prn.0.10 354 0.12 0.16 26.89 0.09 -25.20 0.09 -25.76

59

Baseline IDF-based Probability IDF-DD Pythagoras IDF-DD Interpolation Standard
Measures

Query
topic Score Score %Chg Score %Chg Score %Chg

ircl_prn.0.20 354 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.30 354 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.40 354 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.50 354 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.60 354 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.70 354 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.80 354 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.90 354 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.1.00 354 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

P5 354 0.20 0.80 300.00 0.20 0.00 0.20 0.00

P10 354 0.20 0.50 150.00 0.30 50.00 0.20 0.00

P15 354 0.13 0.33 150.04 0.27 100.08 0.20 50.04

P20 354 0.15 0.25 66.67 0.30 100.00 0.20 33.33

P30 354 0.20 0.27 33.35 0.30 50.00 0.23 16.65

P100 354 0.16 0.20 25.00 0.17 6.25 0.16 0.00

P200 354 0.14 0.16 18.52 0.13 -3.70 0.12 -11.11

P500 354 0.10 0.09 -4.17 0.09 -8.33 0.09 -10.42

P1000 354 0.07 0.05 -23.08 0.06 -6.15 0.07 3.08

num_ret 355 1,000.00 1,000.00 0.00 1,000.00 0.00 1,000.00 0.00

num_rel 355 43.00 43.00 0.00 43.00 0.00 43.00 0.00

num_rel_ret 355 19.00 15.00 -21.05 16.00 -15.79 18.00 -5.26

map 355 0.10 0.10 6.55 0.11 15.56 0.12 21.39

R-prec 355 0.21 0.23 11.13 0.23 11.13 0.21 0.00

bpref 355 0.14 0.16 13.61 0.17 21.14 0.18 22.68

recip_rank 355 1.00 1.00 0.00 1.00 0.00 1.00 0.00

ircl_prn.0.00 355 1.00 1.00 0.00 1.00 0.00 1.00 0.00

ircl_prn.0.10 355 0.26 0.36 35.68 0.38 42.48 0.40 51.98

ircl_prn.0.20 355 0.23 0.26 13.96 0.38 66.67 0.36 60.00

ircl_prn.0.30 355 0.08 0.03 -65.86 0.03 -62.09 0.03 -61.60

ircl_prn.0.40 355 0.03 0.00 -100.00 0.00 -100.00 0.02 -35.24

ircl_prn.0.50 355 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.60 355 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.70 355 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.80 355 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.90 355 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.1.00 355 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

P5 355 0.40 0.40 0.00 0.40 0.00 0.40 0.00

P10 355 0.20 0.30 50.00 0.30 50.00 0.30 50.00

P15 355 0.20 0.33 66.65 0.33 66.65 0.40 100.00

P20 355 0.25 0.25 0.00 0.30 20.00 0.40 60.00

P30 355 0.20 0.27 33.35 0.30 50.00 0.30 50.00

P100 355 0.09 0.10 11.11 0.10 11.11 0.10 11.11

P200 355 0.07 0.05 -23.08 0.06 -15.38 0.06 -7.69

P500 355 0.03 0.03 -23.53 0.03 -23.53 0.03 -23.53

P1000 355 0.02 0.02 -21.05 0.02 -15.79 0.02 -5.26

num_ret 356 1,000.00 1,000.00 0.00 1,000.00 0.00 1,000.00 0.00

num_rel 356 16.00 16.00 0.00 16.00 0.00 16.00 0.00

num_rel_ret 356 2.00 0.00 -100.00 2.00 0.00 2.00 0.00

map 356 0.01 0.00 -100.00 0.01 3.45 0.01 8.62

60

Baseline IDF-based Probability IDF-DD Pythagoras IDF-DD Interpolation Standard
Measures

Query
topic Score Score %Chg Score %Chg Score %Chg

R-prec 356 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

bpref 356 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

recip_rank 356 0.05 0.00 -100.00 0.05 -9.51 0.05 -9.51

ircl_prn.0.00 356 0.05 0.00 -100.00 0.05 -7.22 0.05 0.00

ircl_prn.0.10 356 0.04 0.00 -100.00 0.05 22.00 0.05 31.50

ircl_prn.0.20 356 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.30 356 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.40 356 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.50 356 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.60 356 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.70 356 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.80 356 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.90 356 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.1.00 356 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

P5 356 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

P10 356 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

P15 356 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

P20 356 0.05 0.00 -100.00 0.00 -100.00 0.00 -100.00

P30 356 0.03 0.00 -100.00 0.03 0.00 0.03 0.00

P100 356 0.02 0.00 -100.00 0.02 0.00 0.02 0.00

P200 356 0.01 0.00 -100.00 0.01 0.00 0.01 0.00

P500 356 0.00 0.00 -100.00 0.00 0.00 0.00 0.00

P1000 356 0.00 0.00 -100.00 0.00 0.00 0.00 0.00

num_ret 357 1,000.00 1,000.00 0.00 1,000.00 0.00 1,000.00 0.00

num_rel 357 270.00 270.00 0.00 270.00 0.00 270.00 0.00

num_rel_ret 357 78.00 45.00 -42.31 56.00 -28.21 57.00 -26.92

map 357 0.11 0.02 -79.84 0.05 -54.14 0.06 -51.06

R-prec 357 0.20 0.09 -54.54 0.14 -29.11 0.16 -23.61

bpref 357 0.19 0.08 -60.59 0.13 -32.43 0.14 -30.22

recip_rank 357 1.00 0.25 -75.00 1.00 0.00 1.00 0.00

ircl_prn.0.00 357 1.00 0.45 -54.55 1.00 0.00 1.00 0.00

ircl_prn.0.10 357 0.53 0.10 -81.81 0.23 -57.05 0.23 -56.20

ircl_prn.0.20 357 0.24 0.00 -100.00 0.06 -74.01 0.07 -70.99

ircl_prn.0.30 357 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.40 357 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.50 357 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.60 357 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.70 357 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.80 357 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.90 357 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.1.00 357 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

P5 357 0.60 0.20 -66.67 0.60 0.00 0.60 0.00

P10 357 0.60 0.40 -33.33 0.40 -33.33 0.50 -16.67

P15 357 0.60 0.33 -44.45 0.47 -22.22 0.47 -22.22

P20 357 0.55 0.30 -45.45 0.45 -18.18 0.40 -27.27

P30 357 0.57 0.23 -58.83 0.37 -35.29 0.37 -35.29

P100 357 0.43 0.13 -69.77 0.21 -51.16 0.26 -39.53

P200 357 0.26 0.10 -61.54 0.16 -40.38 0.18 -30.77

P500 357 0.13 0.06 -55.22 0.09 -29.85 0.09 -29.85

61

Baseline IDF-based Probability IDF-DD Pythagoras IDF-DD Interpolation Standard
Measures

