การจำลองมอนติคาร์โลของการเกิดรังสีเอกซ์ในเครื่องพลาสมาโฟกัส

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีนิวเคลียร์ ภาควิชาวิศวกรรมนิวเคลียร์ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2564 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

MONTE CARLO SIMULATION OF X-RAY GENERATION IN PLASMA FOCUS MACHINE

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Nuclear Technology Department of Nuclear Engineering FACULTY OF ENGINEERING Chulalongkorn University Academic Year 2021 Copyright of Chulalongkorn University

หัวข้อวิทยานิพนธ์	การจำลองมอนติคาร์โลของการเกิดรังสีเอกซ์ในเครื่อง
	พลาสมาโฟกัส
โดย	น.ส.ภัคจิรา คชเสนี
สาขาวิชา	เทคโนโลยีนิวเคลียร์
อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก	ผู้ช่วยศาสตราจารย์ ดร.พงษ์แพทย์ เพ่งวาณิชย์
อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม	ดร.อาหลี ตำหมัน

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็นส่วนหนึ่ง ของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต

		คณบดีคณะวิศวกรรมศาสตร์
(ศาสตราจารย์ ดร.สุพร	จน์ เตชวรสินสกุล)	
คณะกรรมการสอบวิทยานิพนธ์		4
(รองศาสตราจารย์ ดร.	ดุลยพงศ์ วงศ์แสวง)	0389.IMU1311113
	Constant of the second	อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก
(ผู้ช่วยศาสตราจารย์ ด	ร.พงษ์แพทย์ เพ่งวาณิชย์)	
	ลงกรณ์แหาวิทยาลั	อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม
(ดร.อาหลี ตำหมัน)		ITY
		กรรมการ
(รองศาสตราจารย์ ดร.	สัญชัย นิลสุวรรณโฆษิต)	
		กรรมการภายนอกมหาวิทยาลัย
(ผู้ช่วยศาสตราจารย์ ด	ร.อภิวัฒน์ วิศิษฏ์สรศักดิ์)	

ภัคจิรา คชเสนี : การจำลองมอนติคาร์โลของการเกิดรังสีเอกซ์ในเครื่องพลาสมาโฟกัส. (MONTE CARLO SIMULATION OF X-RAY GENERATION IN PLASMA FOCUS MACHINE) อ.ที่ปรึกษาหลัก : ผศ. ดร.พงษ์แพทย์ เพ่งวาณิชย์, อ.ที่ปรึกษาร่วม : ดร.อา หลี ตำหมัน

ในวิจัยนี้ได้ทำการจำลองการแผ่รังสีเอกซ์โดยใช้โมเดลจากเครื่องพลาสมาโฟกัส TPF – II ขนาด 1.5 kJ ด้วยโปรแกรมคอมพิวเตอร์แบบมอนติคาร์โล (Geant4) โดยทำการจำลองในช่วงที่ เกิดอันตรกิริยาระหว่างลำอิเล็กตรอนกับขั้วแอโนดและทำการวิเคราะห์รังสีเอกซ์ที่เกิดขึ้น ทำการ เปรียบเทียบรังสีเอกซ์เมื่อมีการเปลี่ยนลักษณะของขั้วแอโนดในส่วนของวัสดุและรูปร่างซึ่งได้แก่ 1. ขั้วแอโนดทรงกระบอกตันทำจากทองแดง 2. ขั้วแอโนดทรงกระบอกตันทำจากทั้งสเตน 3. ขั้วแอโนดทรงกระบอกเจาะรูทำจากทองแดง 4. ขั้วแอโนดทรงกระบอกเจาะรูทำจากทั้งสเตน โดยผลการจำลองพบว่าปริมาณรังสีเอกซ์จะมีค่าสูงสุดมุม 60-70 องศา เมื่อพลังงานของลำ อิเล็กตรอนประมาณ 200 keV และที่มุม 10 องศา เมื่อพลังงานของลำอิเล็กตรอนตั้งแต่ 300 keV ขึ้น โดยวัสดุของขั้วแอโนดที่ให้ค่าปริมาณรังสีเอกซ์สูงสุด ได้แก่ ทังสเตน

สาขาวิชา	เทคโนโลยีนิวเคลียร์
ปีการศึกษา	2564

ลายมือชื่อ	นิสิต
ลายมือชื่อ	อ.ที่ปรึกษาหลัก
ลายมือชื่อ	อ.ที่ปรึกษาร่วม

6170237721 : MAJOR NUCLEAR TECHNOLOGY

KEYWORD: Plasma Focus, X-ray, Monte Carlo Simulation, GEANT4
 Paagjira Gajaseni : MONTE CARLO SIMULATION OF X-RAY GENERATION IN
 PLASMA FOCUS MACHINE. Advisor: Asst. Prof. PHONGPHAETH PENGVANICH,
 Ph.D. Co-advisor: Arlee Tamman, Ph.D.

An x-ray emission from a 1.5 kJ Mather type plasma focus model was simulated using the Geant4 simulation toolkit which was based on the Monte Carlo method. The simulation traced the interaction between the electron beam formed during the focus and the anode in order to analyze the profile and characteristics of the x-ray that was generated from the interaction. Various anode materials and shapes were tested. The simulation showed that the highest x-ray dose was found between 60 – 70 degree angles at electron beam energy of 200 - 250 keV and 10 degree angle at electron beam energy more than 300 keV. The Highest X-ray yield was found when using a solid cylindrical tungsten anode.

Field of Study:Nuclear TechnologyAcademic Year:2021

Student's Signature Advisor's Signature Co-advisor's Signature

กิตติกรรมประกาศ

วิทยานิพนธ์ฉบับนี้สำเร็จลุล่วงไปด้วยดี ด้วยความช่วยเหลือของผู้ช่วยศาสตราจารย์ ดร.พงษ์ แพทย์ เพ่งวาณิชย์ อาจารย์ที่ปรึกษาวิทยานิพนธ์ ซึ่งท่านได้ให้คำแนะนำและข้อคิดเห็นต่าง ๆ อันเป็น ประโยชน์อย่างยิ่งในการทำวิจัย

ขอพระขอบคุณ ดร.อาหลี ตำหมัน ที่ปรึกษาร่วม ซึ่งได้ให้คำแนะนำและความอนุเคราะห์ ข้อมูลที่มีความสำคัญยิ่งในการดำเนินการวิจัย

ขอกราบขอบพระคุณคณะกรรมการสอบวิทยานิพนธ์ ประกอบด้วยประธานกรรมการสอบ วิทยานิพนธ์ รองศาสตราจารย์ ดร.ดุลยพงศ์ วงศ์แสวง กรรมการสอบวิทยานิพนธ์ รองศาสตราจารย์ ดร.สัญชัย นิลสุวรรณโฆษิต และกรรมการผู้ทรงคุณวุฒิ ผู้ช่วยศาสตราจารย์ ดร. อภิวัฒน์ วิศิษฏ์สรศักดิ์ ที่กรุณาแนะนำตรวจสอบความสมบูรณ์ถูกต้องและให้ข้อเสนอแนะเพื่อการปรับปรุงวิทยานิพนธ์ให้มี ความชัดเจนมากยิ่งขึ้น

ขอขอบพระคุณคณาจารย์ ภาควิชาวิศวกรรมนิวเคลียร์ จุฬาลงกรณ์มหาวิทยาลัย ทุกท่านที่ได้ มอบรู้ รวมทั้งขอขอบพระคุณเจ้าหน้าที่ภาควิชาที่คอยให้ความช่วยเหลือเป็นอย่างดีเสมอมา

สุดท้ายนี้ ผู้วิจัยขอขอบพระคุณบิดามารดา ครอบครัว และเพื่อน ๆ ที่คอยช่วยเหลือและให้ กำลังใจผู้วิจัยจนทำให้งานวิจัยครั้งนี้สำเร็จลุล่วงไปได้ด้วยดี

ภัคจิรา คชเสนี

สารบัญ

	หน้า
	ዋ
บทคัดย่อภาษาไทย	ዋ
	۹
บทคัดย่อภาษาอังกฤษ	۹
กิตติกรรมประกาศ	ຈ
สารบัญ	ฉ
สารบัญตาราง	ຢູ
สารบัญภาพ	٤]
บทที่ 1 บทนำ	
1.1 ที่มาและความสำคัญ	1
1.2 วัตถุประสงค์	
1 3 ประโยชน์ที่คาดว่าจะได้รับ	2
1.4 ของแขตการศึกษา อาหาองการณ์มหาวิทยาลัย	2
1.5 ຄວະລຳເງິງເງາງ	Z
1.5.11 มหารหารมาณ	Z
2 1 พราสมาร	
2.1 พิสารสมา	
2.2 เครองพลาสมาเพกส	5
2.2.1 ส่วนประกอบและโครงสร้างของเครื่องพลาสมาโฟกัส	6
2.2.2 กระบวนการเกิดพลาสมาของเครื่องพลาสมาโฟกัส	6
2.2.3 พลศาสตร์ของพลาสมาโฟกัส	7
2.2.4 การบีบอัดพลาสมา (Plasma pinch)	11

2.3 รังสีเอกซ์	12
2.3.1 การแผ่รังสีเอกซ์ของเครื่องพลาสมาโฟกัส	13
2.4 ลำอิเล็กตรอน	16
2.5 เครื่องพลาสมาโฟกัส TPF- II	
บทที่ 3 โปรแกรมจำลอง	19
3.1 การจำลองแบบมอนติคาร์โล	19
3.2 โปรแกรมจำลอง Geant4	21
3.2.1 การสร้างแบบจำลองบนโปรแกรม Geant4	23
3.2.2 การกำหนดคุณสมบัติของปริมาตรบนโปรแกรม Geant4	23
3.2.3 การสร้างปริมาตรรูปทรงเรขาคณิตบนโปรแกรม Geant4	26
3.2.4 การสร้างอนุภาคบนโปรแกรม Geant4	
3.2.5 การกำหนดคุณสมบัติกระบวนทางฟิสิกส์บนโปรแกรม Geant4	
3.3 Lee Model Code	
บทที่ 4 การออกแบบและสร้างแบบจำลอง	35
4.1 การออกแบบการจำลอง	35
4.1.1 การวางตำแหน่งของขั้วไฟฟ้าและจุดกำเนิดลำอิเล็กตรอน	
4.1.2 การวางตำแหน่งของหัววัด	
4.1.3 หัววัดและตัวกรองอนุภาค	
4.1.4 ขั้วไฟฟ้าแอโนดที่ใช้ในการจำลอง	
4.1.5 ลำอิเล็กตรอนสำหรับการจำลอง	
4.2 การสร้างแบบจำลองบนโปรแกรม Geant 4	41
4.2.1 การสร้างขั้วแอโนดบนโปรแกรม Geant 4	41
4.2.2 การสร้างหัววัดบนโปรแกรม Geant 4	45
4.2.3 การสร้างตัวกรองอนุภาคบนโปรแกรม Geant4	

4.2.4 การสร้างลำอิเล็กตรอนบนโปรแกรม Geant 4
4.2.5 การกำหนดการสร้างกระบวนการทางฟิสิกส์บนโปรแกรม Geant 4
บทที่ 5 การทดลอง ผลการทดลองและอภิปรายผล51
5.1 ขั้นตอนการจำลองบนโปแกรม Geant451
5.2 ผลการทดลอง และอภิปรายผลของปริมาณและการกระจายของรังสีเอกซ์53
5.2.1 ผลการทดลองแสดงปริมาณและการกระจายของรังสีเอกซ์จากโปรแกรม Geant4 53
5.2.2 อภิปรายผลของปริมาณและการกระจายของรังสีเอกซ์จากโปรแกรม Geant471
5.3 ผลการทดลอง และอภิปรายผลการเปรียบเทียบปริมาณรังสีเอกซ์ที่ขั้วแอโนดรูปร่างต่างกัน. 74
5.3.1 ผลการเปรียบเทียบปริมาณรังสีเอกซ์ที่ขั้วแอโนดรูปร่างต่างกัน
5.3.2 อภิปรายผลการเปรียบเทียบปริมาณรังสีเอกซ์ที่ขั้วแอโนดรูปร่างต่างกัน
5.4 ผลการทดลอง และอภิปรายผลการเปรียบเทียบปริมาณรังสีเอกซ์ที่ขั้วแอโนดชนิดวัสดุต่างกัน
5.4.1 ผลการทดลองเปรียบเทียบปริมาณรังสีเอกซ์ที่ขั้วแอโนดชนิดวัสดุต่างกัน
5.4.2 อภิปรายผลการเปรียบเทียบปริมาณรังสีเอกซ์ที่ขั้วแอโนดรูปร่างต่างกัน
5.5 ผลการจำลองบนโปรแกรม Lee model code94
5.5.1 ผลการทดลองแสดงปริมาณรังสีเอกซ์จากโปรแกรม Lee model code และ โปรแกรม
Geant4
5.5.2 อภิปรายผลการเปรียบเทียบปริมาณรังสีเอกซ์ระหว่างโปรแกรม Lee model code
และโปรแกรม Geant497
บทที่ 6 สรุปผลการทดลองและข้อเสนอแนะ98
6.1 สรุปผลการทดลอง98
6.2 ข้อเสนอแนะ
บรรณานุกรม100
ภาคผนวก103
ประวัติผู้เขียน

สารบัญตาราง

		หน้า
ตารางที่	1 ตารางแสดงตัวอย่างฟังก์ชันสำหรับกระบวนการทางอิเล็กตรอน/โพสิตรอน	32
ตารางที่	2 แสดงคุณสมบัติทั่วไปของทองแดงและทั่งเสตน	39
ตารางที่	3 แสดงปริมาณรังเอกซ์เมื่อใช้รัศมีขั้วแอโนดต่างกันจากโปรแกรม Geant4	96
ตารางที่	4 แสดงอัตราส่วนและความคลาดเคลื่อนของปริมาณรังเอกซ์ที่เกิดขึ้น เมื่อใช้รัศมีขั้วแอโน	10
ต่างกันจา	ากทั้งสองโปรแกรม	96

สารบัญภาพ

	หน้า
รูปที่ 1 ตัวอย่างพลาสมาในจักรวาล	3
รูปที่ 2 เครื่องพลาสมาโฟกัสแบบฟิลิโปฟ(ซ้าย)และเครื่องพลาสมาโฟกัสแบบมาเธอร์(ขวา)	5
รูปที่ 3 ภาพลักษณะการเกิดพลาสมาช่วงเบรกดาวน์	7
รูปที่ 4 บริเวณที่เกิดเบรกดาวน์	8
รูปที่ 5 ภาพลักษณะการเกิดพลาสมาช่วงแอคเซียลรันดาวน์	8
รูปที่ 6 ทิศทางของสนามแม่เหล็กและทิศทางที่แผ่นพลาสมาเคลื่อนที่	9
รูปที่ 7 ภาพลักษณะการเกิดพลาสมาช่วงแนวรัศมี	10
รูปที่ 8 ทิศทางของแรงจากสนามแม่เหล็กที่กระทำต่อแผ่นพลาสมา	10
รูปที่ 9 ภาพแสดงบริเวณที่พลาสมาเกิดการบีบอัด	11
รูปที่ 10 ภาพแสดงช่วงความและความยาวคลื่นของรังสีประเภทต่าง ๆ	12
รูปที่ 11 การเกิดรังสีเอกซ์ต่อเนื่อง	13
รูปที่ 12 สเปกตรัมของรังสีเอกซ์ต่อเนื่อง	14
รูปที่ 13 โครงสร้างของเครื่องพลาสมาโฟกัส TFP-II (ซ้าย) เครื่องพลาสมาโฟกัส TPF-II (ขวา)	18
รูปที่ 14 การทดลองเข็มของบุฟฟอง MGKORN UNIVERSITY	20
รูปที่ 15 ตัวอย่างการจำลองบนโปรแกรม Geant4	21
รูปที่ 16 แผนผังลอจิกการทางานของโปแกรม Geant4	22
รูปที่ 17 ตัวอย่างการสร้างอาร์กอนเหลว	24
รูปที่ 18 ตัวอย่างการกำหนดรูปร่างของอาร์กอนเหลว	24
รูปที่ 19 ตัวอย่างการสร้างสารประกอบน้ำ	25
รูปที่ 20 ตัวอย่างการกำหนดอัตราส่วนของสารประกอบ	25
รูปที่ 21 ตัวอย่างการสร้างน้ำและอากาศโดยเรียกใช้จากฐานข้อมูล	25

รูปที่ 22 การเปลี่ยนคุณสมบัติของสารจากฐานข้อมูล	26
รูปที่ 23 การกำหนดพารามิเตอร์ของปริมาตรทรงกล่อง	26
รูปที่ 24 การกำหนดพารามิเตอร์ของปริมาตรทรงกระบอก	27
รูปที่ 25 การสร้างปริมาตรทรงกล่องบนโปรแกรม	
รูปที่ 26 การเรียกใช้ฟังก์ G4LogicalVolume ในการสร้างปริมาตรทรงกล่อง	
รูปที่ 27 การเรียกใช้ฟังก์ชัน G4LogicalVolume ในการสร้างปริมาตรกระบอก	
รูปที่ 28 การเรียกใช้ฟังก์ชันสำหรับสร้างปริมาตรทรงกระบอก	29
รูปที่ 29 การกำหนดตำแหน่งและการวางปริมาตรบนโปรแกรม	
รูปที่ 30 การเรียกใช้อนุภาคจากฐานข้อมูล	
รูปที่ 31 การกำหนดคุณสมบัติของอนุภาคตั้งต้น	
รูปที่ 32 การเรียกใช้ฟังก์ชันสำหรับกระบวนการทางฟิสิกส์ของรังสีแกมมา	
รูปที่ 33 Lee Code Model บนโปรแกรม Microsoft EXCEL	
รูปที่ 34 ส่วนประกอบหลักในแบบจำลอง	
รูปที่ 35 ลักษณะการกระจายของรังสีเอกซ์และมุมที่ระจายออก	
รูปที่ 36 ตำแหน่งการวางหัววัดสำหรับแบบจำลอง	
รูปที่ 37 ลักษณะการวางวัดวัดและตัวกรองอนุภาค	
รูปที่ 38 ลักษณะของขั้วแอโนดทั้ง 4 แบบสำหรับการจำลอง	
รูปที่ 39 สมมติฐานการเกิดรังสีเอกซ์ทุติยภูมิภายในขั้วแอโนด	
รูปที่ 40 การทดสอบการ RUN โปรแกรมที่จำนวนอนุภาคต่างกัน ที่พลังงานอิเล็กตรอน 1	00 keV40
รูปที่ 41 การสร้างขั้วแอโนดทรงกระบอกตันที่ทำจากวัสดุทองแดง	
รูปที่ 42 การสร้างขั้วแอโนดทรงกระบอกเจาะรูที่ทำจากวัสดุทองแดง	
รูปที่ 43 การรวมปริมาตร 2 ชิ้น	
รูปที่ 44 แบบจำลองการสร้างขั้วแอโนดทรงตัน	
รูปที่ 45 แบบจำลองทรงกระบอกกลวงและทรงกระบอกตัน	

ฏ

รูปที่ 46 แบบจำลองขั้วแอโนดทรงกระบอกที่เจาะรูบริเวณปลาย
รูปที่ 47 การกำหนดหัววัดรังสีที่มีลักษณะเป็นแผ่นฟิล์ม45
รูปที่ 48 การกำหนดแผ่นตัวกรองเบริลเรียมสำหรับกรองอนุภาค
รูปที่ 49 แบบจำลองหัววัดและตัวกรองอนุภาค
รูปที่ 50 การกำหนดอนุภาคเริ่มต้น
รูปที่ 51 การกำหนดกระบวนการทางฟิสิกส์โดยเรียกใช้จากฟังก์ชัน
G4EmStandardPhysics_option2
รูปที่ 52 ภาพการจำลองที่แสดงบนโปรแกรม Geant450
รูปที่ 53 ภาพหน้าจอแสดงผลของปริมาณรังสีเอกซ์
รูปที่ 54 แสดงลำดับการทดลอง
รูปที่ 55 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง ที่พลังงานของลำ
อิเล็กตรอนเท่ากับ 100 keV
รูปที่ 56 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทังสเตน ที่พลังงานของลำ
อิเล็กตรอนเท่ากับ 100 keV
รูปที่ 57 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดง ที่พลังงานของ
ลำอิเล็กตรอนเท่ากับ 100 keV54
รูปที่ 58 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทังสเตน ที่พลังงานของ ลำอิเล็กตรอนเท่ากับ 100 keV
รูปที่ 59 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง ที่พลังงานของลำ อิเล็กตรอนเท่ากับ 150 keV
รูปที่ 60 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทังสเตน ที่พลังงานของลำ อิเล็กตรอนเท่ากับ 150 keV
รูปที่ 61 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดง ที่พลังงานของ ลำอิเล็กตรอนเท่ากับ 150 keV
รูปที่ 62 กราฟแสดงการปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดง ที่พลังงาน ของลำอิเล็กตรอนเท่ากับ 150 keV57

รูปที่ 63 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง ที่พลังงานของลำ อิเล็กตรอนเท่ากับ 200 keV
รูปที่ 64 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทังสเตน ที่พลังงานของลำ อิเล็กตรอนเท่ากับ 200 keV
รูปที่ 65 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดง ที่พลังงานของ ลำอิเล็กตรอนเท่ากับ 200 keV
รูปที่ 66 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดง ที่พลังงานของ ลำอิเล็กตรอนเท่ากับ 200 keV
รูปที่ 67 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง ที่พลังงานของลำ อิเล็กตรอนเท่ากับ 250 keV
รูปที่ 68 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทังสเตน ที่พลังงานของลำ อิเล็กตรอนเท่ากับ 250 keV
รูปที่ 69 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดง ที่พลังงานของ ลำอิเล็กตรอนเท่ากับ 250 keV
รูปที่ 70 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดง ที่พลังงานของ ลำอิเล็กตรอนเท่ากับ 250 keV
รูปที่ 71 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง ที่พลังงานของลำ อิเล็กตรอนเท่ากับ 300 keV
รูปที่ 72 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทังสเตน ที่พลังงานของลำ อิเล็กตรอนเท่ากับ 300 keV
รูปที่ 73 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดง ที่พลังงานของ ลำอิเล็กตรอนเท่ากับ 300 keV
รูปที่ 74 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดง ที่พลังงานของ ลำอิเล็กตรอนเท่ากับ 300 keV
รูปที่ 75 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง ที่พลังงานของลำ อิเล็กตรอนเท่ากับ 350 keV

รูปที่ 76 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทังสเตน ที่พลังงานของลำ อิเล็กตรอนเท่ากับ 350 keV
รูปที่ 77 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดง ที่พลังงานของ ลำอิเล็กตรอนเท่ากับ 350 keV
รูปที่ 78 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดง ที่พลังงานของ ลำอิเล็กตรอนเท่ากับ 350 keV
รูปที่ 79 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง ที่พลังงานของลำ อิเล็กตรอนเท่ากับ 400 keV
รูปที่ 80 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทังสเตน ที่พลังงานของลำ อิเล็กตรอนเท่ากับ 400 keV
รูปที่ 81 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดง ที่พลังงานของ ลำอิเล็กตรอนเท่ากับ 400 keV
รูปที่ 82 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดง ที่พลังงานของ ลำอิเล็กตรอนเท่ากับ 400 keV
รูปที่ 83 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง ที่พลังงานของลำ อิเล็กตรอนเท่ากับ 450 keV
รูปที่ 84 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทังสเตน ที่พลังงานของลำ อิเล็กตรอนเท่ากับ 450 keV
CHULALONGKORN UNIVERSITY รูปที่ 85 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดง ที่พลังงานของ ลำอิเล็กตรอนเท่ากับ 450 keV
รูปที่ 86 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดง ที่พลังงานของ ลำอิเล็กตรอนเท่ากับ 450 keV
รูปที่ 87 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง ที่พลังงานของลำ อิเล็กตรอนเท่ากับ 500 keV
รูปที่ 88 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทังสเตน ที่พลังงานของลำ อิเล็กตรอนเท่ากับ 500 keV

รูปที่ 89 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดง ที่พลังงานของ
ลำอิเล็กตรอนเท่ากับ 500 keV70
รูปที่ 90 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดง ที่พลังงานของ
ลำอิเล็กตรอนเท่ากับ 500 keV71
รูปที่ 91 ผลการทดลองวัดปริมาณรังสีเอกซ์ของเครื่องพลาสมาโฟกัสขนาด 4.7 kJ
รูปที่ 92 ผลการทดลองวัดปริมาณรังสีเอกซ์ของเครื่องพลาสมาโฟกัสขนาด 5 kJ
รูปที่ 93 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ -
ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดงที่พลังงานของลำอิเล็กตรอน 100 keV74
รูปที่ 94 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ
ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดงที่พลังงานของลำอิเล็กตรอน 150 keV 74
รูปที่ 95 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ
ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดงที่พลังงานของลำอิเล็กตรอน 200 keV75
รูปที่ 96 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ
ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดงที่พลังงานของลำอิเล็กตรอน 250 keV 75
รูปที่ 97 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ
ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดงที่พลังงานของลำอิเล็กตรอน 300 keV 76
รูปที่ 98 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ
ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดงที่พลังงานของลำอิเล็กตรอน 350 keV 76
รูปที่ 99 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ
ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดงที่พลังงานของลำอิเล็กตรอน 400 keV 77
รูปที่ 100 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ
ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดงที่พลังงานของลำอิเล็กตรอน 450 keV 77
รูปที่ 101 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ
ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดงที่พลังงานของลำอิเล็กตรอน 500 keV 78
รูปที่ 102 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ
ทั้งสเตนและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทั้งสเตนที่พลังงานของลำอิเล็กตรอน 100 keV 78

รูปที่ 103 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ ทั้งสเตนและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทั้งสเตนที่พลังงานของลำอิเล็กตรอน 150 keV..... 79 รูปที่ 104 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ ทั้งสเตนและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทั้งสเตนที่พลังงานของลำอิเล็กตรอน 200 keV..... 79 รูปที่ 105 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ ทั้งสเตนและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทั้งสเตนที่พลังงานของลำอิเล็กตรอน 250 keV..... 80 รูปที่ 106 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ ทั้งสเตนและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทั้งสเตนที่พลังงานของลำอิเล็กตรอน 300 keV..... 80 รูปที่ 107 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ ทั้งสเตนและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทั้งสเตนที่พลังงานของลำอิเล็กตรอน 350 keV.....81 รูปที่ 108 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ ทั้งสเตนและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทั้งสเตนที่พลังงานของลำอิเล็กตรอน 400 keV.....81 รูปที่ 109 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ ทั้งสเตนและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทั้งสเตนที่พลังงานของลำอิเล็กตรอน 450 keV..... 82 รูปที่ 110 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ ทั้งสเตนและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทั้งสเตนที่พลังงานของลำอิเล็กตรอน 500 keV..... 82 รูปที่ 111 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง รูปที่ 112 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง รูปที่ 113 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง รูปที่ 114 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง รูปที่ 115 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง

