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ABSTRACT (THAI) 

 ณัฏฐา เอียดสี : การศึกษาเปรียบเทียบไมโครไบโอตาในลำไส้ของผู้สูงวัยสุขภาพดีและผู้สูงวัยท่ีเป็นมะเร็ง
ลำไส้ใหญ่และทวารหนัก. ( A Comparative Study of Gut Microbiota in the Healthy Elderly and 
the Elderly with Colorectal Cancer) อ.ท่ีปรึกษาหลัก : รศ. ดร. พญ.กนิษฐา ภัทรกุล, อ.ท่ีปรึกษาร่วม : 
รศ. ดร.นราพร สมบูรณ์นะ 

  
          มะเร็งลำไส้ใหญ่และทวารหนักจัดเป็นหน่ึงในมะเร็งท่ีพบได้บ่อยเป็นอันดับสามของประชากรท่ัวโลก  

การเสียสมดุลของจุลินทรีย์ในลำไส้มีความสัมพันธ์กับการเกิดมะเร็งลำไส้ใหญ่และทวารหนัก  การศึกษาน้ีมีวัตถุประสงค์
เพื่อเปรียบเทียบจุลินทรีย์ในลำไส้ของคนไทยอายุ 50 ปีขึ้นไป จำนวน 80 คน ระหว่างกลุ่มโรคมะเร็งลำไส้ใหญ่และทวาร
หนัก จำนวน 25 คน, กลุ่มมีติ่งเนื้อลำไส้ใหญ่ จำนวน 33 คน และกลุ่มควบคุม จำนวน 22 คน โดยทำการวิเคราะห์ลำดับ
นิวคลีโอไทด์บริเวณยีน 16S rRNA ท้ังในตัวอย่างชิ้นเนื้อและอุจจาระ และเพื่อหาปริมาณสุทธิของแบคทีเรียท่ีเกี่ยวข้องกับ
มะเร็งลำไส้ใหญ่ จำนวน 6 สายพันธุ์ ในตัวอย่างทั้งสองชนิด ได้แก่ Fusobacterium nucleatum, Parvimonas micra, 
Streptococcus gallolyticus, Blautia spp., Fusicatenibacter saccharivorans และแบคทีเรียท่ีมียีนสร้างสารพิษ 
colibactin ด้วยเทคนิคปฏิกิริยาลูกโซ่พอลีเมอเรสแบบเรียลไทม์ รวมท้ังแบคทีเรียเหล่าน้ียังถูกประเมินความสามารถใน
ตรวจหาโรคมะเร็งลำไส้ใหญ่และติ่งเนื้อลำไส้ใหญ่ ผลการศึกษาพบว่าจุลินทรีย์ในอุจจาระสามารถแสดงให้เห็นถึงจุลินทรีย์
ในลำไส้ท่ีอาศัยอยู่บนชั้นเยื่อเมือกได้เพียงบางส่วน และพบความแตกต่างอย่างมีนัยสำคัญของจุลินทรีย์บนเยื่อเมือก
ระหว่างกลุ่มมะเร็งลำไส้ใหญ่และกลุ่มควบคุม แต่ไม่พบความแตกต่างในกลุ่มติ่งเนื้อลำไส้ใหญ่เมื่อเทียบกับกลุ่มควบคุม ซ่ึง
พบการเพิ่มขึ้นอย่างเรียงตามลำดับจากติ่งเน้ือลำไส้ใหญ่และมะเร็งลำไส้ใหญ่ของแบคทีเรียจี นัส  Bacteroides 
และ Parabacteroides ในขณะท่ีแบคทีเรียกลุ่มท่ีสร้างสาร butyrate อย่างจีนัส Faecalibacterium ลดลงอย่างมี
นัยสำคัญในกลุ่มมะเร็งลำไส้ใหญ่ นอกจากน้ีขนาดเอฟเฟกต์การวิเคราะห์จำแนกเชิงเส้น (LEfSe) ระบุการเพิ่มขึ้นอย่างมี
นัยสำคัญของแบคทีเรียก่อโรคแบบฉวยโอกาสอย่าง Erysipelatoclostridium ramosum ท้ังในตัวอย่างท้ังสองชนิดของ
กลุ่มมะเร็งลำไส้ใหญ่ แสดงให้เห็นว่าการเปล่ียนแปลงของจุลินทรีย์ในลำไส้อาจมีส่วนเกี่ยวข้องกับการเกิดมะเร็งลำไส้ใหญ่
และทวารหนัก นอกจากน้ีผลการศึกษาปริมาณของแบคทีเรียพบว่า F. nucleatum และ P. micra เพิ่มขึ้นอย่างมี
นัยสำคัญในตัวอย่างทั้งสองชนิดของกลุ่มมะเร็งลำไส้ใหญ่ อีกท้ังการทดสอบแบคทีเรียท้ังสองสายพันธุ์ในอุจจาระร่วมกับ
การตรวจหาเลือดแฝงในอุจจาระ (FIT) ในการตรวจหามะเร็งลำไส้ใหญ่มีความไวร้อยละ 93.8 และความจำเพาะร้อยละ 
95.2 ในขณะท่ีการทดสอบแบคทีเรียห้าสายพันธุ์ (ยกเว้น S. gallolyticus) ร่วมกับ FIT สามารถตรวจหาติ่งเน้ือลำไส้ใหญ่
ด้วยความไวร้อยละ 83.3 และความจำเพาะร้อยละ 64.7 การศึกษาน้ีชี้ให้เห็นว่า E. ramosum น่าจะเป็นตัวแทนของตัว
บ่งชี้ทางชีวภาพท่ีจำเพาะต่อคนไทยและปริมาณของแบคทีเรียท่ีเกี่ยวข้องกับมะเร็งลำไส้ใหญ่ในอุจจาระอาจจะสามารถ
เสริมประสิทธิภาพในการตรวจหามะเร็งลำไส้ใหญ่และติ่งเนื้อลำไส้ใหญ่ให้กับชุดตรวจคัดกรองโรคในปัจจุบัน อย่างไรก็ตาม
ตัวแทนตัวบ่งชี้ทางชีวภาพเหล่าน้ียังคงต้องการการทดสอบเพ่ิมเติมในกลุ่มประชากรท่ีใหญ่ขึ้น 
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ABSTRACT (ENGLISH) 

# # 6187128920 : MAJOR MEDICAL MICROBIOLOGY 
KEYWORD: Gut microbiota, Colorectal cancer 
 Nutta Iadsee : A Comparative Study of Gut Microbiota in the Healthy Elderly and the Elderly with 

Colorectal Cancer. Advisor: Assoc. Prof. KANITHA PATARAKUL, M.D. Ph.D. Co-advisor: Assoc. Prof. 
NARAPORN SOMBOONNA, Ph.D. 

  
Colorectal cancer is one of the third most common cancer worldwide. Dysbiosis of the human gut 

microbiota has been linked to sporadic colorectal cancer (CRC). This study aimed to compare the gut 
microbiota profile of a total of 80 Thai volunteers, who were above 50 years old, among 25 CRC patients, 33 
adenoma patients, and 22 healthy controls (HC). The 16S rRNA sequencing was utilized to characterize the gut 
microbiome in both mucosal tissue and stool samples. Moreover, absolute quantitative PCR (qPCR) assay was 
conducted to quantify six CRC-associated bacteria including Fusobacterium nucleatum (FN), Parvimonas 
micra (PM), colibactin positive strains (EC), Streptococcus gallolyticus (SG), Blautia spp. (Bla) 
and Fusicatenibacter saccharivorans (FS), in both sample types, and these bacteria were evaluated the 
performance in CRC and adenoma detections. The results suggested that the fecal microbiota only partially 
reflected gut microbiota on the mucus layer. The mucosal microbiota of the CRC patients and HC group 
differed significantly but no difference between adenoma and HC groups was observed. The stepwise increase 
of  Bacteroides and Parabacteroides according to adenomas-carcinomas sequence were found whereas the 
butyrate-producing genus Faecalibacterium was significantly less abundant in CRC patients. Linear discriminant 
analysis effect size (LEfSe) showed a higher level of Erysipelatoclostridium ramosum, an opportunistic 
pathogen, in both sample types of CRC patients. The findings indicated the imbalance of gut microorganisms 
might be involved in CRC tumorigenesis. In addition, the qPCR assays revealed FN and PM were significantly 
overrepresented in both sample types of CRC subjects. The combined test of fecal FN and PM with qualitative 
fecal immunochemical test (FIT) could predict CRC with a sensitivity of 93.8% and a specificity of 95.2%. In a 
combined test of five fecal bacteria without SG together with the FIT, adenoma was detected with a sensitivity 
of 83.3% and a specificity of 64.7%. These results indicated E. ramosum may serve as a population-specific 
biomarker for CRC screening and the quantity of fecal bacteria could complement the current FIT in CRC and 
adenoma screening. Larger sample size is required for the validation of these candidate biomarkers in CRC and 
adenoma detections. 
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CHAPTER I  
INTRODUCTION 

 Colorectal cancer (CRC) is the third most common cancer and the third 
leading cause of death worldwide (1). Based on the National Cancer Institute of 
Thailand, the incidence of CRC was the third of all Thai cancer patients. CRC was 
ranked the second in male and the second in female cancer patients (2). Moreover, 
the incidence of CRC tends to increase continually leading to one of the major 
health problems in Thailand. CRC is associated with several risk factors including age, 
genetic factors, lifestyle, and environmental factors, such as high red meat or high-fat 
diet consumption, high alcohol consumption, smoking, inflammatory bowel disease 
(IBD), and intestinal polyps (3). Adenomatous polyp which is generally considered to 
be CRC precursors is necessarily identified for CRC prevention (4). Moreover, people 
who are above 50 years old and high-risk subjects have been recommended to 
undergo the CRC screening by colonoscopy (5).  
 Gut microbiota is a complex and dynamic microbial ecosystem harboring in 
human intestine. These microbes are known to play a crucial role in maintenance of 
gut homeostasis. There is growing evidence suggesting that the imbalance of gut 
microbiota, also called microbial dysbiosis, is related to many diseases including 
gastrointestinal cancers (6). CRC patients have different composition of gut microbiota 
from healthy people in term of diversity and richness, i.e., decrease of beneficial 
bacteria and increase of pathogenic bacteria (7). In previous in vivo study, the transfer 
of commensal pathogens from tumor-bearing mice to recipient mice showed the 
promoting effects of gut microbiota on tumorigenesis (8). The CRC-related molecular 
mechanisms of certain intestinal microorganisms in the experimental models have 
been documented such as DNA damage (9), chronic inflammation (10), and 
production of carcinogenic metabolites (11). However, in human study, there was no 
consensus of dysbiotic microbiota composition in CRC patients (12, 13). The 
inconsistency was caused by different individual parameters and determining 
methodological used, such as participant criteria, sampling differences, age of 
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subjects, a number of samples, geographical location, and molecular approach (12, 
13). Furthermore, microbiota at the colon mucosa (mucosal microbiota) and in the 
feces (luminal microbiota) are different because fecal and mucosal microbiota 
profiling were shown to be partially correlated (14). Hence, studying CRC-associated 
dysbiosis of both sample types is essential to provide comprehensive information on 
the colon bacterial community. Several previous studies reported the feasibility of 
applying CRC-associated microbes in feces as biological markers for CRC screening 
tools. 
 So far there has been no study of microbiota changes or microorganism 
diversity associated with CRC in the Thai population, especially in the elderly who 
are the high-risk group. Therefore, the major objective of this study is to compare the 
gut microbiota in both tissue and fecal samples among the healthy elderly, elderly 
with adenomatous polyp, and elderly with colorectal cancer. The minor objective is 
to validate the CRC-associated bacteria in both sample types of the same population 
via quantitative PCR (qPCR) technique and to identify the putative candidate 
biomarkers for CRC and adenomas detection in Thai population. 
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CHAPTER II  
OBJECTIVE 

2.1. Hypothesis 
The gut microbiota of the Thai healthy elderly is different from the Thai elderly with 

colorectal cancer. 

2.2. Objective 
To compare the gut microbiota between the Thai healthy elderly and the Thai 

elderly with colorectal cancer  

2.3. Conceptual Framework 
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CHAPTER III  
REVIEW OF RELATED LITERATURE 

3.1. Colorectal Cancer (CRC) 
 Colorectal cancer (CRC) is the third most common malignancy and the 
second leading mortality worldwide based on the global cancer burden estimated by 
the International Agency for Research on Cancer. Approximately 1.9 million new 
cases and 935,000 deaths of CRC were reported in 2020 (1). In Thailand, the 
incidence of CRC was ranked the third in male (11.4% of total cancer cases) and the 
second in female cancer patients (10.7% of total cancer cases) (Figure  1) (2). 
Moreover, CRC patients tend to increase continually leading to one of the major 
public health issues in Thailand. 
 CRC occurs in the colon or rectum. Anatomy of the colon, a part of the 
digestive system, consists of two major parts: proximal colon and distal colon. The 
proximal colon contains cecum, ascending, hepatic flexure, and transverse colon. 
The distal colon includes splenic flexure, descending colon, followed by sigmoid 
colon and rectum. The function of large intestine is to remove water and nutrients 
from food materials. The undigested solid materials, referred as stool, move through 
the bowel, stored in the rectum, and eliminated from the body through the anus (1).  

 
Figure  1 The estimated incidence of all Thai cancer patients in 2020 
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A) the incidence rate of cancer in male; B) the incidence rate of cancer in female. 
The data was published by GLOBOCAN 2020 (2) 
 Colonic adenoma are widely considered to be precancerous lesions in almost 
all sporadic CRCs, and found in up to 50% of persons above 50 years of age 
undergoing colonoscopy (15). The tenet of adenoma-carcinoma sequence begins 
from normal colonic mucosa to abnormal cell proliferation leading to the 
development of adenomatous polyp, and those with more advanced histopathology 
features to eventually adenocarcinoma (Figure 2) (7, 15). Colorectal polyps are 
nonmalignant growth that occurs in the colorectal mucosa. Although not all polyps 
are adenomas and fewer than 10% of polyps slowly progress to cancer, early CRC 
screening and removal of polyps by colonoscopy are recommended, especially in 
the elderly individuals (16). 
 Approximately 75% of sporadic CRCs, which occur spontaneously without a 
family history of CRC, are the major proportion of CRC cases. The remaining 25% 
have a family history of CRC, and probably are a result of the combination of genetic 
and environmental factors. However, only 5-6% of hereditary CRC cases are due to 
inherited mutation in major CRC genes (17, 18). This information reflects the 
considerable influences of lifestyle and environmental factors in CRC carcinogenesis.  

Figure  2 Adenoma-carcinoma sequence  
(3). 

 
Apart from hereditary factors, several risk factors associated with CRC have 

been implicated including age; sex; ethnicity; medical history such as Inflammatory 
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Bowel Disease (IBD) and type 2 diabetes; unhealthy dietary habits such as eating red 
meat, processed meat, and fat; obesity; low physical activity; tobacco smoking; and 
alcohol consumption (2, 3) (Figure 3). In addition, accumulating studies reported the 
role of colonic bacteria in the CRC development (Table1). 