Query
topic Score Score %Chg Score %Chg Score %Chg

P1000 357 0.08 0.05 -42.31 0.06 -28.21 0.06 -26.92

num_ret 358 1,000.00 1,000.00 0.00 1,000.00 0.00 1,000.00 0.00

num_rel 358 51.00 51.00 0.00 51.00 0.00 51.00 0.00

num_rel_ret 358 48.00 14.00 -70.83 30.00 -37.50 30.00 -37.50

map 358 0.30 0.01 -96.68 0.09 -71.53 0.09 -70.40

R-prec 358 0.31 0.06 -81.26 0.20 -37.49 0.20 -37.49

bpref 358 0.29 0.02 -91.96 0.15 -47.11 0.15 -46.07

recip_rank 358 0.33 0.03 -90.91 0.33 0.00 0.33 0.00

ircl_prn.0.00 358 0.67 0.07 -90.22 0.40 -40.00 0.43 -35.71

ircl_prn.0.10 358 0.63 0.04 -93.47 0.40 -36.00 0.43 -31.42

ircl_prn.0.20 358 0.45 0.03 -93.64 0.19 -58.72 0.20 -54.89

ircl_prn.0.30 358 0.36 0.00 -100.00 0.06 -82.64 0.06 -83.34

ircl_prn.0.40 358 0.35 0.00 -100.00 0.04 -89.02 0.04 -87.84

ircl_prn.0.50 358 0.29 0.00 -100.00 0.03 -88.60 0.04 -86.20

ircl_prn.0.60 358 0.26 0.00 -100.00 0.00 -100.00 0.00 -100.00

ircl_prn.0.70 358 0.20 0.00 -100.00 0.00 -100.00 0.00 -100.00

ircl_prn.0.80 358 0.14 0.00 -100.00 0.00 -100.00 0.00 -100.00

ircl_prn.0.90 358 0.07 0.00 -100.00 0.00 -100.00 0.00 -100.00

ircl_prn.1.00 358 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

P5 358 0.60 0.00 -100.00 0.20 -66.67 0.20 -66.67

P10 358 0.50 0.00 -100.00 0.20 -60.00 0.20 -60.00

P15 358 0.60 0.00 -100.00 0.40 -33.33 0.40 -33.33

P20 358 0.50 0.00 -100.00 0.35 -30.00 0.35 -30.00

P30 358 0.43 0.00 -100.00 0.27 -38.45 0.27 -38.45

P100 358 0.28 0.03 -89.29 0.12 -57.14 0.12 -57.14

P200 358 0.19 0.04 -81.08 0.07 -62.16 0.07 -62.16

P500 358 0.09 0.03 -71.11 0.04 -55.56 0.04 -53.33

P1000 358 0.05 0.01 -70.83 0.03 -37.50 0.03 -37.50

num_ret 359 1,000.00 1,000.00 0.00 1,000.00 0.00 1,000.00 0.00

num_rel 359 28.00 28.00 0.00 28.00 0.00 28.00 0.00

num_rel_ret 359 10.00 6.00 -40.00 7.00 -30.00 8.00 -20.00

map 359 0.06 0.00 -95.12 0.00 -92.04 0.01 -86.62

R-prec 359 0.07 0.00 -100.00 0.00 -100.00 0.00 -100.00

bpref 359 0.05 0.00 -100.00 0.00 -100.00 0.00 -100.00

recip_rank 359 1.00 0.02 -97.87 0.02 -97.87 0.02 -97.73

ircl_prn.0.00 359 1.00 0.02 -97.87 0.02 -97.63 0.04 -96.21

ircl_prn.0.10 359 0.09 0.02 -82.84 0.02 -73.93 0.04 -58.31

ircl_prn.0.20 359 0.06 0.01 -87.24 0.02 -70.60 0.03 -47.33

ircl_prn.0.30 359 0.03 0.00 -100.00 0.00 -100.00 0.00 -100.00

ircl_prn.0.40 359 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.50 359 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.60 359 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.70 359 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.80 359 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.90 359 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.1.00 359 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

P5 359 0.20 0.00 -100.00 0.00 -100.00 0.00 -100.00

P10 359 0.10 0.00 -100.00 0.00 -100.00 0.00 -100.00

P15 359 0.07 0.00 -100.00 0.00 -100.00 0.00 -100.00

62

Baseline IDF-based Probability IDF-DD Pythagoras IDF-DD Interpolation Standard
Measures

Query
topic Score Score %Chg Score %Chg Score %Chg

P20 359 0.10 0.00 -100.00 0.00 -100.00 0.00 -100.00

P30 359 0.07 0.00 -100.00 0.00 -100.00 0.00 -100.00

P100 359 0.06 0.01 -83.33 0.01 -83.33 0.01 -83.33

P200 359 0.04 0.01 -87.50 0.02 -50.00 0.03 -25.00

P500 359 0.02 0.01 -44.44 0.01 -33.33 0.01 -22.22

P1000 359 0.01 0.01 -40.00 0.01 -30.00 0.01 -20.00

num_ret 360 1,000.00 1,000.00 0.00 1,000.00 0.00 1,000.00 0.00

num_rel 360 151.00 151.00 0.00 151.00 0.00 151.00 0.00

num_rel_ret 360 87.00 103.00 18.39 102.00 17.24 101.00 16.09

map 360 0.13 0.31 143.59 0.33 161.35 0.32 152.83

R-prec 360 0.23 0.38 62.86 0.32 39.99 0.33 42.84

bpref 360 0.23 0.36 55.01 0.34 43.28 0.34 43.19

recip_rank 360 1.00 1.00 0.00 1.00 0.00 1.00 0.00

ircl_prn.0.00 360 1.00 1.00 0.00 1.00 0.00 1.00 0.00

ircl_prn.0.10 360 0.32 0.68 110.24 0.95 194.77 0.84 162.01

ircl_prn.0.20 360 0.24 0.61 157.00 0.71 200.68 0.67 184.95

ircl_prn.0.30 360 0.20 0.42 107.47 0.39 90.07 0.37 79.50

ircl_prn.0.40 360 0.12 0.37 201.14 0.32 159.85 0.32 159.69

ircl_prn.0.50 360 0.10 0.27 161.84 0.24 132.58 0.25 140.70

ircl_prn.0.60 360 0.00 0.18 N.A. 0.16 N.A. 0.16 N.A.

ircl_prn.0.70 360 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.80 360 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.0.90 360 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

ircl_prn.1.00 360 0.00 0.00 N.A. 0.00 N.A. 0.00 N.A.

P5 360 0.60 0.80 33.33 1.00 66.67 1.00 66.67

P10 360 0.40 0.80 100.00 1.00 150.00 1.00 150.00

P15 360 0.33 0.73 120.01 0.93 180.02 0.93 180.02

P20 360 0.25 0.70 180.00 0.90 260.00 0.80 220.00

P30 360 0.30 0.63 111.10 0.80 166.67 0.73 144.43

P100 360 0.22 0.45 104.55 0.43 95.45 0.44 100.00

P200 360 0.21 0.34 63.41 0.32 53.66 0.32 53.66

P500 360 0.12 0.18 48.33 0.18 48.33 0.18 50.00

P1000 360 0.09 0.10 18.39 0.10 17.24 0.10 16.09

 APPENDIX C
IDF AND IDF-DD WEIGHTS

 COMPUTED FOR TOPIC 351-360

The following is a table generated by a main application used in the

experimentation. Brief explanations are:

Pass: If the IDF-DD probability exceeds 0, Pass = 1 else Pass = 0. In effect, the query
terms with 0 pass value is dropped before the query is passed to a retrieval engine.
Pass indicates the importance of a term in Boolean.

IDF Weight: Computed from
n
Nidf log= function where N = number of collection

documents and n = number of document which contains the term.
IDF-DD Probability: The weight computed by f(idf,dd) . Please refer to Chapter 2
for details.

Direction: 1 = UP, 2 = DOWN, 3 = DOWNUP, 4 = UPDOWN, 6 = PEAK. Please
refer to Chapter 2 for details.

Table C.1 shows the outputs of IDF-DD computation

Query Pass IDF Weight IDF-DD Prob Direction
<QUERY 351>
explor 1 3.971 0.111 4
what 1 1.383 0.080 3
inform 1 2.178 0.107 4
is 0 0.314 0.000 3
avail 1 2.821 0.132 4
on 0 0.198 0.000 3
petroleum 1 4.585 0.175 6
explor 1 3.971 0.165 2
in 0 0.062 0.000 2
the 0 0.025 0.000 3
south 0 2.313 0.000 1
atlant 0 4.346 0.000 4
near 0 2.562 0.000 2
the 0 0.025 0.000 3
falkland 1 7.306 1.000 6
island 1 3.665 0.645 3
</QUERY>
<QUERY 352>
impact 1 3.232 0.381 4
what 1 1.383 0.317 3
impact 1 3.232 0.479 4
ha 0 0.494 0.000 2

64

Query Pass IDF Weight IDF-DD Prob Direction
the 0 0.025 0.000 3
chunnel 1 10.970 1.000 6
had 0 0.878 0.000 2
on 0 0.198 0.000 2
the 0 0.025 0.000 3
british 1 2.624 0.344 4
economi 1 2.396 0.330 2
and 0 0.072 0.000 3
or 0 0.967 0.000 4
the 0 0.025 0.000 3
life 1 2.262 0.175 1
style 1 3.210 0.233 4
of 0 0.047 0.000 2
the 0 0.025 0.000 3
british 1 2.624 0.099 4
</QUERY>
<QUERY 353>
identifi 1 3.337 0.143 3
systemat 1 5.233 0.197 6
explor 1 3.971 0.170 2
and 0 0.072 0.000 3
scientif 1 3.972 0.157 4
investig 1 2.798 0.131 2
of 0 0.047 0.000 3
antarctica 1 7.712 1.000 6
current 1 2.005 0.373 2
or 0 0.967 0.000 3
plan 1 1.570 0.259 4
</QUERY>
<QUERY 354>
identifi 1 3.337 0.206 3
instanc 1 3.659 0.246 6
where 1 1.639 0.184 3
journalist 1 3.753 0.459 6
ha 0 0.494 0.000 3
been 0 0.748 0.000 1
put 1 1.832 0.238 4
at 0 0.370 0.000 3
risk 1 3.038 0.449 4
kill 1 2.801 0.505 3
arrest 1 3.226 0.611 6
or 0 0.967 0.000 3
taken 1 2.220 0.515 1
hostag 1 5.130 1.000 6
in 0 0.062 0.000 2
the 0 0.025 0.000 3
perform 1 2.428 0.420 4

65

Query Pass IDF Weight IDF-DD Prob Direction
of 0 0.047 0.000 3
hi 0 0.945 0.000 1
work 1 1.359 0.045 4
</QUERY>
<QUERY 355>
identifi 1 3.337 0.254 4
document 1 3.058 0.278 2
discuss 1 2.217 0.268 2
the 0 0.025 0.000 3
develop 1 1.628 0.274 4
and 0 0.072 0.000 3
applic 1 3.577 0.427 4
of 0 0.047 0.000 3
spaceborn 1 12.761 1.000 6
ocean 1 4.370 0.512 3
remot 1 4.619 0.527 4
sens 1 3.060 0.436 3
</QUERY>
<QUERY 356>
identifi 1 3.337 0.097 4
document 1 3.058 0.098 2
discuss 1 2.217 0.086 2
the 0 0.025 0.000 3
us 0 0.838 0.000 4
of 0 0.047 0.000 3
estrogen 1 8.870 0.238 6
by 0 0.296 0.000 3
postmenopaus 1 10.970 1.000 6
women 1 3.062 0.273 2
in 0 0.062 0.000 3
britain 1 3.065 0.245 4
</QUERY>
<QUERY 357>
identifi 1 3.337 0.812 6
document 1 3.058 0.776 2
discuss 1 2.217 0.666 2
intern 1 1.558 0.580 3
boundari 1 4.956 1.000 6
disput 1 3.346 0.742 3
relev 1 4.186 0.876 4
to 0 0.066 0.000 2
the 0 0.025 0.000 3