รูปที่ 116 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง รูปที่ 117 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง รูปที่ 118 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง รูปที่ 119 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง รูปที่ 120 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุ ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทังสเตนที่พลังงานของลำอิเล็กตรอน 100 keV 89 รูปที่ 121 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุ ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทั้งสเตนที่พลังงานของลำอิเล็กตรอน 150 keV 89 รูปที่ 122 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุ ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทั้งสเตนที่พลังงานของลำอิเล็กตรอน 200 keV 90 รูปที่ 123 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุ ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทั้งสเตนที่พลังงานของลำอิเล็กตรอน 250 keV 90 รูปที่ 124 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุ ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทั้งสเตนที่พลังงานของลำอิเล็กตรอน 300 keV 91 รูปที่ 125 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุ ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทั้งสเตนที่พลังงานของลำอิเล็กตรอน 350 keV.....91 รูปที่ 126 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุ ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทังสเตนที่พลังงานของลำอิเล็กตรอน 400 keV 92 รูปที่ 127 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุ ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทังสเตนที่พลังงานของลำอิเล็กตรอน 450 keV..... 92 รูปที่ 128 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุ ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทั้งสเตนที่พลังงานของลำอิเล็กตรอน 500 keV 93

รูปที่ 129 กราฟกำลังการแผ่รังสีเบรมส์ชตราลุงจากโปรแกรม Lee code Model	ที่ขนาดรัศมีของ
ขั้วแอโนด เท่ากับ 1.2 cm	94
รูปที่ 130 กราฟกำลังการแผ่รังสีเบรมส์ชตราลุงจากโปรแกรม Lee code Model ขั้วแอโนดเท่ากับ 1.25 cm	ที่ขนาดรัศมีของ 95
รูปที่ 131 กราฟกำลังการแผ่รังสีเบรมส์ชตราลุงจากโปรแกรม Lee code Model ขั้วแอโนดเท่ากับ 1.3 cm	ที่ขนาดรัศมีของ 95

Chulalongkorn University

บทที่ 1 บทนำ

1.1 ที่มาและความสำคัญ

รังสีเอกซ์(X-ray) เป็นคลื่นแม่เหล็กไฟฟ้าชนิดหนึ่งซึ่งถูกค้นพบครั้งแรกเมื่อปี ค.ศ. 1896 และ ถูกนำมาใช้กันอย่างกว้างขว้างทั้งในทางการแพทย์ เช่น การถ่ายภาพฟัน การถ่ายภาพรังสีส่วนตัดโดย อาศัยคอมพิวเตอร์ (computed tomography หรือ CT) การถ่ายภาพภายในทรวงอก ในงานด้าน อุตสาหกรรม เช่น การตรวจหาความหนาแน่นของวัตถุหรือโลหะ การตรวจหารอยร้าวหรือรอยรั่วของ ชิ้นงาน หรือแม้กระทั่งในงานทางด้านอวกาศ เช่น การถ่ายภาพดาราจักรที่ตามนุษย์ไม่สามารถ มองเห็นได้

เครื่องพลาสมาโฟกัส (Plasma focus device) เป็นหนึ่งในอุปกรณ์ผลิตรังสีเอกซ์สำหรับ การศึกษาปรากฏการณ์ทางนิวเคลียร์ที่สามารถนำไปใช้งานได้อย่างหลากหลาย เช่น เป็นเครื่องกำเนิด พลาสมาความหนาแน่นสูงเครื่องกำเนิดลำแสงอิเล็กตรอน (Electron beam source) เครื่องกำเนิด ลำแสงไอออน (Ion beam source) สามารถปลดปล่อยรังสีเอกซ์ได้ในช่วงพลังงานที่หลากหลาย โดย พลังงานของรังสีเอกซ์ที่ปลดปล่อยออกมานั้นจะมีทั้งในช่วงของ รังสีเอกซ์พลังงานต่ำ (Soft x-ray) ช่วงพลังงานประมาณ 1 keV และรังสีเอกซ์พลังงานสูง (Hard x-ray) ช่วงพลังงานประมาณ 100 keV โดยรังสีเอกซ์ที่ออกมานี้จะเป็นรังสีเอกซ์ที่มีลักษณะเป็นพัลซ์ (Pulse) การศึกษาการเกิดรังสีเอกซ์ สำหรับเครื่องพลาสมาโฟกัส แม้จะมีพื้นฐานการเกิดรังสีคล้ายกันกับหลอดรังสีเอกซ์ แต่เนื่องจาก องค์ประกอบของเครื่องนั้นมีความแตกต่างของโครงสร้างและกระบวนการทางฟิสิกส์อื่นๆอยู่ซึ่งการ เปลี่ยนแปลงโครงสร้างบางส่วน เช่น ขั้วแอโนดของพลาสมาโฟกัสจะทำให้ปริมาณและคุณสมบัติของ รังสีเอกซ์ที่ได้นั้นเปลี่ยนไป ซึ่งทำให้การศึกษาในเรื่องนี้สามารถช่วยเพิ่มประสิทธิภาพในการผลิตรังสี เอกซ์ โดยในที่นี้จะทำการศึกษาการเกิดรังสีเอกซ์โดยใช้เครื่องพลาสมาโฟกัส (โมเดล TPF-II) และ ปัจจัยที่มีผลต่อการเกิด โดยการจำลองด้วย Geant4 simulation toolkit ซึ่งเป็นโปรแกรมสำหรับ การศึกษาที่อันตรกิริยาทางฟิสิกส์ของอนุภาคโดยใช้ระเบียบวิธีการมอนติคาร์โล (Monte carlo method)

1.2 วัตถุประสงค์

 เพื่อศึกษาลักษณะของขั้วแอโนดที่มีผลต่อการเกิดรังสีเอกซ์ในเครื่องพลาสมาโฟกัส โดยใช้ การจำลองทางคอมพิวเตอร์ด้วยวิธีการมอนติคาร์โล

1.3 ประโยชน์ที่คาดว่าจะได้รับ

 สามารถนำข้อมูลที่ได้จากงานวิจัยเพื่อนำไปต่อยอดสำหรับการออกแบบขั้วแอโนดของเครื่อง พลาสมาโฟกัสเพื่อให้ได้ปริมาณรังสีเอกซ์ตามที่ต้องการ

1.4 ขอบเขตการศึกษา

- 1. จำลองการเกิดรังสีเอกซ์จากเครื่องพลาสมาโฟกัส TPF-II ด้วยวิธีมอนติคาร์โล
- ศึกษารูปร่างขั้วแอโนดที่ต่างกัน 2 แบบ เพื่อดูผลที่เกิดขึ้นกับปริมาณรังสีเอกซ์
 ได้แก่ ขั้วแอโนดทรงกระบอกตัน

ขั้วแอโนดทรงกระบอกกลวง

- ทำการเปลี่ยนชนิดของขั้วแอโนดจากขั้วทองแดงเป็นขั้วทังสเตนเพื่อดูผลที่เกิดขึ้นกับปริมาณ รังสีเอกซ์
- 4. ทำการใส่ค่าความต่างศักย์ที่ได้จาก Lee Model Code และเปรียบเทียบผลของรังสีเอกซ์ที่ ได้จากทั้งสองโปรแกรม

1.5 การดำเนินงาน

- 1. ศึกษาข้อมูลและทฤษฏีที่เกี่ยวข้องกับงานวิจัย
 - ศึกษาทฤษฎีที่เกี่ยวกับเครื่องพลาสมาโฟกัสและการแผ่รังสีเอกซ์
 - ศึกษาโปรแกรมที่ใช้ในการวิจัย
- 2. ติดตั้งโปแกรมและทดลองสร้างแบบจำลอง
- 3. ออกแบบโมเดลสำหรับการจำลองและทำการจำลอง
- 4. วิเคราะห์ผลที่ได้จากการจำลองโปรแกรมทางคอมพิวเตอร์
- 5. จัดทำรายงานผลการดำเนินงาน

บทที่ 2 พลาสมาโฟกัส

ในบทนี้จะกล่าวถึงรายละเอียดโดยทั่วไปเกี่ยวกับเครื่องพลาสมาโฟกัสตั้งแต่ คุณลักษณะของ พลาสมา ประวัติของเครื่องพลาสมาโฟกัส ชนิดของเครื่องพลาสมาโฟกัส โครงสร้างและส่วนประกอบ ของเครื่องพลาสมาโฟกัส กระบวนการเกิดพลาสมาและผลผลิตจากเครื่องพลาสมาโฟกัสที่เกี่ยวข้อง การงานวิจัย

2.1 พลาสมา (Plasma)

สสารในเอกภพนั้น ประกอบไปด้วยสถานะทั้งหมด 5 สถานะ ได้แก่ ของแข็ง ของเหลว แก๊ส พลาสมา และสสารควบแน่นโพส-ไอน์สไตน์ (Bose-Einstein-condensate) สำหรับพลาสมานั้นจะ ถูกจัดเป็นสถานะลำดับที่ 4 [1] และถูกกล่าวถึงครั้งแรกในช่วงปี ค.ศ. 1875 กว่า 99.99 % ของสสาร ต่าง ๆ ในจักรวาลนั้นเกิดขึ้นจากพลาสมา [2] เช่น ฟ้าผ่า แสงเหนือ หางของดาวหาง เป็นต้น (รูปที่ 1) ซึ่งการเกิดพลาสมานั้นจะเกิดขึ้นเมื่อแก๊สได้รับพลังงานเข้าไปโดยส่วนใหญ่จะอยู่ในรูปของพลังงาน ความร้อน จะทำให้แก๊สการแตกตัว (Ionization) ออกเป็นประจุอิสระ เช่น อิเล็กตรอน โปรตอน และ ประจุอื่นๆ

รูปที่ 1 ตัวอย่างพลาสมาในจักรวาล ที่มา : Plasma page [**3**]

คุณสมบัติของพลาสมาอาจนิยามได้ว่า 1.เป็นแก๊สที่มีความเป็นกลางทางไฟฟ้า(Quasi-neutral gas) และ 2. มีพฤติกรรมแบบร่วม (Collective behavior) [4] ซึ่งตามคุณสมบัติข้อที่ 1 พลาสมาจะมี ความเป็นกลางทางไฟฟ้าเนื่องจากประจุอิสระรวมภายในระหว่างไอออนบวกและอิเล็กตรอนนั้นสมดุล กัน

$$n_e \cong Zn_i$$
 (1)

เมื่อ n_e คือความหนาแน่นของอิเล็กตรอน, n_i คือความหนาแน่นของไอออน และ Z คือ ระดับชั้น ของประจุ (Charge state)

คุณสมบัติที่ 2 เป็นผลมาจากความต่างศักย์คูลอมบ์ (Coulomb potential) ในระยะ 1/ r มีผลทำให้ พลาสมาบริเวณนั้นถูกรบกวนสภาวะสมดุล และความหนาแน่นของประจุที่อยู่ภายในบริเวณนั้นมี ผลรวมไม่เป็นศูนย์ ดังสมการ

$$\rho = e \left(Z n_i - n_e \right) \tag{2}$$

เมื่อ ρ คือความหนาแน่นของประจุรวม (Charge density) เมื่อถูกทำให้เสียสมดุล และ e คือค่า ประจุ (1.6x10-19 C)

ซึ่งจะทำให้บริเวณนั้นเกิดสนามไฟฟ้าตามกฎของเกาส์ (Gauss's law)

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0} \quad \text{(3)}$$

เมื่อ E คือสนามไฟฟ้าและ ϵ_0 คือ ค่าคงที่ของสนามไฟฟ้า (Electric constant)

ในทำนองเดียวกันประจุไฟฟ้าภายในบริเวณที่เกิดการรบกวนเกิดการเคลื่อนที่ด้วย ความเร็ว V_e สำหรับอิเล็กตรอน และความเร็ว V_i สำหรับไอออน ซึ่งการเคลื่อนที่ของประจุจะทำให้เกิดกระแสที่มี ความหนาแน่นเป็นไปตามสมการ

$$J = e \left(Z n_i v_i - n_e v_e \right) \tag{4}$$

เมื่อ J คือความหนาแน่นของกระแส (Current density)

และกระแสที่เกิดขึ้น จะเหนี่ยวนำให้เกิดสนามแม่เหล็กตามกฎของแอมแปร์ (Ampere's law)

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} \tag{5}$$

เมื่อ B คือสนามแม่เหล็ก (Magnetic field) และ μ_0 คือค่าคงที่ของสนามแม่เหล็ก (Magnetic constant)

การที่มีประจุอิสระเกิดขึ้นทำให้พลาสมามีความสามารถในการตอบสนองต่อสนามแม่เหล็ก รวมทั้งยัง มีคุณสมบัติในการนำไฟฟ้าทำให้กระแสสามารถไหลผ่านได้ ซึ่งการที่มีกระแสไฟฟ้าไหลผ่านจะทำให้ ตัวพลาสมาสร้างสนามแม่เหล็กขึ้นและอาจเป็นผลทำให้เกิดการบีบอัดกัน (Pinch) ของพลาสมาใน ลักษณะของฟิลาเมนต์ (Filament) ซึ่งเป็นปรากฏการณ์ที่เกิดขึ้นภายในเครื่องพลาสมาโฟกัส ดังจะ กล่าวถึงในลำดับถัดไป

2.2 เครื่องพลาสมาโฟกัส (Plasma Focus Device)

พลาสมาโฟกัสเป็นอุปกรณ์สำหรับสร้างพลาสมาอุณหภูมิสูง (ประมาณ 100 eV- keV) ความ หนาแน่สูง (10¹⁷-10²⁰ cm⁻³) และมีอายุสั้น (5-200 ns) สามารถใช้งานได้หลากหลาย ทั้งเป็น แหล่งกำเนิดลำอิเล็กตรอน ลำโปรตอนและรังสีเอกซ์ ถูกคิดค้นในช่วงประมาณปี 1960-1964 โดย ในช่วงเวลาดังกล่าว เครื่องพลาสมาโฟกัสที่ถูกคิดค้นขึ้นมาจะสามารถแบ่งออกเป็น 2 ประเภท ได้แก่ แบบฟิลิโปฟ (Fillipov type) โดยสหภาพโซเวียต และแบบมาเตอร์ (Mother type) โดย สหรัฐอเมริกา [5] (รูปที่ 2)

รูปที่ 2 เครื่องพลาสมาโฟกัสแบบฟิลิโปฟ(ซ้าย)และเครื่องพลาสมาโฟกัสแบบมาเธอร์(ขวา)

2.2.1 ส่วนประกอบและโครงสร้างของเครื่องพลาสมาโฟกัส

เครื่องพลาสมาโฟกัสแบบมาเธอร์และแบบฟิลิโปฟจะมีลักษณะแตกต่างกันในเชิงโครงสร้าง ทางเรขาคณิต โดยเครื่องพลาสมาโฟกัสแบบมาเธอร์จะมีอัตราส่วน d/l <1 ส่วนเครื่องพลาสมาโฟกัส แบบฟิลิโปฟจะมีอัตราส่วน d/l > 1 เมื่อ d คือเส้นผ่านศูนย์กลางของขั้วแอโนด และ l คือ ความยาว ของขั้วแอโนด จะประกอบด้วยส่วนประกอบพื้นฐานที่สำคัญคล้ายกัน [6] ได้แก่

- ตัวเก็บประจุ (Capacitor bank; C₀)

- วงจรไฟฟ้าแบบอาร์แอลซี (RLC Circuit)

- ขั้วไฟฟ้า (Electrode) ได้แก่ ขั้วแอโนดและขั้วแคโทด

- ฉนวนไฟฟ้า (Insulator) ที่ทนต่อความร้อน เช่น ไพเร็ก แก้ว อลูมินา เซรามิก ซึ่งส่วนประกอบทั้งหมดจะอยู่ภายในกระบอกสุญญากาศ (Vacuum chamber) ที่เมื่อความดัน ภายในถูกทำให้ลดลงถึงระดับ High vacuum (ประมาณ 10⁻³ Pa) จะถูกเติมด้วยแก๊ส ซึ่งชนิดของ แก๊สที่ถูกเติมเข้าไปจะขึ้นอยู่กับลักษณะของการทดลองที่ต้องการ เช่น ดิวทีเรียม ใช้สำหรับการ ทดลองที่เกี่ยวข้องกับปฏิกิริยาฟิวชัน หรือแก๊สเฉื่อย (เช่น อาร์กอน) สำหรับงานด้านการวิเคราะห์วัสดุ เป็นต้น

2.2.2 กระบวนการเกิดพลาสมาของเครื่องพลาสมาโฟกัส

ในกระบวนการเกิดพลาสมาของเครื่องพลาสมาโฟกัสทั้ง 2 ชนิดนั้น จะมีกระบวนการที่ คล้ายคลึงกัน โดยในงานวิจัยนี้จะใช้เครื่องพลาสมาโฟกัสแบบมาเธอร์เป็นต้นแบบ ซึ่งในกระบวนการ เกิดพลาสมาของเครื่องพลาสมาโฟกัสแบบมาเธอร์จะเริ่มเมื่อประจุที่ถูกกักเก็บไว้ในตัวเก็บประจุถูก จ่ายไปยังขั้วไฟฟ้าของเครื่องพลาสมาโฟกัสอย่างรวดเร็ว เมื่อประจุไฟฟ้าเคลื่อนที่ไปยังบริเวณปลาย สุดของฉนวนที่กั้นอยู่ระหว่างขั้วแอโนดและขั้วแคโทด จะทำให้เกิดการปล่อยกระแส (Current discharge) ส่งผลให้แก๊สที่อยู่ภายในเกิดการแตกตัว (Ionization) กลายเป็นพลาสมารวมตัวอยู่ บริเวณระหว่างขั้วไฟฟ้าทั้งสองชนิด และจะมีแรงที่เกิดจากการเหนี่ยวนำ เรียกว่า แรงลอเรนซ์ (Lorentz force) ทำให้พลาสมาเคลื่อนที่ในทิศทางขนานไปกับขั้วไฟฟ้า พลาสมาที่เคลื่อนที่นั้นจะ เคลื่อนที่ไปจนสุดปลายของขั้วแอโนดและเกิดการเปลี่ยนทางการเคลื่อนที่ตามผลของสนามแม่เหล็กที่ เปลี่ยนไป โดยพลาสมานั้นจะเคลื่อนที่เข้าหาจุดศูนย์กลางในแนวตั้งฉากกับขั้วแอโนด จนสุดท้ายแผ่น พลาสมาจะเกิดการบีบอัด หรือที่เรียกว่า "Pinch Plasma" 2.2.3 พลศาสตร์ของพลาสมาโฟกัส (Dynamic of plasma focus)

ในหัวข้อที่ผ่านมาได้กล่าวถึงลำดับการเกิดพลาสมาภายในเครื่องพลาสมาโฟกัส และในส่วน ลำดับถัดไปจะกล่าวถึงพลศาสตร์ของเครื่องพลาสมาโฟกัสในแต่ละขั้นตอน โดยสามารถแบ่งออกได้ เป็น 3 ช่วง ได้แก่ ช่วงการแตกตัว (Break down phase) ช่วงแอคเซียลรันดาวน์ (Axial rundown phase) และช่วงแนวรัศมี (Radial phase) โดยมีรายละเอียดในแต่ละช่วงดังต่อไปนี้

<u>ช่วงที่ 1</u> ช่วงการแตกตัว (Break down phase) ระยะเวลาประมาณ 10 – 200 ns

รูปที่ 3 ภาพลักษณะการเกิดพลาสมาช่วงเบรกดาวน์ ที่มา: Milanese, Maria Magdalena, et al (2014) [**7**]

ในช่วงเริ่มต้นของกระบวนการ จะมีการจ่ายความต่างศักย์ที่ถูกสะสมอยู่ในตัวเก็บประจุไปยัง ขั้วไปฟ้าทั้ง 2 ของเครื่องพลาสมาโฟกัส อิเล็กตรอนอิสระจะถูกเร่งให้เคลื่อนที่ด้วยแรงจากสนามไฟฟ้า ที่เกิดขึ้นระหว่างขั้วทั้งสอง เมื่ออิเล็กตรอนวิ่งเข้าไปชนกับอนุภาคที่เป็นกลางทางไฟฟ้าของแก๊สที่อยู่ ระหว่างแผ่นฉนวนจะทำให้เกิดการแตกตัวของไอออน (Ionization) ซึ่งผลคือจะทำให้มีจำนวนประจุ อิสระเพิ่มมากขึ้น โดยประจุอิสระเหล่านี้จะรวมตัวกันอยู่ในลักษณะเป็นแผ่น เรียกว่าแผ่นพลาสมา (Plasma sheath) หรือขั้นพลาสมา (Plasma layer) ดังรูปที่ 3 สะสมอยู่ในบริเวณระหว่างแผ่น ชนวนดังรูปที่ 4 จากนั้นแผ่นของพลาสมานี้จะถูกแรงจากสนามแม่เหล็ก (J×B) ที่เกิดขึ้นจากการไหล ของประจุ ซึ่งแรงที่เกิดขึ้นนี้จะมีทิศทำให้แผ่นพลาสมานี้เคลื่อนที่ไปตามความยาวของขั้วไฟฟ้า

ช่วงที่ 2 ช่วงแอคเซียลรันดาวน์ (Axial rundown phase) ระยะเวลาประมาณ 500 – 5,000 ns และความเร็วของแผ่นพลาสมา < 10 cm/**µ**s

รูปที่ 5 ภาพลักษณะการเกิดพลาสมาช่วงแอคเซียลรันดาวน์ ที่มา: Milanese, Maria Magdalena, et al (2014) [7]

เมื่อแผ่นพลาสมาที่เกิดขึ้นระหว่างเป็นฉนวนถูกเร่งให้เคลื่อนที่ตามทิศทางที่ขนานไปกับ ขั้วไฟฟ้า (รูปที่ 6) ด้วยแรงลอว์เรนซ์ (Lorentz force) ดังสมการที่ (6) โดยในขณะที่แผ่นพลาสมามี การเคลื่อนที่ไปตามขั้วไฟฟ้าจะมีการกวาดแก๊สที่อยู่ภายใน ทำให้แก๊สเหล่านั้นมีความร้อนสูงขึ้นจน เกิดการแตกตัวออกทำให้ประจุอิสระมีจำนวนเพิ่มมากขึ้น ประจุเหล่านี้จะรวมตัวเข้ากับแผ่นพลาสมา ทำให้มวลของแผ่นพลาสมาเพิ่มขึ้น ซึ่งหมายถึงแรงลอว์เรนซ์จะมีขนาดเพิ่มขึ้นด้วยเช่นกัน เนื่องจากผลของกระแสที่เพิ่มขึ้น เมื่อแผ่นพลาสมาเคลื่อนจนถึงบริเวณปลายของขั้วไฟฟ้า ค่าการแตก ตัวจะมีค่าสูงสุด

$$\vec{F}_{L} = l\vec{I}_{sheath} \times \vec{B}$$
 (6)

โดย F_L คือ แรงลอว์เรนซ์

l คือ ระยะทางตามแนวกระไหลของกระแสบนแผ่นพลาสมา

I_{sheath} คือ กระแสบนแผ่นพลาสมา

รูปที่ 6 ทิศทางของสนามแม่เหล็กและทิศทางที่แผ่นพลาสมาเคลื่อนที่

<u>ช่วงที่ 3</u> ช่วงแนวรัศมี (Radial phase) ระยะเวลาประมาณ 10 – 100 ns และ 5 < ความเร็วของแผ่นพลาสมา < 30 cm/**µ**s

รูปที่ 7 ภาพลักษณะการเกิดพลาสมาช่วงแนวรัศมี ที่มา: Milanese, Maria Magdalena, et al (2014) [7]

เมื่อแผ่นพลาสมาเคลื่อนที่มาจนสุดความยาวของขั้วไฟฟ้าจะยังคงเคลื่อนที่ขึ้นไปเหนือ ขั้วไฟฟ้าเล็กน้อยตามแรงของสนามแม่เหล็กที่ผลัก จากนั้นทิศทางของแผ่นพลาสมาส่วนที่อยู่ใกล้ ขั้วแอโนดจะเปลี่ยนไปเนื่องจากทิศทางของกระแสที่ไหลนั้นเปลี่ยนเป็นทิศที่พุ่งออกจากปลาย ขั้วแอโนดดังแสดงในรูปที่ 8 ซึ่งจะทำให้แรงที่เกิดจากสนามแม่เหล็กมีทิศเปลี่ยนไปด้วย โดยแรงที่ เกิดขึ้นนั้นจะทำให้แผ่นพลาสมาบริเวณที่อยู่ใกล้ขั้วแอโนดนั้นถูกบีบอัดเข้าหากันในทิศทางตามแนว รัศมีของขั้วไฟฟ้า ส่วนพลาสมาที่ใกล้ขั้วแคโทดจะยังคงเคลื่อนที่ไปตามแรงจากสนามแม่เหล็กใน ทิศทางเดิม (แนวความยาวของขั้วไฟฟ้า) อีกระยะหนึ่งก่อนจะถูกบีบเข้าสู่ศูนย์กลางเช่นกัน

รูปที่ 8 ทิศทางของแรงจากสนามแม่เหล็กที่กระทำต่อแผ่นพลาสมา

2.2.4 การบีบอัดพลาสมา (Plasma pinch)

ในช่วงสุดท้ายของช่วงแนวรัศมีแผ่นพลาสมาจะเกิดการบีบอัดกันที่บริเวณเหนือปลาย ขั้วแอโนดความหนาแน่นและอุณหภูมิของพลาสมาจะมีค่าเพิ่มสูงขึ้นจนถึงค่าสูงสุด และทำให้ความ หนาแน่นของกระแสในพลาสมาเพิ่มสูงขึ้น ส่งผลให้เกิดความไม่สมดุลของกระแส (Current instability) ค่าความต้านทานพลาสมา (Plasma resistance) จะมีค่าเพิ่มขึ้นมากผิดปกติ และจาก การที่พลาสมาถูกบีบจนมีขนาดรัศมีเล็กลง จะทำให้ค่าการเหนี่ยวนำ (Inductance) มีค่าเพิ่มขึ้นจน ทำให้เกิดสนามไฟฟ้าที่สามารถทำให้ประจุภายในพลาสมาเกิดการเคลื่อนที่โดยอิเล็กตรอนซึ่งมีประจุ ลบและไอออนซึ่งมีประจุบวกจะถูกเร่งให้เคลื่อนที่ในทิศทางตรงกันข้าม ดังรูปที่ 9