 
3.2. CRC screening tests 
 Owing to its slow advancement from asymptomatic precancerous lesion i.e. 
adenomatous polyp to be a malignant tumor, the CRC screening strategies for early 
detection have been established to reduce the CRC mortality or the burden of the 
disease (19). The ideal screening test should be efficient with high performance, safe, 
convenient, accessible, and cost-effective (20). Current CRC screening approaches 
include invasive tests and non-invasive tests. 
 Invasive tests consist of flexible sigmoidoscopy and colonoscopy, which are 
accepted to be the gold standard methods for CRC screening procedure. Two 
invasive tools allow direct visualization and removal of the premalignant polyp to 
obtain definite pathological result (21). However, these methods require general 
anesthesia and prior bowel preparation step and may cause post-procedural 
complications (22). 
 Noninvasive tests are divided into blood-based test, stool-based tests, and 
radiographic examinations. The newly emerged blood test (Epi proColon ®) for cancer 
screening is used for detection of mutated methylated septin9 DNA from patient 
whole blood specimens using qualitative polymerase chain reaction (PCR) (19). 
Methylated SEPT9 has been linked to the incidence of CRC (23). In terms of stool-
based tests, the concept of current available tools is to detect occult blood or 
shredded cell debris from the lesion (24). Those tests compose of the guaiac-based 
fecal occult blood test (gFOBT), fecal immunochemical test (FIT), and the fecal DNA 
testing (Cologuard®). Moreover, the radiologic tests including double contrast barium 
enema, capsule endoscopy, and computed tomographic colonography (CTC) play 
roles in radiographic visualization and identification of the colonic dysplasia (19). 
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However, CTC approach has some disadvantages such as high cost, absence of 
standardized method, requirement of bowel preparation, poor performance of 
finding flat or tiny polyp, and the inaccessibility to biopsy (25). 

 
3.3. Gut microbiota in health 
 The term gut microbiome is used for the collective bacterial genomes, 
outnumbering the human genome by 150-fold (26). Although individuals have 
different compositions of gut microbiota acting like a fingerprint, three phyla are 
predominant including Firmicutes (30-50%), Bacteroidetes (20-40%), and 
Actinobacteria (1-10%) (27). The major proportion of bacterial population is strict 
anaerobes including Bacteroides, Eubacterium, Bifidobacterium, Fusobacterium, 
Peptostreptococcus, and the minority is facultative anaerobes constituting 
Enterobacter, Escherichia, and Lactobacillus (28). Various and complex microbial 
communities naturally inhabiting in human large intestine consist of approximately 
100 trillion bacterial cells, which are estimated to be tenfold more than human cells, 
along with fungi, archaea, and viruses. Intestinal microorganisms exist and co-evolve 
as a mutualistic relationship in humans. Intestinal bacteria residing in a colonic niche 
play a crucial role in maintaining gut homeostasis by uptake of indigestible 
carbohydrates, production of vitamin B and K, beneficial fermentation end products 
such as short chain fatty acids (SCFAs), maturation of intestinal immune system, and 
maintaining the mucosal barrier function (29). Either extrinsic factors such as dietary 
intake, feeding habits, antibiotic treatment, and the maternal microbiota, or intrinsic 
factors can affect the intestinal ecosystem in term of species richness and evenness. 
Moreover, increasing reports showed that the disruptive changes in the intestinal 
microbiota are associated with many diseases including CRC (26, 29, 30).  
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Table  1 The evidence of a relationship between intestinal bacteria and colorectal 
carcinogenesis 

Observation Ref. 

Germ-free (GF) or genetic deficient animal models reduced the 
colonic tumor burden compared with conventional or Specific 
Pathogen-Free (SPF) conditions. 

(31-34) 

Conventionalized GF mice with intestinal microorganisms from 
tumor-bearing mice significantly enriched the colonic tumors 
compared with those received from control mice. 

(8) 

Antibiotics treated mice prior to chemical induced treatment had 
lower number of tumors compared with those of untreated mice. 

(8, 35) 

 

Figure  3 The risk factors related to the development of CRC  
(modified from a previous study by Nistal et al. 2015 (6)) 

 
3.4. Gut microbiota in CRC 
 The host physiology, intestinal microbiota, and dietary factor are crucial for 
the balanced microbial ecosystem. A shift in any of these factors might turn a state 
of homeostasis into microbial dysbiosis, which is associated with CRC tumorigenesis 
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(36). Numerous studies reported the alteration of microbial composition in CRC 
patients and healthy control (Table 2). Several studies showed lower bacterial 
diversity in fecal samples and biopsy tissues of CRC patients compared with normal 
individuals (37, 38). In addition, microbial diversity and richness was higher in 
adenoma mucosa than that in normal mucosa (39, 40). There is a dynamic change of 
intestinal microbiota across different stages of tumor. However, most studies were 
cross-sectional, i.e., specimens were collected at a single time point, therefore the 
microbial changes only indicate disease association but cannot firmly be established 
as the etiology of CRC carcinogenesis. 
 

3.4.1. Intestinal microorganisms in fecal samples of CRC patients 
 Four major phyla of fecal bacteria consisting of Firmicutes, Bacteroidetes, 
Actinobacteria, and Proteobacteria were recognized in both CRC patients and non-
CRC volunteers. Up to 90% of bacterial population were dominated by Firmicutes 
and Bacteroidetes (41, 42).  
 Under the phylum Firmicutes, a reduction of Roseburia, Faecalibacterium, 
and Eubacterium, and outnumber of Streptococcus and Enterococcus were shown in 
fecal specimens of cancer patients compared with the noncancer group (14, 43). At 
species level, the abundance of Lachnospira pectinoschiza, Lachnospira bovis, 
Pseudobutyrivibrio ruminus, Ruminococcus obeum and Ruminococcus albus was 
lower in the stool samples of cancer patients (42). Due to the decline of bacterial 
members belonging to Firmicutes, which has the capability of SCFA production, fecal 
butyrate in CRC stool samples was lower than that in healthy individuals (42). 
Furthermore, the genus Lactobacillus did not alter in fecal samples of the cancer 
group (43-45).  
 For the phylum Bacteroidetes, the genus Prevotella and Porphyromonas in 
fecal samples of the cancer group were higher than those in healthy donors (42, 43). 
However, the inconsistent results were found in Bacteroides. Some studies reported 
higher level of Bacteroides in the cancer group (41, 44), whereas another reported 
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lower level (43). Moreover, at the species level of Bacteroides, B. fragilis was 
significantly higher in fecal samples of the CRC group, but B. uniformis and B. 
vulgatus were lower in the cancer group compared with controls (43, 45). 
 Among other minor phyla, Bifidobacterium, one of Actinobacteria, revealed 
inconsistent results. Some studies showed increased level of the bacteria in fecal 
samples of the CRC group (43), whereas other studies showed no alteration between 
groups (44, 45). The increased levels of genus Fusobacterium belonging to 
Fusobacteria and Escherichia belonging to Proteobacteria were shown in CRC stool 
samples. 
 

3.4.2. Intestinal microorganisms in tissue samples of CRC patients 
 To study the mucosal-associated microbiome, a comparison between lesion 
tissues from CRC patients and adjacent normal tissues from the same cancer patients 
or normal tissues from healthy volunteers was performed. A previous study showed 
that the mucosal microbiome was predominated with approximately 60% of phylum 
Proteobacterium in non-cancer individuals (46). Another study reported the major 
percentage of phyla Firmicutes, Bacteroidetes and Proteobacteria in the healthy 
group (47). In contrast to mucosal-associated microbiota, these results indicated that 
fecal microbiota incompletely represents the ecosystem of intestinal bacteria on the 
mucosa layer. 
 Although the genera Fusobacterium and Escherichia were the minor phyla of 
fecal microbiota (41, 42), mucosal microbiota in both genera were significantly higher 
in lesional tissues than non-lesional tissues (46-48). 
 Mucosal microbiota belonging to Firmicutes and Actinobacteria was low in 
CRC groups compared with healthy donors (46, 48). The reduction of the family 
Ruminococcaceae and Lachnospiraceae was found in the CRC groups (43, 47). No 
difference in the genus Lactobacillus was observed between CRC and control groups 
(44). 
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 Under phylum Bacteroidetes, some studies reported that the CRC group had 
increased level of genus Bacteroides (14, 46), but another showed low level in CRC 
patients compared with healthy volunteers (47). 
 Taken together, CRC-associated microbial dysbiosis in stool and tissue 
samples reported dissimilar results (Table 2). Moreover, the gut microbiota alteration 
in CRC patients has not yet been elucidated and remains to be explored. 
 
Table  2 Bacterial enrichment in CRC patients in different geographical location 

Study Location 
Sample 

type 
Bacterial enrichment in CRC patients 

Zeller et 
al., 2014 

(49) 

France/ 
Denmark

/ 
Spain/ 

Germany 

Tissue 
Fusobacterium nucleatum, Bacteroides. 
fragilis 

Feces 

F. nucleatum, Peptostreptococcus 
stomatis, Porphyromonas 
asaccharolytica, B. fragilis 
Clostridium symbiosum 

Zackular et 
al., 2014 

(50) 

USA/ 
Canada 

Feces 
Fusobacterium, Porphyromonas, 
Lachnospiraceae, Enterobacteriaceae 

Wu et al., 
2013 (41) 

China Feces 
Bacteroides, Campylobacter, 
Fusobacterium  

Weir et al., 
2013 (42) 

USA Feces 
Acidaminobacter, 
Phascolarctobacterium, Citrobacter 
farmer, Akkermansia muciniphila 

Ahn et al., 
2013 (37) 

USA Feces 
Fusobacterium, Porphyromonas, 
Atobium  

Wang et al., 
2012 (43) 

China Feces 
Peptostreptococcus, Enterococcus, 
Streptococcus, Escherichia/Shigella, 
Klebsiella 
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Study Location 
Sample 

type 
Bacterial enrichment in CRC patients 

Flemer et 
al., 2017 

(14) 
Ireland 

Tissue 

Bacteroides, Roseburia, Ruminococcus, 
Oscillibacter, Porphyromonas, 
Peptostreptococcus, Parvimonas, 
Fusobacterium  

Feces 
Parvimonas, Anaerococcus, 
Streptococcus, Fusobacterium 

Baxter et al, 
2016 (51) 

USA/ 
Canada 

Feces 
F. nucleatum, P. asaccharolytica, P. 
stomatis, P. micra 

Mira-
Pascual et 
al, 2016 

(52) 

Spain Tissue 

Escherichia-Shigella, Streptococcus  

Nakatsu et 
al., 2015 

(53) 
HongKong Tissue 

B. fragilis, Gemella, Parvimonas, 
Peptostreptococcus, Granulicatella 

Kasai et al., 
2015 (45) 

Japan Feces 

Actinomyces odontolyticus, Clostridium 
nexile, Veillonella dispar, Haemophilus 
parainfluenzae, F. varium, P. stercorea, 
S. gordonii B. fragilis 

Sobhani et 
al., 2011 

(44) 
France Feces 

Bacteroides/Prevotella 

Gao Z. et 
al., 2015 

(46) 
China Tissue 

Lactococcus, Fusobacterium 

Burns et al., 
2015 (47) 

USA Tissue 
Fusobacterium, Providencia 
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Study Location 
Sample 

type 
Bacterial enrichment in CRC patients 

Gao R. et 
al., 2017 

(48) 
China Tissue 

Fusobacterium, Prevotella, 
Alloprevotella, Porphyromonas, 
Peptostreptococcus, Parvimonas 

 
3.5. Potential role of gut microbiota in CRC tumorigenesis 
 Intestinal microbiota has been studied in the experimental model to find out 
the possible underlying mechanisms related to CRC initiation and progression. 
Several of those empirical mechanisms include (i) attachment, invasion, and 
translocation. (ii) the induction of chronic inflammation, and (iii) production of 
carcinogenic metabolites such as extracellular superoxide, and genotoxins. The 
present reports on the relationship of these CRC-associated bacteria are described as 
follows. 
 

Fusobacterium nucleatum 
 F. nucleatum is a gram-negative, rod shaped, and strict anaerobe. In healthy 
state, it colonizes in oral cavity and intestinal tract. Besides CRC, it also involves in 
periodontal disease and pregnancy complications (54). Various studies reported F. 
nucleatum was overabundant in both tissue and fecal samples of CRC patients (14, 
37, 46-51). The experimental study by Rubinstein et al. (2016) revealed that its key 
virulence factor is the cell surface protein, FadA. The molecule is known to adhere 
to extracellular domain of E-cadherin and invade the host mucosa. This event 

promotes pro-oncogenic and inflammatory pathways via Wnt/β-catenin signaling 
(55). Furthermore, F. nucleatum can inhibit host mucosal immunity that favor the 
tumor growth within the colon mucosa (56-58). However, CRC progression as a 
consequence of the bacterium is still controversial because of the conflicting 
evidence from experimental studies. The pathogen does not always stimulate cancer 
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formation in vivo (59), but highly induces cell proliferation in all cancer cell lines 
tested in vitro (55). 

 
Enterotoxigenic Bacteroides fragilis 

 B. fragilis is an obligate anaerobe, gram-negative, rod-shaped bacterium. This 
bacterium generally resides in human gastrointestinal tract as a commensal organism 
and predominates in gut microbiota. A nontoxigenic B. fragilis conferred tumor 
inhibitory effects by production of polysaccharide A (PSA) that mediated Toll-like 
receptor 2 (TLR2) signaling in a mouse model of colitis-associated CRC (60). However, 
enterotoxigenic Bacteroides fragilis strain (ETBF) was shown to be related to CRC (61). 
The ETBF produces a metalloprotease toxin, named Fragilysin, or B. fragilis 
enterotoxin (BFT) to cleave E-cadherin, the extracellular matrix of the adherens 
junctions, contributing to morphologic alteration in colonic epithelial cells (CEC) (11). 
This cleavage results in the higher permeability of gut barrier and the activation of 

Wnt/β-catenin signaling pathway leading to hyperproliferation of CEC (62). Moreover, 

the toxin can trigger inflammatory cascades i.e., Interleukin17 (IL-17), NF-κB signaling, 
and signal transducer and activator of transcription3 (STAT3), leading to mucosal 
inflammation and tumor initiation and progression of CEC (63). Nevertheless, the 
pathogenicity of B. fragilis relies on the certain expression of virulence factors of 
pathogenicity islands (64). These observations support the association between ETBF 
and colorectal carcinogenesis. 

 
Colibactin producing Escherichia coli 

 The association of E .coli strains and CRC are found in strains that harbor a 
polyketide synthase (pks) island (65). The pks positive E. coli are accounted for 
approximately 34% of all E. coli isolates. The bacteria can produce a genotoxin 
named Colibactin, which is capable to induce DNA double-strand breaks in vivo and 
chromosomal instability (CIN) in mammalian cells (9). These effects may promote the 
initiation and progression of CRC. In addition, the study in human showed the high 
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prevalence of colibactin-producing E. coli in colon cancer patients (66). However, E. 
coli is normally regarded as normal flora in the intestine tract, and further studies are 
therefore needed to investigate the differences between E. coli isolates collected 
from CRC patients and healthy controls (36). 

 
Streptococcus gallolyticus 

 Streptococcus gallolyticus subsps. gallolyticus (S. gallolyticus), formerly 
known as S. bovis biotype I, is an opportunistic pathogen in humans and mostly 
found in case of bacteremia and endocarditis. Strikingly, S. gallolyticus infection is 
involved in CRC (36). The bacterium was able to adhere to extracellular matrix 
components (ECM), i.e., laminin, collagen, and fibronectin, as well as human colon 
cancer epithelial cells (Caco-2) (67). After colonization, the bacterium had the ability 
to translocate paracellularly through differentiated Caco-2 cells and produced 
biofilms on the cell surface to facilitate the innate immune evasion (68). 
Furthermore, Kumar and colleagues (69) investigated the increase of tumor cell 
proliferation when co-culture of clinical S. gallolyticus strains with human colon 

cancer cells and bacterium-gavage mouse models. The elevation of NF-κB and IL-8 
expression in tissue, a proinflammatory state, was detected in CRC and adenoma 
patients who had S. gallolyticus immunoglobulin G sero-positive (70). However, the 
cancer cases induced by S. gallolyticus exposure were the minority of all cancer 
cases (71). Therefore, the contribution of S. gallolyticus to promote tumor growth 
might be limited to a subset of individuals (72). 
 
3.6. Gut microbiome analysis 
 These definitions and related words are used for gut microbiome analysis 
(Table 3). 
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Table  3 Definitions related to the intestinal microbiome study 
Terminology Denotation Reference 
Microbiota  The microbial taxa in a variety of 

environment 
(73, 74) 

Microbiome The collective genome of microbes in a 
particular ecosystem 

16S ribosomal 
genes 

A housekeeping gene region with 
hypervariable sequenced which 
universally conserved in prokaryotes. This 
gene region can be used to identify the 
microbial communities within samples. 