200 1 2.880 0.661 1
mile 1 3.262 0.810 6
special 1 2.280 0.682 2
econom 1 1.795 0.619 3
zone 1 3.500 0.683 6

66

Query Pass IDF Weight IDF-DD Prob Direction
or 0 0.967 0.000 3

12 1 1.983 0.109 1
mile 1 3.262 0.293 4
territori 1 3.031 0.341 2
water 1 2.861 0.394 3
subsequ 1 3.976 0.563 6
to 0 0.066 0.000 2
the 0 0.025 0.000 3
pass 0 2.569 0.000 4
of 0 0.047 0.000 2
the 0 0.025 0.000 3
intern 1 1.558 0.224 1
convent 1 3.698 0.419 6
on 0 0.198 0.000 2
the 0 0.025 0.000 3
law 0 2.205 0.000 4
of 0 0.047 0.000 2
the 0 0.025 0.000 3
sea 1 3.443 0.276 6
</QUERY>
<QUERY 358>
what 1 1.383 0.094 3
role 1 2.539 0.162 4
doe 1 2.012 0.189 3
blood 1 4.004 0.279 1
alcohol 1 4.549 0.332 6
level 1 2.021 0.270 3
plai 1 2.092 0.271 4
in 0 0.062 0.000 3
automobil 1 4.643 0.666 6
accid 1 3.930 0.631 3
fatal 1 4.722 1.000 6
</QUERY>
<QUERY 359>
ar 0 0.604 0.000 3
there 0 0.987 0.000 1
reliabl 1 4.418 0.479 4
and 0 0.072 0.000 3
consist 1 3.300 0.435 1
predictor 1 8.933 1.000 6
of 0 0.047 0.000 3
mutual 1 3.691 0.470 4
fund 1 2.194 0.335 3
perform 1 2.428 0.356 4
</QUERY>
<QUERY 360>
what 1 1.383 0.271 4

67

Query Pass IDF Weight IDF-DD Prob Direction
ar 0 0.604 0.000 2
the 0 0.025 0.000 3
benefit 1 2.714 0.476 6
if 1 1.125 0.357 3
ani 1 1.438 0.380 4
of 0 0.047 0.000 3
drug 1 3.162 1.000 6
legal 1 2.750 0.935 3
</QUERY>
<QUERY 361>
identifi 1 3.337 0.243 4
document 1 3.058 0.270 2
that 0 0.271 0.000 3
discuss 1 2.217 0.238 1
cloth 1 3.916 0.470 1
sweatshop 1 8.471 1.000 6
</QUERY>
<QUERY 362>
identifi 1 3.337 0.273 3
incid 1 3.460 0.312 6
of 0 0.047 0.000 3
human 1 2.967 0.492 1
smuggl 1 5.013 1.000 6
</QUERY>
<QUERY 363>
what 1 1.383 0.143 3
disast 1 4.237 0.395 6
have 0 0.543 0.000 3
occur 1 3.275 0.286 4
in 0 0.062 0.000 3
tunnel 1 5.271 1.000 6
us 0 0.838 0.000 2
for 0 0.194 0.000 3
transport 1 3.057 0.395 4
</QUERY>
<QUERY 364>
identifi 1 3.337 0.440 4
document 1 3.058 0.492 2
discuss 1 2.217 0.518 2
case 1 2.072 0.577 2
where 1 1.639 0.623 3
rabi 1 8.208 1.000 6
have 0 0.543 0.000 3
been 0 0.748 0.000 1
confirm 1 2.982 0.621 4
and 0 0.072 0.000 3
what 1 1.383 0.479 4

68

Query Pass IDF Weight IDF-DD Prob Direction
if 1 1.125 0.467 3
anyth 1 2.888 0.550 4
is 0 0.314 0.000 3
be 0 0.393 0.000 1
done 1 2.587 0.404 4
about 0 0.927 0.000 2
it 0 0.308 0.000 3
</QUERY>
<QUERY 365>
what 1 1.383 0.042 3
effect 1 2.102 0.183 4
have 0 0.543 0.000 3
been 0 0.748 0.000 1
attribut 1 4.049 0.458 4
to 0 0.066 0.000 3
el 1 3.674 0.480 1
nino 1 7.879 1.000 6
</QUERY>
<QUERY 366>
what 1 1.383 0.105 4
ar 0 0.604 0.000 2
the 0 0.025 0.000 3
industri 1 1.804 0.215 4
or 0 0.967 0.000 3
commerci 1 2.848 0.392 4
us 0 0.838 0.000 2
of 0 0.047 0.000 3
cyanid 1 7.849 1.000 6
or 0 0.967 0.000 2
it 0 0.308 0.000 3
deriv 1 4.623 0.522 4
</QUERY>
<QUERY 367>
what 1 1.383 0.037 3
modern 1 3.375 0.312 1
instanc 1 3.659 0.419 4
have 0 0.543 0.000 3
there 0 0.987 0.000 4
been 0 0.748 0.000 2
of 0 0.047 0.000 3
old 1 1.990 0.335 1
fashion 1 3.885 0.599 1
piraci 1 7.170 1.000 6
the 0 0.025 0.000 3
board 1 2.519 0.101 4
or 0 0.967 0.000 3
take 1 1.294 0.094 1

69

Query Pass IDF Weight IDF-DD Prob Direction
control 1 2.057 0.121 4
of 0 0.047 0.000 3
boat 1 4.471 0.177 6
</QUERY>
<QUERY 368>
identifi 1 3.337 0.305 4
document 1 3.058 0.334 2
that 0 0.271 0.000 3
discuss 1 2.217 0.304 4
in 0 0.062 0.000 3
vitro 1 8.251 1.000 6
fertil 1 5.172 0.674 3
</QUERY>
<QUERY 369>
what 1 1.383 0.034 4
ar 0 0.604 0.000 2
the 0 0.025 0.000 3
caus 1 2.315 0.154 4
and 0 0.072 0.000 3
treatment 1 3.632 0.309 4
of 0 0.047 0.000 3
anorexia 1 9.717 0.887 1
nervosa 1 10.564 1.000 6
and 0 0.072 0.000 3
bulimia 1 9.989 0.462 6
</QUERY>
<QUERY 370>
what 1 1.383 0.123 4
ar 0 0.604 0.000 2
the 0 0.025 0.000 3
law 1 2.205 0.274 4
deal 1 2.180 0.370 2
with 0 0.327 0.000 2
the 0 0.025 0.000 3
qualiti 1 3.036 0.524 4
and 0 0.072 0.000 3
process 1 2.304 0.572 4
of 0 0.047 0.000 3
food 1 2.938 0.712 1
beverag 1 5.808 1.000 6
or 0 0.967 0.000 3
drug 1 3.162 0.727 4
</QUERY>

 APPENDIX D
THE TREC RETRIEVAL CONFERENCE

The Text REtrieval Conference (TREC), co-sponsored by the National Institute of

Standards and Technology (NIST) and U.S. Department of Defense, was started in
1992 as part of the TIPSTER Text program. Its purpose was to support research
within the information retrieval community by providing the infrastructure necessary
for large-scale evaluation of text retrieval methodologies. In particular, the TREC
workshop series has the following goals:

• to encourage research in information retrieval based on large test collections;
• to increase communication among industry, academia, and government by

creating an open forum for the exchange of research ideas;
• to speed the transfer of technology from research labs into commercial

products by demonstrating substantial improvements in retrieval
methodologies on real-world problems; and

• to increase the availability of appropriate evaluation techniques for use by
industry and academia, including development of new evaluation techniques
more applicable to current systems.

TREC is overseen by a program committee consisting of representatives from
government, industry, and academia. For each TREC, NIST provides a test set of
documents and questions. Participants run their own retrieval systems on the data, and
return to NIST a list of the retrieved top-ranked documents. NIST pools the individual
results, judges the retrieved documents for correctness, and evaluates the results. The
TREC cycle ends with a workshop that is a forum for participants to share their
experiences.

This evaluation effort has grown in both the number of participating systems and
the number of tasks each year. Ninety-three groups representing 22 countries
participated in TREC 2003.

The TREC test collections and evaluation software are available to the retrieval
research community at large, so organizations can evaluate their own retrieval
systems at any time. TREC has successfully met its dual goals of improving the state-
of-the-art in information retrieval and of facilitating technology transfer. Retrieval
system effectiveness approximately doubled in the first six years of TREC.