2.3 รังสีเอกซ์

รังสีเอกซ์เป็นคลื่นแม่เหล็กไฟฟ้าชนิดหนึ่ง มีความยาวคลื่นในช่วงประมาณ 0.01-10 นาโน เมตร ซึ่งเป็นความยาวคลื่นที่อยู่ระหว่างรังสีอัลตราไวโอเลตกับรังสีแกมมา และมีความถื่อยู่ในช่วง 3x10¹⁶ ถึง 3x10¹⁹ Hz (รูปที่ 10) ถูกค้นพบในปี ค.ศ. 1895 โดยนักฟิสิกส์ชาวเยอรมันชื่อ วิลเฮล์ม คอนราด เริ่นต์เกน นอกจากนี้รังเอกซ์มักจะถูกจำแนกด้วยระดับพลังงาน โดยแบ่งออกเป็น 2 ช่วง พลังงานได้แก่ช่วง Hard X-ray ที่พลังงานประมาณ 5–10 keV และที่พลังงานต่ำกว่าจะจัดเป็น ประเภท Soft x-ray

รูปที่ 10 ภาพแสดงช่วงความและความยาวคลื่นของรังสีประเภทต่าง ๆ ที่มา : Electromagnetic Spectrum [**8**]

ในการเกิดรังสีเอกซ์ เนื่องจากรังสีเอกซ์คือโฟตอนที่มีพฤติกรรมแบบคลื่นแม่เหล็กไฟฟ้า เกิดขึ้นเมื่อมีอนุภาคมีประจุ (ไอออนหรืออิเล็กตรอน) ที่มีพลังงานที่เหมาะสมวิ่งเข้าทำอันตรกิริยากับ วัตถุเป้าหมาย (Target material) ซึ่งปรากฏการณ์นี้จะมีลักษณะคล้ายการเกิดโฟโตอิเล็กตริก (Photoelectric) การผลิตรังสีเอกซ์ในช่วงเริ่มต้นหลอดรังสีเอกซ์ (X-ray tube) นั้นถือเป็นอุปกรณ์ที่ นิยมใช้กันอย่างแพร่หลาย โดยภายในหลอดรังเอกซ์จะถูกทำให้เป็นสภาวะสุญญากาศและใช้ แหล่งจ่ายความต่างศักย์สูงในการเร่งอิเล็กตรอนที่หลุดจากขั้วแคโทดที่ถูกทำให้ร้อน โดยขั้วแคโทดจะ ถูกป้อนพลังงานความร้อนจนถึงในระดับที่ทำให้อิเล็กตรอนสามารถหลุดออกมาได้ จากนั้นอิเล็กตรอน จะถูกเร่งให้เคลื่อนที่ในหลอดสุญญากาศด้วยความต่างศักย์ที่มีค่าสูงระดับ 10,000 โวลต์ และชนเข้า กับวัตถุเป้าหมาย ซึ่งในที่นี้ได้แก่ ขั้วแอโนด พลังงานจากอิเล็กตรอนจะถูกถ่ายเทไปยังขั้วแอโนดและ ถูกเปลี่ยนอยู่ในรูปของพลังงานความร้อนและรังสีเอกซ์ โดยพลังงานที่ถูกถ่ายเทนี้ส่วนใหญ่จะถูก เปลี่ยนให้อยู่ในรูปของพลังงานความร้อน จะมีเพียงประมาณ 1% เท่านั้นที่จะถูกเปลี่ยนให้อยู่ในรูป ของรังสีเอกซ์ [9]

2.3.1 การแผ่รังสีเอกซ์ของเครื่องพลาสมาโฟกัส

ในการเดินเครื่องพลาสมาโฟกัสตั้งแต่ต้นถึงสิ้นสุดจะมีการปลดปล่อยรังสีมากมายหลายชนิด ซึ่งหนึ่งในรังสีที่เกิดขึ้นได้แก่ รังสีเอกซ์ สำหรับพลาสมาโฟกัสนั้นรังสีเอกซ์ที่เกิดขึ้นจะประกอบไปด้วย รังสีเอกซ์ที่ช่วงพลังงานสูง (Hard X-ray) และช่วงพลังงานต่า (Soft X-ray) ซึ่งเป็นเหตุผลหนึ่งที่ทำให้ รังสีเอกซ์ที่เกิดจากเครื่องพลาสมาโฟกัสมีความน่าสนใจยิ่งขึ้น เนื่องจากการที่รังสีเอกซ์มีช่วงพลังงาน ที่หลากหลายจึงสามารถเลือกพลังงานเฉพาะช่วงที่ต้องการนำไปใช้งานได้ง่าย เช่น งานทางด้าน การแพทย์ที่เกี่ยวข้องกับเนื้อเยื่อที่ใช้พลังงานของรังสีเอกซ์ที่ 20 keV หรือการตรวจสอบวัสดุที่ ต้องการรังสีเอกซ์ในย่านพลังงานสูง

เมื่อพลาสมาในเครื่องพลาสมาโฟกัสมีอุณหภูมิของอิเล็กตรอนสูงขึ้นจากระดับ eV จนถึง ระดับ keV และความหนาแน่นของพลาสมาประมาณ 10¹⁷-10²⁰ cm⁻³ พลาสมาจะมีการแผ่รังสี ออกมา โดยกระบวนการที่ทำให้เกิดรังสีของเครื่องพลาสมาโฟกัสมีทั้งหมด 3 กระบวนการ [**10**] ได้แก่

1) การแผ่รังสีต่อเนื่องหรือเบรมส์ชตราลุง(Bremsstrahlung)

เบรมส์ชตราลุง เป็นการแผ่รังสีแบบ free-free transition คำว่า เบรมส์ชตราลุง เป็นคำใน ภาษาเยอรมันที่มีความหมายว่า การหยุดรังสี (Braking radiation) กระบวนการแผ่รังแบบ เบรมส์ชตราลุงจะเกิดขึ้นเมื่อประจุที่กำลังเคลื่อนที่เกิดการสูญเสียพลังงานหรือเกิดการเปลี่ยนแปลง ความเร็วในการเคลื่อนที่ ซึ่งจะเกิดขึ้นได้เมื่อประจุนั้นเคลื่อนที่เข้าใกล้กับนิวเคลียสของอะตอม (รูปที่ 11)

CHULALONGKORN UNIVERSITY

รูปที่ 11 การเกิดรังสีเอกซ์ต่อเนื่อง ที่มา : HOW TO CHOOSE YOUR X-RAY SOURCE (PULSED OR CONSTANT POTENTIAL)? [**11**]

พลังงานที่ถูกปลดปล่อยออกมา (E_x) หากมีค่าที่มากพอจะอยู่ในย่านพลังงานของรังสีเอกซ์ รังสีเอกซ์ที่ถูกปลดปล่อยออกมานี้จะเรียกว่า รังสีแบบเบรมส์ชตราลุง (Bremsstrahlung radiation) หรือ รังสีเอกซ์ต่อเนื่อง (Continuous X-ray) โดยจะมีความสัมพันธ์กับการเปลี่ยนแปลงพลังงาน ระหว่างพลังงานของอิเล็กตรอนก่อนพุ่งเข้าหานิวเคลียสของวัตถุเป้าหมาย (E_i) กับพลังงานของ อิเล็กตรอนหลังพุ่งเข้าหานิวเคลียร์ของวัตถุเป้าหมาย (E_e)

$$\mathbf{E}_{\mathbf{x}} = \mathbf{E}_{\mathbf{i}} - \mathbf{E}_{\mathbf{e}} \tag{7}$$

ซึ่งจะทำให้รังสีเอกซ์แบบต่อเนื่องนี้มีลักษณะของค่าพลังงานที่เกิดขึ้นได้หลายค่าขึ้นอยู่กับระยะห่าง ระหว่างอิเล็กตรอนที่เคลื่อนที่เข้าใกล้นิวเคลียสของวัตถุเป้าหมาย ส่งผลให้สเปกตรัมของรังสีเอกซ์ที่ ปรากฏมีลักษณะแบบต่อเนื่อง ดังรูปที่ 12

รูปที่ 12 สเปกตรัมของรังสีเอกซ์ต่อเนื่อง ที่มา : Bremsstrahlung Radiation [**12**]

้โดยความเข้มของการแผ่รังสีแบบเบรมส์ชตราลุงจะมีความสัมพันธ์กับความถี่และปริมาตร มีค่าเท่ากับ

$$\dot{E}_{f} = 0.499 \times 10^{-36} n_{e} (k_{B}T_{e})^{0.5} \sum_{j} Z_{j}^{2} n_{j}$$
 (8)

เมื่อ $\dot{\mathbf{E}}_{\mathbf{f}}$ คือ ความเข้มของการแผ่รังสีแบบเบรมส์ชตราลุงต่อความถี่และปริมาตร (W/m³)

 $\mathbf{n_e}$ คือ ความหนาแน่นอิเล็กตรอน (m⁻³)

- k_B คือ ค่าคงตัวโบลต์ซมันท์ Boltzmann Constant มีค่าเท่ากับ 1.38 x 10⁻²³ J/K
- T_e คือ อุณหภูมิของอิเล็กตรอน (K)
- Z_i คือ เลขอะตอมของนิวเคลียสเป้าหมาย
- n_{i} คือ ความหนาแน่นของนิวเคลียสเป้าหมาย (m⁻³)
 - 2) รีคอมบิเนชัน (Recombination)

รีคอมบิเนชันเป็นการแผ่รังสีแบบ free-bound transition เมื่ออิเล็กตรอนอิสระที่มี ความเร็วค่าหนึ่งเคลื่อนที่เข้าชนกับไอออนและถูกจับไว้ที่ระดับชั้นพลังงานหนึ่งของไออน (Bound state of ion) จะทำให้ไอออนนั้นเกิดความไม่เสถียร ส่งผลให้ต้องมีการคายพลังงานส่วนเกินออกมา ในรูปของโฟตอนหรือรังสีเอกซ์ โดยพลังงานของรังสีเอกซ์ที่มีการปลดปล่อยออกมาจะมีค่าขึ้นอยู่กับ พลังงานตั้งต้นของอิเล็กตรอนอิสระ และมีลักษณะของการปลดปล่อยรังสีเป็นแบบต่อเนื่องรวมถึงใน บางกรณียังสามารถเกิดรังสีเอกซ์แบบไม่ต่อเนื่องได้ด้วยเช่นกัน

3) การสลายตัวแผ่รังสี (Line radiation)

การสลายตัวแผ่รังสีเป็นการแผ่รังสีแบบ bound – bound transition เกิดขึ้นจากการที่ อะตอมของธาตุถูกทำให้อิเล็กตรอนที่อยู่ภายในเกิดการเปลี่ยนแปลงระดับชั้นพลังงาน ซึ่งการ เปลี่ยนแปลงนี้จะเกิดเมื่อมีการใส่พลังงานเข้าไป เช่น เมื่อมีอิเล็กตรอนอิสระที่มีพลังงานสูงเคลื่อนที่ เข้าไปชนเข้ากับอะตอมของธาตุเป้าหมาย (Target element) หากพลังงานนั้นมากเพียงพอจะทำให้ อิเล็กตรอนที่อยู่ภายในถูกกระตุ้นให้เปลี่ยนระดับชั้นไปอยู่ในระดับชั้นพลังงานที่สูงขึ้น ส่งผลให้อะตอม เกิดความไม่เสถียร ทำให้อิเล็กตรอนนั้นต้องทำการคายพลังงานออกเพื่อกลับลงมาชั้นพลังงานที่ต่ำ กว่า พลังงานส่วนที่ถูกปล่อยออกมานี้จะอยู่ในรูปของรังสีเอกซ์ที่มีพลังงานเฉพาะขึ้นอยู่กับชั้นพลังงาน ที่เปลี่ยนแปลงของอิเล็กตรอน

2.4 ลำอิเล็กตรอน (Electron beam)

ในการปลดปล่อยรังสีเอกซ์ของพลาสมาโฟกัส หนึ่งในปัจจัยสำคัญที่มีผลต่อการปลดปล่อย รังสีเอกซ์ได้แก่ อิเล็กตรอน ในช่วงสุดท้ายเมื่อพลาสมาถูกบีบอัดทำให้มีการปลดปล่อยลำไอออนและ ลำอิเล็กตรอน ซึ่งในส่วนของลำอิเล็กตรอนนั้นเมื่อถูกปลดปล่อยออกมา อิเล็กตรอนที่มีพลังงานจะ เคลื่อนที่โดยทิศทางที่วิ่งเข้าสู่ขั้วของแอโนด ซึ่งการที่อิเล็กตรอนวิ่งเข้าหาธาตุเป้าหมายในที่นี้คือ ขั้วแอโนดจะทำให้เกิดการแผ่รังสีเอกซ์ออกมา ฉะนั้นคุณสมบัติบางประการของลำอิเล็กตรอน เช่น พลังงาน ฟลักซ์ จึงมีผลต่อการแผ่รังสีเอกซ์ของเครื่องพลาสมาโฟกัส ในที่นี้จึงขอกล่าวถึงคุณสมบัติ และสมการที่เกี่ยวข้องของลำอิเล็กตรอนโดยเริ่มที่สมการฟลักซ์ของลำอิเล็กตรอน [**13**]

$$J_{eb} = n_{eb} v_{eb} \tag{9}$$

โดย $\mathsf{J}_{\mathbf{eb}}$ คือ ฟลักซ์ของลำอิเล็กตรอน (Electron beam flux)

 $\mathbf{n_{eb}}$ คือ จำนวนของลำอิเล็กตรอนที่เฉลี่ยจากปริมาตรของพลาสมาที่ถูกบีบอัด (Number of beam electron divided by volume of pinch plasma) $\mathbf{v_{eb}}$ คือ ความเร็วของอิเล็กตรอน (Electron speed)

ความสัมพันธ์ระหว่างพลังงานจลน์ของลำอิเล็กตรอน (Kinetic energy of electron beam) และพลังงานจากการเหนี่ยวนำของพลาสมาที่ถูกบีบอัด (Energy of pinch inductive energy) โดย พลังงานจลน์ของลำอิเล็กตรอน (**E**_{eb}) จะมีค่าเท่ากับ **WERSITY**

$$\mathrm{E}_{\mathrm{eb}} = \frac{1}{2} \mathrm{N}_{\mathrm{eb}} \mathrm{m}_{\mathrm{e}} \mathrm{v}_{\mathrm{eb}}^2$$

โดย $\,N_{eb}\,$ คือ จำนวนลำอิเล็กตรอน (Number of beam electron)

 m_{e} คือ มวลอิเล็กตรอน (Mass of electron) และพลังงานจาการเหนี่ยวนำของพลาสมาที่ถูกบีบอัด (E_{p}) มีค่าเท่ากับ

$$E_{\rm p} = \frac{1}{2} L_{\rm p} I_{\rm pinch}^2$$
$$L_{p} = \left(\frac{\mu}{2\pi}\right) \left(\ln\left[\frac{b}{r_{p}}\right] z_{p}\right)$$

โดย L_p คือ ค่าความเหนี่ยวนำของการบีบอัด (Inductance of the focus pinch) b คือ รัศมีของ ขั้วแคโทด r_p คือ รัศมีของช่วงการบีบอัด (Pinch radius) z_p คือ ความของช่วงการบีบอัด (Length of the pinch) และ I_{pinch} คือกระแสที่ไหลในช่วงการบีบอัด (Pinch current) ดังนั้น

$$\frac{1}{2}N_{eb}m_{e}v_{eb}^{2} = f_{e}\frac{1}{2}(\frac{\mu}{2\pi})(\ln[\frac{b}{r_{p}}]z_{p})I_{pinch}^{2}$$
(10)

เมื่อ f_e คือค่าสัดส่วนพลังงานจลน์

จะได้

เมื่อ

$$n_{eb} = \frac{N_{eb}}{\pi r_p^2 z_p} = \left(\frac{\mu}{2\pi^2 m_e}\right) (f_e) \{ \left(\ln\left[\frac{b}{r_p}\right] z_p\right) / r_p^2 \} \times \left(I_{pinch}^2 v_{eb}^2\right)$$
(11)

ความสัมพันธ์ของความเร็วอิเล็กตรอนกับความต่างศักย์ไดโอด (Diode voltage) ซึ่งเป็น ความต่างศักย์ซึ่งทำให้เกิดการเร่งของอิเล็กตรอน โดยจากพลังงานจลน์ $\mathrm{KE}=rac{1}{2}\mathrm{m_e}\mathrm{v}_{eb}^2$ จะ สามารถเขียนสมการได้เป็น

$$KE = \frac{1}{2}m_e v_{eb}^2 = eU$$
(12)

เมื่อ U คือ ค่าความต่างศักย์ใดโอด มีค่าเท่ากับ U = $3V_{max}$

 $(V_{max}$ ความต่างศักย์สูงสุดที่เกิดขึ้นเมื่อแผ่นพลาสมาถูกเหนี่ยวนำในแนวรัศมี)

e คือ ค่าประจุของอิเล็กตรอน (Electronic charge)

สุดท้ายเมื่อนำสมการที่ (11) และ (12) จัดรูปและแทนลงในสมการที่ (9) โดยพจน์ $rac{\mu}{2.8\pi^2(em_e)^2}$ มี ค่าเท่ากับ 1.2 × 10¹⁷ จะได้สมการค่าฟลักซ์ของลำอิเล็กตรอนสำหรับเครื่องพลาสมาโฟกัสดัง สมการ

$$J_{eb} = 1.2 \times 10^{7} (f_{e}) \{ \left(\ln \left[\frac{b}{r_{p}} \right] \right) / r_{p}^{2} \} \times \left(\frac{I_{pinch}^{2}}{U^{1/2}} \right)$$
(13)

จากสมการทั้งหมดที่ได้กล่าวมาจะทำให้สามารถอธิบายถึงคุณสมบัติและค่าต่างๆของลำ อิเล็กตรอนทั้งค่าของพลังงาน จำนวนอิเล็กตรอน และฟลักซ์ของพลาสมาโฟกัส และอย่างที่ได้กล่าวไว้ สำหรับการแผ่รังสีเอกซ์ พลังงานตั้งต้นของอิเล็กตรอนที่วิ่งเข้าทำอันตรกิริยาจะมีผลต่อปริมาณของ รังสี ดังนั้นเมื่อทราบถึงคุณสมบัติของลำอิเล็กตรอนแล้วจึงจะสามารถนำมาใช้ในการจำลองการเกิด รังสีเอกซ์ที่เกิดขึ้นบริเวณขั้วแอโนดของเครื่องพลาสมาโฟกัสได้

2.5 เครื่องพลาสมาโฟกัส TPF- II

เครื่องพลาสมาโฟกัส TPF- II (Thai Plasma Focus -II) เป็นเครื่องพลาสมาโฟกัสซึ่งถูกใช้ งานและพัฒนาโดยสถาบันเทคโนโลยีนิวเคลียร์แห่งชาติ (สทน.) มีลักษณะเป็นเครื่องพลาสมาโฟกัส แบบมาเธอร์ (ดังรูปที่ 13) ขนาด 1.5 kJ ที่ความจุ 30 µF สามารถชาร์จกระแสสูงสุดได้ที่ 144 kA เดินเครื่องด้วยแก๊สอาร์กอน

ในส่วนของขั้วไฟฟ้าของเครื่อง TPF-II ขั้วแอโนดจะมีความยาวอยู่ที่ 6.5 cm และรัศมีอยู่ที่ 1.25 cm ส่วนขั้วไฟฟ้าแคโทดจะมีความยาวอยู่ที่ 6.5 cm และรัศมีอยู่ที่ 2.50 cm [**14**]

รูปที่ 13 โครงสร้างของเครื่องพลาสมาโฟกัส TFP-II (ซ้าย) เครื่องพลาสมาโฟกัส TPF-II (ขวา)

ที่มา : Arlee Tamman (2017) [14]

บทที่ 3 โปรแกรมจำลอง

ในบทนี้จะกล่าวถึงโปรแกรมที่ใช้สำหรับการจำลองเพื่อให้ทราบถึงทฤษฎีพื้นฐานของ โปรแกรม ลักษณะของโปรแกรม การสร้างแบบจำลองด้วยโปรแกรม โดยโปรแกรมที่ใช้สำหรับการ จำลองในการทดลองครั้งนี้มีทั้งหมด 2 โปรแกรม ได้แก่ Geant4 เป็นโปรแกรมจำลองด้านฟิสิกส์ อนุภาคซึ่งถูกพัฒนาโดยองค์การวิจัยนิวเคลียร์ยุโรป และโปรแกรมจำลองพลศาสตร์ของเครื่อง พลาสมาโฟกัส LEE Code ซึ่งถูกเริ่มต้นพัฒนาโดย S.Lee

3.1 การจำลองแบบมอนติคาร์โล

โปรแกรม Geant4 ซึ่งเป็นโปรแกรมหลักที่ใช้ในการทดลอง มีหลักการพื้นฐานโดยใช้หลักการ จำลองแบบมอนติคาร์โลในการทำงาน ซึ่งในหัวข้อนี้อธิบายถึงหลักการพื้นฐานของการจำลองแบบ มอนติคาร์โลโดยสังเขป

การจำลองแบบมอนติคาร์โล (Monte carlo simulation; MC) เป็นระเบียบวิธีการทางสถิติ ที่คิดค้นขึ้นเพื่อใช้แก้ไขปัญหาที่ไม่สามารถสร้างเป็นรูปแบบจำลองโดยอาศัยสมการทางคณิตศาสตร์ได้ ถูกคิดค้นขึ้นในช่วงประมาณ ค.ศ.1949 โดย สตานิสลอว์ อูลัม (Stanislaw Ulam) และ จอห์น ฟอน นอยมันน์ (John von Neumann) นักคณิตศาสตร์ในโครงการแมนฮัตตันในช่วงสงครามโลกครั้งที่ สอง โดยชื่อของระเบียบวิธีการนี้ได้ถูกตั้งตามบ่อนพนันชื่อดังในประเทศโมนาโก [**15**]

การจำลองมอนติคาร์โลจะอาศัยหลักของโอกาส หรือ "Law of chance" และดำเนินการ กระทำโดยวิธีการสุ่มตัวอย่าง แต่แทนที่จะสุ่มตัวอย่างจากข้อมูลจริง (Real population) แบบวิธีการ ทั่วไป วิธีการนี้กลับสุ่มมาจากตัวอย่างในทางทฤษฎีโดยอาศัยการสุ่มตัวเลข ทำการสุ่มตัวอย่างขึ้นมา โดยตัวอย่างที่สุ่มนั้นจะมีลักษณะการกระจายตัวที่เป็นแบบเดียวกันหรือเลียนแบบให้เป็นไปให้รูปแบบ เดียวกัน [16] การทดลองที่ใช้การจำลองแบบมอนติคาร์โลในการแก้ไขปัญหาที่เป็นที่รู้จักมากที่สุด ได้แก่ การทดลองเข็มของบุฟฟอง (Buffon's Needle) โดยโจทย์ของการทดลองนี้คือ ถ้าหากโปรยเข็มลง บนพื้นที่มีลายเป็นเส้นตรงเรียงขนานกัน โดยแต่ละเส้นมีระยะห่างเท่า ๆ กัน ดังรูปที่ 14 ถามว่ามี โอกาสแค่ไหนที่เข็มจะตกทับที่เส้นขนาดเหล่านี้ โดยปัญหานี้ถูกแก้ไขด้วยการใช้แคลคูลัสร่วมกับความ น่าจะเป็น พบว่าโอกาสที่เข็มจะทับเส้นพื้นมีค่าเท่ากับ

$$P = \frac{2l}{\pi d}$$
(14)

เมื่อ P คือความน่าจะเป็นที่เข็มจะทับเส้น l คือ ความยาวของเข็ม และ d คือระยะห่างของซ่อง ระหว่างเส้นขนาด เมื่อสมมติว่าเข็มและซ่องระหว่างเส้นขนาดแต่ละเส้นนั้นมีขนาดเท่ากัน (d = l) จะได้ว่าความน่าจะเป็นที่เข็มจะตกทับเส้นจะมีค่าเท่ากับ

$$\mathbf{P} = \frac{\mathbf{h}}{\mathbf{n}} = \frac{2}{\pi} \tag{15}$$

หรืออาจเขียนได้ว่า

$$\pi = \frac{2n}{\pi h} \tag{16}$$

เมื่อ **n** คือจำนวนครั้งของเข็มทั้งหมดที่ตก และ **h** คื่อจำนวนครั้งของเข็มที่ตกทับเส้น จะพบว่าหาก ยิ่งเพิ่มจำนวนครั้งที่ใช้ในการโยนเข็มมากขึ้น โอกาสที่จะได้ค่า **π** ก็จะมีความแม่นยำมากขึ้นเช่นกัน [17]

รูปที่ 14 การทดลองเข็มของบุฟฟอง ที่มา : Buffon's Needle Problem [**18**]

ฉะนั้นหากจะนิยามการจำลองแบบมอนติคาร์โล จะสามารถนิยามได้ว่าเป็นการจำลองโดย การสุ่มตัวอย่างจำนวนมากเพื่อให้เข้าใกล้ค่าอ้างอิงค่าหนึ่งหรือให้มีข้อมูลไปในทิศทางเดียวกัน

3.2 โปรแกรมจำลอง Geant4

Geant4 เป็นโปรแกรมที่มีพื้นฐานการทำงานด้วยภาษาซี (C++) ใช้สำหรับอธิบายถึงอันตร กิริยาของอนุภาคที่มีต่อวัตถุในเชิงฟิสิกส์อนุภาค ฟิสิกส์พลังงานสูง รวมไปถึงฟิสิกส์การแพทย์และ ฟิสิกส์อวกาศ [**19**] ซึ่งโปรแกรมนี้ถูกสร้างและพัฒนาโดยองค์การวิจัยนิวเคลียร์ยุโรป (The European Organization for Nuclear Research) หรือ CERN โดยถูกพัฒนาต่อยอดมาจาก โปรแกรมจำลองฟิสิกส์อนุภาค GEANT3 [**20**] และได้ถูกนำไปใช้กันอย่างกว้างขว้างในหน่วยงานวิจัย ต่างๆ อาทิ ศูนย์ปฏิบัติการเครื่องเร่งอนุภาคแห่งชาติ SLAC สหรัฐอเมริกา ศูนย์ปฏิบัติการเครื่องเร่ง อนุภาค TRIUMF ประเทศแคนาดา และสถาบันการแพทย์และศัลยศาสตร์แคโรลินสกา (Konsol Carolinska Medico Institute) ประเทศสวีเดน เป็นต้น

รูปที่ 15 ตัวอย่างการจำลองบนโปรแกรม Geant4 ที่มา : Overview [19]