(12, 75) 

Operational 
Taxonomic Units 
(OTUs) 

An analysis of 16S rRNA sequencing data 
based on sequence similarity (typically 
>97% similarity). An OTU is used to 
classify statistical clusters of highly 
related bacteria. 

(73, 75) 

Diversity A measure of the variability of species 
which rely on the diversity indices 

Alpha diversity Diversity within each sample (75) 
Beta diversity Diversity between different samples 
Species richness A measure of the total number of 

different species occurs in a defined area 
(76) 

Species evenness A measure of the relative abundance of 
species within a community 

 
3.7. Approaches used for gut microbiome study 
 Gut microbiome studies were conducted on two main types of samples, 
feces, and biopsy tissue, to provide the information of microbial ecosystem structure. 
Feces is the most commonly used sample that represents luminal associated 
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microbiota. Fecal collection is a non-invasive procedure, easy to handle, and more 
practical to identify microbial biomarkers. However, stool samples only partially 
reflect the gut microbiota throughout the colon. Moreover, the complexity of stool 
specimens may include many unrelated components that could interfere a disease 
screening. A utilization of tissue samples is likely to give more relevant data to 
illustrate the involvement of colonizing microbial community on colon mucosa (12-
14, 77). However, a collection of biopsy tissue or surgical tissue, which gives the 
result of mucosa-associated microbiota, is more difficult to carry out especially in 
healthy volunteers, since it is an invasive technique that requires colonoscopy or 
surgery, and also expensive. 
 Besides sample type, other biological parameters; for example, lifestyle, 
dietary habits, geography of the studied cohort, colon location of tissue sampling 
(e.g., proximal, or distal colon), age of volunteers, stage of the tumor (e.g., TNM 
classification), influence the variety of the intestinal microbiota community 
contributing to the lack of consensus in term of microbial dysbiosis in CRC patients 
(12, 13, 54). Moreover, the technical parameters including sample size, molecular 
procedure performed (e.g., whole-genome sequencing, 16S rRNA gene sequencing, 
qPCR), selection of a hypervariable region of 16S rRNA gene (e.g., V1-V2, V3-V4, V4, 
V3-V5, V6) for Next Generation Sequencing (NGS), level of taxonomy determined, and 
selection of dissimilar databases may also affect the results of gut microbiome. 
 
3.8. Translational application of gut microbiome study 

• Gut microbiota-related biomarkers for CRC screening test 
 Understanding of CRC-associated gut microbiota based on NGS innovation is 
beneficial for selection of good biomarker candidates for CRC screening. Although the 
exact microbial consensus related to CRC and adenomatous polyp has not been 
precisely determined, various studies have shown that fecal microbial alteration may 
give new potential biological markers for CRC detection and prognosis, especially for 
early stages of CRC (13). Moreover, high specificity and sensitivity of noninvasive 
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screening tools are needed to reduce the incidence and mortality of CRC. A number 
of studies have applied a relative abundance of each bacterium or bacterial co-
abundance groups (CAGs) to distinguish cancer patients from non-cancer volunteers 
(49-51). Two studies were conducted on fecal samples from 3 groups, CRC patients, 
adenomas, and healthy control subjects, to create a classification model using 22 
and 34 microbial markers with areas under the receiver operating characteristic (ROC) 
curves (AUC) of 0.84 and 0.85 (49, 51), respectively, indicating their potential as a 
promising screening tool. Moreover, the combination of bacterial markers with Fecal 
Immunochemical Test (FIT) or Fecal Occult Blood Test (FOBT) could provide superior 
performance in detecting CRC and advanced adenoma than using the latter test 
alone (49, 78). However, the development of reproducible procedures for human 
intestinal microbiota study is desired for more comparable results among 
populations (79). 
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CHAPTER IV  
Materials and Methods 

4.1. Ethics statement 
This study was carried out with approval from the Institutional Review Board 

(IRB) of the Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand 
(approval number 182/62). Written informed consent was obtained from each 
participant for the sample collection and clinical data collection. 

 
4.2. Volunteer recruitment 

This study enrolled eighty volunteers who visited King Chulalongkorn 
Memorial Hospital, Bangkok, Thailand from June 2019 to December 2020. The 
participants were selected based on the inclusion and exclusion criteria listed below. 

  
4.2.1. Inclusion criteria 

Eligible participants were individuals above 50 years old who were able to 
provide informed consent. 

 
4.2.2. Exclusion criteria  

Exclusion criteria were as follows: (i) antibiotics consumption within 3 months 
before sampling; (ii) probiotics usage in any form within 1 week before enrollment; 
(iii) history of inflammatory bowel disease, including ulcerative colitis and Crohn's 
disease; (iv) active bowel inflammation or infection within one month before 
participation; (v) current immunosuppressive drug usage; (vi) previous chemotherapy 
or radiotherapy. (vii) colonoscopy within a month prior to participation.  

All volunteers were divided into three groups: colorectal cancer (CRC), 
colorectal polyp, and healthy control. Twenty-five newly diagnosed CRC patients 
were recruited at the Colorectal Surgery Unit. Thirty-three patients with colorectal 
polyp and twenty-two healthy controls who had no colorectal polyp or CRC were 
recruited from subjects undergoing screening colonoscopy at the Division of 
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Gastroenterology. The group classification of all participants was confirmed by the 
pathological results. Besides, general information including health status, lifestyle, 
dietary habits, and anthropometric measurements (height and body weight) were 
obtained from participants and recorded. 

 
4.3. Sample collection 
 The workflow and sample collections of this study were conducted following 
the schematic diagram below (Figure 4). 

 
Figure  4 Schematic diagram of experimental design and total specimen collection in 
this study. 
Abbreviation: PC, proximal colon; DC, distal colon; PL, peri-lesion; NL, non-lesion; L, 
lesion.  
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 4.3.1. Stool collection 
 The fecal collection kits along with detailed printed instructions were given to 
the participants before undergo colonoscopy or surgery. To minimize the change of 
gut microbiota, the volunteers were requested to collect their feces on the day 
before consuming polyethylene glycol-electrolyte solution for bowel preparation, or 
before receiving chemotherapy or radiotherapy. Stool samples were collected as 
described in the following instruction. After urination, the participants were asked to 
defecate on a provided absorbent pad. The stool was collected using a spatula and 
collected up to the equal amount of buffer in the tubes containing 3 ml of DNA 
preservative buffer (Monarch DNA/RNA Protection Reagent, NEB, England), and 3 ml 
of 50% sterile glycerol for fecal immunochemical test (FIT) and bacterial culture. 
After mixing, the sample tubes were immediately placed into the kit bag containing 
an iced pack and kept in the freezer. The fecal specimens were carried to the 
laboratory on the doctor appointment day. The stool samples were kept at -80 °C for 
long-term storage until DNA extraction.  
 

 4.3.2 Tissue collection 
 Approximately one cubic centimeter of mucosal tissues was collected from 
CRC patients during surgery. One tissue sample from the tumor (lesion, L) and one 
normal tissue sample adjacent to the lesion (peri-lesion, PL) were obtained from 
each patient. One cubic millimeter of biopsy tissues were collected from adenoma 
subjects and healthy control during colonoscopy. For adenoma subjects, one tissue 
sample closed to the polyp (peri-lesion, PL) was collected because the main tissue 
was reserved for pathological examination to avoid misdiagnosis of malignancy. In 
addition, one normal tissue sample at the opposite side of colon (non-lesion, NL) 
was biopsied. For healthy controls, one biopsy tissue was collected at each location 
in the proximal (PC) and distal (DC) colon. All samples were placed in DNA 
preservative buffer (Monarch DNA/RNA Protection Reagent, NEB, England) and 
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immediately kept at 4 °C. The samples were transferred to the laboratory and stored 
at -80 °C for long-term storage until use. 
 
4.4. DNA extraction from stool samples 
 Fecal genomic DNA was extracted using the QIAamp PowerFecal Pro DNA Kit 
(Qiagen, Hilden, Germany) according to the manufacturer's instructions. The stool 
sample was centrifuged at 12,000 xg for 10 min to discard the DNA preservative 
buffer, and approximately 250 mg of feces was added to the PowerBead Pro Tube 
containing 800 µl of Solution CD1. Then, the sample was homogenized using the 
TissueLyser LT (Qiagen) at a maximum speed for 10 min. The fecal mixture was 
centrifuged at 13,000 xg for 3 min, and the supernatant was transferred to a clean 2 
ml tube. Two hundred-microliter Solution CD2 was added into the tube and mixed. 
After centrifugation, up to 700 µl of the supernatant was transferred to a clean tube 
followed by mixing with 600 µl of Solution CD3. The lysate was loaded into an MB 
Spin Column. The column was centrifuged and the flow-through was discarded. 
Then, the column was placed into a clean collection tube followed by two washing 
steps with 500 µl of Solution EA and 500 µl of Solution C5, respectively. After drying 
the column, 50-100 µl of Solution C6 was loaded into the column and DNA was 
eluted into a new 1.5 ml elution tube. DNA quality and quantity was determined by 
measuring absorbance at the wavelength of 260 and 280 nm using a NanoDrop2000 
spectrophotometer (Thermo Fisher Scientific, MA, USA), and checked the integrity of 
DNA by 1.5% (w/v) agarose gel electrophoresis. All DNA samples were stored at -20 
°C until use. 
 
4.5. DNA extraction from tissue samples 
 DNA was extracted from tissue samples using the QIAamp Fast DNA Tissue Kit 
following the manufacturer's instruction (Qiagen). One biopsy sample or 10 mg of 
surgical tissue was placed in the Tissue Disruption Tube containing master mix (200 µl 
of AVE, 40 µl of VXL, 1 µl of DX Reagent, 20 µl of 600 mAU/ml proteinase K, and 4 µl 
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of 100 mg/ml RNase A). The tissue samples were homogenized using TissueLyser LT 
(Qiagen) at 45 Hz for 2 min and incubated at 56 °C for 10 min before mixing with 265 
µl of Buffer MVL. Then, the mixture was transferred to the QIAamp Mini Spin Column. 
After centrifugation at 13,000 xg for 3 min, the column was placed into a new 
collection tube. Then, the column was washed using 500 µl of Buffer AW1 followed 
by 500 µl of Buffer AW2. The column was dried in a new 1.5 ml microcentrifuge tube 
by centrifugation. DNA was eluted from the column by 50-100 µl of ATE buffer. The 
amount of DNA was quantitated by measuring absorbance at the wavelength of 260 
and 280 nm using the NanoDrop2000 spectrophotometer (Thermo Fisher Scientific). 
Integrity and size of DNA was measured by 1.5% (w/v) agarose gel electrophoresis. 
The DNA was kept at -20 °C until processing. 
 
4.6. 16S rRNA gene sequencing and bioinformatics analysis 
 Paired-end sequencing was conducted using the Illumina MiSeq 250 bp 
platform (Illumina, San Diego, CA, USA) at Génome Québec Innovation Centre 
(Montréal, QC, Canada). The V1-V2 hypervariable regions of the 16S rRNA gene were 
targeted using the forward primers: 27bF (5’- AGRGTTTGATCMTGGCTCAG-3’) and the 
reverse primers: 338R (5’-TGCTGCCTCCCGTAGGAGT-3’). The raw 16S rRNA amplicon 
sequences were preprocessed in the bioinformatics pipelines by the team of the 
Canadian Centre for Computational Genomics (C3G) (McGill University, Canada). 
Briefly, these data were mainly preprocessed following divisive amplicon denoising 
algorithm 2 (DADA2) pipelines (80) including quality control of sequencing reads and 
clustering of reads into amplicon sequence variants (ASVs). Then taxonomy was 
annotated with the silva reference database (81). 
 
4.7. Microbiome data analysis 
 Comparative analysis of microbiota abundance was performed using the 
MicrobiomeAnalyst web-based platform (https://www.microbiomeanalyst.ca/) (82). 
Gene abundance data were analyzed by Marker Data Profiling (MDP). Data were 

https://www.microbiomeanalyst.ca/
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filtered removing features with less count of 4 and less than 20% of prevalence, as a 
minimum, and a low variance filter of 20%, based on inter-quartile range. Alpha-
diversity profiling, describing the within-community diversity of bacteria within a 
sample, was calculated based on total numbers of ASV analyzed using the non-
parametric tests. Moreover, the parameter of beta-diversity analysis, describing the 
microbiota diversity among samples, was calculated using Bray Curtis distance and 
permutational multivariate analysis of variance (PERMANOVA). Heat tree analysis was 
generated for pairwise comparisons of microbial communities. Reingold-Tilfold graph 
layout was performed and Log2 fold change of relative abundance was displayed. 
Additionally, the different taxonomy abundance among groups was identified with 
classical univariate statistical comparison. Values were considered statistically 
significant when p-value <0.05. While robust biomarkers of CRC were also identified 
using the linear discriminant analysis (LDA) effect size (LEfSe) approach (83) with p-
value and adjusted p-value cut-off of 0.05. 
 
4.8. Detection of CRC-associated bacteria in stool and tissue samples by real-
time qPCR 

4.8.1. Control strains and control bacterial DNAs 
 All bacterial strains listed in Table 4 were obtained from the Bacteriology 
Unit, the Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 
and kindly provided by Assoc. Prof. Somying Tumwasorn at the Department of 
Microbiology, Faculty of Medicine, Chulalongkorn University. To be used as control 
DNA, genomic DNA of all bacteria was extracted by GeneJet Genomic DNA 
Purification Kit (Thermo Fisher Scientific) according to the manufacturer’s instructions. 
All bacterial DNAs were stored at -20 °C until use. Control DNAs of Parvimonas micra 
(PM), Blautia spp. (Bla) and Fusicatenibacter saccharivorans (FS), and genomic DNA 
of selected fecal samples in this study were directly amplified using specific primers 
in Table 4. 
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Table  4 Bacterial strains used in this study 

Bacterial names Strains Sources 

Fusobacterium nucleatum (FN) Laboratory 
strain 

Bacteriology Unit, 
Department of Microbiology, 
Faculty of Medicine Escherichia coli (EC) ATCC29212 

Streptococcus gallolyticus (SG) ATCC9809 
DNA of Parvimonas micra (PM)  Selected fecal sample in 

this study DNA of Blautia spp. (Bla)  
DNA of Fusicatenibacter 
saccharivorans (FS) 

 

 
4.8.2. Primers  

 Primer pairs targeting specific genes of each bacterial genus or species were 
listed in Table 5. The primers were selected from previously published literatures, 
and their specificity was confirmed using Primer-BLAST (84). 
 
Table  5 Oligonucleotide primers specific to each bacterium in this study 

Taxa Std. 
strain 

Primer sequences 
 (5’ to 3’) 

Gene Anneal- 
ing  

temp 

Size 
(bp) 

Ref. 

FN FN F-CAACCATTACTTTAACTCT 
ACCATGTTCA 

nusG 55 °C 112 (85) 

R-GTTGACTTTACAGAAGGAG 
ATTATGTAAAAATC 

EC EC F-GCGCATCCTCAAGAGTAAATA clbB 
(pks) 

55 °C 283 (86) 

R-GCGCTCTATGCTCATCAACC 
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Taxa Std. 
strain 

Primer sequences 
 (5’ to 3’) 

Gene Anneal- 
ing  

temp 

Size 
(bp) 

Ref. 

SG SG F-CAATGACAATTCACCATGA sodA 55 °C 408 (87) 

R-TTGGTGCTTTTCCTTGTG 

PM 

Fecal 
sample 

F- GTCACTACGGAAGAATTTGTC rpoB 55 °C 200 (78) 

R- GGCTTGAGCGATAATAACTTC 

FS F-CTGCATTGGAAACTGTCTGG 16S 
rRNA 

55 °C 389 (88) 

R-CGTTACGGGCCGGTCATC 

Bla F-GTGAAGGAAGAAGTATCTCGG 16S 
rRNA 

55 °C 559 

R- TTGGTAAGGTTCTTCGCGTT 

Abbreviation: std, standard. 
 