TREC has also sponsored the first large-scale evaluations of the retrieval of non-
English (Spanish and Chinese) documents, retrieval of recordings of speech, and
retrieval across multiple languages. TREC has also introduced evaluations for open-
domain question answering and content-based retrieval of digital video. The TREC
test collections are large enough so that they realistically model operational settings.
Most of today's commercial search engines include technology first developed in
TREC.

 APPENDIX E
LEMUR TOOLKIT

To facilitate research on information retrieval, particularly language modeling,

the Computer Science Department at the University of Massachusetts and the School
of Computer Science at Carnegie Mellon University have jointly launched the Lemur
Project to provide tools for IR researchers.

The Lemur Project is sponsored by the Advanced Research and Development
Activity in Information Technology (ARDA) under its Statistical Language Modeling
for Information Retrieval Research Program and by the National Science Foundation.

Language modeling has recently emerged as an attractive new framework for text
information retrieval, leveraging work on language modeling from other areas such as
speech recognition and statistical natural language processing. Research carried out at
a number of sites has confirmed that the language modeling approach is an effective
and theoretically attractive probabilistic framework for building information retrieval
(IR) systems.

The Lemur Toolkit is designed to facilitate research in language modeling and
information retrieval, where IR is broadly interpreted to include such technologies as
ad hoc and distributed retrieval, cross-language IR, summarization, filtering, and
classification.

The toolkit supports indexing of large-scale text databases, the construction of
simple language models for documents, queries, or sub collections, and the
implementation of retrieval systems based on language models as well as a variety of
other retrieval models. The system is written in the C and C++ languages, and is
designed as a research system to run under Unix operating systems, although it can
also run under Windows.

The toolkit can be downloaded from http://www.lemurproject.org .

 APPENDIX F
IDF-DD CODE IMPLEMENTATION

The f(idf,dd) function is implemented in the TermweightQueryRep class
developed as a library for this research within the development framework of the
Lemur Toolkit. The class declarations and definitions are coded in
TermweightQueryRep.hpp and TermweightQueryRep.cpp. In addition to the class, we
write TestTermWeightApp.exe application to invoke the TermWeightQueryRep class
and modify RetEval.exe of the Lemur project to accept the output from
TestTermWeightApp.exe by using a new WeightedDocStream class, which is sub-
classed from DocStream like the BasicDocStream class.

Figure F.1: A diagram showing an input query file in BasicDocStream class format going through
an application TestTermWeightApp.exe, which invokes TermweightQueryRep class library and
outputs a transformed query file structured to conform to the WeightedDocStream class.

In our research, we take the following steps before using
TermWieghtQueryRep class:

1. Develop an application TestTermWeightApp.exe to invoke the class.

The application does three four things: open a database connection, open an
input file of a query set and iterate through each query, invoke TermweightQueryRep
library, and output a file of transformed queries. A TermweightQueryRep object is
created for each query topic.

The TermweightQueryRep class is initialized with three parameters: database
index pointer, a query topic, and an option. Three options are available: SIMPLEIDF,
PITHAGORAS, and INTERPOLATE.

2. Prepare the input file of a query set. The structure of the query sets are
required by the BasicDocStream class of the Lemur Project.

73

3. Modify RetEval.exe, an application bundled with the Lemur Project so it can
accept input file of weighted query terms in addition to a query file structure
conforming to the BasicDocStream class requirement. The modification requires the
subclassing of DocStream to create the WeightedDocStream class. By default, a query
file of the BasicDocStream structure is used as an input to Reteval.exe which will
initializes a retrieval engine. In our implementation, a weighted query file is used
instead. Consult the Lemur project development guide on the use of Reteval.exe.

The source codes of TermweightedQueryRep and WeightedDocStream classes,
as well as the modified RetEval.exe application are published in the following pages.

1c:\Lem\src\lemur-4.2\retrieval\include\TermweightQueryRep.hpp

/*==

 APPENDIX F:
 IDF-DD Term Weighting Library

/*
/*==
 *
 * This library is authored by Sompong Kittinaradorn as part of a master
 * thesis research at Chulalongkorn University. 2006-2007.
 *
 * It is written to work with the Lemur Toolkit for Language Modeling and
 * Information Retrieval.
 *
 * Use of the Lemur Toolkit is subject to the terms of the software license
 * set forth in the LICENSE file included with this software, and also
 * available at http://www.lemurproject.org/license.html
 * Copyright (c) 2001 Carnegie Mellon University. All Rights Reserved.
 *
 *==
 */

#ifndef _TERMWEIGHTQUERYREP_HPP
#define _TERMWEIGHTQUERYREP_HPP

#include "TextQueryRep.hpp"
namespace lemur
{
 namespace retrieval
 {
 enum tDirection {STARTER = 0, UP=1, DOWN = 2, DOWNUP = 3, UPDOWN = 4, MIDLOW = 5, PEAK = 6};
 enum twOption {SIMPLEIDF = 0, PITHAGORAS = 1, INTERPOLATE = 2};
 class TermweightQueryRep {
 public:
 TermweightQueryRep(int size, string qid, twOption calOption, const lemur::api::TermQuery &

qry,const lemur::api::Index &dbx);
 virtual ~TermweightQueryRep();

 protected:
 virtual void calIDF(vector<int> refList, const lemur::api::Index &dbIndex);
 virtual void calIDFDD();
 virtual void transformQuery();
 lemur::utility::ArrayCounter<double> * counter;
 twOption calweightOpt;

 private:
 string getName(int ti){
 return orderednames[ti];

 }
 string getNamefromid(int id){
 int i = 0;
 for (i=0;i<orderedtermids.size(); i++){
 if (id==orderedtermids[i]){
 break;
 }
 }
 return orderednames[i];
 }
 string curqueryid;
 string indexpath;
 map<int, double> refWeight;
 double maxval, minval;

 vector<int> orderedtermids;
 vector<double>orderedtermweights;
 vector<tDirection>termdirections;
 vector<bool> orderedresults;
 vector<double> ordereddists;

8574

2c:\Lem\src\lemur-4.2\retrieval\include\TermweightQueryRep.hpp

 vector<string> orderednames;

 ofstream logf;
 };
 }
}
#endif /* _TERMWEIGHTQUERYREP_HPP */

/*==
 *
 * This library is authored by Sompong Kittinaradorn as part of a master
 * thesis research at Chulalongkorn University. 2006-2007.
 *
 * It is written to work with the Lemur Toolkit for Language Modeling and
 * Information Retrieval.
 *
 * Use of the Lemur Toolkit is subject to the terms of the software license
 * set forth in the LICENSE file included with this software, and also
 * available at http://www.lemurproject.org/license.html
 * Copyright (c) 2001 Carnegie Mellon University. All Rights Reserved.
 *
 *==
 */

#include "TermweightQueryRep.hpp"
#include "InvFPIndex.hpp"
using namespace lemur::api;
using namespace lemur::index;

lemur::retrieval::TermweightQueryRep::TermweightQueryRep(int size, string qid, twOption calOption,
const TermQuery &qry,const Index &dbx):

curqueryid(qid), counter(new lemur::utility::ArrayCounter<double>(size)), calweightOpt(calOption)
{
 vector <int> vRefId;
 vector <int> vPos;
 map<int, int, less<int>> mPos;

 indexpath = "c:/TrecDatabase/bin/workspace/";
 string fname = indexpath + "termsetquery8rank.log";

 logf.open(fname.c_str(),ios_base::out|ios_base::ate|ios_base::app);
 if (!logf)
 cerr<<"error creating log file "<<endl;
 logf.seekp(0,ios_base::end);
 logf<<endl<<"**************** LOGGING ["<<curqueryid<<"] **************"<<endl<<endl;
 const InvFPIndex * indx = dynamic_cast<const InvFPIndex*> (&dbx);
 int a = 0, beforeid = 0, afterid = 0;

 qry.startTermIteration();
 while (qry.hasMore()){
 const Term *t = qry.nextTerm();
 char * qryterm = const_cast<char*>(t->spelling());
 TERMID_T ti = dbx.term(qryterm);
 if (strlen(indx->term(ti).c_str())==1)
 continue;
 cerr<<"TermID-> "<<ti<<", Spelling-> "<<t->spelling()<<endl;
 logf<<"TermID-> "<<ti<<", Spelling-> "<<t->spelling()<<endl;

 orderedtermids.push_back(ti);
 string sp = t->spelling();
 orderednames.push_back(sp);

 if (ti>0){
 lemur::index::InvFPDocList* dlist = dynamic_cast<lemur::index::InvFPDocList*>(indx

->docInfoList(ti));
 double N = static_cast<double>(indx->docCount());
 double n = static_cast<double>(dlist->docFreq());
 double termweight = log (N/n);

8675

3c:\Lem\src\lemur-4.2\retrieval\include\TermweightQueryRep.hpp

 orderedtermweights.push_back(termweight);
 delete dlist;
 counter->incCount(ti,1);
 if (static_cast<int>(counter->count((int)ti)>1)) continue;
 vRefId.push_back(ti);
 } else
 orderedtermweights.push_back(0.0);
 }
 sort(vRefId.begin(),vRefId.end());

 calIDF(vRefId,dbx);
 calIDFDD();
 transformQuery();
 logf.close();