โปรแกรม Geant4 ทำงานโดยอาศัยระเบียบวิธีการแบบจำลองมอนติคาร์โลดังที่ได้กล่าวถึง ในหัวข้อที่ 3.1 ในการจำลองการเคลื่อนที่ของอนุภาค โดยโปรแกรมจะอาศัยการคำนวณเชิงไม่ กำหนด (Non-deterministic) หรือการเคลื่อนที่แบบสุ่ม (Random walk) ทำการสุ่มทั้งทิศทางและ ระยะการเคลื่อนที่ของอนุภาคผ่านสสารหรือเครื่องตรวจวัดอนุภาคที่ต้องการศึกษาในช่วงก่อนและ หลังการเกิดอันตรกิริยา ซึ่งขึ้นอยู่กับค่าภาคตัดขวาง (Cross section) ของอันตรกิริยานั้น ๆ กระบวนการจะเริ่มจำลองสุ่มตำแหน่งและทิศทางของอนุภาคจากฟังก์ชั่นแจกแจงความน่าจะ เป็นเพื่อเคลื่อนอนุภาคไปยังตำแหน่งใหม่ โดยแต่ละครั้งที่มีการเคลื่อนตำแหน่ง จะมีการคำนวณการ เกิดอันตรกิริยาและตำแหน่งใหม่เทียบกับขอบเขตของเครื่องตรวจวัด โดยถ้าในกระบวนการนั้น อนุภาคยังไม่ออกไปนอกขอบเขตก็จะทำการวัดซ้ำไปเรื่อย ๆ จนกว่าอนุภาคจะออกนอกขอบเขตจึงจะ คำนวณอนุภาคใหม่แทนและจะดำเนินการในลักษณะเดียวกันกับอนุภาคอื่นๆ ในระบบจนครบ ดัง แสดงในรูปที่ 16

รูปที่ 16 แผนผังลอจิกการทางานของโปแกรม Geant4

3.2.1 การสร้างแบบจำลองบนโปรแกรม Geant4

การสร้างแบบจำลองบนโปรแกรม Geant4 ประกอบด้วยส่วนประกอบพื้นฐานที่สำคัญ ทั้งหมด 3 ส่วน ได้แก่

 ปริมาตร (Volume) ซึ่งเป็นตัวแทนหรือตัวอ้างอิงสำหรับวัตถุหรือสสารบนโลก หลักการ กำหนดปริมาตรจะเริ่มจากปริมาตรที่ใหญ่ที่สุด [21] เรียกว่า ปริมาตรโลก (World volume) ซึ่ง เปรียบเหมือนเป็นตัวแทนของสิ่งแวดล้อม จากนั้นจึงกำหนดปริมาตรย่อย ๆ ใส่ลงไป โดยปริมาตร ย่อยที่ถูกใส่ลงไปนั้นจะเรียกว่า ปริมาตรลูก (Daughter volume)

 2. อนุภาคเริ่มต้น (Primary particle) ในการจำลองกระบวนทางฟิสิกส์จำเป็นต้องมีอนุภาค สำหรับการเริ่มต้นอันตรกิริยา ทั้งนี้ในการกำหนดอนุภาคเริ่มต้นจึงจำเป็นต้องทราบถึงลักษณะของ กระบวนการเพื่อให้สามารถเลือกชนิดของอนุภาคได้อย่างเหมาะสม รวมทั้งต้องสามารถระบุคุณสมบัติ ของอนุภาค เช่น จำนวน พลังงาน ลักษณะการเคลื่อนที่ ได้

 กระบวนการทางฟิสิกส์ (Physics process) เป็นการกำหนดอันตรกิริยาระหว่างปริมาตร และอนุภาคตั้งต้น จึงต้องเข้าใจถึงปรากฏการณ์ทางฟิสิกส์ที่จะเกิดขึ้นของเหตุการณ์ที่ต้องการจะ ศึกษา เพื่อระบุคุณสมบัติลงไปในแบบจำลองได้อย่างถูกต้อง

โดยในหัวข้อที่ 3.2.2 – 3.2.5 นี้ จะเป็นการกล่าวถึงวิธีการในการสร้างและกำหนดคุณสมบัติของ ปริมาตร อนุภาคเริ่มต้น และกระบวนการทางฟิสิกส์ของโปรแกรม Geant4

3.2.2 การกำหนดคุณสมบัติของปริมาตรบนโปรแกรม Geant4

เนื่องจากในธรรมชาติ วัตถุจะเกิดจากการประกอบกันของธาตุต่าง ๆ และธาตุต่าง ๆ เหล่านั้นยังประกอบไปด้วยไอโซโทปรวมถึงองค์ประกอบอื่น ๆ ดังนั้นการที่จะกำหนดคุณสมบัติของ ปริมาตรบนโปรแกรม Geant4 นั้น จึงต้องทราบและสามารถระบุถึงองค์ประกอบทางเคมีของ ปริมาตรได้ โดยในโปรแกรม Geant4 ได้มีการกำหนดฟังก์ชันเพื่อบ่งบอกคุณสมบัติของปริมาตรที่ ต้องการสร้าง [22] ได้แก่

- 1) G4Element เป็นฟังก์ชันซึ่งใช้สำหรับการกำหนดคุณสมบัติของวัตถุ ได้แก่
 - เลขอะตอม (Atomic number)
 - จำนวนนิวไคล์ (Number of nucleons)
 - มวลอะตอม (Atomic mass)
 - ระดับชั้นพลังงาน (Shell energy)
 - ปริมาณอื่น ๆ เช่น ภาคตัดขวางของอะตอม (Cross sections per atom)

- 2) G4Material เป็นฟังก์ชันซึ่งใช้ สำหรับการกำหนดคุณสมบัติของวัตถุ ได้แก่
 - ความหนาแน่น (Density)
 - สถานะ (State)
 - อุณหภูมิ (Temperature)
 - ความดัน (Pressure)
 - ปริมาณอื่น ๆ เช่น ระยะการแผ่รังสี (Radiation length), เส้นทางอิสระเฉลี่ย (Mean free path), การเปลี่ยนแปลงพลังงาน (dE/dx)

จากนั้นเมื่อทราบถึงคุณสมบัติของปริมาตรที่ต้องการแล้วจะสามารถนำฟังก์ชันที่ได้กล่าวมาสร้าง ปริมาตรได้โดยวิธีการดังจะขอยกตัวอย่างเป็นลำดับถัดไป

ในการสร้างปริมาตรหรือวัตถุสามารถทำได้โดยการกำหนดชื่อและระบุ ความหนาแน่น มวล ต่อโมลและเลขอะตอม ดังตัวอย่างในรูปที่ 17 เป็นการสร้างอาร์กอนเหลวที่มีชื่อว่า liquidArgon ซึ่งมี ความหนาแน่น 1.390 g/cm³ มวลต่อโมล 39.95 g/mole เลขอะตอม 18 และทำการเรียกฟังก์ชัน G4Material เพื่อสร้างอาร์กอนเหลว

G4double z, a, density; density = 1.390*g/cm3; a = 39.95*g/mole; G4Material* 1Ar = **new** G4Material (name="liquidArgon", z=18., a, density); *รูปที่ 17 ตัวอย่างการสร้างอาร์กอนเหลว* ที่มา : Book For Application Developers [22] เมื่อทำการสร้างอาร์กอนเหลวแล้ว จากนั้นทำการเรียกใช้ฟังก์ชัน **G4LogicalVolume** เพื่อกำหนด รูปร่างและตำแหน่งของอาร์กอนเหลว โดยรายละเอียดจะกล่าวถึงในหัวข้อ 3.2.3

G4LogicalVolume* myLbox = **new** G4LogicalVolume(aBox,lAr,"Lbox",0,0,0);

รูปที่ 18 ตัวอย่างการกำหนดรูปร่างของอาร์กอนเหลว ที่มา : Book For Application Developers [22]

ในกรณีที่ต้องการสร้างวัตถุหรือปริมาตรที่ประกอบจากการรวมธาตุตั้งแต่ 2 ชนิดขึ้นไป หรือ การสร้างสารประกอบ สามารถทำได้โดยการระบุคุณสมบัติและชนิดของธาตุของสารประกอบรวมถึง ระบุอัตราส่วนของธาตุแต่ละชนิดในสารประกอบ ตัวอย่างการสร้างสารประกอบ ดังรูปที่ 19

```
G4double z, a, density;
G4string name, symbol;
G4int ncomponents, natoms;
a = 1.01*g/mole;
G4Element* elH = new G4Element(name="Hydrogen",symbol="H", z= 1., a);
a = 16.00*g/mole;
G4Element* elO = new G4Element(name="Oxygen", symbol="O", z= 8., a);
density = 1.000*g/cm3;
G4Material* H2O = new G4Material(name="Water",density,ncomponents=2);
H2O->AddElement(elH, natoms=2);
H2O->AddElement(elO, natoms=1);
```

รูปที่ 19 ตัวอย่างการสร้างสารประกอบน้ำ ที่มา : Book For Application Developers [22]

ทำการสร้างสารประกอบโดยการกำหนดชื่อและระบุ ความหนาแน่น มวลต่อโมลและเลขอะตอม เช่นเดียวกับตัวอย่างการสร้างอาร์กอนเหลว จากนั้นให้ทำการกำหนดอัตราส่วนของจำนวนอะตอม ของธาตุที่เป็นองค์ประกอบของสารประกอบในที่นี้คือน้ำ (H2O) ให้จำนวนอะตอมของไฮโดรเจน H = 2 อะตอม และจำนวนอะตอมของออกซิเจน O = 2 นอกจากนี้ยังสามารถใช้การกำหนดอัตราส่วน เป็นร้อยละได้ดังตัวอย่างในรูปที่ 20 ที่กำหนดอัตราส่วนของไนโตรเจน N ร้อยละ 70 และออกซิเจน O ร้อยละ 30

```
G4double z, a, fractionmass, density;
G4String name, symbol;
G4int ncomponents;
a = 14.01*g/mole;
G4Element* elN = new G4Element(name="Nitrogen",symbol="N" , z= 7., a);
a = 16.00*g/mole;
G4Element* elO = new G4Element(name="Oxygen" ,symbol="0" , z= 8., a);
density = 1.290*mg/cm3;
G4Material* Air = new G4Material(name="Air ",density,ncomponents=2);
Air->AddElement(elN, fractionmass=70*perCent);
Air->AddElement(elO, fractionmass=30*perCent);
```

รูปที่ 20 ตัวอย่างการกำหนดอัตราส่วนของสารประกอบ

ที่มา : Book For Application Developers [22]

ภายในโปรแกรมยังสามารถเรียกใช้ข้อมูลคุณสมบัติของวัตถุจากฐานข้อมูลภายในโปรแกรม Geant4 ได้ ดังแสดงในตัวอย่างด้านล่าง (รูปที่ 21)

G4NistManager* man = G4NistManager::Instance(); G4Material* H2O = man->FindOrBuildMaterial("G4_WATER"); G4Material* Air = man->FindOrBuildMaterial("G4_AIR");

> รูปที่ 21 ตัวอย่างการสร้างน้ำและอากาศโดยเรียกใช้จากฐานข้อมูล ที่มา : Book For Application Developers [22]

รวมถึงการสร้างปริมาตรจากธาตุหรือสารประกอบใหม่โดยการปรับเปลี่ยนจากคุณสมบัติพื้นฐานที่มี อยู่ในฐานข้อมูลของโปรแกรม ดังแสดงในตัวอย่างดังรูปที่ 22 โดยจะเป็นการปรับเปลี่ยนความ หนาแน่นของน้ำ

```
G4double density;
density = 1.05*mg/cm3;
G4Material* water1 = new G4Material("Water_1.05",density,"G4_WATER");
density = 1.03*mg/cm3;
G4NistManager* man = G4NistManager::Instance();
G4Material* water2 = man->BuildMaterialWithNewDensity("Water_1.03","G4_WATER",density);
```

รูปที่ 22 การเปลี่ยนคุณสมบัติของสารจากฐานข้อมูล

ที่มา : Book For Application Developers [22]

3.2.3 การสร้างปริมาตรรูปทรงเรขาคณิตบนโปรแกรม Geant4

เมื่อทำการกำหนดคุณสมบัติของธาตุในปริมาตรแล้ว ขั้นต่อไปจะเป็นการกำหนดคุณสมบัติ ของรูปทรงเรขาคณิตของวัตถุ โดยในโปรแกรม Geant4 จะใช้ฟังก์ชัน "Logic Volume" ในการ กำหนดคุณสมบัติรูปทรงเรขาคณิตของวัตถุและ "Physics Volume" ซึ่งจะกำหนดตำแหน่งและ ทิศทางของวัตถุ [22]

การกำหนดรูปทรงเรขาคณิตของโปรแกรม Geant4 สามารถทำได้โดยการกำหนดพามิเตอร์ เพื่อระบุขนาดและรูปร่างของปริมาตร โดยจะขอยกตัวอย่างดังนี้

<u>ตัวอย่างที่1</u>

กำหนดรูปทรงเรขาคณิตของปริมาตรรูปกล่อง โดยเรียกใช้ได้จากฟังก์ชัน G4Box และทำ การกำหนด ชื่อ ขนาดในแนวแกน X ขนาดในแนวแกน Y และขนาดในแนวแกน Z ตามลำดับ

รูปที่ 23 การกำหนดพารามิเตอร์ของปริมาตรทรงกล่อง

ที่มา : Book For Application Developers [22]

ตัวอย่างดังรูปที่ 23 เป็นการกำหนดรูปทรงเรขาคณิตของปริมาตรทรงกล่อง เมื่อกำหนดให้จุด ศูนย์กลางของปริมาตรอยู่ที่ (X,Y,Z) = (0,0,0) ปริมาตรทรงกล่องจะถูกวางบนแนวแกนทั้งสามใน ทิศทางทั้งบวกและลบ โดยในแนวแกน X ทำการกำหนดขนาดเป็น pX = 30 จะได้ปริมาตรที่ถูกวาง บนแกนตั้งแต่ -30 ถึง 30 ในแนวแกน Y กำหนดขนาดเป็น pY = 40 ปริมาตรจะถูกวางบนแกน ตั้งแต่ -40 ถึง 40 และในแนวแกน Z กำหนดขนาดเป็น pZ = 60 ปริมาตรจะถูกวางบนแกนตั้งแต่ -60 ถึง 60 สุดท้ายแล้วจะทำให้ได้ปริมาตรทรงกล่องที่มีขนาด กว้าง x ยาว x สูง เท่ากับ 60 x 80 x 120

<u>ตัวอย่างที่2</u>

การสร้างปริมาตรทรงกระบอก ซึ่งจะเรียกใช้ฟังก์ชันที่ชื่อว่า G4Tubs และกำหนดชื่อ, ขนาด รัศมีภายใน ขนาดรัศมีภายนอก ความยาวของทรงกระบอก มุมเริ่มต้นและมุมที่กวาดไปได้ ตามลำดับ

รูปที่ 24 การกำหนดพารามิเตอร์ของปริมาตรทรงกระบอก ที่มา : Book For Application Developers [22]

จากตัวอย่างดังรูปที่ 24 เป็นการสร้างภาคตัด 1 ใน 4 ส่วนของทรงกระบอกกลวง โดยกำหนดให้จุด ศูนย์กลางของปริมาตรอยู่ที่ (X,Y,Z) = (0,0,0) โดยมีขนาดของรัศมีภายใน pRMin = 10, รัศมี ภายนอก pRMax = 15, ความยาวของทรงกระบอก pZ = 20 ซึ่งจะได้ความยาวทั้งหมดของ ทรงกระบอกเท่ากับ 40 (วางบนแนวแกน Z ตั้งแต่ – Z ถึง Z ด้านละ 20) มุมเริ่มต้น pSPhi = 0 และมุมที่กวาด pDPhi = 90 องศา

้จากตัวอย่างที่กล่าวมาเมื่อทำการกำหนดรูปร่างขนาดของปริมาตรที่ต้องการแล้ว และจาก หัวข้อที่ 3.2.2 ที่กล่าวถึงวิธีการกำหนดคุณสมบัติและธาตุองค์ประกอบของปริมาตร เมื่อต้องการสร้าง ปริมาตรที่มีรูปทรงและคุณสมบัติตามที่กำหนดบน Geant4 จะทำได้โดยการเรียกใช้ฟังก์ชันชื่อ

G4LogicalVolume

```
G4double world_hx = 3.0*m;
G4double world_hy = 1.0*m;
G4double world_hz = 1.0*m;
G4Box* worldBox
       new G4Box("World", world_hx, world_hy, world_hz);
```

รุปที่ 25 การสร้างปริมาตรทรงกล่องบนโปรแกรม ที่มา : Book For Application Developers [22]

G4LogicalVolume* worldLog = **new** G4LogicalVolume(worldBox, Ar, "World");

รูปที่ 26 การเรียกใช้ฟังก์ G4LogicalVolume ในการสร้างปริมาตรทรงกล่อง ที่มา : Book For Application Developers [22]

รูปที่ 25 เป็นการกำหนดรูปทรงเรขาคณิตของปริมาตรทรงกล่องด้วยฟังก์ชัน G4Box บนโปรแกรม โดยกำหนดให้ปริมาตรมีชื่อว่า "World" มีขนาดตามแนวแกน X ตั้งแต่ -X ถึง X รวมเท่ากับ 6 เมตร ขนาดตามแนวแกน Y ตั้งแต่ Y ถึง -Y เท่ากับ 2 เมตร และขนาดตามแนวแกน Z ตั้งแต่ -Z ถึง Z เท่ากับ 2 เมตร จากนั้นในรูปที่ 26 แสดงการเรียกใช้ฟังก์ชัน G4LogicalVolume เพื่อสร้างปริมาตร รูปกล่องที่ประกอบด้วยก๊าซอาร์กอน Ar ที่ชื่อว่า "World"

อีกหนึ่งตัวอย่างของการใช้ฟังก์ชัน G4LogicalVolume ในการสร้างปริมาตรทรงกระบอก โดยในรูปที่ 27 เป็นการกำหนดปริมาตรทรงเรขาคณิตทรงกระบอกชื่อ "Tracker" รัศมีภายในเท่ากับ 0 เซนติเมตร (เพื่อให้ปริมาตรมีลักษณะเป็นทรงกระบอกตัน) รัศมีภายนอกเท่ากับ 60 เซนติเมตร ความยาวทั้งหมดของทรงกระบอกเท่ากับ 50 เซนติเมตร (วางบนแนวแกน Z ตั้งแต่ – Z ถึง Z ด้าน ละ 25 เซนติเมตร) มุมเริ่มต้นเท่ากับ 0 องศา และมุมกวาดไปทั้งหมด 360 องศา

รูปที่ 27 การเรียกใช้ฟังก์ชัน G4LogicalVolume ในการสร้างปริมาตรกระบอก

ที่มา : Book For Application Developers [22]

```
G4LogicalVolume* trackerLog
  = new G4LogicalVolume(trackerTube, Al, "Tracker");
```

รูปที่ 28 การเรียกใช้ฟังก์ชันสำหรับสร้างปริมาตรทรงกระบอก ที่มา : Book For Application Developers [22]

จากนั้นในรูปที่ 28 แสดงการเรียกใช้ฟังก์ชัน G4LogicalVolume เพื่อสร้างปริมาตรทรงกระบอกที่ ประกอบด้วยอะลูมิเนียม Al ที่ชื่อว่า "Tracker"

ในขั้นตอนสุดท้าย เมื่อทำการสร้างปริมาตรที่มีรูปร่างและคุณสมบัติตามต้องการแล้ว ต้องทำ การวางปริมาตรสร้างขึ้นโดยการเรียกใช้ฟังก์ชัน G4VPhysicalVolume และในกรณีที่ต้องการ กำหนดตำแหน่งของปริมาตรที่อยู่ภายในปริมาตรที่มีขนาดใหญ่กว่าจะต้องเรียกใช้ฟังก์ชัน G4PVPlacement เพื่อกำหนดตำแหน่ง ตัวอย่างดังรูปที่ 29

รูปที่ 29 การกำหนดตำแหน่งและการวางปริมาตรบนโปรแกรม ที่มา : Book For Application Developers [22]

จากตัวอย่างเป็นการวางปริมาตรชื่อ "Tracker" ไว้ภายในปริมาตรขนาดใหญ่กว่าหรือ Mother volume ที่ตำแหน่งบนแนวแกน X ที่ตำแหน่ง – 1 เมตร, ตำแหน่งบนแนวแกน Y ที่ตำแหน่ง 0 เมตร และตำแหน่งบนแนวแกน Z ที่ตำแหน่ง 0 เมตร โดยจะเรียกใช้ฟังก์ชัน **G4ThreeVector** ในการ กำหนดตำแหน่งบนแนวแกน 3 ทิศทาง 3.2.4 การสร้างอนุภาคบนโปรแกรม Geant4

ภายในโปรแกรม Geant4 ประกอบด้วยข้อมูลพื้นของอนุภาคหลายชนิดที่สามารถเลือกใช้ได้ สำหรับการจำลอง [22] ยกตัวอย่างเช่น

- อนุภาคพื้นฐาน เช่น อิเล็กตรอน โปรตอน และแกมม่า
- อนุภาคเรโซแนนซ์ (Resonant particles) อายุสั้น เช่น เวกเตอร์มีซอน (Vector mesons) และเดลตาแบริออน (Delta baryons)
- นิวไคล์ (Nuclei) เช่น ดิวเทอรอน (Deuteron) แอลฟา (Alpha) และไอออนหนัก (Heavy ions) (including hyper-nuclei)
- ควาร์ก (Quarks) ไดควาร์ก (Di-quarks) และ กลูออน (Gluon)

โดยอนุภาคแต่ดังกล่าวจะถูกแบ่งตามประเภท ทั้งหมด 6 ประเภท ได้แก่ เลปตอน (Lepton) มีซอน (Meson) แบริออน (Baryon) โบซอน (Boson) อนุภาคอายุสั้น (Short lived) และไอออน (Ion) และสำหรับการเรียกใช้ฐานข้อมูลของอนุภาคภายในโปรแกรม Geant4 จะสามารถเรียกใช้ได้จาก ฟังก์ชัน **G4ParticleTable** โดยตัวอย่างการเรียกใช้ ดังรูปที่ 30

กรณีที่ต้องการกำหนดคุณสมบัติเฉพาะ เช่น มวล จำนวน พลังงาน ประจุ สปิน และอื่น ๆ ของ อนุภาคที่ต้องการสร้าง จะสามารถเรียกใช้ฟังก์ชัน G4ParticleDefinition เพื่อกำหนดคุณสมบัติที่ กล่าวมาได้ ดังตัวอย่างดังรูปที่ 31 โดยอนุภาคที่สร้างจะถูกใช้เป็นอนุภาคตั้งต้นสำหรับกระบวนการ ทางฟิสิกส์ในลำดับถัดไป

G4ParticleDefinition* Get1	(G4int G4int	atomicNumber, atomicMass,
	G4double	excitationEnergy

รูปที่ 31 การกำหนดคุณสมบัติของอนุภาคตั้งต้น

ที่มา : Book For Application Developers [22]

3.2.5 การกำหนดคุณสมบัติกระบวนทางฟิสิกส์บนโปรแกรม Geant4

เมื่อทำการสร้างปริมาตรและอนุภาคเริ่มสำหรับการจำลองแล้ว ในการกำหนดกระบวนการ ทางฟิสิกส์ของอันตรกิริยาของอนุภาคที่สามารถกระทำกับสสารหรือปริมาตร ภายในโปรแกรมจะ ประกอบด้วยข้อมูลของกระบวนฟิสิกส์แบ่งออกเป็นทั้งหมด 7 กระบวนการ [22] ได้แก่

- กระบวนการทางสนามแม่เหล็ก (Electromagnetic)
- กระบวนการฮาดรอนนิกส์ (Hadronic)
- กระบวนการเคลื่อนที่ (Transportation)
- กระบวนการสลายตัว (Decay)
- กระบวนเชิงแสง (Optical)
- กระบวนการโฟโตเลปตอน ฮาดรอน (Photolepton hadron)
- การกำหนดพารามิเตอร์ (Parameterisation)

โดยการกำหนดกระบวนการทางฟิสิกส์จะสามารถเรียกใช้จากฟังก์ชันเฉพาะสำหรับกระบวนการนั้น ๆ ตัวอย่างดังรูปที่ 32

```
void MyPhysicsList::ConstructProcess()
{
    // Define transportation process
    AddTransportation();
    // electromagnetic processes
    ConstructEM();
    // electromagnetic processes
    ConstructEM();
}
void MyPhysicsList::ConstructEM()
{
    // Get pointer to G4PhysicsListHelper
    G4PhysicsListHelper* ph = G4PhysicsListHelper::GetPhysicsListHelper();
    // Get pointer to gamma
    G4ParticleDefinition* particle = G4Gamma::GammaDefinition();

    // Construct and register processes for gamma
    ph->RegisterProcess(new G4PhotoElectricEffect(), particle);
    ph->RegisterProcess(new G4GammaConversion(), particle);
    ph->RegisterProcess(new G4RayleighScattering(), particle);
}
```

รูปที่ 32 การเรียกใช้ฟังก์ชันสำหรับกระบวนการทางฟิสิกส์ของรังสีแกมมา ที่มา : Book For Application Developers [22]

ซึ่งเป็นการเรียกใช้กระบวนการทางฟิสิกส์สำหรับการเกิดอันตรกิริยาของรังสีแกมมา โดยจะสามารถ เรียกใช้ได้จากฟังก์ชันเฉพาะของกระบวนการนั้นๆ เช่น G4PhotoElectricEffect สำหรับ กระบวนการโฟโตอิเล็กทริก และ G4Comtonscattering สำหรับกระบวนการกระเจิงแบบคอมพ์ ตัน เป็นต้น นอกจากการเกิดอันตรกิริยาของรังสีแกมมาดังตัวอย่างข้างต้นแล้ว ภายในโปรแกรมยัง ประกอบด้วยฐานข้อมูลของกระบวนการทางฟิสิกส์สำหรับอนุภาคชนิดอื่น เช่น ไอออน ฮาดรอน มิวออน โฟตอน อิเล็กตรอนและโพสิตรอน โดยจะสามารถเรียกใช้ได้จากฟังก์ชันเฉพาะกระบวนการ ของอนุภาคนั้นเช่นเดียวกับตัวอย่างดังรูปที่ 32 ซึ่งในการทดลองนี้จะเน้นการพิจารณาไปที่การเกิด อันตรกิริยาของอิเล็กตรอน จึงจะขอยกตัวอย่างเฉพาะส่วนของฟังก์ชันของกระบวนการของ อิเล็กตรอน/โพสิตรอน ดังตารางต่อไปนี้