4.8.3. Insertion fragment preparation and ligation  
The gene specific to each bacterium was amplified by conventional 

Polymerase Chain Reaction (PCR) using the primers listed in Table 2. The reaction 
mixture for each PCR reaction consisted of 2.5 µl of 10X Taq Buffer with KCl, 1.5 µl of 
25 mM MgCl2, 0.5 µl of 10µM dNTP, 0.25 µl of Taq DNA polymerase (Thermo Fisher 
Scientific), and 16.25 µl of nuclease-free water. The amplification condition using 
Thermocycler (ProFlex™, Thermo Fisher Scientific) was as follows: 95 °C for 5 min, 
followed by 30 cycles of 95 °C for 30 sec, 55 °C for 30 sec and 72 °C for 30 sec and a 
final extension at 72 °C for 7 min. The PCR products were checked by 1% (w/v) 
agarose gel electrophoresis. The specific bands were cut and purified from the gel by 
GeneJET Gel Extraction Kit (Thermo Fisher Scientific) following the manufacturer’s 
instructions. Based on TA cloning, the 3´A-tailed PCR products were individually used 
as the insertion fragment to ligate into the pGEM®-T Easy Vector Systems (Promega, 
WI, USA) according to the manufacturer’s protocol. The ligation mixes included 10X 
buffer of T4 DNA ligase with 10 mM ATP (NEB, England), T4 DNA ligase (NEB, England), 
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pGEM®-T Easy Vector, PCR product, and nuclease-free water. The mixture was 
subsequently incubated at 4 °C overnight before transformation step. 

 
4.8.4. Competent cell preparation 

A single colony of Escherichia coli DH5α (Novagen, Darmstadt, Germany) was 
inoculated into 5 ml of Luria-Bertani (LB) broth and incubated at 37 °C, 200 rpm for 
16-18 hours. After 100-fold dilution of the bacterial culture, 100 µl of diluted culture 
was added into 10 ml LB broth followed by incubation at 37 °C and shaking at 200 
rpm for 1.5-2 hours to reach the log phase (OD600 ≈ 0.2-0.4). The bacterial broth was 
transferred on ice for 10 min and then centrifuged at 1600 xg at 4 °C for 10 min. After 
discarding the supernatant, the pellet was resuspended in one-half of their original 
volume with sterile cold TB solution (10 mM PIPES, 55 mM MnCl2, 15 mM CaCl2, and 
250 mM KCl) (89) and incubated on ice for 25 min. Afterwards, the cells were 
centrifuged at 1600 xg at 4 °C for 10 min and resuspended with sterile cold TB 
solution by one-tenth ratio of their original volume. Each 100 µl of mixture was 
transferred into a sterile cold 1.5 ml microcentrifuge tube. The bacterial cells were 
on ice until use and kept in sterile cold TB solution containing 15% (v/v) glycerol for 
long-term preservation. 

 
4.8.5. Bacterial transformation by heat shock procedure 

  After ligation, 100 µl of the DH5α cells were mixed gently with 5 µl of the 
ligation mix and incubated on ice for 30 min. Then, the mixture tube was incubated 
in a circulating water bath at 42 °C for 45 sec. The tube was transferred rapidly on ice 
for 2 min and 900 µl of Super Optimal broth with Catabolite repression (SOC) 
medium was added. Subsequently, the tube was incubated at 37 °C and shaking at 
200 rpm for 2 hours. The bacterial culture was plated on LB agar containing 100 
µg/ml ampicillin using the spread plate technique, followed by incubation at 37 °C 
for 24 hours. The colonies of transformants were picked up to check the inserted 
plasmid via colony PCR using specific primers. The nucleotide sequences of the 
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constructed plasmid were confirmed by DNA sequencing using M13 primers (M13F: 5’-

GTAAAACGACGGCCAGT-3’ and M13R: 5’- GCGGATAACAATTTCACACAGG-3’) (Macrogen 
Inc., Seoul, Republic of Korea). 

4.8.6. DNA standard curve 
 The colonies containing the inserted plasmid were inoculated into LB broth 
and incubated at 37 °C with shaking overnight, and then the bacterial culture was 
extracted plasmid using HiYield™ Plasmid Mini Kit (RBCBioscience, Taiwan) according 
to the manufacturer’s protocols. The quality and quantity of plasmid DNA was 
measured by the absorbance at the wavelength of 260 and 280 nm using 
NanoDrop2000 spectrophotometer (Thermo Fisher Scientific). The plasmid copy 
number of each gene was calculated based on the length of the PCR product and 
the DNA concentration using the following formula:  

Gene copy number = (amount*6.022x1023)/(length*1x109*650) 
 

  Each plasmid was 10-fold serially diluted from 2×108 to 2×100 copies/µl to be 
used as a standard curve to quantitate the copy number of individual strains per 
gram of each sample.  
 

4.8.7. Quantitative real-time PCR (qPCR) 
 To quantify bacterial load in feces and tissue samples, the absolute 
quantitative real-time PCR was performed using the same primers used for the 
conventional PCR (Table 2). The standard curves were constructed using serially 
diluted plasmid DNA containing the gene specific to the relevant positive control 
bacterium. The experiments were performed in duplicate using QuantStudio 6 Flex 
Real-Time PCR systems (Applied Biosystem, Thermo Fisher Scientific) and the Luna 
Universal qPCR Master Mix (NEB, England). The reaction was performed in a total 
volume of 20 µl; the component of the master mix was as follows: 10 µl of Luna 
Universal qPCR Master Mix, 1 µl of 10 µM primers, 4 µl of nuclease-free water, and 5 
µl of DNA template. The qPCR condition consisted of an initial denaturation at 95 °C 
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for 5 min; 40 cycles of denaturation at 94 °C for 60 sec, annealing at 60 °C for 30 sec, 
and extension at 72 °C for 30 sec; a final extension cycle at 72 °C for 8 min. The 
samples, standard curve, and negative control were all simultaneously assayed in 
duplicate. After amplification, the specificity of PCR product was conducted by the 
melting curve analysis. The cycle threshold (Ct) of each sample was compared with 
Ct of the standard curve to calculate the bacterial quantity. The data were 
normalized to total weight of extracted samples and represented as a copy number 
of bacteria per gram weight. 
 
4.9. Fecal Immunochemical Test 
 To detect human fecal hemoglobin in the fecal samples, two approaches of 
the fecal immunochemical test (FIT) were conducted composing of the qualitative 
FIT, using OC-Light™ S FIT test strip (Eiken Chemical, Japan), and the quantitative FIT, 
using OC-Auto Sampling Bottle 3 (Eiken Chemical) with automated OC-SENSOR io 
series (Eiken Chemical). Both methods were performed according to the 
manufacturer’s instructions. For both FITs, the sample probe from the sampling 
bottle was dipped in the fecal sample tube containing 50% glycerol. The test strips 
and sampling bottle containing stool samples were incubated at 20-30 °C. The 
sampling bottle was shaken vigorously. In the case of the qualitative FIT, the OC-Light 
S FIT test strip was removed from the canister. Then, the sample end of the test strip 
was dropped into the sampling bottle. After incubation for 5 min, the result was read 
from the strip following the interpretation manual. In part of the quantitative FIT, the 
sampling bottles were applied together with the automated analyzer. After that, the 
instrument printed out the quantity of fecal human hemoglobin. The test was 
analyzed one at a time and was reported positive at a cut-off value of 50 ng of 
hemoglobin per milliliter (ng/ml). 
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4.10. Statistical analysis 
 Statistical analysis was conducted using IBM SPSS Statistics version 22 (SPSS 
Inc.) and GraphPad Prism 8.0 (GraphPad Software Inc.). Chi-square test was used to 
compare categorical variables. The nonparametric Kruskal-Wallis test with Dunn’s 
post hoc was used to compare the differences in continuous variables among three 
clinical groups (i.e., healthy control, polyp group and CRC group) and the 
nonparametric Mann-Whitney test was used to compare the differences in 
continuous variables between two groups of tissues (i.e., lesion vs peri-lesion or 
proximal colon vs distal colon). Spearman’s rank correlation coefficient was used to 
determine the associations between continuous variables. The independent variables 
related to CRC or adenomas diagnosis were estimated using binary logistic regression 
model. The area under the receiver operating characteristic (ROC) curve (AUC) was 
used to evaluate the diagnostic value of  bacterial candidates in discriminating CRC 
patients and adenomas groups versus healthy controls. Youden’s index (J=Sensitivity-
Specificity-1) was used to identify the best cut-off value that maximize sensitivity and 
specificity in the disease detection. P-value <0.05 was considered statistically 
significant.  
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CHAPTER V  
RESULTS 

5.1. Clinicopathological characterization  
 In this study, a total of 80 Thai participants (range, 51-85 years old) including 
29 males and 51 females, were recruited between June 2019 and December 2020. 
Among these, 25 and 33 patients were diagnosed with CRC (CRC group) and 
adenomatous polyp (polyp group), respectively, according to the pathological results. 
The remaining participants were 22 healthy control subjects (HC group) whose 
colonoscopy showed no pathological finding. The mean age of volunteers was 64.8 
years old, while the mean body mass index (BMI) was 23.1 kg/m2. No statistical 
differences in age, BMI, and gender were observed among the three groups (Table 6 
and Figure 5). Nonetheless, a significant difference in patients with diabetes mellitus 
(DM) was found among the three groups (p<0.05) (Table 6). Hypertension (HT) and 
dyslipidemia (DLP) did not significantly differ among all groups. In addition, more than 
90% of adenoma patients and control subjects had the negative result of both fecal 
immunochemical tests (FIT and qFIT), whereas 16 out of 17 CRC cases were positive 
(p<0.001) (Table 6). Regarding the specimen data, approximately 61% (20/33) of 
adenomas were located in the proximal colon, and most of the adenomas were 
tubular adenoma (67%, 22/33) (Table 7). The pathological results of all CRC cases 
were adenocarcinomas and most of the malignant tumors were moderately 
differentiated (60%, 15/25) (Table 7). The majority of CRC was located at the distal 
colon and was found in stage III of the TNM staging system (60%, 15/25) (Table 7). 
The detailed demographic features of all participants are presented in Table 6 and 7. 
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Figure  5 The demographic data of the participants in the study 
A)age distribution; B) BMI distribution; C) volunteer quantity of each gender. Data in A 
and B are displayed as means ± SD. 
 

Table  6 Clinical characteristics of participants in this study 

Variables 
 

Group  Total p-value 
 HC Polyp CRC 

No. of volunteers 22 33 25 80  
Age (Mean±SD) 62.2±4.7 66.3±5.3 65.2±8.1 64.8±6.3 0.068 
BMI (Mean±SD) 23.0±3.1 24.0±3.6 22.2±2.8 23.1±3.3 0.055 
Gender (n, (%)) 

Male 5 (22.7) 15 (45.5) 9 (36) 29 (36.25) 0.229 
Female 17 (77.3) 18 (54.5) 16 (64 51 (63.75) 

Diabetes Mellitus, DM (n, (%))    
Yes 0 (0) 4 (12.1) 7 (28) 11 (13.75) 0.020* 
No 22 (100) 29 (87.9) 18 (72) 69 (86.25) 
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Variables 
 

Group  Total p-value 
 Hypertension, HT (n, (%)) 

Yes 8 (36.4) 15 (45.5) 10 (40) 33 (41.25) 0.789 
No 14 (63.6) 18 (54.5) 15 (60) 47 (58.75) 

Dyslipidemia, DLP (n, (%)) 
Yes 11 (50) 17 (51.5) 10 (40) 38 (47.5) 0.660 
No 11 (50) 16 (48.5) 15 (60) 42 (52.5) 

Qualitative Fecal Immunochemical Test, FIT (n, (%))                                                            
Positive  2 (9) 2 (6) 16 (64) 20 (25) <0.001 

*** Negative  20 (91)  29 (88) 1 (4) 50 (63) 
No test 0 (0) 2 (6) 8 (32) 10 (13)  

Quantitative Fecal Immunochemical Test, qFIT (n, (%)) 
Positive 1 (5) 3 (9) 16 (64) 20 (25) <0.001 

*** Negative 21 (95) 28 (85) 1 (4) 50 (63) 
No test 0 (0) 2 (6) 8 (32) 10 (13)  

Note: no test, no fecal specimens for testing 
 
Table  7 Clinicopathological characteristics of the samples in this study 

Variables 
 

Group  Total 

HC Polyp CRC 

No. of volunteers 22 33 25 80 
Tumor location     n=58 
A. Proximal colon (n, (%)) - 20 (60.6) 4 (16) 24 (41.4) 

Cecum - 4 (12.1) 1 (4) 5 (8.6) 
Ascending colon - 13 (39.4) 0 (0) 13 (22.4) 
Hepatic flexure - 1 (3.0) 0 (0) 1 (1.7) 
Transverse colon - 2 (6.1) 3 (12) 5 (8.6) 

B. Distal colon (n, (%)) - 13 (39.4) 21 (84) 34 (58.6) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

49 

Splenic flexure - 0 (0.) 2 (8) 2 (3.4) 
Descending colon - 3 (9.1) 5 (20) 8 (13.8) 
Sigmoid colon - 6 (18.2) 4 (16) 10 (17.2) 
Rectosigmoid junction - 2 (6.1) 1 (4) 3 (5.2) 
Rectum - 2 (6.1) 9 (36) 11 (19) 

TNM classification  
Tumor stage (T) (n, (%)) 

T1 - - 2 (8)  
T2 - - 5 (20)  
T3 - - 15 (60)  
T4 - - 3 (12)  

Node stage (N) (n, (%)) 
N0 - - 15 (60)  
N1 - - 6 (24)  
N2 - - 4 (16)  

Metastasis stage (M) (n, (%)) 
Mx - - 10 (40)  
M0 - - 14 (56)  
M1 - - 1 (4)  

Pathological result (n, (%)) 
I. Tubular adenoma - 22 (67) -  
II. Tubulovillous adenoma - 2 (6) -  
III. Sessile serrated 

adenoma 
- 1 (3) -  

IV. Traditional serrated 
adenoma 

- 1 (3) -  

V. Tubular adenoma and 
tubulovillous adenoma 

- 1 (3) -  

VI. Tubulovillous and - 1 (3) -  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

50 

sessile serrated 
adenoma 

VII. Tubular adenoma and 
hyperplastic polyp 

- 3 (9) -  

VIII. Tubular adenoma, 
hyperplastic polyp, and 
inflammatory polyp 

- 2 (6) -  

IX. Adenocarcinoma - - 25 (100)  
Tumor differentiation (n, (%)) 

Well - - 6 (24)  
Moderate - - 15 (60)  
Poor - - 0 (0)  
No report - - 4 (16)  

 
5.2. Sample collection 
 A total of 179 samples consisting of 70 stool samples and 109 tissue samples 
were collected from all participants and are summarized in Table 8. 
 
Table  8 Summary information of sample collection 

 HC Polyp CRC Total 
No. of subjects 22 33 25 80 
Sample types Stool Tissue Stool Tissue Stool Tissue  

Sampling 
location 

22 PC DC 31 PL NL 16 PL L 

No. of sample 17 17 26 26 16 7 
Total 22 34 31 52 17 23 179 

Abbreviations: PC, proximal colon; DC, distal colon; PL, peri-lesion; NL, non-lesion; L, 
lesion. 
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5.3. Characteristics of sequencing results 
 Sequencing of 16S rRNA gene amplicons of DNA extracted from 146 samples 
(70 stool samples: 22 HC, 31 polyp and 17 CRC, and 76 tissue samples: 34 HC, 26 
polyp and 16 CRC) retrieved an overall number of 5,813,182 reads, with an average 
of 39,816 reads per samples. In total, 1,567 amplicon sequence variants (ASVs) were 
delineated at 97% similarity threshold and a total of 1,418 low abundance features 
and 30 low variance features were removed based on prevalence and the inter-
quartile range, respectively. After removal of ASVs with unmet quality, 119 ASVs were 
used for further analyses. Besides, the Good’s coverage value of each group was 
>99% (data not shown).  
 