}
void lemur::retrieval::TermweightQueryRep::calIDFDD(){
 termdirections.clear();
 double result = orderedtermweights[1]-orderedtermweights[0];
 result>0 ? termdirections.push_back(DOWNUP):termdirections.push_back(UPDOWN);

 for (int i=1; i<orderedtermids.size()-1; i++){
 result = orderedtermweights[i+1] - orderedtermweights[i];
 if (result>0){
 if (termdirections[i-1]==DOWN||termdirections[i-1]==UPDOWN)
 termdirections.push_back(DOWNUP);
 else
 termdirections.push_back(UP);
 } else{
 if (termdirections[i-1]==UP||termdirections[i-1]==DOWNUP)
 termdirections.push_back(UPDOWN);
 else
 termdirections.push_back(DOWN);
 }

 }
 result = orderedtermweights[orderedtermweights.size()-1]-orderedtermweights

[orderedtermweights.size()-2];
 result>0 ? termdirections.push_back(UPDOWN):termdirections.push_back(DOWNUP);

 multimap<double, int, greater<double>> rankedterms;

 for (int i=0; i<orderedtermids.size();i++)
 {
 orderedresults.push_back(false);
 ordereddists.push_back(0.0);
 if (termdirections[i]==4){
 pair<double, int> paer(orderedtermweights[i],i);
 rankedterms.insert(paer);
 }
 }

 vector<int> orderedpeaks;
 multimap<double,int,greater<double>>::const_iterator iter = rankedterms.begin();
 int maxpeaks = orderedtermids.size()/5, cntpeak = 0;
 while (iter!=rankedterms.end()&&cntpeak<=maxpeaks) {
 int index = (*iter).second;
 double w = (*iter).first;
 if (w>0.6*(maxval)&&termdirections[index]==UPDOWN){
 bool fakeone1 = (index-2>=0&&termdirections[index-1]==DOWNUP&&orderedtermweights

[index]-orderedtermweights[index-1]<1&&index+1<orderedtermids.size()&&orderedtermweights[index]
<orderedtermweights[index-2]&&termdirections[index+1]!=DOWNUP);

 bool fakeone2 = (index+2<orderedtermids.size()&&termdirections[index+1]==DOWNUP&&
orderedtermweights[index]-orderedtermweights[index+1]<1&&index-1>0&&orderedtermweights[index]
<orderedtermweights[index+2]&&termdirections[index-1]!=DOWNUP);

 bool fakeone3 = (index-1>0&&index+1<orderedtermids.size()&&termdirections[index-1]
==DOWNUP&&termdirections[index+1]==DOWNUP&&orderedtermweights[index]-orderedtermweights[index-
1]<1&&orderedtermweights[index]-orderedtermweights[index+1]<1);

 if (fakeone1||fakeone2||fakeone3){

8776

4c:\Lem\src\lemur-4.2\retrieval\include\TermweightQueryRep.hpp

 iter++;
 continue;
 }
 cntpeak++;
 termdirections[index] = PEAK;
 orderedpeaks.push_back(index);
 cerr<<getName(index)<<"...inserted["<<index<<"]"<<endl;
 }
 else {
 iter++;
 continue;
 }
 iter++;
 }
 cerr<<"# of peaks"<<orderedpeaks.size()<<endl;

 int post = -1;
 int bpost = -1;

 double horzlen = orderedtermids.size()+1;
 double bhorzlen = orderedtermids.size()+1;
 int beginmarker = 0, endmarker = -1;
 vector<int> peaklist;
 bool lastround = false, firstround = false;
 vector<int> skippeak;
 int round = 0;

 sort(orderedpeaks.begin(),orderedpeaks.end());

 double minpeakweight = 100.0;
 int winlen = 0, maxpeak = 0;
 for (int i=0; i<orderedpeaks.size();i++){
 if (orderedtermweights[orderedpeaks[i]]==maxval){
 maxpeak = i;
 break;
 }

 }
 double pausethreshold = 1.0;

 for (int i=0; i<orderedpeaks.size();i++){
 int priorbound = 0, postbound = 0;
 double priorboundweight = 100.0, postweight = 100.0;
 int firsthalf = 0, lasthalf = 0;
 int j = orderedpeaks[i];

 if (minpeakweight>orderedtermweights[orderedpeaks[i]]){
 minpeakweight = orderedtermweights[orderedpeaks[i]];
 }

 if (i==0){
 priorbound = -1;
 firsthalf = j;

 for (int k=0; k<j;k++)
 if (orderedtermweights[k]<pausethreshold)
 firsthalf--;
 if (orderedpeaks.size()==1){
 postbound = orderedtermids.size();
 lasthalf = postbound-1-j;
 for (int k=j+1; k<postbound;k++)
 if (orderedtermweights[k]<pausethreshold)
 lasthalf--;
 } else{

 for (int k=j; k<orderedpeaks[i+1]; k++){
 if (orderedtermweights[k]<postweight){
 postweight = orderedtermweights[k];
 postbound = k;

8877

5c:\Lem\src\lemur-4.2\retrieval\include\TermweightQueryRep.hpp

 }
 }
 lasthalf = postbound - j;
 for (int k=j+1; k<=postbound;k++)
 if (orderedtermweights[k]<pausethreshold)
 lasthalf--;
 }
 }
 else if (i==orderedpeaks.size()-1){
 for (int k=j; k>orderedpeaks[i-1]; k--){
 if (orderedtermweights[k]<priorboundweight){
 priorboundweight = orderedtermweights[k];
 priorbound = k;
 }
 }
 firsthalf = j - priorbound;
 for (int k=priorbound; k<j;k++)
 if (orderedtermweights[k]<pausethreshold)
 firsthalf--;

 postbound = orderedtermids.size();
 lasthalf = postbound - j;
 for (int k=j+1; k<postbound;k++)
 if (orderedtermweights[k]<pausethreshold)
 lasthalf--;

 }
 else {
 for (int k=j; k>orderedpeaks[i-1]; k--){
 if (orderedtermweights[k]<priorboundweight){
 priorboundweight = orderedtermweights[k];
 priorbound = k;
 }
 }
 firsthalf = j - priorbound;
 for (int k=priorbound; k<j;k++)
 if (orderedtermweights[k]<pausethreshold)
 firsthalf--;

 for (int k=j; k<orderedpeaks[i+1]; k++){
 if (orderedtermweights[k]<postweight){
 postweight = orderedtermweights[k];
 postbound = k;
 }
 }
 lasthalf = postbound - j-1;
 for (int k=j+1; k<=postbound; k++)
 if (orderedtermweights[k]<pausethreshold)
 lasthalf--;
 }
 int range = firsthalf+lasthalf;
 if (winlen<range)
 winlen = range;
 }

 double normalizefactor;
 double framenormfactor;
 double peakdist = 0.0;
 double alpha = 0, falpha = 0;
 switch (calweightOpt)
 {
 case SIMPLEIDF:
 if (maxval==minpeakweight)
 minpeakweight = minval;
 normalizefactor = maxval-minpeakweight;
 framenormfactor = maxval-minval;
 break;
 case PITHAGORAS:

8978

6c:\Lem\src\lemur-4.2\retrieval\include\TermweightQueryRep.hpp

 normalizefactor = sqrt(orderedpeaks.size()*orderedpeaks.size()+(maxval-
minpeakweight)*(maxval-minpeakweight));

 //framenormfactor = sqrt(winlen*winlen + (maxval-minval)*(maxval-minval));
 framenormfactor = sqrt(winlen*winlen + (maxval-pausethreshold)*(maxval-

pausethreshold));

 break;
 case INTERPOLATE:
 alpha = orderedpeaks.size()/(orderedpeaks.size()+(maxval-minpeakweight));
 normalizefactor = alpha*orderedpeaks.size()+(1-alpha)*(maxval-minpeakweight);

 /*falpha = winlen/(maxval-minval+winlen);
 framenormfactor = falpha*winlen + (1-falpha)*(maxval-minval);
 */
 falpha = winlen/(maxval-pausethreshold+winlen);
 framenormfactor = falpha*winlen + (1-falpha)*(maxval-pausethreshold);
 break;
 default:
 alpha = orderedpeaks.size()/(orderedpeaks.size()+(maxval-minpeakweight));
 normalizefactor = alpha*orderedpeaks.size()+(1-alpha)*(maxval-minpeakweight);
 //framenormfactor = alpha*winlen + (1-alpha)*(maxval-minval);
 //falpha = winlen/(maxval+winlen);
 falpha = winlen/(maxval-pausethreshold+winlen);
 framenormfactor = falpha*winlen + (1-falpha)*(maxval-pausethreshold);
 calweightOpt = INTERPOLATE;
 break;
 }