ฟังก์ชัน	กระบวนการ	
G4elonisation	กระบวนการแตกตัวเป็นไอออนและ	
	กระบวนการเกิดรังสีเดลต้า	
	(Ionisation and delta ray production)	
G4eBremsstrahlung	กระบวนการรังสีแบบเบรมส์ชตราลุง	
	(Bremsstrahlung)	
G4ePairProduction	กระบวนการปรากฏการณ์ผลิตผลคู่อิเล็กตรอน	
	(Pair production)	
G4eMultipleScattering	ปรากฏการณ์เกิดการกระเจิงทวีคูณ	
	(Multiple scattering)	
G4eplusAnnihilation	การประลัยของอิเล็กตรอนและโพซิตรอนแบบ	
	มีการสร้างรังสีแกมมา	
จุหาลงกรณมห	(Positron annihilation into two gammas)	
G4AnnihiToMuPair HULALONGKORN	การประลัยของอิเล็กตรอนและโพซิตรอนแบบ	
	มีการสร้างมิวออน	
	(Positron annihilation into two muons)	
G4eeToHadrons	การประลัยของอิเล็กตรอนและโพซิตรอนแบบ	
	มีการสร้างฮาดรอน	
	(Positron annihilation into hadrons)	

ตารางที่ 1 ตารางแสดงตัวอย่างฟังก์ชันสำหรับกระบวนการทางอิเล็กตรอน/โพสิตรอน

3.3 Lee Model Code

เป็นโปรแกรมสำหรับการจำลองคุณสมบัติของพลาสมาโฟกัส ทั้งในส่วนของอุณหพลศาสตร์ และการแผ่รังสี โดยโปรแกรมได้เริ่มต้นพัฒนาโดย S.Lee ในปี 1985 ประกอบด้วยการวิเคราะห์ 2 ช่วง คือในช่วงแกนและรัศมี (Axial and radial phase) ถูกพัฒนาขึ้นเพื่อใช้สำหรับการทดลองของ เครือข่าย UNU / ICTP PFF ซึ่งเป็นเครือข่ายที่ทำการทดลองเครื่องพลาสมาโฟกัสขนาด 3kJ เหมือนกันแต่มีการทดลองและการใช้งานที่แตกต่างกัน ซึ่งประกอบด้วยกลุ่มประเทศต่างๆ ได้แก่ สิงคโปร์ มาเลเซีย ไทย อินโดนีเซีย อินเดีย ปากีสถาน อียิปต์ และซิมบับเว

ในปี 1991 ได้ถูกพัฒนาโปรแกรมเพิ่มเติมเรื่อยมาจนถึงปัจจุบันทำให้โปรแกรมนี้สามารถใช้ ในการวิเคราะห์กระบวนการที่เกิดขึ้นในเครื่องพลาสมาโฟกัสทั้งหมด 5 ช่วง ได้แก่ ช่วง Axial phase ช่ ว ง Radial inward shock phase ช่ ว ง Radial reflected shock phase ช่ ว ง Slow compression radiative phase และช่วง Expanded large column phase โดยตัวโปรแกรมถูก ออกแบบให้ใช้งานได้บนโปรแกรม Microsoft EXCEL (รูปที่ 33)

สำหรับโปรแกรม Lee model code โมเดลที่ใช้ในการวิเคราะห์จะเป็นโมเดลของเครื่อง พลาสมาโฟกัสแบบมาเธอร์ ค่าตัวแปรต่าง ๆ ที่ใช้ป้อนลงในโปรแกรมนี้จึงประกอบด้วยตัวแปรทั่วไป ของเครื่องพลาสมาโฟกัสชนิดนี้ ได้แก่ ค่าความเหนี่ยวนำไฟฟ้า ค่าตัวเก็บประจุ ขนาดรัศมีและความ ยาวของขั้วแอโนด ตัวแปรสำหรับการดำเนินการ (Operating parameters) ได้แก่ ชาร์จแรงดัน (Charging voltage) และความดัน รวมถึงข้อมูลอุณหพลศาสตร์ของแก๊ส ซึ่งภายในโปรแกรม จะมี ข้อมูลของแก๊สที่นิยมใช้สำหรับเครื่องพลาสมาโฟกัส 6 ชนิด ได้แก่ ไฮโดรเจน ดิวทีเรียม นีออน อาร์กอนและฮีเลียม ในส่วนของผลลัพธ์จะที่ได้จากโปรแกรม ได้แก่ กราฟฟังก์ชันคลื่นของกระแสและ แรงดันไฟฟ้า ความเร็วของการเคลื่อนที่ของแผ่นพลาสมาในแนวแกน อุณหภูมิของพลาสมา ปริมาณ รังสีที่มีการปลดปล่อย (เบสตราลุง ริคอมบิเนชั่นและการสลายตัวแผ่รังสี) ขนาดและปริมาณกระแส ของพลาสมาที่ถูกบีบอัด และค่าการปลดปล่อยนิวตรอน (Neutron yield) [23]

รูปที่ 33 Lee Code Model บนโปรแกรม Microsoft EXCEL

34

บทที่ 4 การออกแบบและสร้างแบบจำลอง

ในบทนี้จะประกอบด้วยเนื้อหาแบ่งออกเป็น 2 ส่วนหลัก โดยในส่วนที่ 1 จะเป็นขั้นตอนการ ออกแบบการจำลอง โดยจะกล่าวถึงองค์ประกอบภายในการจำลองรวมถึงเหตุผลในการเลือกใช้ องค์ประกอบเหล่านั้นในการจำลอง ในส่วนที่ 2 จะเป็นวิธีการสร้างแบบจำลองบนโปรแกรม โดยจะ แสดงทั้งในส่วนของโปรแกรมคอมพิวเตอร์และภาพกราฟิกของแบบจำลอง

4.1 การออกแบบการจำลอง

การจำลองการเกิดรังสีของเครื่องพลาสมาโฟกัสในงานวิจัยนี้ จะทำการศึกษาโดยจำกัดขอบเขต เฉพาะในช่วงที่ลำอิเล็กตรอนซึ่งเกิดขึ้นหลังจากการบีบอัดของแผ่นพลาสมาวิ่งเข้าใกล้และชนเข้ากับ ขั้วแอโนดทำให้เกิดการปลดปล่อยรังสีเอกซ์ออกมา โดยไม่คำนึงถึงผลกระทบจากผนังของเครื่อง ซึ่ง จะทำในการจำลองนี้แบบจำลองจะประกอบด้วยส่วนประกอบหลักทั้งหมด 4 ส่วน ได้แก่ ขั้วแอโนด หัววัดรังสี ตัวกรองอนุภาคและลำอิเล็กตรอน ดังรูปที่ 34

รูปที่ 34 ส่วนประกอบหลักในแบบจำลอง

4.1.1 การวางตำแหน่งของขั้วไฟฟ้าและจุดกำเนิดลำอิเล็กตรอน

ตำแหน่งแต่ละจุดที่ถูกกำหนดบนแบบจำลองนั้นจะระบุตำแหน่งโดยใช้แกน (x, y, z) เพื่อให้ สะดวกสำหรับการสร้างบนโปรแกรม Geant4 โดยในที่นี้จะทำการกำหนดตำแหน่งของจุดกำเนิดของ ลำอิเล็กตรอนหรือก็คือจุดบีบอัดพลาสมาในการจำลองจะถูกกำหนดให้อยู่ในตำแหน่งที่ (0, 0, 0) และตำแหน่งเป็นบริเวณปลายขั้วแอโนด ตามแกน -z

4.1.2 การวางตำแหน่งของหัววัด

การทดลองวัดการแผ่รังสีของรังสีเอกซ์ของเครื่องพลาสมาโฟกัสที่เคยมีการศึกษาและทดลอง [24] พบว่ารังสีเอกซ์ที่เกิดขึ้นหลังจากลำอิเล็กตรอนวิ่งชนขั้วแอโนดของเครื่องพลาสมาโฟกัสจะมีการ กระจายในลักษณะดังรูปที่ 35

รูปที่ 35 ลักษณะการกระจายของรังสีเอกซ์และมุมที่ระจายออก

ซึ่งจะมีการกระจายทำมุมกับแนวแกนของขั้วไฟฟ้าเป็นมุม θ โดยมุม θ ดังกล่าวนี้จะมีขนาดอยู่ ในช่วงประมาณ 70 – 80 องศา

จากเหตุผลที่กล่าวมาในงานวิจัยนี้จึงได้ออกแบบการจำลองโดยวางตำแหน่งของขั้วแอโนดไว้ ที่กึ่งกลางของระบบ ทำการสร้างลำอิเล็กตรอนให้วิ่งเข้าทำอันตรกิริยากับขั้วแอโนดที่มุม $\Theta = 0$ และ วางตำแหน่งของหัววัดรังสีไว้ที่ตำแหน่งต่าง ๆ เนื่องจากรังสีเอกซ์ที่เกิดขึ้นจากเครื่องพลาสมาโฟกัสจะ มีการกระจายออกในช่วงมุมระหว่าง ± Θ ทำให้หัววัดรังสีจะถูกวางในช่วงทำมุมไม่เกิน ± Θ ฉะนั้นใน การจำลองนี้ จึงเลือกตำแหน่งของหัววัดโดยจะทำการกำหนดตำแหน่งมุมไว้ในช่วงตั้งแต่ -70 ถึง 70 องศา โดยแต่ละตำแหน่งของหัววัดจะทำมุมต่างกัน 10 องศา รวมทั้งหมด 15 ตำแหน่ง ดังรูปที่ 36

รูปที่ 36 ตำแหน่งการวางหัววัดสำหรับแบบจำลอง

4.1.3 หัววัดและตัวกรองอนุภาค

การสร้างหัววัดสำหรับใช้ในแบบจำลองจะเลือกจากวัสดุที่มีคุณสมบัติที่รังสีเอกซ์สามารถ เคลื่อนที่ผ่านได้ เนื่องจากการเก็บค่าบนโปรแกรมจะวัดจากการเคลื่อนผ่านของอนุภาคที่เข้าไปในวัสดุ (หรือปริมาตร) ฉะนั้นในแบบจำลองนี้ จึงเลือกใช้วัสดุซิลิกอนสำหรับการเป็นหัววัด เนื่องจาก คุณสมบัติของความเป็นสารกึ่งตัวนำ และเลขอะตอมที่ไม่สูงมากทำให้รังสีเอกซ์สามารถที่จะเคลื่อน ผ่านเข้าไปในตัววัสดุได้ดี [25] ทั้งยังเป็นวัสดุที่นิยมใช้ในการทำเป็นหัววัดรังสีที่มีความไวและมีค่า ความละเอียดสูง [26]

ในส่วนของตัวกรองจะถูกใช้ในการจำลองเพื่อป้องกันไม่ให้อนุภาคชนิดอื่นนอกเหนือจากรังสี เอกซ์เข้าสู่หัววัด [27] วัสดุที่ใช้เป็นตัวกรองได้แก่ เบริลเลียม (Beryllium; Be) ซึ่งเป็นวัสดุมีคุณสมบัติ ที่ยอมให้รังสีเอกซ์ผ่านได้ดี เนื่องจากมีเลขอะตอมและมวลอะตอมที่มีค่าไม่สูงมากทำให้เกิดการดูดซับ รังสีเอกซ์ค่อนข้างน้อย [28] โดยแผ่นตัวกรองจะถูกวางที่ตำแหน่งด้านหน้าและขนานไปกับหัววัด ดัง รูปที่ 37

รูปที่ 37 ลักษณะการวางวัดวัดและตัวกรองอนุภาค

4.1.4 ขั้วไฟฟ้าแอโนดที่ใช้ในการจำลอง

งานวิจัยนี้ได้ทำการศึกษาปริมาณของการปลดปล่อยรังสีเอกซ์ของเครื่องพลาสมาโฟกัสเมื่อมี การเปลี่ยนแปลงรูปร่างและชนิดของวัสดุที่ใช้ทำขั้วแอโนด โดยขั้วแอโนดที่เลือกใช้ในการทำการ ทดลอง ได้แก่ 1. ขั้วแอโนดทองแดงทรงกระบอกตัน 2. ขั้วแอโนดทังสเตนทรงกระบอกตัน 3.ขั้วแอโนดทองแดงทรงกระบอกที่เจาะรูบริเวณปลายและ 4. ขั้วแอโนดทังสเตนทรงกระบอกที่เจาะรู บริเวณปลาย ดังรูปที่ 38

รูปที่ 38 ลักษณะของขั้วแอโนดทั้ง 4 แบบสำหรับการจำลอง

การเลือกขั้วแอโนดทั้ง 4 แบบมาใช้ในการจำลองนั้น เพื่อวัตถุประสงค์ในการเปรียบเทียบ ปริมาณของรังสีเอกซ์ในกรณีที่ขั้วแอโนดมีคุณสมบัติต่างกัน โดยแบ่งการศึกษาออกเป็น 2 กรณี ดังนี้

1) ขั้วแอโนดที่มีรูปทรงต่างกัน

การเปรียบเทียบระหว่างรูปทรงของขั้วแอโนด 2 แบบ ได้แก่ ขั้วแอโนดทรงกระบอกตันและ ขั้วแอโนดทรงกระบอกที่เจาะรูบริเวณปลาย เนื่องจากลักษณะของขั้วแอโนดแบบเจาะรูตรงปลาย มี ส่วนของผนังบริเวณด้านในของรูที่ถูกเจาะ โดยรังสีเอกซ์ปฐมภูมิหรือ Primary X-ray ที่เกิดจากการ ชนของลำอิเล็กตรอนที่บริเวณด้านล่างของรูที่เจาะ ดังรูปที่ 39 หากเกิดการชนเข้ากับผนังบริเวณด้าน ในของรูที่เจาะ อาจทำให้เกิดรังสีเอกซ์แบบทุติยภูมิ หรือ Secondary x- ray เป็นผลให้ปริมาณรังสี เอกซ์มีค่าเพิ่มขึ้น ฉะนั้นในการจำลองนี้จึงได้ใช้ขั้วแอโนดแบบเจาะรูบริเวณปลาย เพื่อพิสูจน์ผลของ รังสีเอกซ์ที่ได้

รูปที่ 39 สมมติฐานการเกิดรังสีเอกซ์ทุติยภูมิภายในขั้วแอโนด

2) ขั้วแอโนดทำจากวัสดุต่างชนิดกัน

การเปรียบเทียบขั้วแอโนดที่ทำจากวัสดุต่างชนิดกัน ได้แก่ ทองแดงและทังสเตน เนื่องจาก คุณสมบัติของการเกิดรังสีเอกซ์แบบเบรมส์ชตราลุง มีความสัมพันธ์ขึ้นอยู่กับขนาดของเลขอะตอมของ วัสดุที่เป็นเป้าชนของลำอิเล็กตรอน โดยพบว่าขนาดของเลขอะตอมที่มากขึ้นส่งผลให้ปริมาณความ เข้มข้นของรังสีเอกซ์ที่ปลดปล่อยออกมามีปริมาณเพิ่มขึ้น [29] และเมื่อพิจารณาถึงวัสดุทั้ง 2 ชนิด ดัง ตารางที่ 2 ซึ่งได้แสดงตารางเปรียบเทียบคุณสมบัติบางประการของทองแดงและทังสเตน พบว่าขนาด ของเลขอะตอมของทังสเตนนั้นจะมีค่าที่สูงกว่าทองแดง

CHULALONGKORN	UNIVERSITY	W
เลขอะตอม (Atomic Number)	29	74
จุดหลอมเหลว (Melting point) (°C)	1,085	3,422
จุดเดือด (Boiling point) (°C)	2,562	5,555
มวลอะตอม (Atomic mass)	63.546 u	183.84 u
ความหนาแน่น (Density) (g/cm3)	8.96	19.3

ตารางที่ 2 แสดงคุณสมบัติทั่วไปของทองแดงและทังเสตน

จึงคาดว่าขั้วแอโนดซึ่งทำให้ทังสเตนนั้นจะทำให้ได้ปริมาณของรังสีเอกซ์ที่มากกกว่าขั้วแอโนดแบบ ทองแดง นอกจากนี้ในส่วนของจุดเดือด จุดหลอมเหลวและความหนาแน่นที่มีค่าสูงกว่าของทังสเตน สำหรับการใช้งานในเชิงปฏิบัติเพื่อเป็นขั้วแอโนดของเครื่องพลาสมาโฟกัสในเรื่องของความคงทนของ วัสดุก็ถือเป็นเรื่องที่สำคัญ ทังสเตนจึงถือว่าเป็นตัวเลือกที่มีความเหมาะสมในการทดสอบ

4.1.5 ลำอิเล็กตรอนสำหรับการจำลอง

เครื่องพลาสมาโฟกัสโดยทั่วไปแล้วจะสามารถปลดปล่อยลำอิเล็กตรอนได้ในหลากหลายค่า พลังงาน ตั้งแต่ค่าพลังงานต่ำในระดับ 10 จนถึงระดับ 500 keV [30] ดังนั้นการจำลองนี้จึงเลือกใช้ พลังงานของอิเล็กตรอนที่มีค่าแตกต่างกัน โดยกำหนดค่าทั้งหมด 9 ค่าพลังงาน ในช่วงค่าพลังงาน ตั้งแต่ 100 ถึง 500 keV

จำนวนอนุภาคในการจำลอง เนื่องจากข้อจำกัดของโปรแกรมจำลองในการจะกำหนดจำนวน อนุภาค ที่ทำให้ไม่สามารถกำหนดลำอิเล็กตรอนที่มีอนุภาคจำนวนในระดับ 10¹⁴ - 10¹⁶อนุภาค ได้ จึงได้ทำการกำหนดอนุภาคอิเล็กตรอนจำนวน 100,000 ตัว ซึ่งเป็นจำนวนที่ให้อุปกรณ์สามารถที่ สำหรับใช้เป็นอนุภาคตั้งต้นของระบบ และเพื่อไม่ให้จำนวนอนุภาคที่น้อยเกินไปซึ่งจะทำให้ช่วง พลังงานต่ำไม่สามารถวัดค่าได้ ดังตัวอย่างดังรูปที่ 40 ซึ่งจะสังเกตได้ว่าที่จำนวนอนุภาคน้อย ปริมาณ รังสีเอกซ์ที่วัดได้จากการจำลองจะมีค่าเท่ากับ 0

รูปที่ 40 การทดสอบการ RUN โปรแกรมที่จำนวนอนุภาคต่างกัน ที่พลังงานอิเล็กตรอน 100 keV

4.2 การสร้างแบบจำลองบนโปรแกรม Geant 4

การสร้างแบบจำลองบนโปรแกรม Geant4 ในงานวิจัยนี้ ได้ทำการพัฒนาแบบจำลอง เพิ่มเติมจากชุดคำสั่งตัวอย่างชื่อ ExampleB1 ซึ่งเป็นแบบจำลองพื้นฐานในฐานข้อมูลของโปรแกรม [22] นำมาใช้เป็นฐานของแบบจำลองที่ต้องการจะสร้างโดยได้ทำการดัดแปลงเพิ่มเติม ดังนี้

4.2.1 การสร้างขั้วแอโนดบนโปรแกรม Geant 4

ขั้วแอโนดในการจำลองทำจากวัสดุทองแดงหรือทังสเตนและมีรูปร่างเป็นทรงกระบอก สามารถกำหนดชนิดวัสดุด้วยฟังก์ชัน G4Material โดยเรียกใช้วัสดุทองแดงจากฟังก์ชัน G4_Cu และวัสดุ G4_W สำหรับทังสเตน สร้างรูปทรงเรขาคณิตด้วยฟังก์ชัน G4LogicalVolume และ กำหนดขนาดของทรงกระบอกที่ความยาว 6.5 cm และรัศมีขนาด 1.25 cm โดยเรียกใช้ฟังก์ชัน

G4Tubs

//Solid Anode //					
G4Material* anode_mat = nist->FindOrBuildMaterial("G4_Cu"); G4ThreeVector posA = G4ThreeVector(0, 0, 6. *cm);					
<pre>// Rod shape G4double anode_rmin = 0*cm; G4double anode_rmaxa = 1.25*cm; G4double anode_hz = 3.25*cm;</pre>					
G4Tubs* solidAnode = //its name new G4Tubs("Anode", //its name anode_rmin, anode_rmaxa, anode_hz, startAngle, spanningAngle); //its size					
C4LogicalVolume* logicApode =					
new G4LogicalVolume(solidAnode //its solid					
anode mat, //its material					
"Anode"); //its name					
new G4PVPlacement(0, //no rotation					
posA, //at position					
logicAnode, //its logical volume					
"Anode", //its name					
logicEnv, //its mother volume					
false, //no boolean operation					
0, //copy number					
checkOverlaps); //overlaps checking					

รูปที่ 41 การสร้างขั้วแอโนดทรงกระบอกตันที่ทำจากวัสดุทองแดง

สำหรับขั้วแอโนดที่เจาะรูบริเวณปลายขั้ว จะมีวิธีการสร้างเหมือนกับการสร้างขั้วแอโนดตัน แต่จะต้องทำการสร้างรูปทรงกระบอกเพิ่มจากในส่วนของทรงกระบอกตันรวมเป็นจำนวนทั้งหมด 2 ขิ้น โดยจะแบ่งเป็นทรงกระบอกตัน 1 ขิ้น และทรงกระบอกกลวง 1 ชิ้น (รูปที่ 41)

```
//Hollow Anode//
G4Material* anode_mat = nist->FindOrBuildMaterial("G4_Cu");
G4ThreeVector posA = G4ThreeVector(0, 0, 0);
// Rod shape
G4double anode_rmin = 0*cm; G4double anode_rmaxa = 1.25*cm;
G4double anode_hz = 2.25*cm;
//Tube shape
G4double hollow_rmin = 0.5*cm;
G4double hollow_rmaxa = 1.25*cm;
G4double hollow_hz = 1*cm;
G4Tubs* solidAnode =
    new G4Tubs("Anode",
                                                                        //its name
         anode_rmin, anode_rmaxa, anode_hz, startAngle, spanningAngle); //its size
G4Tubs* solidHollow =
    new G4Tubs("Hollow",
                                                                        //its name
         hollow_rmin, hollow_rmaxa, hollow_hz, startAngle, spanningAngle); //its size
```

รูปที่ 42 การสร้างขั้วแอโนดทรงกระบอกเจาะรูที่ทำจากวัสดุทองแดง

ทำการประกอบรูปทรงเรขาคณิต 2 ชิ้น ด้วยการเรียกใช้ฟังก์ชัน G4MultiUnion จึงจะสามารถสร้าง ขั้วแอโนดทรงกระบอกที่ทำการเจาะรูบริเวณปลายได้ (รูปที่ 42)

```
//Define displacements for the shapes
11
G4RotationMatrix rotm = G4RotationMatrix();
G4ThreeVector position1 = G4ThreeVector(0.,0.,6*cm);
G4ThreeVector position2 = G4ThreeVector(0.,0.,3.5*cm);
G4Transform3D tr1 = G4Transform3D(rotm,position1);
G4Transform3D tr2 = G4Transform3D(rotm,position2);
// Initialise a MultiUnion structure
II
G4MultiUnion* munion_solid = new G4MultiUnion("Hollow_Anode");
// Add the shapes to the structure
11
munion_solid->AddNode(*solidAnode,tr1);
munion_solid->AddNode(*solidHollow,tr2);
// Finally close the structure
11
munion_solid->Voxelize();
// Associate it to a logical volume as a normal solid
H
G4LogicalVolume*hollow_anode =
    new G4LogicalVolume(munion_solid, //its solid
                                               //its material
                       anode_mat,
                        "Hollow_Anode_LV"); //its name
     new G4PVPlacement(0,
                                                //no rotation
                                               //at position
                        posA,
                        hollow_anode, //its logical volume
"Hollow_Anode_LV", //its name
logicEnv, //its mother volume
                        false,
                                                 //no boolean operation
                                                //copy number
                        0,
                        checkOverlaps);
                                               //overlaps checking
```

รูปที่ 43 การรวมปริมาตร 2 ชิ้น

รูปที่ 44 แบบจำลองการสร้างขั้วแอโนดทรงตัน

รูปที่ 45 แบบจำลองทรงกระบอกกลวงและทรงกระบอกตัน

รูปที่ 46 แบบจำลองขั้วแอโนดทรงกระบอกที่เจาะรูบริเวณปลาย

4.2.2 การสร้างหัววัดบนโปรแกรม Geant 4

การสร้างหัววัดรังสีจะเรียกใช้ฟังก์ชัน G4Material สำหรับการกำหนดชนิดวัสดุของหัววัด โดยกำหนดใช้วัสดุเป็นซิลิคอนและเรียกใช้ฟังก์ชัน G4LogicalVolume สำหรับการรูปทรงเรขาคณิต เนื่องจากการจำลองนี้กำหนดให้รูปร่างเป็นเหมือนแผ่นฟิล์ม 30 x 30 x 5mm จึงต้องทำการเรียกใช้ ฟังก์ชั่น G4Box เพื่อกำหนดขนาด ดังรูปที่ 46

```
// Detector //
G4Material* det_mat = new G4Material("Silicon", 14., 28.090*g/mole, 2.33*g/cm3);
G4double det_XY = 3*cm;
G4double det_Z = 0.05*cm;
// Detector
 G4ThreeVector pos1 = G4ThreeVector(0, 0, -22.*cm); //0 degree
 G4Box* solidDet1 =
    new G4Box("Det1",
                                           //its name
                det_XY, det_XY, det_Z); //its size
 G4LogicalVolume* logicDet1 =
                                        //its solid
 new G4LogicalVolume(solidDet1,
                det_mat,
                                          //its material
                "Det1");
                                          //its name
//Rotate reflecting surface
 G4RotationMatrix *D1 = new G4RotationMatrix();
 D1->rotateY(0.*deg);
                                     //rotation
new G4PVPlacement(D1,
                                     //at position
//its logical volume
//its name
                pos1,
                logicDet1,
                "Det1",
                logicEnv,
                                     //its mother volume
                false,
                                      //no boolean operation
                0,
                                      //copy number
                                    //overlaps checking
                checkOverlaps);
//Set Det1 as scoring volume
11
fScoringVolume = logicDet1;
```

รูปที่ 47 การกำหนดหัววัดรังสีที่มีลักษณะเป็นแผ่นฟิล์ม

4.2.3 การสร้างตัวกรองอนุภาคบนโปรแกรม Geant4

การสร้างตัวกรองอนุภาคจะเรียกใช้ฟังก์ชัน G4Material สำหรับการกำหนดชนิดวัสดุที่ใช้ วัสดุเป็นเบริลเลียม เรียกใช้จากฟังก์ชัน G4_Be และ G4LogicalVolume สำหรับการรูปทรง เรขาคณิต โดยกำหนดให้รูปร่างเป็นเหมือนแผ่นฟิล์มเช่นเดียวกันกับหัววัด (ขนาด 30 x 30 X 5 mm) จึงต้องทำการเรียกใช้ฟังก์ชั่น G4Box เพื่อกำหนดขนาด ดังรูปที่ 47