5.4. Comparison of bacterial microbiota between fecal and mucosa tissue 
samples 

5.4.1. Alpha-diversity and beta-diversity analyses 
 The Chao1’s index was used to evaluate taxa richness while the Shannon and 
Simpson diversity indexes were applied to estimate both richness and evenness of 
fecal and mucosa tissue samples. All alpha-diversity measures (Chao1, Shannon and 
Simpson’s index) of fecal samples (n=70) were significantly high compared with 
mucosa tissue samples (n=76) (p-value <0.01, 0.001, and 0.01, respectively) (Figure 
6A-6C). In terms of beta diversity, a principal coordinate analysis (PCoA) plot under a 
Bray-Curtis distance was performed to compare the overall structure of gut 
microbiota between sample types. The PCoA plots showed significantly separated 
clusters between two sample types (p-value <0.001) (Figure 6D, 6E). 
 

5.4.2. Relative abundance and composition of microbiota  
 At the bacterial phylum level, the bacterial pattern revealed that 

Bacteroidetes was the most predominant phylum, contributing 59.2% and 52.5% of 
the fecal and mucosal tissue samples, respectively. The second and the third most 
abundant phylum in fecal samples were Firmicutes (24.6%) and Proteobacteria 
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(11.4%), respectively. On the other hand, Proteobacteria (25.4%) and Firmicutes 
(11.1%) were found as the second and the third bacterial abundance, respectively, in 
tissue samples (Figure 7A, 7B). Moreover, the relative abundance of the dominant 
bacterial genera was shown in Figure 7C. The top three dominant bacterial genera 
were Bacteroides, unspecified genera, and Faecalibacterium in fecal samples but 
were Bacteroides, Escherichia_Shigella, and Fusobacterium in tissue samples. These 
results indicated that the gut microbiota of the fecal samples referred to as lumen-
associated microbiota were different from the mucosa-associated microbiota. 
 

 

 
Figure  6 Alpha-diversity and beta-diversity analyses between stool samples and 
mucosal tissue samples. 
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A) Chao1’s index, B) Shannon’s index, C) Simpson’s index, D) principal coordinate 
analysis (PCoA) based on Bray-Curtis distance in 2-Dimension, E) PCoA analysis based 
on Bray-Curtis distance in 3-Dimension. 
 

 
Figure  7 The differences in microbial abundance profiling between stool samples 
and mucosal tissue samples. 
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A) Taxonomic composition of each sample type at the phylum level, B) microbiota 
composition of merged samples at the phylum level, C) microbiota composition of 
merged samples at the genus level. Data are shown as relative abundance. 
 
5.5. Comparison of mucosa-associated microbiota among adenocarcinoma, 
adenoma, and HC subjects 

5.5.1. Alpha-diversity and beta-diversity analyses 
 No difference in alpha diversity was observed among patients with CRC 
(n=16), patients with adenomas (n=26), and the HC group (n=34) (Figure 8A-8C). As for 
beta diversity, the PCoA plot of mucosa microbiota revealed statistically significant 
(p<0.05) among the three groups (Figure 8D, 8E). The significant difference was 
probably between the CRC and HC groups (p<0.01) (Figure A1). 
 

5.5.2. Relative abundance and composition of mucosa-associated 
microbiota  

 Overall microbial compositions of the polyp and the CRC groups were shifted 
compared to that of controls as a baseline. At the phylum level, the most prevalent 
phylum in the polyp and the CRC groups was Bacteroidetes (57.1% and 52.1%) while 
in the HC group was Proteobacteria (40.6%) (Figure 9A, 9B). At the genus level, a 
stepwise increase of Bacteroides and Parabacteroides in the CRC group (55.2% and 
3.5%) was observed when compared with the polyp (50.4% and 3.4%) and the HC 
(36.0% and 1.2%) groups. Furthermore, Escherichia_Shigella and Faecalibacterium in 
the polyp (8.8% and 2.4%) and the CRC (16.4% and 0.7%) groups were decreased 
compared with the HC (35% and 4.0%) group. Additionally, Fusobacterium was over 
presented in the polyp group (17.9%) when compared with other groups (8.1% for 
CRC and 7.9% for HC) (Figure 9C). 
 Owing to the pattern differences of mucosa microbial composition among 
groups, a heat tree was additionally generated to illustrate the group-wise relative 
abundance of significant bacterial genera (p-value <0.05). The taxonomic tree also 
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showed the distinct bacterial abundance between groups by the color gradient. For 
HC versus CRC, the Escherichia_Shigella (Gamma-proteobacteria), Faecalibacterium, 
and a member from the family Lachnospiraceae were present significantly more in 
the HC group (yellow color) than the CRC group (green color) (Figure 10A). In 
contrast, Bacteroides, Parabacteroides, and Butyricimonas which belong to the order 
Bacteroidales as well as Collinsella, Erysipelatoclostridium, and those genera from 
the family Ruminococcaceae had a greater proportion in CRC patients compared 
with those of HC (Figure 10A). However, only Flavobacterium was significantly higher 
in the polyp group compared with that of controls (Figure 10B). 

 

 
Figure  8 Alpha-diversity and beta-diversity analyses in mucosal tissue samples 
among HC subjects, adenomas subjects, and CRC subjects. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

56 

A) Chao1’s index, B) Shannon’s index, C) Simpson’s index, D) PCoA analysis based on 
Bray-Curtis distance in 2-Dimension, E) PCoA analysis based on Bray-Curtis distance in 
3-Dimension. 
 

 

 
Figure  9 The differences in microbial abundance profiling of mucosa tissue samples 
among HC subjects, adenomas subjects, and CRC subjects. 
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A) Taxonomic composition of each sample type at the phylum level, B) microbiota 
composition of merged samples at the phylum level, C) microbiota composition of 
merged samples at the genus level. Data are shown as relative abundance. 

  

 
Figure  10 Taxonomical differential analysis of the mucosa-associated microbiota. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

58 

The heat tree shows only the genera or higher classification that was significantly 
different between two groups. A) HC versus CRC, B) HC versus polyp. Abundances of 
each taxon are given by the node size and color gradients mean statistically 
significant differences in taxa abundance assessed by a non-parametric Wilcoxon test 
(green and purple mean higher abundance in the CRC and adenoma, respectively, 
and yellow means higher abundance in the HC group). 
 

 5.5.3. Significant differential abundance of mucosa-associated bacterial 
species  

 Regarding the significant difference in the bacterial abundance at the species 
level, a total of 7 differential species were estimated using the classical univariate 
comparison as shown in Figure 11. Notably, Erysipelatoclostridium ramosum (ER), 
Bacteroides thetaiotaomicron (BT), Flavonifractor plautii, Parabacteroides merdae 
and P. distasonis were escalated in patients with CRC compared with other groups 
(all, p-value cut-off <0.05, except ER and BT, FDR-adjusted p-value<0.05), while the 
abundances of Escherichia_shigella_coli and Not_assigned bacteria declined (p-
value<0.05). 
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Figure  11 The significant difference of individual bacterial abundance in mucosal 
tissue samples at the species level among HC subjects, adenomas subjects, and CRC 
subjects. 
A) Erysipelatoclostridium ramosum, B) Bacteroides thetaiotaomicron, C) 
Not_assigned, D) Flavonifractor plautii, E) Parabacteroides merdae, F) 
Parabacteroides distasonis, G) Escherichia_Shigella_coli. Data are shown as log-
transformed count. 
 
5.6. Comparison of lumen-associated microbiota among adenocarcinoma, 
adenoma, and HC subjects 

5.6.1. Alpha-diversity and beta-diversity analyses 
 Chao1, Shannon and, Simpson’s metrics were used to evaluate the richness 
and diversity aspects of luminal-associated microbiota among groups, but no 
statistically significant difference in these indexes were found (Figure 12A-12C). 
Concerning beta diversity, PCoA analysis based on Bray-Curtis dissimilarity did not 
show a separated trend among the three groups (Figure 12D, 12E). 
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 5.6.2. Relative abundance and composition of lumen-associated 
microbiota 

 Of these 9 phy la, the top 3 phyla comprising Bacteroidetes, Firmicutes, and 
Proteobacteria were observed in all groups (Figure 13A, 13B). In addition, 
Proteobacteria and Fusobacterium had higher proportions in the polyp (12.8% and 
8.3%) and the CRC (15.0% and 2.9%) groups compared with the HC group (8.5% and 
1.2%) (Figure 13A, 13B). At the genus level, as shown in Figure 13C, Bacteroides was 
less abundant in fecal samples of the polyp (46.6%) and the CRC (50.4%) groups 
compared with the HC (64.9%), while Faecalibacterium had a lower proportion in 
CRC (2.8%) subjects compared with other groups (8.3% for the polyp group and 5.4% 
for the HC group). Conversely, the proportion of Escherichia_Shigella, Fusobacterium, 
Klebsiella, Sutterella, Dorea, and Parabacteroides were ascended in the polyp, or 
the CRC group compared with the HC group. 
 In terms of heat tree analysis (Figure 14), Agathobacter and CAG_56 bacteria 
(family Lachnospiraceae), Faecalibacterium (family Rumiococcaceae) and a member 
of family Erysipelatotrichaceae were more significantly abundant in the HC group 
than in the CRC group (p-value <0.05) (Figure 14A). On the contrary, the genera 
Parabacteroides and Butyricimonas had lower fold change in the HC when 
compared with the CRC group (p-value <0.05) (Figure 14A). Regarding the HC group 
versus the CRC group, the genus Oscillibacter was more present in the HC compared 
with the polyp group (p-value <0.05) (Figure 14B). Besides, Fusicatenibacter within 
the family Lachnospiraceae was more specific to the polyp group than the HC group 
(p-value <0.05) (Figure 14B). 
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Figure  12 Alpha-diversity and beta-diversity analyses in fecal samples among HC 
subjects, adenoma subjects, and CRC subjects. 
A) Chao1’s index, B) Shannon’s index, C) Simpson’s index, D) PCoA analysis based on 
Bray-Curtis distance in 2-Dimension, E) PCoA analysis based on Bray-Curtis distance in 
3-Dimension. 
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Figure  13 The differences in microbial abundance profiling of fecal samples among 
HC subjects, adenoma subjects, and CRC subjects. 
A) Taxonomic composition of each sample type at the phylum level, B) microbiota 
composition of merged samples at the phylum level, C) microbiota composition of 
merged samples at the genus level. Data are shown as relative abundance. 
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Figure  14 Taxonomical differential analysis of the lumen-associated microbiota.  
The heat tree shows only the genera or higher classification that was significantly 
different between two groups. 
A) HC versus CRC, B) HC versus polyp. Abundances of each taxon are given by the 
node size and color gradients mean statistically significant differences in taxa 
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abundance assessed by a non-parametric Wilcoxon test (green and purple mean 
higher abundance in the CRC and adenoma, respectively, and yellow means higher 
abundance in the HC group). 
 

 5.6.3. Significant differential abundance of lumen-associated bacterial 
species 

 To observe the significant difference of relative abundance at the species 
level, E. ramosum and Eggerthella lenta in CRC patients had higher proportion than 
those of HC subjects (FDR-adjusted p-value<0.05 and p-value<0.05) (Figure 15A, 15C). 
However, B. vulgatus was higher in HC subjects (p-value<0.05) (Figure 15B). 
 

 
Figure  15 The significant difference of bacterial abundance in fecal samples at the 
species level among HC subjects, adenoma subjects, and CRC subjects. 
A) Erysipelatoclostridium ramosum, B) Bacteroides vulgatus, C) Eggerthella lenta. 
Data are shown as log-transformed count. 
 
5.7. Identification of putative biomarkers for CRC/adenoma 
 To further evaluate the bacteria in clinical samples as biomarkers for CRC, 
linear discriminant analysis (LDA) coupled with effect size (LEfSe) algorithm was used 
at the LDA cut-off of ± 3. Six out of 7 bacterial taxa from tissue samples had a LDA 
score of more than 4 (Figure 16A). Five out of 7 taxa comprising of B. 
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thetaiotaomicron, P. merdae, P. distasonis, E. ramosum, and F.plautii were over-
represented and 2 out of 7 taxa including unspecified bacteria and 
Escherichia_Shigella_coli were under-represented in the CRC group compared with 
other groups (all, p-value<0.05, except ER, FDR-adjusted p-value< 0.05) (Figure 16A). 
As for fecal samples, the LDA scores of E. ramosum and B. vulgatus had more than 4 
(Figure 16A). E. ramosum and E. lenta were enriched in the CRC group, while B. 
vulgatus was predominant in the HC group (all, p-value<0.05, except ER, FDR-
adjusted p-value< 0.05) (Figure 16A). Additionally, only E. ramosum was found 
specifically in the CRC patients in both fecal and tissue samples (Figure 16B). As for 
adenoma, putative biomarkers which can differentiate adenomas patients from the 
HC group were not found in this analysis. 
 

 
Figure  16 LEfSe analysis of mucosal tissue and fecal microbiota among CRC and HC 
subjects. 
A) Histogram of the LDA scores for significantly abundant species, B) Venn diagram 
represented the number of unique and overlapping significantly abundant species.  
 
5.8. Bacterial quantification in the clinical samples 
 To quantitate CRC-associated bacteria in the clinical samples, we conducted 
the absolute quantification of six interesting bacteria in CRC, consisting of 
Fusobacterium nucleatum (FN), colibactin positive strains (EC), Parvimonas micra 
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(PM), Blautia spp. (Bla), Streptococcus gallolyticus (SG), and Fusicatenibacter 
saccharivorans (FS), in both mucosal tissues and feces from three groups by qPCR, 
using a serial dilution of a plasmid carrying the gene specific to each bacterium as a 
standard curve. In this study, S. gallolyticus and F. saccharivorans were only 
performed in fecal samples. At first, the quantity of SG and FS in tissue samples was 
also investigated, however the tissue burden of SG and FS could not be accurately 
determined because of poor specificity of primers used (non-specific amplification 
with host tissue). Due to possible variation at different locations, the mucosal tissues 
of CRC included lesional tissue, peri-lesional tissue, non-lesional tissue, whereas 
normal tissue of the HC group was from both sides (proximal and distal) of the 
colon.  
 The pairwise comparisons of individual bacterial quantity between tissue 
samples from distinct areas of the colon were preliminarily analyzed i.e., proximal 
colon vs distal colon for HC group, peri-lesional vs non-lesional for the polyp group, 
and peri-lesional vs lesional for the CRC group. As shown in Figure 17, no significant 
difference in bacterial colonization was found between two tissue types across entire 
groups for any of the bacteria in this study. Therefore, the bacterial quantity of both 
tissue types was combined and used as the total tissue of each group for further 
comparison.   
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Figure  17 The comparison of absolute quantity of CRC-associated bacteria between 
two types of tissues in each group. 
A) F. nucleatum, B) colibactin positive strains, C) P. micra, D) Blautia spp. Each scatter 
plot is expressed as log10 copy number per gram weight and data are displayed as 
means ± SD. Each dot represents one sample. Abbreviations: PC, proximal colon; DC, 
distal colon, NL, non-lesion; PL, peri-lesion; L, lesion; ns, not significant. 
 

 
Figure  18 The prevalence of CRC-associated bacteria in the clinical samples. 
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A) fecal samples; B) tissue samples. Abbreviations: FN, F.nucleatum; EC, colibactin 
positive strains; PM, P.micra; Bla, Blautia spp.; SG, S.gallolyticus;  FS, 
F.saccharivorans. 
 