 // Compute PEAK term prob
 vector<double> peakprob;

 for (int j=0; j<orderedpeaks.size();j++){
 int i = orderedpeaks[j];
 int frommax = 0;
 double weightdif = maxval-orderedtermweights[i];
 if (orderedtermweights[i]== maxval){
 maxpeak = j;
 frommax = 0;
 } else
 frommax = abs(maxpeak-j);
 if (calweightOpt==INTERPOLATE||calweightOpt==SIMPLEIDF)
 peakdist = alpha*frommax+(1-alpha)*weightdif;
 else
 peakdist = sqrt(frommax*frommax+weightdif*weightdif);
 double prob = 1-(peakdist/normalizefactor);
 peakprob.push_back(prob);
 }

 int inelements = 0, outelements = 0;
 for (int j=0; j<orderedpeaks.size(); j++){
 int i = orderedpeaks[j];
 inelements++;
 int p = i;

 bool truebound = false, bound = false;
 int priorbound = 0, postbound = 0;
 double priorboundweight = 100.0, postweight = 100.0;
 int firsthalf = 0, lasthalf = 0;

 if (j==0){
 priorbound = -1;
 firsthalf = i;
 firsthalf = i - priorbound;

 if (orderedpeaks.size()==1){
 postbound = orderedtermids.size();
 lasthalf = postbound - p;

9079

7c:\Lem\src\lemur-4.2\retrieval\include\TermweightQueryRep.hpp

 }
 else {
 for (int k=p; k<orderedpeaks[j+1]; k++){
 if (orderedtermweights[k]<postweight){
 postweight = orderedtermweights[k];
 postbound = k;

 }
 }
 lasthalf = postbound - p;
 }
 }
 else if (j==orderedpeaks.size()-1){
 for (int k=p; k>orderedpeaks[j-1]; k--){
 if (orderedtermweights[k]<priorboundweight){
 priorboundweight = orderedtermweights[k];
 priorbound = k;
 }
 }
 firsthalf = i - priorbound;

 postbound = orderedtermids.size();
 lasthalf = postbound - p;
 }
 else {
 for (int k=p; k>orderedpeaks[j-1]; k--){
 if (orderedtermweights[k]<priorboundweight){
 priorboundweight = orderedtermweights[k];
 priorbound = k;
 }
 }
 firsthalf = i - priorbound;
 for (int k=p; k<orderedpeaks[j+1]; k++){
 if (orderedtermweights[k]<postweight){
 postweight = orderedtermweights[k];
 postbound = k;
 }
 }
 lasthalf = postbound - p;

 }

 //Compute satellite term prob
 int range = firsthalf+lasthalf;
 double normalize = framenormfactor;
 int gaps = 0;
 while (!bound&&p>=0){

 double childprob = 0.0;
 if (!truebound){
 double wdif = orderedtermweights[i] - orderedtermweights[p];
 double pdif = abs(i-p);
 pdif -= gaps;
 double ddif = 0.0;
 if (calweightOpt==INTERPOLATE||calweightOpt==SIMPLEIDF)
 ddif = falpha*pdif+(1-falpha)*wdif;
 else
 ddif = sqrt(wdif*wdif+pdif*pdif);
 childprob = (1-(ddif/normalize))*peakprob[j];
 ordereddists[p] = childprob;
 inelements++;
 } else
 gaps++;

 if (p==0)
 break;
 p--;
 truebound = orderedtermweights[p]<pausethreshold;
 bound = p == priorbound;

9180

8c:\Lem\src\lemur-4.2\retrieval\include\TermweightQueryRep.hpp

 }
 p = i;
 bound = false;

 gaps = 0;
 while (!bound&&p<orderedtermids.size()-1){

 double childprob = 0.0;
 double pdif = 0;
 double ddif = 0;
 p++;
 truebound = orderedtermweights[p]<pausethreshold;
 if (!truebound) gaps++;
 bound = p==postbound;
 if (!truebound){
 double wdif = orderedtermweights[i] - orderedtermweights[p];
 pdif = abs(i-p);
 pdif -= gaps;
 if (calweightOpt==INTERPOLATE||calweightOpt==SIMPLEIDF)
 ddif = falpha*pdif+(1-falpha)*wdif;
 else
 ddif = sqrt(wdif*wdif+pdif*pdif);
 childprob = (1-(ddif/normalize))*peakprob[j];
 ordereddists[p] = childprob;
 inelements++;
 }
 bound = p==postbound;
 }
 endmarker = p;
 }

 for (int i=0; i<ordereddists.size(); i++)
 orderedresults[i] = ordereddists[i]>0;

 cerr<<endl<<endl;
 if (inelements==0){
 if (orderedresults.size()>0){
 for (int k=0; k<orderedresults.size(); k++){
 orderedresults[k] = true;
 ordereddists[k] = 1000.0;
 }
 } else{
 for (int k=0; k<orderedtermids.size(); k++){
 orderedresults.push_back(true);
 ordereddists.push_back(1000.0);
 }
 }
 }
}

lemur::retrieval::TermweightQueryRep::~TermweightQueryRep()
{
 if (counter!=NULL)
 delete counter;

}
void lemur::retrieval::TermweightQueryRep::transformQuery()
{
 string fname = indexpath + "testrun8nostops.qry";
 string fnameW = indexpath + "termweight_testrun8nostops.qry";

 ofstream ofile(fname.c_str(),ios_base::out|ios_base::ate|ios_base::app);
 ofstream ofileW(fnameW.c_str(),ios_base::out|ios_base::ate|ios_base::app);

 if (!ofile)
 cerr<<"error creating summary file "<<endl;

 ofile.seekp(0,ios_base::end);

9281

9c:\Lem\src\lemur-4.2\retrieval\include\TermweightQueryRep.hpp

 ofile<<"<DOC "<<curqueryid<<">"<<endl;

 ofileW.seekp(0,ios_base::end);
 ofileW<<"<QUERY "<<curqueryid<<">"<<endl;

 logf<<endl<<"**************** SUMMARY ["<<curqueryid<<"] **************"<<endl<<endl;

 for (int k=0; k<orderedresults.size(); k++){
 map<int,double>::const_iterator iter = refWeight.find(orderedtermids[k]);
 if (iter!=refWeight.end()){

 double wght = (*iter).second;
 if (orderedresults[k]){
 ofile<<getName(k)<<"\t"<<ordereddists[k]<<endl;
 ofileW<<getName(k)<<"\t"<<true<<"\t"<<wght<<"\t"<<ordereddists[k]<<"\t"<

<termdirections[k]<<endl;
 cerr<<getName(k)<<"\t"<<true<<"\t"<<ordereddists[k]<<endl;
 logf<<getName(k)<<"\t"<<true<<endl;
 } else {
 ofileW<<getName(k)<<"\t"<<false<<"\t"<<wght<<"\t"<<ordereddists[k]<<"\t"<

<termdirections[k]<<endl;
 cerr<<getName(k)<<"\t"<<false<<"\t"<<ordereddists[k]<<endl;
 logf<<getName(k)<<"\t"<<false<<endl;
 }
 }
 }

 ofile<<"</DOC>"<<endl;
 ofile.close();
 ofileW<<"</QUERY>"<<endl;
 ofileW.close();
}

void lemur::retrieval::TermweightQueryRep::calIDF(std::vector<int> refList, const lemur::api::Index
 &dbIndex){

 const lemur::index::InvFPIndex * indx = dynamic_cast<const lemur::index::InvFPIndex*> (&
dbIndex);

 vector<double>lstweight;
 maxval = 0.0;
 minval = 1000.0;

 double freq = 0.0;
 int id;

 for (int i=0; i<refList.size(); i++){
 id = refList[i];
 freq = counter->count(id);
 lemur::index::InvFPDocList* dlist = dynamic_cast<lemur::index::InvFPDocList*>(indx->

docInfoList(id));

 double N = static_cast<double>(indx->docCount());
 double n = static_cast<double>(dlist->docFreq());
 delete dlist;

 double weight = log (N/n);

 if (weight>maxval)
 maxval = weight;

 if (weight<minval)
 minval = weight;

 lstweight.push_back(weight);
 pair<int,double> paer(refList[i],weight);
 refWeight.insert(paer);

 cerr<<getNamefromid(id)<<": "<<weight<<endl;
 logf<<getNamefromid(id)<<": "<<weight<<endl;

9382

10c:\Lem\src\lemur-4.2\retrieval\include\TermweightQueryRep.hpp

 }
}

9483

1c:\Lem\src\lemur-4.2\utility\include\BasicDocStream.hpp

/*==
 * WeightedDocStream and WeightedTokenDoc authored by Sompong Kittinaradorn
 * for a master thesis research at Chulalongkorn University's Faculty of
 * Engineering
 *
 * Copyright (c) 2001 Carnegie Mellon University. All Rights Reserved.
 *
 * Use of the Lemur Toolkit for Language Modeling and Information Retrieval
 * is subject to the terms of the software license set forth in the LICENSE
 * file included with this software, and also available at
 * http://www.lemurproject.org/license.html
 *
 *==
 */

#ifndef _BASICFILESTREAM_HPP
#define _BASICFILESTREAM_HPP
#include "common_headers.hpp"
#include <cassert>
#include <cstdio>
#include <cstring>
#include "DocStream.hpp"
#include "Exception.hpp"

namespace lemur
{
 namespace parse
 {

 /// A basic DocStream implementation

 /*!