//////////////////////////////////////		
G4Material* Filte G4double Fil_XY G4double Fil_Z =	er_mat = nist->FindOrB = 3*cm; = 0.05*cm;	uildMaterial("G4_Be");
G4ThreeVector G4Box* solidFil new G4Box(posFil = G4ThreeVector = "Filter",	(0, 0, -21.5*cm); //0 degree //its name
C4Lecies Makeres	Fil_XY, Fil_XY, Fil_Z);	//its size
G4LogicalVolume	* logicfii =	(lite collid
new G4L0gi	Eilter mat	//its material
	"Filter");	//its name
//Rotate reflecting s G4RotationMatri DFil->rotateY(0	surface x *DFil = new G4Rotatio .*deg);	onMatrix ();
new G4PVPI	acement (DFil,	//rotation DNi
	posFil,	//at position
	logicFil,	//its logical volume
	"Filter"	//its name
	logicEnv,	//its mother volume
	false,	//no boolean operation
	0,	//copy number
	checkOverlaps);	//overlaps checking

รูปที่ 48 การกำหนดแผ่นตัวกรองเบริลเรียมสำหรับกรองอนุภาค

เมื่อทำการกำหนดฟังก์ตามวิธีการดังหัวข้อที่ 4.2.2 และ 4.2.3 จะได้หัววัดและแผ่นตัวกรอง อนุภาคที่แสดงบนโปรแกรมดังรูปที่ 48

รูปที่ 49 แบบจำลองหัววัดและตัวกรองอนุภาค

4.2.4 การสร้างลำอิเล็กตรอนบนโปรแกรม Geant 4

จากวิธีการสร้างอนุภาคเริ่มต้น ดังที่ได้กล่าวถึงในหัวข้อที่ 3.2.4 ในแบบจำลองนี้ จำนวน อนุภาคจะกำหนดโดยเรียกใช้จากฟังก์ชัน G4ParticleGun มีจำนวนอนุภาค 100,000 อนุภาค ที่เคลื่อนที่ในทิศทาง +Z ชนิดอนุภาคตั้งต้นจะใช้เป็นอิเล็กตรอนแทนด้วยสัญลักษณ์ e⁻เรียกใช้ได้ จากฟังก์ชัน G4ParticleTable ดังรูปที่ 49

```
B1PrimaryGeneratorAction::B1PrimaryGeneratorAction()
: G4VUserPrimaryGeneratorAction(),
 fParticleGun(0),
 fEnvelopeBox(0)
{
 G4int n_particle = 100000;
 fParticleGun = new G4ParticleGun(n_particle);
 // default particle kinematic
 G4ParticleTable* particleTable = G4ParticleTable::GetParticleTable();
 G4String particleName;
 G4ParticleDefinition* particle
  = particleTable->FindParticle(particleName="e-");
 fParticleGun->SetParticleDefinition(particle);
 fParticleGun->SetParticleMomentumDirection(G4ThreeVector(0.,0.,1.));
 fParticleGun->SetParticleEnergy(0.2*MeV);
}
```

รูปที่ 50 การกำหนดอนุภาคเริ่มต้น

4.2.5 การกำหนดการสร้างกระบวนการทางฟิสิกส์บนโปรแกรม Geant 4

ใช้ฟังก์ชัน G4eBremsstrahlung สำหรับกระบวนการสร้างรังสีเอกซ์ต่อเนื่อง ที่มีชนิดของ อนุภาคเริ่มต้นของกระบวนการเป็นอิเล็กตรอน โดยฟังก์ชั่นนี้จะถูกกำหนดอยู่ในคลาส G4EmStandardPhysics_option2 ซึ่งสามารถทำการเรียกใช้ได้จาก library ของโปรแกรม

```
} else if (particleName == "e-") {
 G4eIonisation* eioni = new G4eIonisation();
 eioni->SetStepFunction(0.8, 1.0*mm);
 G4eMultipleScattering* msc = new G4eMultipleScattering();
 msc->SetStepLimitType(fMinimal);
 G4UrbanMscModel93* msc1 = new G4UrbanMscModel93();
 G4WentzelVIModel* msc2 = new G4WentzelVIModel();
 msc1->SetHighEnergyLimit(highEnergyLimit);
 msc2->SetLowEnergyLimit(highEnergyLimit);
 msc->AddEmModel(0, msc1);
 msc->AddEmModel(0, msc2);
 G4eCoulombScatteringModel* ssm = new G4eCoulombScatteringModel();
 G4CoulombScattering* ss = new G4CoulombScattering();
 ss->SetEmModel(ssm, 1);
 ss->SetMinKinEnergy(highEnergyLimit);
 ssm->SetLowEnergyLimit(highEnergyLimit);
 ssm->SetActivationLowEnergyLimit(highEnergyLimit);
 G4eBremsstrahlung* brem = new G4eBremsstrahlung();
 G4SeltzerBergerModel* br1 = new G4SeltzerBergerModel();
 G4eBremsstrahlungRelModel* br2 = new G4eBremsstrahlungRelModel();
 br1->SetAngularDistribution(new G4Generator2BS());
 br2->SetAngularDistribution(new G4Generator2BS());
 brem->SetEmModel(br1,1);
 brem->SetEmModel(br2,2);
 br2->SetLowEnergyLimit(GeV);
 ph->RegisterProcess(msc, particle);
 ph->RegisterProcess(eioni, particle);
 ph->RegisterProcess(brem, particle);
 ph->RegisterProcess(ss, particle);
```

รูปที่ 51 การกำหนดกระบวนการทางฟิสิกส์โดยเรียกใช้จากฟังก์ชัน

G4EmStandardPhysics_option2

รูปที่ 52 ภาพการจำลองที่แสดงบนโปรแกรม Geant4

เมื่อทำการสร้างแบบจำลองตามวิธีการข้างต้นแล้ว ในขั้นตอนต่อไปจะเป็นการจะเป็นขั้นตอน การ RUN โปรแกรม โดยจะทำการยิงลำอิเล็กตรอนที่สร้างให้ชนเข้ากับขั้วแอโนด ซึ่งในการยิงลำ อิเล็กตรอนในแต่ละตำแหน่งจะทำการยิงเป็นจำนวน 10 ครั้ง เพื่อเพิ่มจำนวนอนุภาคให้ได้ค่าทางสถิติ ที่ถูกต้องมากยิ่งขึ้น และนำค่าที่ได้ทั้ง 10 ครั้งมาเฉลี่ยและบันทึกค่า

รูปที่ 53 ภาพหน้าจอแสดงผลของปริมาณรังสีเอกซ์

บทที่ 5

การทดลอง ผลการทดลองและอภิปรายผล

การทดลองและการอภิปรายสำหรับงานวิจัยนี้ จะแบ่งออกเป็น 4 ส่วนหลัก ได้แก่

- 1. การทดลอง และอภิปรายผลของปริมาณและการกระจายของรังสีเอกซ์
- การทดลอง และอภิปรายผลการเปรียบเทียบปริมาณรังสีเอกซ์ที่ขั้วแอโนด รูปร่างต่างกัน
- การทดลอง และอภิปรายผลการเปรียบเทียบปริมาณรังสีเอกซ์ที่ขั้วแอโนด ชนิดต่างกัน
- การทดลองและอภิปรายผลการเปรียบเทียบปริมาณรังสีเอกซ์ระหว่างโปรแกรม Lee model code และโปรแกรม Geant4

5.1 ขั้นตอนการจำลองบนโปแกรม Geant4

เมื่อทำการสร้างแบบจำลองที่ต้องการได้แล้ว ในการทดลองเพื่อเก็บผลของปริมาณรังสีเอกซ์ ของเครื่องพลาสมาโฟกัสจากโปรแกรม Geant4 โดยในการเก็บผลการทดลอง จะใช้การยิงลำ อิเล็กตรอนที่มีพลังงานค่าหนึ่งให้ชนเข้ากับขั้วแอโนด โดยในการยิงลำอิเล็กตรอนในแต่ละตำแหน่ง ของหัววัดจะทำการยิงเป็นจำนวน 10 ครั้ง และนำค่าที่ได้ทั้ง 10 ครั้งมาเฉลี่ยและบันทึกค่า ทำการ เปลี่ยนค่าพลังงานของลำอิเล็กตรอน ทำเช่นนี้จนครบพลังงานของลำอิเล็กตรอนที่กำหนดทั้ง 9 ค่า จากนั้นจึงทำการเปลี่ยนชนิดของขั้วแอโนด โดยจะทำเช่นกับขั้วแอโนดจนครบทั้ง 4 แบบ เมื่อทำการ เก็บผลของปริมาณรังสีเอกซ์จากการใช้ขั้วแอโนดครบทั้ง 4 แล้วจึงนำผลที่ได้มาวิเคราะห์และสรุปผล โดยลำดับขั้นตอนการทดลองที่ได้กล่าวมาสามารถสรุปได้ดังรูปที่ 53

รูปที่ 54 แสดงลำดับการทดลอง
5.2 ผลการทดลอง และอภิปรายผลของปริมาณและการกระจายของรังสีเอกซ์

5.2.1 ผลการทดลองแสดงปริมาณและการกระจายของรังสีเอกซ์จากโปรแกรม Geant4 เมื่อทำการจำลองโดยใช้ขั้วไฟฟ้าแอโนดทรงกระบอกตันวัสดุทองแดง, ขั้วไฟฟ้าแอโนด ทรงกระบอกตันทำจากทังสเตน, ขั้วไฟฟ้าแอโนดทรงกระบอกที่เจาะรูบริเวณปลายที่ทำจากทองแดง และขั้วไฟฟ้าแอโนดทรงกระบอกที่เจาะรูบริเวณปลายที่ทำจากทังสเตน ผลของปริมาณและการ กระจายของรังสีเอกซ์ แสดงในรูปแบบกราฟความสัมพันธ์ระหว่างปริมาณของรังสีเอกซ์ในหน่วยพิโค เกรย์ (pGy) เทียบกับตำแหน่งของหัววัด ดังรูปที่ 54 – 89

รูปที่ 55 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง ที่พลังงานของลำอิเล็กตรอนเท่ากับ 100 keV

รูปที่ 56 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทังสเตน ที่พลังงานของลำอิเล็กตรอนเท่ากับ 100 keV

รูปที่ 57 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดง ที่พลังงานของลำอิเล็กตรอนเท่ากับ 100 keV

รูปที่ 58 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทังสเตน ที่พลังงานของลำอิเล็กตรอนเท่ากับ 100 keV

รูปที่ 59 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง ที่พลังงานของลำอิเล็กตรอนเท่ากับ 150 keV

รูปที่ 60 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทังสเตน ที่พลังงานของลำอิเล็กตรอนเท่ากับ 150 keV

รูปที่ 61 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดง ที่พลังงานของลำอิเล็กตรอนเท่ากับ 150 keV

รูปที่ 62 กราฟแสดงการปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดง ที่พลังงานของลำอิเล็กตรอนเท่ากับ 150 keV

รูปที่ 63 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง ที่พลังงานของลำอิเล็กตรอนเท่ากับ 200 keV

รูปที่ 65 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดง ที่พลังงานของลำอิเล็กตรอนเท่ากับ 200 keV

รูปที่ 67 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง ที่พลังงานของลำอิเล็กตรอนเท่ากับ 250 keV

รูปที่ 69 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดง ที่พลังงานของลำอิเล็กตรอนเท่ากับ 250 keV

รูปที่ 71 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง ที่พลังงานของลำอิเล็กตรอนเท่ากับ 300 keV

รูปที่ 73 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดง ที่พลังงานของลำอิเล็กตรอนเท่ากับ 300 keV

รูปที่ 74 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดง ที่พลังงานของลำอิเล็กตรอนเท่ากับ 300 keV

รูปที่ 75 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง ที่พลังงานของลำอิเล็กตรอนเท่ากับ 350 keV

รูปที่ 77 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดง ที่พลังงานของลำอิเล็กตรอนเท่ากับ 350 keV

รูปที่ 79 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง ที่พลังงานของลำอิเล็กตรอนเท่ากับ 400 keV

รูปที่ 81 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดง ที่พลังงานของลำอิเล็กตรอนเท่ากับ 400 keV

รูปที่ 82 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดง ที่พลังงานของลำอิเล็กตรอนเท่ากับ 400 keV

รูปที่ 83 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง ที่พลังงานของลำอิเล็กตรอนเท่ากับ 450 keV

รูปที่ 85 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดง ที่พลังงานของลำอิเล็กตรอนเท่ากับ 450 keV

รูปที่ 86 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดง ที่พลังงานของลำอิเล็กตรอนเท่ากับ 450 keV

รูปที่ 87 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง ที่พลังงานของลำอิเล็กตรอนเท่ากับ 500 keV

รูปที่ 88 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทังสเตน ที่พลังงานของลำอิเล็กตรอนเท่ากับ 500 keV

รูปที่ 89 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดง ที่พลังงานของลำอิเล็กตรอนเท่ากับ 500 keV

รูปที่ 90 กราฟแสดงปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดง ที่พลังงานของลำอิเล็กตรอนเท่ากับ 500 keV

5.2.2 อภิปรายผลของปริมาณและการกระจายของรังสีเอกซ์จากโปรแกรม Geant4

เมื่อทำการวิเคราะห์จากกราฟผลการทดลอง พบว่าที่พลังงานของลำอิเล็กตรอน 100 และ 150 keV (รูปที่ 54 - 61) ปริมาณของรังสีเอกซ์ที่ได้เมื่อใช้ขั้วแอโนดทั้ง 4 แบบ จะ มีค่ากระจายตัวไม่คงที่ โดยปริมาณของรังสีเอกซ์จะมีค่าสูงสุดที่ช่วงตำแหน่งของหัววัด ประมาณ 50 ถึง 70 องศา ในขณะที่ตำแหน่ง -50 ถึง -70 องศา ที่ช่วงพลังงานของลำ อิเล็กตรอนเดียวกันนี้กลับมีแนวโน้มที่ลดลง ซึ่งเมื่อเทียบกับกราฟปริมาณรังสีเอกซ์ที่ได้ที่ พลังงานของลำอิเล็กตรอน 200 keV จนถึง 500 keV จะมีแนวโน้มที่ค่อนข้างสมมาตรที่ ตำแหน่งหัววัดที่มุมขนาดเท่ากัน และในช่วงพลังงานของลำอิเล็กตรอนตั้งแต่ 300 keV ขึ้น ไป ปริมาณรังสีเอกซ์ที่ได้จากการทดลองนั้นจะมีค่าสูงสุดที่ตำแหน่งหัววัดที่มุม ± 10 ถึง ± 20 องศา และที่มุมตั้งแต่ ± 30 องศา ขึ้นไป ปริมาณรังสีเอกซ์จะมีแนวโน้มลดลง

การที่ปริมาณรังสีเอกซ์ในช่วงที่พลังงานของลำอิเล็กตรอนต่ำ ที่ 100 และ 150 keV มีค่าไม่สม่ำเสมอและไม่มีความสมมาตร อาจเนื่องมาจากในการจำลองนี้ รังสีประเภท รังสีเอกซ์แบบเบรมส์ชตราลุง และดังที่ได้กล่าวถึงในหัวข้อที่ 2.3 ปริมาณรังสีเอกซ์แบบ เบรมส์ชตราลุง จะมีความสัมพันธ์กับพลังงานของอิเล็กตรอนแบบแปรผันตรง ซึ่งจะทำให้ ปริมาณของรังสีเอกซ์ที่พลังงานของลำอิเล็กตรอนต่ำนั้น มีปริมาณที่ค่อนข้างน้อย ทั้งในส่วน ของข้อจำกัดของโปรแกรมจำลองที่ทำให้การกำหนดจำนวนอนุภาคของลำอิเล็กตรอน สามารถได้ในจำนวนที่จำกัดที่ 100,000 อนุภาค ซึ่งส่งผลให้ปริมาณรังสีเอกซ์ที่ได้มีปริมาณ ต่ำและมีการกระจายที่ไม่ทั่วถึง อาจเป็นผลที่ทำให้หัววัดไม่สามารถที่จะตรวจจับรังสีเอกซ์ใน การ RUN ได้ครั้ง โดยเมื่อพิจารณาถึงข้อมูลที่ได้จากการจำลอง ค่าที่ได้ในแต่ละตำแหน่งที่ ปรากฏในกราฟจะเป็นการคำนวณจากการเฉลี่ยของการยิงลำอิเล็กตรอนบนโปรแกรม ทั้งหมด 10 ครั้ง ซึ่งพบว่าในการ RUN บางครั้ง ปริมาณรังสีเอกซ์ที่หัววัดสามารถบันทึกค่าได้ นั้นมีค่าเท่ากับ 0 และเมื่อทำการหาค่าส่วนเบี่ยงเบนมาตรฐานพบว่าค่าที่ได้มีค่าใกล้เคียงหรือ มากกว่าค่าเฉลี่ยในเกือบทุกตำแหน่ง ในขณะที่ค่าส่วนเบี่ยงเบนมาตรฐานของปริมาณเฉลี่ย ของรังสีเอกซ์ที่พลังงานลำอิเล็กตรอนตั้งแต่ 250 keV ขึ้นไปจะมีค่าน้อยกว่าค่าเฉลี่ยมาก [ส่วนเบี่ยงเบนมาตรฐานของผลการจำลองแสดงอย่าละเอียดในภาคผนวก ก] หรือกล่าวได้ว่า ในการยิงลำอิเล็กตรอนที่มีค่าพลังงานสูงจะยิ่งทำให้การวัดค่าของรังสีเอกซ์มีความแม่นยำ และมีปริมาณคงที่มากขึ้น

ในส่วนการกระจายตัวของรังสีเอกซ์ จากการทดลองวัดรังสีเอกซ์ของเครื่องพลาสมา โฟกัสขนาด 5 kJ ที่ใช้ขั้วแอโนดลักษณะเป็นทรงกระบอกตัน ทำการทดลองโดย F Castillo – Mejia [31] ผลการทดลองที่ได้แสดงดังรูปที่ 91

รูปที่ 91 ผลการทดลองวัดปริมาณรังสีเอกซ์ของเครื่องพลาสมาโฟกัสขนาด 4.7 kJ ที่มา : Castillo-Mejia Fermin, e.a (2008) [31]

และการทดลองวัดรังสีเอกซ์ของเครื่องพลาสมาโฟกัสขนาด 4.6 kJ ที่ใช้ขั้วแอโนด ทรงกระบอกเจาะรู ทำการทดลองโดย P. Knoblauch [32] ผลการทดลองที่ได้แสดงดังรูปที่ 92

ที่มา : Knoblauch, P., et al. (2018) [32] เมื่อพิจารณาลักษณะการกระจายของรังสีเอกซ์พบว่าผลของปริมาณรังสีเอกซ์ของเครื่อง พลาสมาโฟกัสขนาด 5 kJ ที่ใช้ขั้วแอโนดทรงกระบอกตัน จะให้ปริมาณรังสีเอกซ์ที่มีค่าสูงสุด 2 ตำแหน่ง ที่มุม -20 และ 20 องศา ในขณะที่ผลของปริมาณรังสีเอกซ์ของเครื่องพลาสมา โฟลัสพนคว 4 c kJ ซี่ใช้ชั้วแอโนดหรงกระบอกตนะ อนให้ปริมาณรังสีเอกซ์ของเครื่องพลาสมา

2 ตำแหน่ง ทีมุม -20 และ 20 องศา ในขณะทีผลของปริมาณรังสีเอกซ์ของเครื่องพลาสมา โฟกัสขนาด 4.6 kJ ที่ใช้ขั้วแอโนดทรงกระบอกเจาะรู จะให้ปริมาณรังสีเอกซ์ที่มีค่าสูงสุดที่ 0 องศา โดยลักษณะดังกล่าวเมื่อทำการเปรียบเทียบกับผลการทดลองที่ได้จากการจำลองบน โปรแกรม Geant4 ที่พบว่าเมื่อพลังงานของลำอิเล็กตรอนตั้งแต่ 300 keV ขึ้นไป เมื่อใช้ ขั้วแอโนดทรงกระบอกตัน จะมีลักษณะการกระจายของตัวของรังสีเอกซ์คล้ายกับผลจาก เครื่องพลาสมาโฟกัสขนาด 5 kJ โดยจะมีตำแหน่งที่ปริมาณรังสีเอกซ์มีค่าสูงสุด 2 ตำแหน่ง ในขณะที่ผลการทดลองเมื่อใช้ขั้วแอโนดเจาะรูการกระจายตัวของรังสีนั้น ไม่ได้มีลักษณะ คล้ายกับผลจากเครื่องพลาสมาโฟกัสขนาด 4.6 kJ ซึ่งเป็นการทดลองโดยใช้ขั้วแอโนดเจาะรู โดยที่ผลที่ได้จากการทดลองกลับมีลักษณะการกระจายตัวของรังสีนั้น ไม่ได้มีลักษณะ เช่นนั้น อาจเป็นผลจากการออกแบบที่ขั้วแอโนดมีขนาดรูที่มีรัศมีหรือความลึกไม่มากพอที่ทำ ให้รูปแบบการกระจายของรังสีมีการเปลี่ยนแปลงจากขั้วแอโนดทรงกระบอกตัน ซึ่งการศึกษาผลของขนาดรูบนขั้วแอโนดจะยังไม่ได้มีการศึกษาในงานวิจัยนี้

รูปที่ 93 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดงที่พลังงานของลำอิเล็กตรอน 100 keV

รูปที่ 94 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดงที่พลังงานของลำอิเล็กตรอน 150 keV

รูปที่ 95 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดงที่พลังงานของลำอิเล็กตรอน 200 keV

รูปที่ 96 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดงที่พลังงานของลำอิเล็กตรอน 250 keV

รูปที่ 97 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดงที่พลังงานของลำอิเล็กตรอน 300 keV

รูปที่ 98 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดงที่พลังงานของลำอิเล็กตรอน 350 keV

รูปที่ 99 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดงที่พลังงานของลำอิเล็กตรอน 400 keV

รูปที่ 100 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดงที่พลังงานของลำอิเล็กตรอน 450 keV

รูปที่ 101 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทองแดงที่พลังงานของลำอิเล็กตรอน 500 keV

รูปที่ 102 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ ทังสเตนและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทังสเตนที่พลังงานของลำอิเล็กตรอน 100 keV

รูปที่ 103 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ ทังสเตนและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทังสเตนที่พลังงานของลำอิเล็กตรอน 150 keV

รูปที่ 104 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ ทังสเตนและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทังสเตนที่พลังงานของลำอิเล็กตรอน 200 keV

รูปที่ 105 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ ทังสเตนและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทังสเตนที่พลังงานของลำอิเล็กตรอน 250 keV

รูปที่ 106 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ ทังสเตนและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทังสเตนที่พลังงานของลำอิเล็กตรอน 300 keV

รูปที่ 107 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ ทังสเตนและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทังสเตนที่พลังงานของลำอิเล็กตรอน 350 keV

รูปที่ 108 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ ทังสเตนและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทังสเตนที่พลังงานของลำอิเล็กตรอน 400 keV

รูปที่ 109 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ ทังสเตนและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทังสเตนที่พลังงานของลำอิเล็กตรอน 450 keV

รูปที่ 110 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุ ทังสเตนและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทังสเตนที่พลังงานของลำอิเล็กตรอน 500 keV

5.3.2 อภิปรายผลการเปรียบเทียบปริมาณรังสีเอกซ์ที่ขั้วแอโนดรูปร่างต่างกัน

เมื่อพิจารณาจากกราฟผลการทดลองที่ได้ พบว่าปริมาณรังสีเอกซ์ที่มีเกิดขึ้น จะมี ปริมาณมากกว่าเมื่อใช้ขั้วแอโนดที่มีลักษณะเป็นทรงกระบอกตันเทียบกับการใช้ขั้วแอโนด แบบเจาะรูบริเวณปลาย เมื่อเปรียบเทียบระหว่างขั้วแอโนดที่ใช้วัสดุชนิดเดียวกันนั้นปริมาณ รังสีเอกซ์ที่เกิดจากขั้วแอโนดทรงกระบอกตันจะมีแนวโน้มของปริมาณรังสีเอกซ์ในช่วง พลังงานลำอิเล็กตรอน 200 keV มากกว่าประมาณ 2 เท่า และที่ช่วงพลังงานของลำ อิเล็กตรอนตั้งแต่ 250 keV ขึ้นไป จะมีค่ามากกว่าเฉลี่ยประมาณ 3 เท่า [ค่าเปรียบโดย ละเอียดแสดงในภาคผนวก ข.1] เมื่อเทียบกับกรณีของขั้วแอโนดทรงกระบอกเจาะรู โดยผล การเปรียบเทียบที่ได้นี้ เมื่อพิจารณาจากการทดลองซึ่งได้มีศึกษาเกี่ยวกับผลของรังสีเอกซ์ที่ สัมพันธ์กับลักษณะของขั้วแอโนดที่ใช้ของเครื่องพลาสมาโฟกัส ขนาด 2.2 kJ โดย Bhuyan, H., et al. [33] ที่พบว่าขั้วแอโนดที่มีรูปร่างกลวงหรือถูกเจาะรูจะมีปริมาณรังสีเอกซ์เกิดขึ้น น้อยกว่าการใช้ขั้วแอโนดแบบทรงกระบอกตัน เมื่อทำการวัดประมาณพลังงานของรังสีเอกซ์ เทียบกับความตัน ดังแสดงในรูปที่ 5.13 โดยที่ความดันเท่ากันที่ 1 Torr จะสังเกตว่าปริมาณ ของรังสีเอกซ์ที่เกิดขึ้นเมื่อใช้ขั้วแอโนดทรงกระบอกตันจะมีปริมาณอยู่ที่ประมาณ 0.3 J เมื่อ ใช้ขั้วแอโนดเจาะรูจะมีปริมาณอยู่ที่ประมาณ 0.1 J ซึ่งเทียบเป็นอัตราส่วนเท่ากับ 3 เท่า

รูปที่ 5.13 ผลการทดลองเปรียบเทียบปริมาณรังสีเอกซ์ที่ขั้วแอโนดรูปร่างต่างกัo ของเครื่องพลาสมาโฟกัสขนาด 2.2 kJ ที่มา : Bhuyan, H., et al. (2004) [33]