 The qPCR assay targeting the nusG gene was used to detect F. nucleatum. 
The nusG gene was detected in more than 95% of fecal samples from all groups 
(Figure 18A). The detection frequency of F. nucleatum in CRC tissue (91%) was 
slightly higher than that in the HC (79%) and the polyp groups (78%) (Figure 18B). The 
absolute abundance of F. nucleatum in stool was predominantly higher in patients 
with CRC compared with the polyp group (P<0.001) and HC (P<0.001) (Figure 19A). 
Furthermore, FN in tissue was also significantly higher in CRC cases compared with 
the polyp group (P<0.05) (Figure 19A). No difference of nusG level was found 
between patients with polyp and HC in both sample types (Figure 19A). 
 The presence of clbB gene, a part of the pks pathogenicity island encoding a 
polyketide-peptide genotoxin (colibactin) of Enterobacteriaceae mainly in Escherichia 
coli, was used to assess colibactin positive bacteria (EC) in the samples. The clbB+ 
bacteria in 78% of CRC tissues were higher than those found in tissues of HC (47%) 
and the polyp groups (51%) (Figure 18B). In contrast, clbB+ bacteria were detected in 
all fecal samples of the HC group, while they were found in 84% and 82% of the 
polyp and the CRC groups, respectively (Figure 18A). However, no significant 
difference in quantity of clbB+ bacteria between groups for both types of samples. 
Notably, a significant enrichment of clbB+ bacteria was found in patients with stage III 
CRC when compared with controls (P<0.05, Figure 20C). 
 In this study, P. micra was found in 65% of tissue samples from CRC patients 
but was found only 21% and 20% of tissues from the HC and polyp groups, 
respectively (Figure 18B). This bacterium was detected in over 94% of all fecal 
samples (Figure 18A). P. micra was significantly enriched in the stool of patients with 
CRC compared with the polyp group (P<0.01) and the HC group (P<0.01) (Figure 19C). 
This is consistent with the results of tissue samples, in which the bacterium was also 
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more abundant in CRC tissues compared with the polyp group (P<0.05) and the HC 
group (P<0.05) (Figure 19C).  
 Of these bacteria, Blautia spp. was most commonly found in all sample 
types, more than 80% and 100% in tissue and feces of all cases, respectively (Figure 
18). No difference was found in the amount of Blautia in stool, but a significantly 
higher level of Blautia in cancer tissue was found compared with control tissues 
(P<0.001) (Figure 19D). In addition, the significant positive correlation between Blautia 
in tissue and TNM staging was observed (Spearman rs = 0.5893, Figure 20G and 20H). 
The positive detection of S. gallolyticus in fecal samples increased stepwise from HC 
(45%), polyp (55%), and CRC (65%) (Figure 18A). The fecal SG levels seemed to 
increase in the CRC group. However, no significant difference was found in fecal 
samples among the three groups (Figure 19E). F. saccharivorans was commonly 
detected in stool samples of all groups (82%-100%) (Figure 18A). The abundance of 
this bacterium significantly decreased in the stool of CRC patients compared with the 
polyp group (P<0.05) (Figure 19F). 
 In addition, bivariate correlation analysis showed that the absolute quantity 
of FN, PM, and EC was significantly correlated with TNM classification (Spearman rs = 
0.425-0.667, Figure 20A-20F). The significant difference of the bacterial abundance 
was mostly found in the late stages (stage III, IV) as shown in Figure 20A, 20C and 20F. 
Thus, these bacteria were further selected for the CRC prediction test. 
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Figure  19 Absolute quantification of CRC-associated bacteria in the clinical samples. 
A) F. nucleatum, B) colibactin positive bacteria, C) P. micra, D) Blautia spp., E) S. 
gallolyticus, F) F. saccharivorans. Each scatter plot is expressed as log10 copy number per 
gram weight and data are displayed as means ± SD. Each dot represents one sample, and 
each bar of tissue sample represents as total tissue (both types of tissue). Brown bar, fecal 
sample; green bar, tissue sample. Abbreviations: *, P<0.05; **, P<0.01; ***, P<0.001; ****, 
P<0.0001. 
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Figure  20 Spearman’s rank correlation coefficient between the absolute abundance 
of CRC-associated bacteria and stage of disease of HC versus CRC. 
A-B) F. nucleatum in the fecal sample, C-D) colibactin positive bacteria in the fecal 
sample, E-F) P. micra in the fecal sample, G-H) Blautia spp. in the tissue sample. 
Abbreviations: *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. 
 
5.9. The performance of single fecal bacterial candidates for CRC/adenoma 
detection 

• Comparison of healthy volunteers and CRC patients 
 Binary logistic regression models were generated using the number of bacteria 
to differentiate between the HC group and CRC patients. Among all six bacteria, F. 
nucleatum (FN) showed the best performance in distinguishing patients with CRC 
from the HC group, giving an area under the ROC curve (AUC) of 0.86 (Figure 21A). At 
the optimal cut-off using the maximum Youden’s index, the FN level at above 
8.41x103 copy numbers per gram weight (CN/g) could detect CRC with sensitivity of 
76.47% and specificity of 90.91%, (Figure 21B, Table 9). Secondly, the AUC for CRC 
detection was 0.84 for P. micra (PM) and 0.73 for clbB+ bacteria (EC) (Figure 21A). At 
the best cut-off of 4.22 x103 CN/g for PM, PM could detect CRC with sensitivity of 
81.25% and specificity of 85.71%, and at the selected cut-off of 9.23x 102 CN/g for 
EC, EC detected CRC with sensitivity of 92.86% and specificity of 61.11% (Figure 21B, 
Table 9). These results confirmed that three bacteria could be the potential bacterial 
biomarkers for discriminating CRC patients from the control group. 
 

• Comparison of healthy volunteers and adenoma patients 
 The logistic regression model was also utilized to differentiate between 
patients with adenomas and control subjects. The bacterial markers showed poorer 
performance in adenomas detection than those in cancer detection. The greatest 
AUC for adenomas detection was 0.69 for S. gallolyticus (SG) level (Figure 21C). At 
the selected cut-off of 1.22x104 CN/g, SG could discriminate patients with polyp from 
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the control group with sensitivity of 70.59% and specificity of 77.78% (Figure 21D, 
Table 10). Next, fecal F. saccharovirans (FS) and fecal EC had an AUC of 0.61 and 
0.59, respectively (Figure 21C). At the best cut-off value of FS (5.82x106 CN/g) and EC 
(4.22x103 CN/g) could discriminate adenoma patients from the HC group with 
sensitivity of 80.65% and 61.54%, specificity of 42.86% and 72.22%, respectively 
(Figure 21D, Table 10).   
 

 
Figure  21 Receiving operating characteristic (ROC) curve displaying the sensitivity and 
the specificity of single fecal bacterial markers in distinguishing between 
CRC/adenoma patients and control groups. 
A) ROC curve for CRC patients versus control subjects. B) sensitivity and specificity for 
CRC detection. C) ROC curve for patients with adenomas versus control subjects. D) 
sensitivity and specificity for adenomas detection. Abbreviations: FN, F. nucleatum; 
SG, S. gallolyticus; PM, P. micra; EC, colibactin positive strains; Bla, Blautia spp.; FS, F. 
saccharivorans. 
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Table  9 Microbial alteration in stools of patients using the cut-off value for CRC 
detection  

HC CRC Total P-value 
F. nucleatum (%) n=21 n=17 n=38 <0.001***  
Cut-off = 8.41x103 CN/g Low 19 (90) 4 (24) 23 (61) 

High 2 (10) 13 (76) 15 (39) 
S. gallolyticus (%) n=9 n=11 n=20 0.343  
Cut-off = 7.59x104 CN/g Low 6 (67) 5 (45) 11 (55) 

High 3 (33) 6 (55) 9 (45) 
Colibactin positive bacteria (%)  n=18 n=14 n=32 0.002**  
Cut-off = 9.23x102 CN/g Low 11 (61) 1 (7) 12 (38) 

High 7 (39) 13 (93) 20 (63) 
P. micra (%) n=21 n=16 n=37 0.000***  
Cut-off = 4.22x103 CN/g Low 18 (86) 3 (19) 21 (57) 

High 3 (14) 13 (81) 16 (43) 
F. saccharivorans (%) n=21 n=14 n=35 0.163 

  Cut-off = 9.44x106 CN/g Low 10 (48) 10 (71) 20 (48) 
High 11 (52) 4 (29) 15 (52) 

Blautia spp. (%) n=22 n=13 n=35 0.061  
Cut-off = 1.60x107 CN/g Low 5 (23) 7 (54) 12 (34) 

High 17 (77) 6 (46) 23 (66) 
Abbreviations: CN/g, copy number per gram. *, P<0.05; **, P<0.01; ***, P<0.001; ****, 
P<0.0001. Note: The best cut-off values that maximized Youden's J statistic were 
used. 
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Table  10 Microbial alteration in stools of patients using the cut-off value for 
adenoma detection  

HC Polyp  Total P-value 
F. nucleatum (%) n=21 n=30 n=51 0.158 

  Cut-off = 5.43x102 CN/g Low 14 (67) 14 (47) 28 (55%) 
High 7 (33) 16 (53) 23 (45%) 

S. gallolyticus (%) n=9 n=17 n=26 0.019* 
  Cut-off = 1.22x104 CN/g Low 2 (22) 12 (71) 14 (54) 

High 7 (78) 5 (29) 12 (46) 
Colibactin positive bacteria (%)  n=18 n=26 n=44 0.027* 

  Cut-off = 4.22x103 CN/g Low 13 (72) 10 (38) 23 (52) 
High 5 (28) 16 (62) 21 (48) 

P. micra (%) n=21 n=30 n=51 0.079 
  Cut-off = 2.26x103 CN/g Low 15 (71) 14 (47) 29 (57) 

High 6 (29) 16 (53) 22 (43) 
F. saccharivorans (%) n=21 n=31 n=52 0.066 

  Cut-off = 5.82x106 CN/g Low 9 (43) 6 (19) 15 (29) 
High 12 (57) 25 (81) 37 (71) 

Blautia spp. (%) n=22 n=31 n=53 0.282 
  Cut-off = 4.62x107 CN/g Low 19 (86) 23 (74) 42 (79) 

High 3 (14) 8 (26) 11 (21) 
Abbreviations: CN/g, copy number per gram. *, P<0.05; **, P<0.01; ***, P<0.001; ****, 
P<0.0001. Note: The best cut-off values that maximized Youden's J statistic were 
used. 
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5.10. The combination of fecal microbial markers and qualitative FIT to improve 
the screening efficacy for CRC detection 
 The fecal bacterial tests were selected from the top 3 bacterial candidates 
with the highest AUC values of single bacterium tests in CRC detection. The binary 
logistic regression models were performed to distinguish between healthy subjects 
and cancer patients. The combination of FN with PM improved diagnostic 
performance by increasing AUC to 0.90 as compared with other combinations (all 2-3 
markers: AUC ≤0.86, Figure 22A), FN alone (0.86), or PM alone (0.84). At the best cut-
off value, this combination could discriminate CRC patients from the HC group with 
sensitivity of 93.75% and specificity of 71.43% (Figure 22B).  
 Since qualitative FIT (FIT) is the most common non-invasive screening test for 
CRC, the addition of FIT was further analyzed whether it could improve the efficacy 
of fecal microbial markers. The FIT test was performed on the fecal samples of 16 
CRC patients and 22 control subjects. The results showed that 94.22% (16/17) of 
stool samples from cancer cases were FIT positive. The addition of FIT could increase 
the AUC (0.93-0.97) of all combinations (Figure 22C, 22D) as compared with fecal 
microbial markers without FIT (0.81-0.90) (Figure 22A) and also enhanced both 
sensitivity (≥ 92.31%) and specificity (≥ 90.91%) (Figure 22E). Furthermore, the 
addition of FIT to the tests for PM alone or together with FN could discriminate the 
cancer group from the HC group with 93.75% sensitivity, 95.2% specificity, 93.8% 
positive predictive value (PPV), and 95.2% negative predictive value (NPV), while FIT 
alone gave 94.1% sensitivity, 90.9% specificity, 88.9% PPV, and 95.2% NPV (Figure 
22E, Table 6).  Additionally, the occurrence rate of PM together with FN was 94% 
(76%+18%) in CRC stools (Figure 22F). Altogether, these results suggested that the 
combination of fecal microbial markers and FIT increased the diagnostic performance 
for non-invasive CRC screening test. 
 In addition, the quantitative FIT (qFIT) was also performed to differentiate CRC 
from healthy controls. At a threshold of 50 ng Hb/ml, qFIT detected 16 out of the 17 
CRC patients. The qFIT alone gave sensitivity of 94.1%, specificity of 95.5%, PPV of 
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94.1%, and NPV of 95.5% (Table 11). The quantitative FIT showed strong correlation 
between the amount of fecal human hemoglobin (hHb) and CRC stages (Spearman 
r= 0.715, Figure 23B). The level of hemoglobin was significantly elevated in CRC 
patients with stage II, III and IV when compared with healthy controls (p<0.001, 
p<0.0001, and p<0.01, respectively) and the adenoma group (p<0.001, p<0.0001, and 
p<0.01, respectively). However, there was no performance improvement of 
combining microbial markers with qFIT in CRC detection (Figure A4). 
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Figure  22 Receiving operating characteristic (ROC) curve displaying the sensitivity and 
the specificity for the combination of fecal bacterial markers and FIT in distinguishing 
CRC patients versus control groups. 
A) ROC curve of fecal bacterial combination B) sensitivity and specificity of fecal 
bacterial combination C) ROC curve of single bacterium with FIT D) ROC curve of 
combined bacteria and FIT E) sensitivity and specificity of combined bacteria and FIT. 
F) the distribution of three bacterial markers in stool of CRC cases.  Abbreviations: FN, 
F. nucleatum; SG, S. gallolyticus; PM, P. micra; EC, colibactin positive strains; Bla, 
Blautia spp.; FS, F. saccharivorans. 
 
Table  11 Performance of FIT alone and in combination with selected fecal bacterial 
markers for CRC screening test 

Variables Qualitative FIT Quantitative 
FIT  +PM +PM+FN 

AUC 0.93 0.93 0.94 0.984 
Cut-off a ≥ 50 ng 

hHb/ml 
  ≥ 50 ng 

hHb/ml 
Sensitivity 94.1% 93.8% 93.8% 94.1% 
Specificity 90.9% 95.2% 95.2% 95.5% 
PPV 88.9% 93.8% 93.8% 94.1% 
NPV 95.2% 95.2% 95.2% 95.5% 
Accuracy 92.3% 94.6% 94.6% 94.9% 

Abbreviations: FIT, fecal immunochemical test; PM, P. micra; FN, F. nucleatum; AUC, 
area under receiver operating characteristics curve; NPV, negative predictive value; 
PPV, positive predictive value.  athe cut-off value of 50 ng hHb/ml was following by 
the manufacturer’s instruction. 
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Figure  23 Spearman’s rank correlation coefficient between the human hemoglobin 
(hHb) amount via quantitative FIT and stage of disease of HC versus CRC. 
A) the hHb amounts according to stage of disease, B) the correlation between the 
hHb amount and stage of disease. Abbreviation: hHb, human hemoglobin; FIT, fecal 
immunochemical test; *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. Note: each 
test was considered positive at threshold of 50 hHb ng/ml buffer.   
 