 BasicDocStream is an implementation of DocStream that recognizes
 the following format:

 <PRE>
 <DOC unique_document_identifier>
 this
 is
 an
 example
 </DOC>
 </PRE>

 The following is a typical example of using BasicDocStream(or DocSTream)
 :

 <PRE>

 DocStream *docStr = new BasicDocStream("source");

 docStr->startDocIteration();

 while (docStr->hasMore()) {

 Document *doc = docStr->nextDoc();
 cout << "doc id: "<< doc->getID() << endl;
 doc->startTermIteration();
 while (doc->hasMore()) {
 TokenTerm *term = thisDoc->nextTerm();
 cout << "term: "<< term->spelling() << endl;
 }
 }
 </PRE>
 */

9584

2c:\Lem\src\lemur-4.2\utility\include\BasicDocStream.hpp

#define MAXLINE 65536

 /// doc representation for BasicDocStream

 class BasicTokenDoc : public lemur::api::Document {
 public:
 BasicTokenDoc() {
 }
 BasicTokenDoc(ifstream *stream): docStr(stream) {
 }
 void startTermIteration() const;

 const char *getID() const { return id;}

 bool hasMore() const{ return (strcmp(curWord, "</DOC>") != 0);}

 const lemur::api::Term * nextTerm() const;

 void skipToEnd() const;
 friend class BasicDocStream;
 private:
 void readID();
 mutable char *curWord;
 mutable char buf1[20000];
 mutable char buf2[20000];
 char id[2000];
 ifstream *docStr;
 streampos startPos; // starting position of the terms in the file
 //replace static BasicTokenTerm t; with attribute
 mutable lemur::api::Term t;
 };

 /// A DocStream handler of a stream with the basic lemur format
 class BasicDocStream : public lemur::api::DocStream
 {
 public:
 BasicDocStream() {}
 BasicDocStream (const string &inputFile);

 virtual ~BasicDocStream() { delete ifs;}

 public:

 bool hasMore();

 void startDocIteration();

 lemur::api::Document *nextDoc();

 private:
 char file[1024];
 ifstream *ifs;
 char buf[2000];
 bool nextTokenRead;
 // replace static BasicTokenDoc doc; with attribute
 BasicTokenDoc doc;
 };

 class WeightedTokenDoc : public lemur::api::Document {
 public:
 WeightedTokenDoc() {
 }
 WeightedTokenDoc(ifstream *stream): docStr(stream) {
 }
 void startTermIteration() const;

9685

3c:\Lem\src\lemur-4.2\utility\include\BasicDocStream.hpp

 const char *getID() const { return id;}

 bool hasMore() const{ return (strcmp(curWord, "</DOC>") != 0);}

 const lemur::api::Term * nextTerm() const;

 void skipToEnd() const;
 friend class WeightedDocStream;
 private:
 void readID();
 mutable char *curWord;
 mutable double curWeight;
 mutable char buf1[20000];
 mutable char buf2[20000];
 char id[2000];
 ifstream *docStr;
 streampos startPos; // starting position of the terms in the file
 //replace static BasicTokenTerm t; with attribute
 mutable lemur::api::Term t;
 };

 /// A DocStream handler of a stream with the basic lemur format
 class WeightedDocStream : public lemur::api::DocStream
 {
 public:
 WeightedDocStream() {}
 WeightedDocStream (const string &inputFile);

 virtual ~WeightedDocStream() { delete ifs;}

 public:

 bool hasMore();

 void startDocIteration();

 lemur::api::Document *nextDoc();

 private:
 char file[1024];
 ifstream *ifs;
 char buf[2000];
 bool nextTokenRead;
 // replace static BasicTokenDoc doc; with attribute
 WeightedTokenDoc doc;
 };

 }
}
#endif

/*==
 * Copyright (c) 2001 Carnegie Mellon University. All Rights Reserved.
 *
 * Use of the Lemur Toolkit for Language Modeling and Information Retrieval
 * is subject to the terms of the software license set forth in the LICENSE
 * file included with this software, and also available at
 * http://www.lemurproject.org/license.html
 *
 *==
 */

#include <cstring>
#include <cctype>
#include <cassert>
#include "BasicDocStream.hpp"

9786

4c:\Lem\src\lemur-4.2\utility\include\BasicDocStream.hpp

void lemur::parse::BasicTokenDoc::startTermIteration() const
{
 // ensure the start position of the terms
 docStr->seekg(startPos);
 curWord = buf1;
 // peek one term
 *docStr >> curWord;
}

void lemur::parse::BasicTokenDoc::skipToEnd() const
{
 startTermIteration();
 while (hasMore()) {
 nextTerm();
 }
}

const lemur::api::Term * lemur::parse::BasicTokenDoc::nextTerm() const
{
 // static BasicTokenTerm t;
 t.spelling(curWord);
 if (curWord == buf1) {
 curWord = buf2;
 } else {
 curWord = buf1;
 }
 *docStr >> curWord;
 return &t;
}

void lemur::parse::BasicTokenDoc::readID()
{
 // get id
 *docStr >> id;
 int len= strlen(id);
 if (id[len-1]!='>') {
 throw lemur::api::Exception("BasicTokenDoc","ill-formatted doc id, > expected");
 }
 id[len-1]='\0';
 startPos = docStr->tellg(); // record the start position of terms
}

lemur::parse::BasicDocStream::BasicDocStream (const string &inputFile)
{
 strcpy(file, inputFile.c_str());
 ifs = new ifstream(file, ios::in);
 if (ifs->fail()) {
 throw lemur::api::Exception("BasicDocStream", "can't open BasicDocStream source file");
 }
}

bool lemur::parse::BasicDocStream::hasMore()
{
 bool moreDoc = false;
 if (!nextTokenRead) {
 moreDoc = *ifs >> buf;
 nextTokenRead = true;
 if (moreDoc && strcmp(buf, "<DOC")) {
 cerr << " actual token seen: "<< buf << endl;
 throw lemur::api::Exception("BasicDocStream", "begin doc marker expected");
 }
 }

 return moreDoc;

9887

5c:\Lem\src\lemur-4.2\utility\include\BasicDocStream.hpp

}

void lemur::parse::BasicDocStream::startDocIteration()
{
 ifs->close();
 ifs->open(file);
 ifs->seekg(0);
 ifs->clear();
 nextTokenRead =false;
}

lemur::api::Document *lemur::parse::BasicDocStream::nextDoc()
{
 // fails to initialize properly, preventing reuse of a
 // BasicDocStream (or opening more than one).
 // static BasicTokenDoc doc(ifs);
 // make it an instance attribute
 // static BasicTokenDoc doc;
 doc.docStr = ifs;
 doc.readID();
 nextTokenRead = false;
 return &doc;
}
//***********************
void lemur::parse::WeightedTokenDoc::startTermIteration() const
{
 // ensure the start position of the terms
 docStr->seekg(startPos);
 curWord = buf1;
 // peek one term
 *docStr >> curWord;
 // curWeight = 0;
 *docStr >> curWeight;
// cerr<<"curWord from startterminteration is "<<curWord<<" and curweight is "<<curWeight<

<endl;
}

void lemur::parse::WeightedTokenDoc::skipToEnd() const
{
 startTermIteration();
 while (hasMore()) {
 nextTerm();
 }
}

const lemur::api::Term * lemur::parse::WeightedTokenDoc::nextTerm() const
{
 // static WeightedTokenTerm t;
 t.spelling(curWord);
 t.weighting(curWeight);
 if (curWord == buf1) {
 curWord = buf2;
 } else {
 curWord = buf1;
 }
 *docStr >> curWord;
 //curWeight = 0;
 if (strcmp(curWord,"</DOC>"))
 *docStr >> curWeight;
 //cerr<<"curWord from nextterm is "<<curWord<<" and curweight is "<<curWeight<<endl;
 return &t;
}

void lemur::parse::WeightedTokenDoc::readID()
{
 // get id
 *docStr >> id;

9988

6c:\Lem\src\lemur-4.2\utility\include\BasicDocStream.hpp

 int len= strlen(id);
 if (id[len-1]!='>') {
 throw lemur::api::Exception("WeightedTokenDoc","ill-formatted doc id, > expected");
 }
 id[len-1]='\0';
 startPos = docStr->tellg(); // record the start position of terms
}

lemur::parse::WeightedDocStream::WeightedDocStream (const string &inputFile)
{
 strcpy(file, inputFile.c_str());
 ifs = new ifstream(file, ios::in);
 if (ifs->fail()) {
 throw lemur::api::Exception("WeightedDocStream", "can't open WeightedDocStream source file");
 }
}

bool lemur::parse::WeightedDocStream::hasMore()
{
 bool moreDoc = false;
 if (!nextTokenRead) {
 moreDoc = (*ifs >> buf);
 nextTokenRead = true;
 cerr << " actual token seen: "<< buf << endl;
 if (moreDoc && strcmp(buf, "<DOC")) {
 cerr << " actual token seen: "<< buf << endl;
 throw lemur::api::Exception("WeightedDocStream", "begin doc marker expected");
 }
 }

 return moreDoc;
}

void lemur::parse::WeightedDocStream::startDocIteration()
{
 ifs->close();
 ifs->open(file);
 ifs->seekg(0);
 ifs->clear();
 nextTokenRead =false;
}

lemur::api::Document *lemur::parse::WeightedDocStream::nextDoc()
{
 // fails to initialize properly, preventing reuse of a
 // BasicDocStream (or opening more than one).
 // static BasicTokenDoc doc(ifs);
 // make it an instance attribute
 // static BasicTokenDoc doc;
 doc.docStr = ifs;
 doc.readID();
 nextTokenRead = false;
 return &doc;
}