5.11. The combination of fecal microbial markers and FIT to improve the 
screening efficacy for adenoma detection 
 The ability of the fecal bacteria was analyzed to enhance differentiation 
between adenoma patients and control subjects. Because of poor differentiation 
performance of single bacterium assay, combined bacteria might improve the 
efficacy of detection. The combinations of three bacteria; SG, FS, and EC, that gave 
the highest AUC in the single bacterium assay were conducted. The combination of 
all three bacteria showed the best performance, i.e., AUC of 0.97, in discriminating 
patients with adenoma from control subjects (Figure 24A). At the best cut-off, the 
combination assay of three bacteria could detect adenomas with sensitivity of 100%, 
specificity of 83.33%, PPV of 94.1%, and NPV of 100% (Figure 24B, Table 12). On the 
other hand, although FIT is currently used for CRC screening in the clinic, the poor 
performance of FIT in adenoma detection gave a lower AUC (0.53) compared with 
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the bacterial combination assay (all AUC ≥ 0.65) (Figure 24A). At the selected cut-off 
value of FIT provided sensitivity of 96.77%, specificity of 9.09%, PPV of 60%, and NPV 
of 66.7% (Figure 24B, Table 12). These results suggested the potential of the 
combination assay of three bacteria without FIT to differentiate adenoma patients 
from healthy controls. However, there was a limitation because all of SG, FS and EC 
were simultaneously found in only 52% of fecal samples from adenoma patients 
(Figure 24F). 
 To improve the adenomatous polyp screening test, the complementary fecal 
bacterial models with FIT was performed. The combination of single bacterium 
detection and FIT slightly increased AUC of FS with FIT (0.65) and EC with FIT (0.62) 
(Figure 24C), but this type of combination did not enhance sensitivity and specificity 
as compared with the bacterial detection alone (Figure 21D and 24E). Besides, the 
addition of FIT to other combination assays of two or all three bacteria did not 
provide better discrimination between adenomas and healthy controls (Figure 24D, 
24E) when compared with the combination assay of bacteria alone (Figure 24A). 
These results demonstrated that the absolute quantification of fecal microbial 
markers without FIT was more sensitive and specific than FIT.  
 Owing to the low prevalence of SG, FS, and EC in fecal samples of adenoma 
patients, the combinations of other bacteria with FIT were analyzed to find 
alternative fecal bacterial markers with higher prevalence in patients with polyp. The 
combinations of five bacteria with the FIT (five bacteria: FN+PM+EC+FS+Bla) gave the 
AUC of 0.735 (Figure 25A). At the best cut-off value, this model of five bacteria 
combined with FIT could discriminate adenomas from controls with sensitivity of 
83.3%, specificity of 64.7%, PPV of 76.9%, and NPV of 73.3% (Figure 25B, Table 12). 
Although the combination of the five bacteria and FIT showed no better 
performance in adenomas detection than the previous combination of three 
bacteria, these five bacteria were found more often (81%) in stools of the polyp 
group (Figure 25C). 
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Figure  24 Receiving operating characteristic (ROC) curve displaying the sensitivity and 
the specificity for the combination of fecal bacterial markers and FIT in distinguishing 
patients with polyp versus control groups. 
A) ROC curve of fecal bacteria combination B) sensitivity and specificity of fecal 
bacterial combination C) ROC curve of a single bacterium with FIT D) ROC curve of 
combined bacteria and FIT E) sensitivity and specificity of combined bacteria and FIT 
F) the distribution of specific bacterial markers in feces of adenoma patients. 
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Abbreviations: FN, F. nucleatum; SG, S. gallolyticus; PM, P. micra; EC, colibactin 
positive bacteria; Bla, Blautia spp.; FS, F. saccharivorans. 
 

 
Figure  25 Receiving operating characteristic (ROC) curve displaying the sensitivity and 
the specificity for the alternative combination of fecal bacterial markers and FIT in 
distinguishing patients with polyp versus control groups. 
A) ROC curve of fecal bacterial combination B) sensitivity and specificity of fecal 
bacterial combination C) the distribution of specific bacterial markers in feces of 
adenoma patients. Abbreviations: FN, F. nucleatum; SG, S. gallolyticus; PM, P. micra; 
EC, colibactin positive bacteria; Bla, Blautia spp.; FS, F. saccharivorans. 
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Table  12 Performance of FIT alone and in combination with selected fecal bacterial 
markers for adenoma screening test 

Variables Qualitative FIT FS+SG
+EC 

Quantitative 
FIT  +PM+EC+ 

FS+Bla 
+FN+PM+EC+ 

FS+Bla 

AUC 0.53 0.74 0.735 0.97 0.5007 
Cut-offa 

 
 

  
< 29.75 ng 
hHb/ml 

Sensitivity 96.8% 75.0% 83.3% 100.0
% 

90.6% 

Specificity 9.1% 76.5% 64.7% 83.3% 27.3% 
PPV 60.0% 81.8% 76.9% 94.1% 64.4% 
NPV 66.7% 68.4% 73.3% 100.0

% 
15.8% 

Accuracy 60.4% 75.6% 75.6% 95.5% 64.8% 

Abbreviations: FIT, fecal immunochemical test; PM, P. micra; EC, colibactin positive 
bacteria; FS, F. saccharivorans; Bla, Blautia spp.; FN, F. nucleatum; SG, S. gallolyticus; 
AUC, area under receiver operating characteristics curve; NPV, negative predictive 
value; PPV, positive predictive value.  
a The optimal cut-off value of 29.75 ng hHb/ml was calculated from Youden’s index. 
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CHAPTER VI  
DISCUSSION 