10089

1c:\Lem\src\lemur-4.2\app\src\RetEval.cpp

/*==
* Modified by Sompong Kittinaradorn
* Copyright (c) 2001 Carnegie Mellon University. All Rights Reserved.
*==

*/
#include "common_headers.hpp"
#include "IndexManager.hpp"
#include "BasicDocStream.hpp"
#include "RetMethodManager.hpp"
#include "ResultFile.hpp"
#include "TmpInvFPIndex.hpp"

using namespace lemur::api;

void GetAppParam()
{

RetrievalParameter::get();
// for rel model test.
SimpleKLParameter::get();

}

int AppMain(int argc, char *argv[]) {

Index *baseind, *ind;
bool isMyType = atoi(argv[2]);
bool isWeightedDoc = atoi(argv[3]);
string mode = argv[4], indexpath;

if (mode=="-w")
 indexpath = "D:\\TrecDatabase\\workspace\\";

else if (mode=="-s")
 indexpath = "D:\\TrecD4\\FT\\data_sentencemode\\";

else indexpath = mode;
cerr<<"Indexpath:"<<indexpath<<endl;
if (isMyType)
cerr<<"Evaluating termset ad hoc retrieval"<<endl;
else cerr<<"Evaluating single term retrieval"<<endl;

try {
baseind = IndexManager::openIndex(RetrievalParameter::databaseIndex);

}
catch (Exception &ex) {

ex.writeMessage();
throw Exception("RelEval", "Can't open index, check parameter index");

}
DocStream *qryStream;
try {

if (isWeightedDoc)
qryStream = new lemur::parse::WeightedDocStream(RetrievalParameter::textQuerySet);

else
qryStream = new lemur::parse::BasicDocStream(RetrievalParameter::textQuerySet);

}
catch (Exception &ex) {

ex.writeMessage(cerr);
throw Exception("RetEval",

"Can't open query file, check parameter textQuery");
}

ofstream result(RetrievalParameter::resultFile.c_str());

ResultFile resFile(RetrievalParameter::TRECresultFileFormat);

ifstream *workSetStr;
ResultFile *docPool;
qryStream->startDocIteration();
TextQuery *q;

10190

2c:\Lem\src\lemur-4.2\app\src\RetEval.cpp

IndexedRealVector workSetRes;
bool ignoreWeights = true;
bool doingRelModel = (RetrievalParameter::fbDocCount > 0 &&

RetrievalParameter::retModel == "kl" &&
(SimpleKLParameter::qryPrm.fbMethod ==
SimpleKLParameter::RM1 ||
SimpleKLParameter::qryPrm.fbMethod ==
SimpleKLParameter::RM2));

while (qryStream->hasMore()) {
Document *d = qryStream->nextDoc();
//cerr<<"to go "<<qryStream->hasMore()<<endl;;

q = new TextQuery(*d);
cout << "query : "<< q->id() << endl;
if (!isMyType)

ind = baseind;
else
{

// need input for indexname
cerr<<"latest version"<<endl;
//string indexpath =
string tmpindexname = indexpath + q->id() + ".tmp";
cout<<RetrievalParameter::workSetFile<<endl;

try {
ind = IndexManager::openIndex(tmpindexname);

}
catch (Exception &ex) {
ex.writeMessage();
throw Exception("RelEval", "Can't open index, check parameter index");

}
lemur::index::TmpInvFPIndex* tmpind = dynamic_cast<lemur::index::TmpInvFPIndex*>

(ind);

//lemur::index::TmpInvFPIndex* tmpind = new lemur::index::TmpInvFPIndex
(tmpindexname);

tmpind->setBaseIndex((lemur::index::InvFPIndex*)baseind);
ind = tmpind;

}

resFile.openForWrite(result, *ind);

if (RetrievalParameter::useWorkingSet) {
workSetStr = new ifstream(RetrievalParameter::workSetFile.c_str(), ios::in);
if (workSetStr->fail()) {

throw Exception("RetEval", "can't open working set file");
}
docPool = new ResultFile(false); // working set is always simple format
docPool->openForRead(*workSetStr, *ind);

}
lemur::retrieval::ArrayAccumulator accumulator(ind->docCount());
IndexedRealVector results(ind->docCount());
RetrievalMethod *model = NULL;
model = RetMethodManager::createModel(ind, &accumulator,

RetrievalParameter::retModel);
QueryRep * qr = model->computeQueryRep(*q);
PseudoFBDocs *workSet;

if (RetrievalParameter::useWorkingSet) {
docPool->getResult(q->id(), workSetRes);
workSet = new PseudoFBDocs(workSetRes, -1); // -1 means using all docs
model->scoreDocSet(*qr,*workSet,results);

} else {
model->scoreCollection(*qr, results);

}
results.Sort();

10291

3c:\Lem\src\lemur-4.2\app\src\RetEval.cpp

// prune to number of feedback docs.
if (RetrievalParameter::fbDocCount > 0 &&

results.size() > RetrievalParameter::fbDocCount)
results.erase(results.begin() + RetrievalParameter::fbDocCount,

results.end());
if (doingRelModel) {

if (SimpleKLParameter::qryPrm.adjScoreMethod !=
SimpleKLParameter::QUERYLIKELIHOOD) {

throw Exception("RetEval:FB",
"Relevance models require query likelihood scores.");

}
ignoreWeights = false;
results.LogToPosterior();

}
if (RetrievalParameter::retModel == "indri")

ignoreWeights = false;
if (RetrievalParameter::fbDocCount > 0) {

PseudoFBDocs *topDoc = new PseudoFBDocs(results,
RetrievalParameter::fbDocCount,
ignoreWeights);

model->updateQuery(*qr, *topDoc);

if (RetrievalParameter::useWorkingSet) {
model->scoreDocSet(*qr,*workSet,results);

} else {
model->scoreCollection(*qr, results);

}
results.Sort();
delete topDoc;

}
resFile.writeResults(q->id(), &results, RetrievalParameter::resultCount);

if (RetrievalParameter::useWorkingSet) {
delete workSet;

}
delete qr;
delete q;
if (RetrievalParameter::useWorkingSet) {

delete docPool;
delete workSetStr;

}
delete model;
if (isMyType)
delete ind;

}
result.close();
delete qryStream;

delete baseind;
return 0;

}

10392

 93

BIOGRAPHY

Personal Information:
Name (English): Sompong Kittinaradorn

Name (Thai): นาย สมพงษ กิตตินราดร
Birth Date: 20 April 1956
Address: 96/3, Moo 12, Manthana 2, Srinakharin Rd., Tambon Bangkaew, Bangplee
District, Samut Prakarn Province, 10540, phone#: 08-9029-2968

Work Experience:
Motif Technology Public Company Limited (April, 2007 – present)

1. Senior vice president for project management, from April 2007

Nation Multimedia Group Plc (14, Oct, 1980 – 15, Jan, 2007):

2. Senior vice president, Central Office – Executive, from Jan 2002- Jan 2007
3. Senior editorial staff in charge of IT support for all editorials,
4. Sub-editor, The Nation
5. General manager, Nation On-line
6. Editor, Nation On-line, Set Daily
7. Political news editor, The Nation’s editorial
8. Reporter, The Nation’s editorial
9. Rewriter, The Nation’s editorial

Sankei Shimbun, Bangkok bureau(Jan, 1980-Sept, 1980)
10. Assistant Foreign Correspondent, Bangkok Bureau of Japanese daily Sankei

Shimbun.

Education & Training:
1. Bachelor degree (second honorary degree), Faculty of Communications Arts,

Chulalongkorn University, majored in journalism, graduated in June, 1980
2. Fulbright professional scholarship, training at Center for Foreign Journalists,

USA, three-month on-the-job internship at Bermont Enterprise, a community
newspaper based in Texas, of Hearst Corp.

3. High school graduation in science from Triam Udomsuksa School (Phyathai).

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Content
	Chapter I Introduction
	1.1. Background and Importance
	1.2. Research Objectives
	1.3. Research Scope
	1.4. Basic Agreement
	1.5. Research Limitations
	1.6. Definitions
	1.7. Expected Benefits
	1.8. Research Methods
	1.9. Research Presentation Steps

	Chapter II Related Works and Theories
	2.1. Capturing Term Relations
	2.2. Measuring Retrieval Performances

	Chapter III Research Methods
	3.1. Overview of Research Methods
	3.2. Approach Formulation
	3.3. Experimentation Objective
	3.4. Hypothesis
	3.5. Experimental Setup
	3.6. Experimentation Steps

	Chapter IV Experimental Results and Evaluation
	4.1. Evaluation of Experimental Results
	4.2. Comparison with Existing Standards
	4.3. Result Analysis

	Chapter V Conclusion and Comments
	5.1. Conclusion
	5.2. Comments
	5.3. Recommendations

	References
	Appendix
	Vita