 Colorectal cancer (CRC) is one of the most common cancers (2) and becomes 
a major public health problem worldwide including in Thailand. The risk factors of 
CRC are the complex interplay among genetics, dietary, lifestyle, and environmental 
factors (90). In the last decade, accumulating evidence has supported a hypothesis 
that the alteration of intestinal microbiota composition possibly affects the initiation 
and progression of CRC (91-93). The high-throughput sequencing approach including 
the 16S rRNA gene sequencing has been extensively used as an efficient method to 
examine the total bacterial component in a particular environment (94). Although 
mucosa-associated microbiota were speculated to directly interact with the host, a 
limited number of studies performed gut microbiome analysis using colon tissue 
samples of CRC patients (52, 53, 95, 96). Matched non-tumor tissue from CRC 
patients was usually used for comparison (10, 85). In addition, studies are rarely 
conducted in both stool and mucosal samples to build a comprehensive picture (14, 
49). In this study, the 16S rRNA gene sequencing tool was utilized to compare the 
bacterial composition among three groups of the Thai population consisting of 
healthy control (HC), patients with adenomas (polyp), and patients with CRC. Since 
the design of this study was a cross-sectional study, patients with adenomas were 
included to explore the gut microbiome across the intermediate state between HC 
group and CRC patients to better understand the association of gut microbiota and 
CRC according to the adenoma-adenocarcinoma sequence (3). Moreover, the sample 
types including feces and mucosal tissue representing lumen- and mucosa-associated 
microbiota, respectively, were investigated in this study. As expected, the structural 
segregation of gut microbiota between mucosal tissue and fecal samples showed 
significant differences in terms of bacterial richness, diversity, and overall microbial 
profile (Figure 6 and 7). This finding agrees with previous studies that lumen-
associated microbiota only partially correlated with mucosa-associated microbiota 
(14, 97, 98). The relative abundance of the phyla Firmicutes was more dominant in 
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stool than mucosal tissue (Figure 7). Two previous studies reported that 
approximately 90% of fecal microbiota was predominated by Bacteroidetes and 
Firmicutes (41, 42). The phylum Firmicutes, which has been reported to increase 
energy harvest from host’s diet (99), was greatly elevated in the intestinal lumen 
(97). By contrast, the higher proportions of phyla Proteobacteria and Fusobacteria 
were highly enriched on mucosal tissue (Figure 7) which are consistent with previous 
report (97). Therefore, exclusive use of fecal samples may not truly represent the 
microenvironment on the mucus layer (98).  
 The intestinal microbiota is spatially stratified throughout the colon in terms 
of longitudinal and cross-sectional axes. The different distributions of physical and 
chemical features (pH and oxygen concentration), as well as nutrient gradients, along 
the large intestines, can affect the microbial composition in distinct colon locations 
(100). For these reasons, this study collected the tissue samples from both proximal 
and distal colon of the same healthy donor to determine the bacterial pattern in the 
HC group. The alpha and beta diversity results showed no significant difference 
between the proximal and distal colon of the HC group (Figure A7). Thus, both 
tissues were used in further analyses as controls. 
 According to the results of biopsy tissue, the mucosal microbiota composition 
in samples originating from the CRC patients was considerably different from those of 
HC individuals (Figure 8D and A1), whereas the results of adenoma group and others 
were not statistically different. These finding were in accordance with a study of Irish 
CRC patients (14), which showed different trend in CRC patients from that of controls. 
Individuals with CRC had higher relative abundance of genera Bacteroides, 
Parabacteroides, Collinsella, Erysipelatoclostridium, Flavonifractor than those in HC 
groups (Figure 9, 10) whereas Escherichia-Shigella, and Faecalibacterium were lower 
abundant in CRC cases (Figure 9, 10). Moreover, members in the phylum Firmicutes, 
the major producers of beneficial short chain fatty acid (SCFA) (101), showed 
dissimilar distribution in which the genus Flavonifractor was elevated in the patients 
with CRC while the genus Faecalibacterium was more abundant in the HC group. 
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These results indicated that the microorganisms from the same taxonomic clade 
could play distinct functional roles in the microenvironment depending on their 
virulence factors and the interaction with their surrounding (46).  
 Tjalsma and his team proposed a bacterial driver-passenger model for CRC 
development in 2012 (102), in which certain driver bacteria in the colon can initiate 
in multistep development to colorectal carcinogenesis consisting of induced 
inflammation, increased cell proliferation, and/or produced genotoxin. After 
epithelial DNA damage, colorectal tumorigenesis is caused by alteration of the gut 
microenvironment that facilitates the outnumber of colonic commensals with either 
tumor-promoting or tumor-suppressive features considered as passenger bacteria. 
Furthermore, bacterial drivers may be replaced by passenger bacteria that could take 
the growth benefit in the cancerous microenvironment. In this study, 
Flavobacterium, an opportunistic pathogen in immunocompromised patients (103), 
was significantly over-represented in the mucosal tissue of the adenoma group but 
not in CRC (Figure 10), which is consistent with a previous study in patients with 
intestinal metaplasia (104). However, the bacteria were not in high abundance in 
fecal samples of the adenoma patients (Figure 14B), indicating that this genus might 
be associated with the early stage of CRC and act as driver bacteria but 
outcompeted by passenger bacteria in CRC patients. 
 As for passenger bacteria, the interesting and consistent observation was the 
significant enrichment of Flavonifractor plautii on the mucosal tissue of CRC patients 
(Figure 11D). It has been identified in Indian CRC population (105). F. plautii is able to 
degrade beneficial flavonoids found in plant-based diet, i.e. green tea, wine and 
cocoa (106) and then generates polyphenolic compounds, which play a role in the 
prevention of cancer (107). Apart from F. plautii, Parabacteroides distasonis in tissue 
samples (Figure 11F) was also associated with CRC. The protective role of this 
bacterium in tumor development and the maintenance of gut barrier has been 
proposed in tumor-bearing mice (108). Taken together, these findings suggested that 
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these bacteria play potential roles of passenger bacteria with tumor-suppressive 
features. 
 On the other hand, other remarkable observation of mucosal microbiota 
including Erysipelatoclostridium ramosum, Bacteriodes thetaiotaomicron, and P. 
merdae were positively associated with CRC (Figure 11). These bacteria could be 
found in the human gastrointestinal tract, but no study surveyed on their 
characteristics in CRC. However, they could be opportunistic pathogens in 
immunocompromised hosts (109) or found higher level in hypertension (110). In 
addition, E. ranosum, which has human immunoglobin A protease function (111), was 
less abundant in the HC and adenoma groups while dramatically elevated in the 
cancer tissues (Figure 11A). This finding might be explained by their IgA protease 
translocating across the colonic mucosa that could increase the host susceptibility 
(111). These results suggest they might serve as passenger bacteria with tumor-
promoting roles that poorly colonize in non-disease colon but preferentially colonize 
in the tumor microenvironment. Moreover, the total microbial alterations found in 
this study and putative functions reported in previous studies are summarized in 
Table 13.  
 However, Escherichia-Shigella, which were more abundant in the HC tissues 
(Figure 10A, 11G), are generally referred as normal flora with potential pathogenic 
aspect in large intestine (112), in disagreement with previous findings (46). Certain E. 
coli strains can produce genotoxin (113) and usually are considered in causing CRC 
like driver passenger (102). The discrepancy between our study and other studies 
might be explained by 1) ethnic difference in the susceptibility to colonization by 
Escherichia and Shigella, 2) the different virulence mechanisms and functional roles 
among strains, and 3) the possibility as a high risk group for CRC of currently healthy 
subjects used as HC in this study. 
 Interestingly, 7 bacterial species from mucosal tissues and 3 bacterial species 
from stool samples were identified as putative microbial biomarkers to discriminate 
the microbial structure of CRC patients and healthy individuals (Figure 16A).  
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Nevertheless, the utilization of tissue samples in CRC prediction is the invasive 
approach. Thus, fecal samples are more practical to apply the biomarkers. E. 
ramosum was solely found significant abundance in both fecal and tissue samples 
(Figure 16B). This study provided a population-specific biomarker, which may 
potentially be utilized in noninvasive screening of Thai CRC. 
 Confounding factors such as dietary (137) or medical treatment (138, 139) 
may directly affect gut flora. In the present study, no subjects were taking 
antimicrobial drugs, consuming probiotics products, and receiving chemotherapy or 
radiation. Moreover, sampling fecal samples after colonoscopy within at least 1 
month was also avoided as shown by the evidence of Drago et al. (140) that 
polyethylene glycol bowel cleansing preparation could have an impact on reverting 
to resemble the baseline intestinal microbiota profile. Therefore, these confounders 
could not considerably alter the gut microbiota composition. Nonetheless, the CRC 
group had significantly more patients with diabetes mellitus (DM) than the HC group, 
which had no DM cases (Table 6). The DM factor could bias the CRC-associated 
microbiota result. However, exclusion of DM cases roughly did not alter the main 
results (Figure A5). As a multifactorial disease, it was difficult to exclude all co-
founding factors of CRC, therefore the study still included the results from cases with 
DM to perform the microbiome analysis.  
 This microbiome study has some limitations that might explain different 
results compared with other studies. As for disparate protocols, the selection of 
universal 16S rRNA gene primers is one of the factors that can cause different results 
of gut microbiota profiling between studies (12, 141). Most microbiome studies used 
the primers targeting on V3 (41, 46), V4 (35, 42, 49, 51), or V3/V4 (14, 37, 44) of 
hypervariable regions of 16S rRNA gene, but all of these primers resulted in low 
sensitivity of tissue samples in this study (Figure A6). Therefore, this study performed 
the 16S rRNA gene sequencing using primers targeted V1/V2, in consistent with some 
previous studies (52, 142, 143). Moreover, the distinct choices of specimen handling 
procedures including different manufacturers of sample preservation solution can 
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cause dissimilar patterns of gut microbiota (141, 144). Consequently, the study 
utilized the preservation solution in order to minimize the microbial community 
change over time and prevent DNA degradation by temperature fluctuation. 
Additionally, the samples were kept on ice during transportation by volunteers and 
collected at -80 °C for long term storage. In addition, the samples in each group were 
limited in number and restricted to one hospital in Bangkok that might not generally 
represent the Thai population. 
 The second objective of this study was to validate the microbiome analysis 
results of six CRC-associated gut microbiota that were well-known in recent studies 
by quantitative PCR (qPCR) assay. To investigate the alteration of bacterial 
composition along adenomas-adenocarcinomas sequence, qPCR was used to 
compare the bacterial quantity in both stool and tissue samples obtained from 
different sites of colon of patients with CRC, patients with adenomas, and HC. This 
study showed that CRC-related bacteria of patients with CRC were distinct from 
those of non-CRC volunteers (Figure 19). This is consistent with previous studies (50, 
78, 145-148).  Furthermore, a marked increase in the absolute abundance of 
Fusobacterium nucleatum in both feces and mucosal tissues from CRC patients was 
observed (Figure 19A). F. nucleatum was previously shown to be related to 
colorectal malignancy (85, 146, 149, 150), promote a pro-inflammatory environment 
(151), and possess virulence factors that promote their adhesiveness to host 
epithelial cells (55, 152, 153) and the ability to invade into epithelial cells (55, 154). 
Consequently, F. nucleatum may drive colorectal carcinogenesis. Parvimonas micra 
was also significantly higher in stool and mucosal samples of cancer cases (Figure 
17C). which is in agreement with previous studies (14, 145, 146, 155). Therefore, P. 
micra is another potential CRC-promoting microorganism. Like F. nucleatum, it is an 
obligate anaerobic bacterium that could be an oral pathogen (156). Little is known 
about the participation of P. micra in colonic tumorigenesis. A study of Marchesan 
and collaborators (157) found P. micra was able to interrupt the regular function of 
the nucleotide-binding oligomerization domain 2 (NOD2) stimulatory activity in 
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periodontitis. This might perhaps give rise to a pro-tumorigenic and inflammatory 
environment. In addition, Blautia spp. significantly elevated in mucosal tissues of CRC 
patients in this study (Figure 19D). Blautia is an anaerobic bacteria that present 
widely in the mammal feces and colon (158). On the contrary, some studies reported 
the presence of bacteria belonging to the family Lachnospiraceae like Blautia spp. 
significantly diminished or vanished in fecal samples (159) and tissue samples (97) of 
patients with CRC. Blautia has been shown to have potential probiotic properties 
including producing short chain fatty acid (SCFA) (158). It was also involved in 
alleviating metabolic diseases (160) and inflammatory diseases (161), and inhibiting 
specific pathogens (162). Nevertheless, there is a contradiction in the correlation of 
Blautia with human diseases. Less Blautia was found in patients with type 2 diabetes 
(160), obesity (163), colon cancer (97, 159), and Crohn’s disease (161),  whereas more 
Blautia was present in irritable bowel syndrome (IBS) (164), inflammatory bowel 
diseases (165), breast cancer (166). Besides, there is no more-in-depth study of this 
genus and only a few strains of this bacterium have been isolated and characterized 
(158). The discrepancy of these studies might be explained by 1) ethnic difference in 
the susceptibility to harbor by Blautia or 2) geographical differences in Blautia strains 
including those discovered in Thailand. In contrast to the previously mentioned 
bacteria, Fusicatenibacter saccharivorans decreased significantly in stool samples of 
cancer cases compared with non-cancer cases (Figure 19), which was consistent with 
previous studies (159, 167). F. saccharivorans is the only strain in the genus 
Fusicatenibacter of the family Lachnospiraceae and was successfully isolated and 
cultured in 2013 (168). F. saccharivorans also has the SCFA-producing properties 
(168). A study of Takeshita et al. (169) reported that F. saccharivorans could suppress 
intestinal inflammation via inducing interleukin-10 in murine colitis and ulcerative 
colitis (UC) patients. Nonetheless, the role of F. saccharivorans in the pathogenesis of 
CRC remains unknown.  
 In this study, bacterial levels of F. nucleatum, colibactin+ strains, and P. micra 
in fecal samples showed positive correlation with clinicopathological features. 
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Moreover, Blautia spp. in tissue samples was significantly correlated with the stage of 
disease especially late-stage (stage III) of colorectal cancer (Figure 20). This 
information indicates that patients with advanced cancers may be more susceptible 
to the colonization of certain bacteria. The abundant nutrients, low oxygen, and 
immune suppression were found within the hypoxic tumor at late stages that 
supports bacterial growth (170). Another perspective following the concept of alpha-
bug theory, there were primary bacteria could remodel the whole microenvironment 
to facilitate colonization via other bacteria and drive pro-inflammatory immune 
responses leading to oncogenic development of colonic epithelial cells (171). A 
previous study of de Carvalho et al. (172) suggested positive association between a 
high level of F. nucleatum in tumor tissue and high-depth invasion of cancer and 
poor prognosis. Likewise, Bonnet et al. (173) observed a relationship between 
cyclomodulin positive strains in the CRC mucosa and stage III/IV colon cancer. 
Consistent with Xu et al. study (174), fecal P. micra was predominantly enriched in 
the early and late stages of CRC. Although the association between Blautia spp. and 
TNM staging of CRC has never been reported, a study in breast cancer showed fecal 
Blautia spp. significantly escalated in stage II and III compared with stage 0 and I of 
breast cancer (166). The relationship between specific bacteria and clinical stage of 
disease might provide promising information to enhance the prediction of cancer 
progression and patient outcome. Currently, the qPCR technique for detection is a 
reasonably priced and widely used method in clinical laboratories. In case of stronger 
evidence, the quantity of bacteria in feces or colon tissue samples might be applied 
for diagnosis and progression of CRC in the future. However, the association of CRC-
related bacteria mentioned above did not necessarily imply their oncogenicity or 
CRC etiology because many bacteria found in this study are present in high 
percentage of all groups including HC. In addition, CRC is a multifactorial disease that 
may be accompanied by other risk factors including genetics, dietary habits, and 
environment factor (90). 
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 Based on the Asia Pacific Consensus Recommendations on colorectal cancer 
screening in 2015 (4), the fecal immunochemical tests (FITs) including qualitative FIT 
and quantitative FIT are widely used as stool-based screening test for colorectal 
cancer to select high-risk subjects for colonoscopy. The quantitative FIT is operated 
by an automated system which could reduce observer variability and is suitable for 
high-throughput screening in medical laboratories (175). On the other hand, the 
qualitative FIT is simpler in terms of no requirement of the additional medical device 
or automated analyzer, therefore it is more practical for office-based testing (176). 
The quantitative FIT could detect CRC with high sensitivity and high specificity (51). 
Nevertheless, Baxter et al. (51) found quantitative FIT missed detection of a subset of 
colonic lesions that could be detected by the quantitative FIT complemented with 
microbiome-based markers. Therefore, this study determined the performance of the 
microbiota abundance in distinguishing individuals with adenocarcinomas or 
adenomas from healthy colons and further evaluated by binary logistic regression 
models. For cancer detection (Figure 22, Table 11), the combination of qualitative FIT 
and detection of P. micra alone or together with F. nucleatum had higher specificity 
(95.2%) and higher positive predictive values (PPV) (93.8%) than qualitative FIT alone 
(90.9% specificity and 88.9% PPV) but had a slight decline in sensitivity (93.8% vs 
94.1%). This information suggested fecal P. micra and F. nucleatum as the putative 
bacterial biomarkers for CRC, which are consistent with previous studies (78, 146-148). 
In addition, they could complement the accuracy of the existing screening test, 
qualitative FIT. On the contrary, the combination of fecal bacteria and quantitative 
FIT could not improve the CRC detection (Figure A4). The quantitative FIT alone had 
higher sensitivity (94.1%) and higher specificity (95.5%) in detecting adenocarcinoma 
than the combined test (Table 11). This is inconsistent with previous studies 
published in 2016 (51, 78). This discrepancy could be the result of improving 
performance of current FITs by manufacturers compared to those use in previous 
studies. Despite the superior performance of quantitative FIT in CRC detection, the 
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combined test with qualitative FIT can be an alternative option in resource-limited 
settings where automated machines are not available. 
 As for adenoma detection, the FIT was designed to detect occult fecal 
hemoglobin so its performance in detecting nonbleeding colonic lesions was a 
challenge. In this study, both qualitative (Figure 20, 21, Table 12) and quantitative FIT 
(Table 12, Figure A4) showed poor detection of precancerous lesions as 
demonstrated by the suboptimal area under the curve (AUC) of 0.53 and 0.50, 
respectively, which is in the agreement with previous studies (51, 78, 146). In 
addition, the combination of S. gallolyticus, F. saccharivorans, and colibactin positive 
strains without FIT could detect adenomas with sensitivity of 100% and specificity of 
83.3% (Figure 20E, Table 12). Even though the detection of these three bacteria to 
differentiate adenomas patients from healthy controls was efficient, the occurrence 
rate that found all three bacteria simultaneously was limited since fecal S. 
gallolyticus was found 54% of study volunteers (Figure 20F). Similarly, Dumke et al. 
reported 63% of S. gallolyticus fecal carriage in healthy volunteers (177). With the 
exception of S. gallolyticus, an alternative test that combined other five bacteria 
composing of F. saccharivorans, colibactin positive strains, P. micra, F. nucleatum, 
and Blautia spp. with qualitative FIT could detect adenomatous polyp with 
sensitivity of 83.3% and specificity of 64.7% (Figure 21B, Table 12). Even if the 
performance of this bacterial combination test did not superior to the test with S. 
gallolyticus, the co-occurrence of these five bacteria in feces was higher (81%) (Figure 
21C) than the combined bacteria with S. Gallolyticus (52%) (Figure 20F). These 
findings supported the potential role of microbiota in the fecal samples as novel 
candidate biomarkers for detection of precancerous lesions. 
 It is noteworthy that colonoscopy was implemented as the preferred strategy 
for CRC screening by the American College of Gastroenterology (ACG) (5). 
Nevertheless, the accessibility to colonoscopy is limited partly due to requiring high-
cost equipment, well-trained endoscopic nurses, and board-certified endoscopists in 
Thailand (178). According to the Asia Pacific Consensus Recommendations for CRC 
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screening, a two-step method for CRC screening in average-risk subjects is 
recommended in the resource-limited countries (4, 179). The FIT-based screening is 
used as the first step followed by the second step of colonoscopy in case of positive 
FIT (4, 179). Consequently, the major advantage of the bacterial markers is the ability 
to detect even non-bleeding polyps in asymptomatic patients. Moreover, stool-based 
tests such as FIT combined with bacterial markers are non-invasive and may be more 
affordable than colonoscopy. Therefore, this method can be used generally for early 
detection of colonic lesions in primary healthcare.  
 This study showed that the combined detection of CRC-related bacteria 
with/without qualitative FIT offer acceptable performance in CRC or adenomatous 
polyp screening. The disadvantage of bacterial markers is limited prevalence of these 
bacteria in patient’s stool, and it may be dependent on the population’s 
characteristics. Thus, the development of these microbial models needs further 
investigation to improve their accuracy. The complementary approaches using 
different bacterial markers and FIT for adenocarcinoma or adenoma screening should 
be validated in larger population.  
 In conclusion, this study identified the dysbiosis signature of gut microbiota 
according to the adenoma-adenocarcinoma sequence for the Thai population, 
especially the significant difference of mucosal microbiota between CRC patients and 
the HC group. Apart from the host factors, the study suggested that the imbalance of 
colonic microorganisms accompanied by driver and passenger bacteria might be 
involved in CRC tumorigenesis. The microbiome analysis in this study also uncovered 
the putative biomarkers for CRC from mucosal and luminal microbiota. The 
subsequent validation study of candidate microbiota in the same population 
revealed the significant difference of most bacterial quantity among three groups. 
These findings remained to be confirmed by a larger population to improve the 
statistical power and identify the role of different microbiota. Furthermore, the 
functional profiles of gut microbiota that interact with human host or studies in 
animal models are needed to illustrate the causal role in CRC carcinogenesis. In 
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addition, the candidate biomarkers in CRC or adenoma detection also require the 
validation step by larger sample size. 
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APPENDIX A  
MATERIALS 

BUFFER AND REAGENT 
1. Luria-Bertani broth (LB broth) 

To 950 ml of deionized H2O, add: 
Tryptone    10 g/L 

 Yeast extract    5 g/L 
 NaCl     10 g/L 
 Sterile by autoclaving at 15 psi (1.05 kg/cm2) for 15 min. 
 
2. SOC medium 

To 950 ml of deionized H2O, add: 
Tryptone    20 g/L 

 Yeast extract    5 g/L 
 NaCl     0.5 g/L 
 250 mM KCl     10 mL 
 Adjust the medium to pH 7.0 with 5 N NaOH 

After autoclaving, add 20 ml of filtrated 1 M glucose and 5 ml of filtrated 2 M 
MgCl2 

 
3. TB solution 

10 mM Pipes  (PIPES  = 3.021 g/L) 
55 mM MnCl2  (MnCl2.4H2O = 10.885 g/L) 
15 mM CaCl2  (CaCl2.2H2O = 2.205 g/L)  
250 mM KCl  (KCl  = 18.637 g/L) 
All the components except for MnCl2 were mixed and adjusted to pH 6.7 
with KOH. Then, MnCl2 was dissolved, the solution was sterilized by filtration 
and stored at 4ºC, all salts were added as solids, always kept, and used in 
cold. 
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APPENDIX B 

 
 
Figure A1. Beta diversity of mucosal-associated microbiota between HC and CRC 
groups. 

 

 
Figure A2.  Agarose gel electrophoresis of polymerase chain reaction (PCR) products 
using primers specific for each bacterium. Abbreviations: FN, F.nucleatum (112 bp).; 
EC, colibactin positive strains (283 bp); PM, P.micra (200 bp); Bla, Blautia spp. (559 
bp); SG, S.gallolyticus (408 bp);  FS, F.saccharivorans (489 bp). 
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Table A1. Quality and quantity of plasmid DNA used as DNA standard curve. 

Plasmid DNA Concentration (ng/ul) 260/280 260/230 

E. coli 154.6 2.07 2.36 

F. nucleatum 97.6 2.06 1.98 

S. gallolyticus 61.0 2.04 2.11 

F. saccharivorans 78.2 1.93 2.06 

P. micra 97.2 1.91 2.04 

Blautia spp. 96.6 1.87 2.08 

 

 
Figure A3. The quantity of fecal bacteria on brucella blood (BR) agar after fecal 
samples were preserved with glycerol or RNA later reagents for 12 hours. The graph 
represented in Log10 of colony forming unit per ml. Abbreviation: G, glycerol; F, feces; 
R, DNA/RNA protection reagent (RNA later). 
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Figure A4. The receiver operating characteristic (ROC) curves displaying the specificity 
and the sensitivity for the combination of PM, FN, and quantitative FIT to detect CRC 
and adenomas. Abbreviations: PM, P. micra; FN, F. nucleatum; FIT, fecal 
immunochemical test, AUC, area under the curve; HC, Healthy controls; CRC, 
colorectal cancer.  
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Figure A5. The difference of mucosa-associated microbiota between before and after 

excluding the CRC patients with T2DM. A) before, B) after. 
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Figure A6. Agarose gel electrophoresis of polymerase chain reaction (PCR) products 
using different primers of each hypervariable region of 16S rRNA gene in tissue and 
fecal samples.  
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Figure A7. Alpha and beta diversity analysis of proximal and distal colon’s HC group. 
A) Chao1’s index, B) Shannon’s index, C) Simpson’s index, D) PCoA in 2-Dimension, E) 
PCoA in 3-Dimension, F) Taxonomic composition between proximal colon and distal 
colon. Data are shown as relative abundance. 
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Figure A8. Sequencing result with nucleotide BLAST of Fusobacterium nucleatum 
(nusG gene) that used as a positive control for qPCR. 
 

 

 
Figure A9. Sequencing result with nucleotide BLAST of colibactin positive strains 
(clbB gene) that used as a positive control for qPCR. 
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Figure A10. Sequencing result with nucleotide BLAST of Streptococcus gallolyticus 
(sodA gene) that used as a positive control for qPCR. 
 

 

 
Figure A11. Sequencing result with nucleotide BLAST of Parvimonas micra (rpoB 
gene) that used as a positive control for qPCR. 
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Figure A12. Sequencing result with nucleotide BLAST of Fusicatenibacter 
saccharivorans (16S rRNA gene) that used as a positive control for qPCR. 
 

 

 
Figure A13. Sequencing result with nucleotide BLAST of Fusicatenibacter 
saccharivorans (16S rRNA gene) that used as a positive control for qPCR. 
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Figure A14. Sequencing result with nucleotide BLAST of non-specific product of S. 
gallolyticus primers in tissue samples 
 

 

 
Figure A15. Sequencing result with nucleotide BLAST of non-specific product of F. 
saccharivorans primers in tissue samples 
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