เนื่องจากผลการทดลองดังกล่าวเป็นผลจากการทดลองที่ได้จากการวัดรังสีเอกซ์จาก เครื่องพลาสมาโฟกัสทำให้มีปัจจัยการเกิดรังสีเอกซ์อื่น ๆ อาทิ ความดัน สารเจือปนหรือชนิด ของแก๊สที่ใช้ ซึ่งนอกเหนือจากการชนของอิเล็กตรอนกับขั้วแอโนด ทำให้มีความแตกต่างจาก การจำลองบนโปรแกรมที่ใช้ทำการทดลอง รวมถึงลักษณะการทดลองเป็นการเปรียบเทียบ ปริมาณรังสีเอกซ์ที่มีการปลดปล่อยออกมาเมื่อเทียบกับความดัน ในขณะที่งานวิจัยนี้จะเป็น การเทียบระหว่างปริมาณรังสีเอกซ์และตำแหน่งในการกระจายของรังสี ซึ่งทำให้ไม่สามารถที่ จะเปรียบเทียบผลในเชิงตัวเลขในส่วนของปริมาณรังสีเอกซ์ได้ อย่างไรก็ดี หากพิจารณาใน ส่วนของแนวโน้มการเปลี่ยนแปลงระหว่างปริมาณรังสีเอกซ์ที่ได้จากการใช้ขั้วแอโนดที่รูปร่าง ต่างกันแล้ว พบว่ามีแนวโน้มไปในทิศทางเดียวกัน

5.4 ผลการทดลอง และอภิปรายผลการเปรียบเทียบปริมาณรังสีเอกซ์ที่ขั้วแอโนดชนิดวัสดุต่างกัน 5.4.1 ผลการทดลองเปรียบเทียบปริมาณรังสีเอกซ์ที่ขั้วแอโนดชนิดวัสดุต่างกัน

รูปที่ 111 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง และขั้วแอโนดทรงกระบอกตันวัสดุทังสเตนที่พลังงานของลำอิเล็กตรอน 100 keV

รูปที่ 112 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง และขั้วแอโนดทรงกระบอกตันวัสดุทังสเตนที่พลังงานของลำอิเล็กตรอน 150 keV

รูปที่ 113 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกต้นวัสดุทองแดง และขั้วแอโนดทรงกระบอกตันวัสดุทังสเตนที่พลังงานของลำอิเล็กตรอน 200 keV

รูปที่ 114 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง และขั้วแอโนดทรงกระบอกตันวัสดุทังสเตนที่พลังงานของลำอิเล็กตรอน 250 keV

รูปที่ 115 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง และขั้วแอโนดทรงกระบอกตันวัสดุทังสเตนที่พลังงานของลำอิเล็กตรอน 300 keV

รูปที่ 116 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง และขั้วแอโนดทรงกระบอกตันวัสดุทังสเตนที่พลังงานของลำอิเล็กตรอน 350 keV

รูปที่ 117 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกต้นวัสดุทองแดง และขั้วแอโนดทรงกระบอกตันวัสดุทังสเตนที่พลังงานของลำอิเล็กตรอน 400 keV

รูปที่ 118 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกตันวัสดุทองแดง และขั้วแอโนดทรงกระบอกตันวัสดุทังสเตนที่พลังงานของลำอิเล็กตรอน 450 keV

รูปที่ 119 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกต้นวัสดุทองแดง และขั้วแอโนดทรงกระบอกตันวัสดุทังสเตนที่พลังงานของลำอิเล็กตรอน 500 keV

รูปที่ 120 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุ ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทังสเตนที่พลังงานของลำอิเล็กตรอน 100 keV

รูปที่ 121 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุ ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทังสเตนที่พลังงานของลำอิเล็กตรอน 150 keV

รูปที่ 122 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุ ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทังสเตนที่พลังงานของลำอิเล็กตรอน 200 keV

รูปที่ 123 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุ ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทังสเตนที่พลังงานของลำอิเล็กตรอน 250 keV

รูปที่ 124 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุ ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทังสเตนที่พลังงานของลำอิเล็กตรอน 300 keV

รูปที่ 125 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุ ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทังสเตนที่พลังงานของลำอิเล็กตรอน 350 keV

รูปที่ 126 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุ ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทังสเตนที่พลังงานของลำอิเล็กตรอน 400 keV

รูปที่ 127 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุ ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทังสเตนที่พลังงานของลำอิเล็กตรอน 450 keV

รูปที่ 128 กราฟแสดงการเปรียบเทียบปริมาณรังสีเอกซ์เมื่อใช้ขั้วแอโนดทรงกระบอกเจาะรูวัสดุ ทองแดงและขั้วแอโนดทรงกระบอกเจาะรูวัสดุทังสเตนที่พลังงานของลำอิเล็กตรอน 500 keV

5.4.2 อภิปรายผลการเปรียบเทียบปริมาณรังสีเอกซ์ที่ขั้วแอโนดรูปร่างต่างกัน

การใช้วัสดุต่างชนิดกันในการสร้างขั้วแอโนด โดยวัสดุที่ใช้ได้แก่ ทองแดงและ ทั้งสเตน พบว่าปริมาณรังสีเอกซ์ที่ได้จะมีค่ามากกว่าเมื่อใช้ขั้วแอโนดที่ทำจากวัสดุทั้งสเตน ซึ่งเป็นไปตามความสัมพันธ์ที่ได้กล่าวถึงในการออกแบบการจำลองในหัวข้อที่ 2.3 ถึงการเกิด รังสีเอกซ์ต่อเนื่องหรือเบรมส์ชตราลุงเมื่อใช้วัสดุที่มีเลขอะตอมสูงเป็นเป้าของการยิง อิเล็กตรอน จะทำให้ได้รังสีเอกซ์ปริมาณมากกว่าการใช้วัสดุที่มีเลขอะตอมน้อย โดยผลที่ได้ จากการจำลองสำหรับการใช้ขั้วแอโนดทองแดงเมื่อเทียบกับขั้วแอดโนดทั้งสเตนจะมีปริมาณ ้น้อยกว่า โดยเมื่อเทียบกันตามสัดส่วนพบว่าปริมาณรังสีเอกซ์ที่ได้เมื่อใช้ขั้วแอโนดทั้งสเตนจะ มีมากกว่าราว 2-3 เท่า หรืออัตรส่วนเฉลี่ยในทุกตำแหน่งของหัววัดในและทุกค่าพลังงานของ ้อิเล็กตรอนจะมีค่ามากกกว่าประมาณ 2.13 เท่า เมื่อเทียบกับกรณีใช้ขั้วแอโนดทองแดง [ค่า เปรียบโดยละเอียดแสดงในภาคผนวก ข] โดยผลที่ได้ในส่วนนี้จะทำการวิเคราะห์โดยการ เปรียบเทียบแนวโน้มของปริมาณรังสีที่ได้จากการจำลองเทียบกับการคำนวณสมการที่ (8) ซึ่งผลที่ได้จากการคำนวณสมการดังกล่าว จะได้ค่าอัตราส่วนระหว่างปริมาณรังสีจากทั้งสเตน ต่อทองแดงมีค่าประมาณ 4.8 เท่า [การคำนวณโดยละเอียดแสดงในภาคผนวก ข.2] ซึ่งทำให้ ้ค่าความคลาดเคลื่อนจะอย่ที่ 141% โดยค่าความคลาดเคลื่อนที่เกิดขึ้น อาจเป็นผลจากการ ความคลาดเคลื่อนของแบบจำลองรวมถึงสมการที่ใช้ในการเปรียบเทียบซึ่งเป็นสมการที่ใช้ สำหรับรังสีเอกซ์ที่เกิดจากสารเจือปนในพลาสมา อาจไม่เหมาะสมสำหรับวัตถุตัน (Solid)

5.5 ผลการจำลองบนโปรแกรม Lee model code

5.5.1 ผลการทดลองแสดงปริมาณรังสีเอกซ์จากโปรแกรม Lee model code และ โปรแกรม Geant4

งานวิจัยนี้ได้กำหนดขอบเขตในการศึกษาโดยทำการเปรียบเทียบผลของรังสีเอกซ์ที่ได้จาก โปรแกรม Lee model code (โมเดล RADPFV5.15de) กับผลจากโปรแกรม Geant4 โดยทำการ ป้อนค่าความต่างศักย์ที่ได้จาก Lee model code ลงในโปรแกรม Geant4 จึงได้ทำการออกแบบ การทดลองโดยทำการเปลี่ยนขนาดรัศมีของขั้วแอโนด โดยกำหนดให้ขั้วแอโนดมีรัศมีเท่ากับ 1.2 1.25 และ 1.3 cm ปริมาณรังสีเอกซ์จากโปรแกรม Lee model code แสดงดังรูปที่ 129 -131

รูปที่ 129 กราฟกำลังการแผ่รังสีเบรมส์ชตราลุงจากโปรแกรม Lee code Model ที่ขนาดรัศมีของขั้วแอโนด เท่ากับ 1.2 cm

รูปที่ 130 กราฟกำลังการแผ่รังสีเบรมส์ชตราลุงจากโปรแกรม Lee code Model ที่ขนาดรัศมีของขั้วแอโนดเท่ากับ 1.25 cm

รูปที่ 131 กราฟกำลังการแผ่รังสีเบรมส์ชตราลุงจากโปรแกรม Lee code Model ที่ขนาดรัศมีของขั้วแอโนดเท่ากับ 1.3 cm

จากกราฟแสดงปริมาณรังสีที่ปลดปล่อยจากเครื่องพลาสมาโฟกัสที่ได้จากโปรแกรม Lee model code สำหรับรังสีเอกซ์แบบเบรมส์ชตราลุงจะมีค่าความเข้มสูงสุดเท่ากับ 1.17x10⁸ 1.059x10⁸ และ 9.546 x 10⁷ Watt ที่รัศมีของขั้วแอโนดเท่ากับ 1.2 1.25 และ 1.3 cm ตามลำดับ

การเปลี่ยนขนาดรัศมีของขั้วแอโนดจะส่งผลต่อขนาดของความต่างศักย์บนพลาสมา โดย ความต่างศักย์นั้นมีความสัมพันธ์กับพลังงานของลำอิเล็กตรอน ดังสมการที่ (12) เมื่อความต่างศักย์ที่ ได้จากโปรแกรม Lee model code มีค่า Vmax เท่ากับ 141.5 133.3 และ 125.7 kV จะได้ พลังงานลำอิเล็กตรอนจะมีค่าประมาณ 377 400 และ 425 keV ที่รัศมีขั้วแอโนดเท่ากับ 1.2 1.25 และ 1.3 cm ตามลำดับ เมื่อนำค่าพลังงานของอิเล็กตรอนที่ได้และขนาดรัศมีของขั้วแอโนดที่สัมพันธ์ กันมาใช้ในการจำลองบนโปรแกรม Geant4 จะได้ว่าปริมาณรังสีเอกซ์ที่เกิดขึ้นแสดงดังตารางที่ 3

รัศมี (cm)	1.2	1.25	1.3
ปริมาณรังสี (pGy)	130.88	127.83	108.21

ตารางที่ 3 แสดงปริมาณรังเอกซ์เมื่อใช้รัศมีขั้วแอโนดต่างกันจากโปรแกรม Geant4

นำค่าของปริมาณรังสีเอกซ์ที่ได้จากโปรแกรม Lee model code และโปรแกรม Geant4 ทำการหาค่าอัตราส่วนของปริมาณรังสีเอกซ์ที่ได้จากการใช้ขั้วแอโนดที่มีขนาดรัศมีต่างกัน ผลที่ได้ แสดงดังตาราง 4

a wiav Chinad	r = 1.2 / r = 1.25	r = 1.25/ r=1.3
Geant4	1.024	1.18
Lee code model	1.105	1.11
% ความคลาดเคลื่อน	7.33	6.31

ตารางที่ 4 แสดงอัตราส่วนและความคลาดเคลื่อนของปริมาณรังเอกซ์ที่เกิดขึ้น เมื่อใช้รัศมีขั้วแอโนดต่างกันจากทั้งสองโปรแกรม 5.5.2 อภิปรายผลการเปรียบเทียบปริมาณรังสีเอกซ์ระหว่างโปรแกรม Lee model code และโปรแกรม Geant4

โปรแกรม Lee code model จะมีลักษณะเป็นการจำลองที่สร้างจากการกึ่ง สังเกต (Semi – empirical) ที่เป็นการใช้สมการคำนวณร่วมกับการทดลองเพื่อทำการสอบ เทียบ(Calibration) ให้ผลการคำนวณมีค่าที่เหมือนกับความเป็นจริงมากที่สุด ซึ่งผลที่ได้จาก โปรแกรมนั้นจะมีลักษณะเป็นการวัดรังสีที่มีความต่อเนื่อง เมื่อเทียบกับแบบจำลองที่สร้างขึ้น บนโปรแกรม Geant4 เนื่องด้วยข้อจำกัดของโปรแกรมที่ทำให้ไม่สามารถสร้างโมเดลที่ จำลองการกระบวนการอย่างต่อเนื่องได้ โดยจำลองนี้จึงจะต้องทำการจำลองแบบสถิต (Static process) ซึ่งได้จากการยิงอิเล็กตรอนเป็นครั้ง ครั้งละ 100,000 อนุภาค ที่ค่า พลังงานอิเล็กตรอน จำนวน 10 ครั้ง และทำการหาค่าเฉลี่ย การทำการทดลองในลักษณะนี้ จะทำให้เกิดความไม่ต่อเนื่องของผลการทดลองที่ได้ แต่ในความเป็นจริงแล้วการเกิดรังสีเอกซ์ ของเครื่องพลาสมาโฟกัสเกิดจากการปลดปล่อยลำอิเล็กตรอนหลังเกิดการบีบอัดพลาสมา ซึ่ง จะมีความต่อเนื่องในช่วงระยะเวลาหนึ่งทำให้มีหลายค่าความต่างศักย์และพลังงาน อิเล็กตรอน รวมทั้งจำนวนอิเล็กตรอนที่สูง (ประมาณ 10¹⁴ - 10¹⁶อนุภาค)

ด้วยเหตุผลที่ได้กล่าวมาข้างต้นจึงทำให้การนำข้อมูลของความต่างศักย์ทั้งหมดที่ เกิดขึ้นภายในเครื่องพลาสมาโฟกัสจาก Lee mode code ป้อนเข้าไปในโปรแกรม Geant4 และทำการเปรียบเทียบค่าของปริมาณรังสีเอกซ์ที่เกิดขึ้นนั้นไม่สามารถทำได้ด้วยแบบจำลอง นี้ จึงได้ทำการเลือกเปรียบเทียบเฉพาะบริเวณที่ค่าความต่างศักย์และปริมาณรังสีเอกซ์สูงสุด เมื่อใช้ขั้วแอโนดที่มีขนาดของรัศมีแตกต่างกันที่ได้จากโปรแกรม Lee model code ทำการ คำนวณความต่างศักย์สูงสุดร่วมกับสมการเพื่อให้ได้ค่าพลังงานของลำอิเล็กตรอน และป้อน ค่าพลังงานลำอิเล็กตรอนลงในโปรแกรม Geant4 โดยผลการทดลองที่ได้ พบว่าอัตราส่วน ของการเปลี่ยนแปลงแสดงดังตารางที่ 4 แสดงแนวโน้มของการเปลี่ยนแปลงปริมาณรังสี เอกซ์จากทั้งสองโปรแกรมมีแนวโน้มเป็นไปในทิศทางเดียวกัน โดยปริมาณรังสีเอกซ์ที่เกิดขึ้น จะมีการเพิ่มขึ้นเมื่อขนาดของรัศมีขั้วแอโนดมีขนาดเล็กลง

บทที่ 6 สรุปผลการทดลองและข้อเสนอแนะ

6.1 สรุปผลการทดลอง

จากการทดลอง ผลการทดลองและอภิปรายผลการทดลองในบทที่ 5 จะสามารถสรุปผลการ ทดลองออกเป็น 3 ส่วน โดยอ้างอิงจากขอบเขตการทดลอง ดังนี้

<u>ส่วนที่ 1</u> การศึกษารูปร่างขั้วแอโนดที่ต่างกัน 2 แบบ เพื่อดูผลที่เกิดขึ้นกับปริมาณรังสีเอกซ์ ผลการศึกษาปริมาณรังสีเอกซ์ของเครื่องพลาสมาโฟกัสผ่านโปรแกรมจำลอง เมื่อใช้ขั้วแอโนด ที่มีลักษณะแตกต่างกัน 2 แบบ ได้แก่ 1.ขั้วแอโนดทรงกระบอกตัน 2.ขั้วแอโนดทรงกระบอกเจาะรู บริเวณปลาย พบว่าปริมาณรังสีเอกซ์ที่ได้จากขั้วแอโนดทรงกระบอกตันจะมีแนวโน้มมากกว่าเมื่อ เทียบกับปริมาณรังสีเอกซ์ที่ได้จากขั้วแอโนดทรงกระบอกเจาะรู โดยมีอัตราส่วนปริมาณรังสีเอกซ์จะมี ค่ามากกว่าประมาณ 2 เท่า ที่พลังงานของอิเล็กตรอน 200 keV และจะมีค่ามากกว่าประมาณ 3 เท่า ที่พลังงานของลำอิเล็กตรอนตั้งแต่ 250 keV ขึ้นไป

<u>ส่วนที่ 2</u> การศึกษาขั้วแอโนดที่วัสดุต่างกันเพื่อดูผลที่เกิดขึ้นกับปริมาณรังสีเอกซ์

ผลการศึกษาปริมาณรังสีเอกซ์ของเครื่องพลาสมาโฟกัสผ่านโปรแกรมจำลอง เมื่อใช้ขั้วแอโนด ที่ชนิดวัสดุแตกต่างกัน 2 แบบ ได้แก่ 1.ขั้วแอโนดที่ทำจากทองแดง 2. ขั้วแอโนดที่ทำจากทังสเตน พบว่าปริมาณรังสีเอกซ์ที่ได้จากขั้วแอโนดทังสเตนนั้นจะมีปริมาณมากกว่าขั้วแอโนดทองแดง และมี อัตราส่วนระหว่างขั้วแอโนดทังสเตนต่อขั้วแอโนดทองแดง จะมีค่ามากกว่าประมาณ 2-3 เท่า

<u>ส่วนที่ 3</u> การใส่ค่าความต่างศักย์ที่ได้ Lee Code Model และเปรียบเทียบผลของรังสีเอกซ์จากทั้ง สองโปรแกรม

เนื่องจากโปรแกรม Geant4 นั้นมี ข้อจำกัดในส่วนของขั้นตอนในการสร้างทำให้โมเดลซึ่งทำ ให้ผลการทดลองที่ได้ ซึ่งโมเดลที่ได้นั้นมีความแตกต่างจาก Lee model code หลายประการ ทำให้ การใส่ค่าความต่างศักย์ที่จาก Lee model code ทั้งหมดลงในโปรแกรม Geant4 นั้นไม่สามาถทำได้ จึงได้ทำการออกแบบการทดลองโดยเฉพาะพิจารณาเฉพาะค่าความศักย์ที่สูงที่สุดเมื่อเปลี่ยนขนาด รัศมีของขั้วแอโนด พบว่าแนวโน้มของปริมาณรังสีเอกซ์ที่เกิดขึ้นนั้น จะมีค่าแปรผกผันกับขนาดของ รัศมีของขั้วแอโนดเช่นเดียวทั้งสองโปรแกรม โดยที่รัศมีของขั้วแอโนดจะให้ขนาดเล็กปริมาณของรังสี เอกซ์มากกว่าที่รัศมีของขั้วแอโนดที่มีขนาดใหญ่กว่า

6.2 ข้อเสนอแนะ

- แบบจำลองการปลดปล่อยรังสีของเครื่องพลาสมาโฟกัสนี้ เป็นแบบจำลองอย่างง่ายที่เลือกใช้ เพียงองค์ประกอบหลักบางส่วนเท่านั้นในการจำลอง หากสามารถที่เพิ่มเติมองค์ประกอบ อื่นๆ เช่น ผนังของเครื่อง ความดัน จำนวนอิเล็กตรอน หรือหัววัดรังสีที่มีรายละเอียด ใกล้เคียงกับความเป็นจริงเข้าไปในแบบจำลองได้ อาจเป็นผลช่วยให้ผลของการทดลองมีค่า ใกล้เคียงความเป็นจริงมากขึ้น
- กระบวนการที่เกิดขึ้นสำหรับการชนของลำอิเล็กตรอนภายในเครื่องพลาสมาโฟกัสในความ เป็นจริงแล้วจะมีการชนที่ต่อเนื่องกัน ในขณะที่การจำลองนี้จะใช้เป็นการจำลองแบบสถิต (Static process) ซึ่งได้จากการยิงอิเล็กตรอนเป็นครั้ง ครั้งละ 100,000 อนุภาคแล้วนำมา เฉลี่ย ซึ่งหากสามารถที่จะจำลองการยิงของอิเล็กตรอนมีความต่อเนื่องได้อาจจะทำผลการ ทดลองใกล้เคียงความเป็นจริงขึ้น
- ควรใช้อุปกรณ์ในการจำลอง เช่น คอมพิวเตอร์ โน้ตบุ๊ก ที่ประสิทธิภาพค่อนข้างสูงเพื่อให้ สามารถที่จะจำลองเหตุการณ์จำนวนมากได้ เพื่อให้ผลของการทดลองมีความแม่นยำมากขึ้น
- โปรแกรม Geant4 นั้นเป็นเป็นโปรแกรมที่ประกอบด้วยฐานข้อมูลที่หลากหลาย สามารถ นำไปประยุกต์ใช้ให้เหมาะสมกับการทำลองที่เกี่ยวข้องการเกิดอันตรกิริยาของอนุภาคได้

บรรณานุกรม

- 1. Eliezer, Y., and Shalom Eliezer, *The Fourth State of Matter: an Introduction to Plasma Science.* 2001: IOP.
- Baumjohann, W., and Rudolf A. Treumann, *Basic Space Plasma Physics*. 1996: Imperial College Press.
- 3. *Plasma Page*. [cited 2021 11 November]; Available from: www.particlecentral.com/plasma_page.html.
- 4. Chen, F.F., *Introduction to Plasma Physics and Controlled Fusion*, ed. 2nd. 2006: Springer.
- Decker, G., and R. Wienecke, *Plasma Focus Devices*. Physica B+C, 1976. 82: p. 155 164.
- 6. Scholz, M., *Plasma-Focus and Controlled Nuclear Fusion*. 2014: The Institute of Nuclear Physics PAN, Kraków.
- Milanese, M.M., et al., *Images of a Plasma Focus Current Sheath With a Continuous Cylindrical Outer Electrode*. IEEE Transactions on Plasma Science, 2014. 42: p. 2606 - 2607.
- 8. *Electromagnetic Spectrum: COSMOS*. [cited 2021 14 December]; Available from: <u>www.astronomy.swin.edu.au/cosmos/E/Electromagnetic+Spectrum</u>.
- 9. X-Rays, S.X.-R.-H. [cited 2022 30 April]; Available from: <u>https://www.nuclear-power.com/nuclear-power/reactor-physics/atomic-nuclear-physics/radiation/x-rays-roentgen-radiation/soft-x-rays-hard-x-rays/</u>.
- 10. Kulkoulprakar, T., *Invatugation of X-ray Emission from a Small Plasma Focus*, in *Physics*. 2005, Chulalongkorn University.
- 11. HOW TO CHOOSE YOUR X-RAY SOURCE (PULSED OR CONSTANT POTENTIAL)?". [cited 2022 6 February]; Available from: https://www.teledyneicm.com/ndt/ndtnews/how-to-choose-your-x-ray-source-pulsed-or-constant-potential/.
- 12. *Bremsstrahlung Radiation*. [cited 2022 17 April]; Available from: <u>https://physicsopenlab.org/2017/08/02/bremsstrahlung-radiation</u>.
- 13. Akel, M., et al., Electron Beam Properties Emitted From Deuterium Plasma

Focus: Scaling Laws. IEEE Transactions on Plasma Science, 2017. 45: p. 2303 - 2307.

- 14. Tamman, A., Production of High-Energy Particles by Thailand Plasma Focus II.2017, Walailak University.
- 15. Ulam, N.C.M.a.S.M., *The Monte-Carlo Method.* J. Amer. Stat. Assoc., 1949. 44: p. 335 341.
- 16. INTRODUCTION TO SIMULATION. [cited 2022 25 January]; Available from: http://old-book.ru.ac.th/e-book/e/EC376(48)/EC376-5.pdf.
- 17. Remesan, G.C., *Buffon's Needle Problem.* 2017.
- 18. *Buffon's Needle Problem*. [cited 2022 31 January]; Available from: <u>https://mathworld.wolfram.com/BuffonsNeedleProblem.html</u>.
- 19. Overview. [cited 2022 1 April]; Available from: https://geant4.web.cern.ch/
- 20. Asai, M., INTRODUCTION TO GEANT4
- 21. Guatelli, S., et al. Introduction to the geant4 Simulation Toolkit. in AIP Conference 2011.
- 22. Book For Application Developers. [cited 2022 11 April]; Available from: <u>https://geant4-</u> <u>userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/index.html</u>
- 23. Institute for Plasma Focus Studies. [cited 2022 22 March]; Available from: www.plasmafocus.net/.
- 24. Mohamed, A.E., *MCNP Simulation to Hard X-Ray Emission of KSU Dense Plasma Focus Machine.* 2014.
- 25. X-Ray Detector for Studying Characteristics of Materials. [cited 2022 28 May]; Available from: <u>https://research.cornell.edu/research/x-ray-detector-studying-characteristics-materials</u>.
- 26. Bortoletto, D., *How and Why Silicon Sensors Are Becoming More and More Intelligent?* Journal of Instrumentation, 2015. 10.
- 27. Nasseri, M.M., Determination of Tungsten Target Parameters for Transmission X-Ray Tube: A Simulation Study Using Geant4. Nuclear Engineering and Technology, 2016. 48: p. 795 – 798.

- Rogers, T.H., *High-Intensity Radiation from Beryllium-Window X-Ray Tubes.*Radiology, 1947. 48: p. 594 603.
- 29. *Bremsstrahlung radiation*. [cited 2022 22 March]; Available from: <u>https://radiopaedia.org/articles/bremsstrahlung-radiation</u>
- 30. Khan, M.Z., et al., *Low-Energy Plasma Focus Device as an Electron Beam Source.* The Scientific World Journal,, 2014. 2014: p. 1 9.
- 31. Castillo-Mejía Fermín, e.a. *Radiation Characteristics of the FN-II Dense Plasma Focus Device*. in *AIP Conference Proceedings*. 2008.
- 32. Knoblauch, P., et al., *Hard X-Ray Dosimetry of a Plasma Focus Suitable for Industrial Radiography.* Radiation Physics and Chemistry,, 2018. 145: p. 39 -42.
- Bhuyan, H., et al., Comparative Study of Soft X-Ray Emission Characteristics in a Low Energy Dense Plasma Focus Device. Journal of Applied Physics, 2004. 95: p. 2975 – 2981.

Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	0	0.93523	0	0.577293	0	0.2668	0.35976	0	0.38294	0	0.2522	0.31957
-60	0.5999	0.93523	0	0.577293	0.416	0	0.185	0	0.38294	0	0.30965	0.32711
-50	0.5999	0.43885	0	0	0	0.6429	0.185	0	0	0.24824	0.21149	0.26127
-40	0	0.47481	0	0	0	0.6429	0	0.62748	0	0	0.17452	0.28439
-30	0.3971	0.42698	0	0.370353	0.2203	1.6603	0	0.4365	0	0	0.35116	0.49885
-20	0.9222	0	0.3488	0.657965	0	0	0.20146	0	0.37702	0.60966	0.3117	0.33129
-10	0	0	0.2837	0.371683	0	0	0	0	0.67579	0	0.13312	0.23526
0	0	0	0.2837	0	0.7172	0	0	0	0	0	0.10009	0.23444
10	0	0	0.3589	0	0.7172	0.2005	0	0	0	0	0.12766	0.24046
20	0.495	0.72077	0.2394	0.353776	0	0	0.29012	0	0.46221	0.68605	0.32473	0.271
30	0	0	0	0.008385	0.2574	0	0	0	0	0	0.02658	0.08115
40	0	0.13675	0.5174	0	0.3416	0	0	0	0	0	0.09957	0.18376
50	0.1806	0	0.5174	0.407655	0.3416	0	0.36247	0.43521	0	0.18609	0.24309	0.19653
60	0	0	0	0.407655	0.2879	0	0.36247	0.43521	0	0	0.14932	0.19632
70	0	0.59263	0	0	0	0.8623	0.62904	0	1.38277	0	0.34667	0.49449
				111	11 11 4	No. You Y	4 101 110 T					

ภาคผนวก ก

ตารางที่ ก.1 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานจากขั้วแอโนดทองแดง ทรงกระบอกตันที่พลังงานลำอิเล็กตรอน 100 keV

Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	0.0991	0	0.7398	0.334684	0.6803	0.603	0	0.55111	0	0.29441	0.33024	0.29728
-60	0.5844	0.43273	0.3137	0.560765	0.1833	0.2547	0	0	0.2321	0.96515	0.35268	0.2947
-50	0	0.33505	0	0.226081	0.1833	0	0	0.33062	0.0311	0.96515	0.20713	0.29995
-40	0.3516	0	0.6057	พาลง	กรณ	มหา	0.34413	0.33062	0.0311	0	0.16631	0.22175
-30	0.5418	0.36999	0.633	0.41353	0.2672	0.2388	0.39232	0	0.48238	0.35609	0.36952	0.17594
-20	0	0	0.228	0.910531	0	0	0.83905	0.20462	0.88328	0	0.30655	0.40379
-10	0	0	0	0.323468	0.7513	0	0.30437	0	0	0.8322	0.22113	0.32749
0	0	0	0.4178	0.648422	0	0.2613	0	0	0.77386	0.8322	0.29336	0.34866
10	0.823	0	0.4178	0.648422	0	0.5806	0	0.26083	0.77386	0	0.35045	0.34127
20	0	0.35187	0	0	0	0.4334	0	0	0	0.80718	0.15925	0.28079
30	0	0.7213	0	0	0.1685	0	0	0.25621	0.18389	0.25932	0.15892	0.22677
40	0	0.40471	0	0	0.7727	0	0.39419	0.38046	0	0	0.1952	0.27485
50	0	0	0.3014	0	0.422	0	0	0	0	0.79834	0.15217	0.2738
60	0.2648	0	0.7151	0	0.267	0.2233	0	0.38096	0.35606	0.79834	0.30055	0.28058
70	0.2648	0	1.1315	0	0.2321	0.2233	0.49843	0.49843	0.35606	0.55565	0.37603	0.32872

ตารางที่ ก.2 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานจากขั้วแอโนดทังสเตน ทรงกระบอกตันที่พลังงานลำอิเล็กตรอน 100 keV

Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	0.7136	0	0.6325	0.661548	0	0	0.2192	0	0.61909	1.0043	0.38502	0.3807
-60	0.3087	0	0	0.509103	0	0	0.2192	0	0.19938	1.34648	0.25829	0.42008
-50	0	0.35579	0	0.509103	0	0	0	0	0	1.4931	0.2358	0.47832
-40	0	0.8927	0	0.371258	0	0	0.47306	0	0	0	0.1737	0.30855
-30	0	0	0.2885	0	0.5626	0	0.33101	0.72285	0.97421	0	0.28792	0.35776
-20	0.492	0.31012	1.775	0	0	0.0275	0.42577	0	0.251	0	0.32813	0.54336
-10	0.4591	0.38222	0.1919	0	0.7478	0.2587	0	0.20732	0	0	0.2247	0.24898
0	0.2571	0.46237	0.1919	0	0.3224	0.2587	0.6075	0	0	0	0.20999	0.2149
10	1.1052	0	0	0.292026	0	0.0691	0.97286	0.38315	0	0	0.28224	0.42272
20	0	0	0.3574	0	0.4549	0.6048	0	0	0.40463	0.70255	0.25243	0.28295
30	0.7866	0	0	0.173976	0.4169	0	0	0.69658	0	0.23534	0.23094	0.3037
40	1.658	0	0.3973	0.912769	0	0	0	0.46814	0	0.53374	0.397	0.54446
50	0.2966	0	0.9998	0.79398	0	0	0.86533	0.97417	0.59492	0.46859	0.49934	0.40769
60	0.6093	0	0.6025	0.515982	0	0.3472	0.27632	0.50603	0.59492	0.87043	0.43227	0.27818
70	0.253	0	0	0.492804	0	0.3472	0.47642	0	0	0	0.15694	0.21294

ตารางที่ ก.3 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานจากขั้วแอโนดทองแดง ทรงกระบอกเจาะรูที่พลังงานลำอิเล็กตรอน 100 keV

	-			× // //			11/11/1 -					
Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	0.4432	0	0	0.489452	0.6287	0.8179	0	0	0	0.19825	0.25775	0.31183
-60	0	0.26399	0.4968	0	0	0	0	0	0	0	0.07608	0.16953
-50	0	0.26399	0.982	0	0	0	0	0.65974	0	0.20228	0.2108	0.34413
-40	0	0.16792	0.5675	0	0.254	1.0603	0.45992	0.65974	0.26937	0.53434	0.39731	0.3275
-30	0.6097	0	0.2838	0.260762	0	0.2268	0.56793	0	0.53654	0	0.24855	0.25041
-20	0.6354	0	0.2886	0.255168	0	0.2078	0	0.27	0.42633	0.33056	0.24139	0.20454
-10	0	0.22439	0.6297	0	0.8575	0	0	0	0	0	0.17116	0.31434
0	0	0.3057	0	0.440665	0.8575	0	0	0.37462	0	0	0.19785	0.29285
10	0	0.3057		0		0	_0	0.37462	0.32057	0	0.10009	0.16206
20	0	0.58927	0	0	0	0	0	0.49018	0	0	0.10794	0.22876
30	0.2151	0	0	0	0.3764	0	0	0	0.69228	0.44239	0.17261	0.25054
40	0.3745	0	0.8684	0.721876	0.7443	0.337	0.61216	0.05543	0.39569	0.29534	0.44047	0.29146
50	0.3067	0.70232	0	0.721876	0.7443	0	0	0	0.39569	0.71355	0.35844	0.34047
60	0.6112	0.70232	0.3637	0	0	0	0.91658	0	0.32754	1.72656	0.46479	0.5545
70	0.3038	0	0	0.322327	0	0	0.47642	0.62211	0.73718	1.50425	0.39661	0.47649

ตารางที่ ก.4 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทังสเตน ทรงกระบอกเจาะรูที่พลังงานลำอิเล็กตรอน 100 keV

Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	0	0	0	0.79555	0.52247	0.853365	0	0.65853	0.73842	0.43464	0.4003	0.36508
-60	0.30132	0	0.587171	0.52494	0.19759	0.584303	0.37382	0.34995	0	0.36587	0.3285	0.21306
-50	0.0679	0.28624	0	0	1.19438	0.364857	0.37382	0	0	0.96761	0.32548	0.42984
-40	0	0.28624	0.395315	0.23357	0.61331	0.789209	0	0	0.27195	0.49024	0.30798	0.27029
-30	0	1.31939	0	0.9972	0.59598	1.45813	0	0.51651	0.49509	0	0.53823	0.5609
-20	0	0	0.791681	0.54709	0.32516	1.19805	0	0	0.04007	0.30482	0.32069	0.41275
-10	0.46123	1.05091	0.252255	0.38294	0.97588	0.30648	0.49666	0	0	0.28643	0.42128	0.35397
0	0.46123	0.72586	0.982454	0.81784	0.3498	0.687618	0	0.28899	0	0	0.43138	0.36385
10	0	0	0.730198	0.4349	0.23793	0.897402	0	0.5049	0	1.62908	0.44344	0.52985
20	0.40858	0.74372	0.885794	0	1.09407	0.422512	0.346926	0	0.03436	0.55423	0.44902	0.37899
30	0.7789	0	1.27431	0	0.53477	1.15052	0.927307	0	0.12414	0.47605	0.5266	0.49093
40	0	0.17458	0.218571	0.48582	0.59147	0.257732	0.802903	0.39496	0	0	0.2926	0.27386
50	0.74964	0	0	0.28845	0.06958	1.91999	0	0.87956	0	0	0.39072	0.63099
60	1.38518	0.4779	0	0.48753	0.55309	0 /61	0	0.30646	0.46733	0	0.36775	0.42826
70	2.91933	0.18372	0	0.66737	0.34154	0	0.305883	0.52853	0	0.37026	0.53166	0.86933

ตารางที่ ก.5 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทองแดง ทรงกระบอกตันที่พลังงานลำอิเล็กตรอน 150 keV

Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	0	0	0	0.29937	2.18744	0.616607	0.347204	0	0	0	0.34506	0.68188
-60	0.51828	0.27775	0.741147	0.20619	0.66779	0.385208	0	0	0	0	0.27964	0.28866
-50	0.26089	0.38917	0	0.75966	0.3853	0	0	0	0	0	0.1795	0.26307
-40	0.25715	0.87382	0.446254	0	0.56494	1.15611	0.318484	0.35235	0	0.24566	0.42148	0.36425
-30	0	0.14695	0.231151	0.33707	0	1.05079	0	0.82041	0.65393	0.45565	0.36959	0.37045
-20	0	0.0134	0	0	1.82938	0.651799	0	0	0.68202	0	0.31766	0.59886
-10	0.17968	1.02462	0.25759	พาลง	กรณ	มหาว	0.588379	0.54482	1.60497	0.63153	0.48316	0.51981
0	0.27904	0.35118	0.25759	0	0	0.36909	0.593907		0.5496	1.21791	0.36183	0.37008
10	0.45213	0.82104	0.323182	0.45616	0.2534	0.739895	0.593907	0.95339	0	0.90002	0.54931	0.30858
20	0	0	0	0	0	0.143885	0	0.36473	0	0.39939	0.0908	0.16014
30	0	0	0.694174	0	0.26777	0	0.212816	0	0	0	0.11748	0.22629
40	0.23957	0.95263	0	1.07398	1.5782	0	0	0.60033	1.0497	0.25005	0.57445	0.56115
50	0	0.88826	0.585953	0.42142	1.57327	0	0	1.73124	1.39081	0.54212	0.71331	0.66018
60	0	2.49734	0	0	0	0.707043	0.3535	0.34744	0.85001	0.54212	0.52974	0.75956
70	0	1.0587	0.701292	0	0.51236	0.389519	0.719681	0.94774	1.03497	0	0.53643	0.42644

ตารางที่ ก.6 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทังสเตน ทรงกระบอกตันที่พลังงานลำอิเล็กตรอน 150 keV

Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	0.66778	0.25067	0	0	0	0.567622	0.346067	0.63757	0.76251	0.13588	0.33681	0.30234
-60	0.92257	0.7704	0	0.32035	0	1.03725	0.234772	0.81154	0.44119	0.13588	0.46739	0.3895
-50	0.52177	0	1.13966	0.51698	0	0	0	0.25239	0	0	0.24308	0.38169
-40	0	0.26767	0	0	0	0	0.006677	0.52491	0.64551	0	0.14448	0.24837
-30	0	0	0	0	0	0.665975	0	0.35981	0.52151	0	0.15473	0.25939
-20	0.57571	0	0	0	0.3979	0	0	0	0.27565	0	0.12493	0.21336
-10	0	0	0	0.57329	0	0	0	0.34818	0	0.63652	0.1558	0.26083
0	0.4718	0	0	0.93672	0	0.654189	0	0	0	0.63652	0.26992	0.36584
10	0.4718	0	0.253951	0.93672	0.47915	0.823084	0.169536	0	0	0	0.31342	0.35245
20	0.43566	0	0	0.22438	0	0.711374	0	0	0	0	0.13714	0.24902
30	0	0.62241	0.290173	0.42236	0	0.475785	0.421939	0.2747	0	0	0.25074	0.23597
40	0.43065	0	0	0.92048	0.80457	0.523065	0	0	0.22884	0.30835	0.3216	0.3443
50	0	0	0	0.34654	0.56715	0 / /	0.356195	0.24712	0	0.27399	0.1791	0.20656
60	0	0.92324	0.590132	0	0	JJ]/0	0.534634	0	0.31413	0	0.23621	0.33783
70	0	0.46033	0	0	0	0.817661	0.223307	0	0.6895	0.5124	0.27032	0.32276

ตารางที่ ก.7 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทองแดง ทรงกระบอกเจาะรูที่พลังงานลำอิเล็กตรอน 150 keV

Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	0.39779	0.25084	0	0	0	0.29272	0.410157	0.24506	0	0	0.15966	0.17645
-60	0.32632	0.33751	0.470002	0	0	0	0.499506	0	0	0	0.16333	0.21706
-50	0	0	0	0	0.4925	V	0.031821	0.6926	0	0.31294	0.15299	0.25542
-40	0.27703	0	0	0	0	0	0	0	0.10912	0	0.03862	0.09052
-30	0	0.23362	0	1.0267	0.42214	0	0.278082	0	0.26107	0.11254	0.23342	0.31627
-20	0.75966	0.19392	0	0	1.36019	0.510032	0.609808	0.25502	0.24087	0	0.39295	0.4315
-10	0.89837	0	0.234999	0.93224	กรถ์	0.392655	0.607813	6 3	0	0.45913	0.35252	0.36864
0	0	0.20447	0	0.23593	0	0.08755	0.202501	0.22987	0	0.29344	0.12538	0.11921
10	0	0	0	0.23593	NGKO	0.374952	E O	SITY 0	0.29491	0	0.09058	0.14951
20	0.56209	0	0	0.31732	0	0	0.723852	0	0.32407	0.41526	0.23426	0.2727
30	0	0	0.279202	0	0.92816	0	0	0	0.56488	0.6175	0.23897	0.3446
40	0	0	0	0	0	0	0.632909	0	0.68833	0.2269	0.15481	0.27612
50	0.63901	0	0	0	0	0	0.632909	0.8424	0.46813	0	0.25825	0.34493
60	0	0.23649	0.426184	0	0	0	0	0	0	1.45647	0.21191	0.46065
70	0.35724	0	0	0	0.33513	0.342356	0	0	0.60313	0	0.16379	0.22426

ตารางที่ ก.8 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทังสเตน ทรงกระบอกเจาะรูที่พลังงานลำอิเล็กตรอน 150 keV

Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	15.4847	2.15881	2.25216	4.39971	3.32855	3.39028	0	4.16939	4.6483	2.6215	4.24534	4.17763
-60	3.944	4.91981	5.20742	4.08392	1.21769	6.73194	4.73729	2.61917	6.87198	6.03449	4.63677	1.77331
-50	5.67882	6.05477	8.19686	4.83728	0.32493	3.47174	2.73344	4.30882	4.67263	4.2136	4.44929	2.09017
-40	3.01434	2.71386	2.33095	2.46659	4.27694	5.02793	4.95757	2.44354	4.96592	3.46179	3.56594	1.13403
-30	3.13527	3.79496	2.06794	6.67795	4.72235	3.40199	1.65431	6.74646	3.51675	0.33387	3.60519	2.0476
-20	0.67466	2.84236	3.40322	4.67324	5.0667	3.53597	2.34859	3.81908	4.56361	3.02894	3.39564	1.28792
-10	4.77471	3.38611	5.09473	2.01495	1.97895	1.89406	0.52271	2.48688	2.54165	1.54763	2.62424	1.42323
0	3.68495	3.30794	2.00029	1.86766	1.76098	0.81097	1.41734	2.058	3.4657	2.41949	2.27933	0.93838
10	2.67178	3.42661	1.77601	5.33509	4.05174	2.95375	3.64702	0.76797	4.32389	1.60098	3.05548	1.39158
20	1.21497	3.31154	0.97079	7.27438	2.68424	0	0.76528	2.59326	0	0.87619	1.96906	2.18105
30	3.68708	2.94503	1.4836	7.53827	6.03905	1.53665	4.74517	6.10854	5.2276	5.578	4.4889	2.02475
40	1.56372	3.19094	5.68483	6.59679	1.86231	2.97607	1.74518	1.10959	2.49961	1.32581	2.85549	1.87178
50	3.45313	5.06297	4.36951	3.23348	2.04031	3.71091	3.01168	5.53288	0.95628	0	3.13711	1.73916
60	0.11257	4.64026	3.08717	9.27239	1.19395	3.15057	2.53912	3.47465	4.85176	4.61161	3.6934	2.47922
70	2.34478	5.35237	9.11274	3.11867	4.26198	5.17674	4.65459	8.57369	11.4055	3.96179	5.79629	2.92238

ตารางที่ ก.9 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทองแดง ทรงกระบอกตันที่พลังงานลำอิเล็กตรอน 200 keV

Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	5.8429	8.37406	4.02134	9.05174	6.81148	13.8987	7.03547	9.71765	6.4352	6.32627	7.75148	2.71721
-60	6.32377	8.29384	12.7442	15.775	5.31675	6.09977	8.21433	5.25436	10.1985	13.3776	9.15981	3.72006
-50	7.76371	3.81587	5.85419	6.07999	7.83654	5.39452	9.51321	6.74946	4.25702	7.59982	6.48643	1.75701
-40	6.25157	10.634	7.41248	4.35886	11.3256	7.84893	6.60467	10.6786	6.22982	7.05005	7.83946	2.29929
-30	5.19562	3.98279	6.51663	8.68396	5.76063	5.30714	3.03916	4.97204	4.86755	1.77182	5.00973	1.8827
-20	7.3254	5.47944	5.75153	5.65698	3.27496	8.14372	5.40825	4.32964	8.41305	4.72967	5.85126	1.65274
-10	4.78091	3.01606	5.28442	5.82008	7.40393	5.19161	5.85013	8.50268	4.7092	5.01731	5.55763	1.50996
0	6.31646	2.29354	2.33388	5.4236	0.9177	3.59059	2.34769	3.04375	2.35891	4.31993	3.2946	1.64022
10	6.6078	4.27284	11.3131	5.44413	6.42534	7.4341	5.82437	5.73162	4.42295	3.65624	6.11325	2.16238
20	7.63012	2.25442	9.30369	5.47097	5.70148	4.06686	11.648	7.77894	3.7303	3.7939	6.13787	2.91738
30	3.8786	5.95977	1.95146	12.0387	4.11604	6.71502	2.88773	6.54474	3.88088	6.52849	5.45014	2.8509
40	2.23231	3.64218	5.49395	0.37863	11.0243	3.1293	2.08976	7.72229	5.38774	14.9436	5.60441	4.49876
50	6.10662	11.1397	9.10558	10.3171	11.4871	4.08806	5.77724	5.80745	6.92549	6.71061	7.7465	2.56947
60	5.9386	7.69085	10.0505	9.23994	3.71558	3.8932	11.7527	5.78842	4.79757	9.63702	7.25044	2.82056
70	5.30263	11.9952	4.90838	4.55021	5.54884	11.2757	11.4408	14.0095	4.70944	9.58517	8.33259	3.67609

ตารางที่ ก.10 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทังสเตน ทรงกระบอกตันที่พลังงานลำอิเล็กตรอน 200 keV

Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	3.79836	0.38041	0.52897	2.03399	4.90269	3.15014	3.51832	3.51927	1.67987	3.50489	2.70169	1.48427
-60	0.01289	2.8431	2.47755	3.58519	3.08	1.06198	3.5841	4.54449	3.91822	3.58589	2.86934	1.37709
-50	0		0.77636	1.4423	2.36074	1.47535	0.08703	1.93502	2.8083	2.97379	1.53988	1.14055
-40	1.42074	0.0498	1.51883	0	0.52026	0	2.82979	3.06925	5.54003	5.79916	2.07479	2.19346
-30	0.08473	1.57055	1.53194	0	2.4503	1.16249	0.62594	1.93915	4.52355	1.52812	1.54168	1.30631
-20	0.3089	1.24256	0	0.76215	3.26223	3.09936	1.40506	0	0	1.83663	1.19169	1.22993
-10	2.88359	2.40834	0.23929	0.72567	2.19486	1.71125	3.05846	0.63331	0.38832	0.0093	1.42524	1.15652
0	0.33814	0.18698	1.29903	0.47791	0.52616	0.03115	0.22724	0.69418	2.3313	2.70055	0.88126	0.93322
10	0.40584	0	0	2.4759	4.61078	4.81996	1.82011	1.48865	0.58737	1.42693	1.76355	1.75103
20	1.8842	4.84937	0.7251	2.54081	1.6293	1.76998	1.9507	1.32693	0.29705	1.01341	1.79868	1.25451
30	0.63357	5.9217	1.65765	2.29094	1.39333	2.92834	1.48204	0	2.0823	1.71944	2.01093	1.59969
40	4.56972	1.30928	2.13968	0.82331	2.3045	2.279	1.41254	1.13328	1.2936	3.51757	2.07825	1.17815
50	2.50892	3.26307	2.30412	2.9302	3.69622	0.60489	1.6014	2.03973	4.10557	4.7911	2.78452	1.24119
60	3.07396	1.38745	0.63119	7.36102	4.14042	3.67296	2.04911	4.33063	2.13895	8.46534	3.7251	2.51699
70	3.16964	2.93973	1.50487	1.38802	2.25219	2.89251	2.28097	4.43458	4.23499	6.21018	3.13077	1.47842

ตารางที่ ก.11 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทองแดง ทรงกระบอกเจาะรูที่พลังงานลำอิเล็กตรอน 200 keV

Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	4.92215	9.19236	2.91555	7.55061	4.55827	1.59108	2.75958	10.9032	2.30117	3.66498	5.0359	3.14764
-60	0.18449	2.94098	3.51548	3.60123	2.99083	1.5893	4.43949	1.65774	0.85587	2.12357	2.3899	1.33604
-50	5.41342	7.2807	0.20628	3.77298	3.55148	2.14428	1.18994	1.49029	9.41525	1.3961	3.58607	2.9709
-40	0.92489	0.85838	3.82561	4.93604	2.87951	1.13683	3.8652	6.10734	5.64986	3.996	3.41797	1.92871
-30	1.94522	3.59621	0.33421	2.72683	4.35394	0.52877	8.11382	2.87379	2.23861	1.4596	2.8171	2.24535
-20	1.48189	6.33263	0.99544	0.14292	3.6792	0	0	2.25851	3.01068	1.30182	1.92031	1.99527
-10	2.49941	0.5281	0	1.87506	1.49061	3.48096	1.63057	2.78103	2.86336	2.29599	1.94451	1.07667
0	2.78742	3.31184	0	0.40795	0.11902	1.39245	1.76164	1.58518	0.3221	1.0691	1.27567	1.12778
10	0.67406	5.41396	5.41484	5.39663	0.98795	0.72244	0.42428	3.08525	4.00948	4.91984	3.10487	2.19303
20	2.39473	3.00844	0.66942	1.48496	3.80133	1.12234	1.44011	2.94022	1.66526	0.39802	1.89248	1.10473
30	3.84967	2.9811	0	4.65623	2.07916	0.1499	0	4.94556	1.47876	8.35148	2.84919	2.68632
40	3.11876	5.16802	2.59813	1.62694	0.94115	3.98215	2.76837	3.37862	3.13812	7.20777	3.3928	1.77461
50	5.18761	1.77229	2.03802	0.91935	4.15545	1.48458	1.59566	6.3334	3.25881	2.91139	2.96566	1.77406
60	3.26195	2.57296	2.93486	0.94816	2.36298	5.09884	6.70254	4.35097	0.1159	3.99236	3.23415	1.93117
70	4.3085	6.73454	3.09781	6.68585	4.11112	4.88187	4.01955	3.9171	3.48791	2.80573	4.405	1.3518

ตารางที่ ก.12 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทังสเตน ทรงกระบอกเจาะรูที่พลังงานลำอิเล็กตรอน 200 keV

Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	25.948	33.1567	24.3316	28.2264	28.1628	26.8338	26.764	37.9747	25.3304	29.3129	28.6041	4.10853
-60	33.7462	14.5544	21.3294	25.8657	19.7602	28.2243	20.8247	19.141	32.2936	28.7841	24.4524	6.27126
-50	19.386	23.9859	26.2528	32.8383	22.2891	14.9464	30.2221	28.0222	24.2447	20.6768	24.2864	5.31821
-40	31.9381	34.4639	30.1968	23.1083	38.2716	15.3527	28.2202	17.4989	20.5742	35.7612	27.5386	7.99358
-30	19.7232	22.4046	17.7424	18.0031	27.7394	26.8629	11.4004	23.7882	26.3805	25.3535	21.9398	5.1853
-20	21.2902	15.4597	23.9613	20.5357	24.5646	25.4519	22.7258	22.8556	22.3831	15.3417	21.457	3.5048
-10	21.4269	19.435	14.2001	30.3517	32.6744	29.6305	17.2309	18.4635	21.466	22.439	22.7318	6.14671
0	16.3048	20.8304	20.3608	13.8186	11.7762	18.8308	9.66474	11.8523	14.9134	23.3291	16.1681	4.53391
10	25.5884	17.6357	29.6519	17.3366	16.2471	20.0505	19.3996	21.9725	28.2231	17.9182	21.4024	4.80391
20	15.4929	35.1413	20.6107	37.051	24.7959	26.7534	24.9678	25.0301	25.9676	32.7004	26.8511	6.55581
30	28.349	27.1756	24.3953	22.8937	19.6808	26.5494	27.9316	14.3612	17.2898	15.5365	22.4163	5.32785
40	20.2995	20.5193	19.917	21.5505	20.2115	27.8037	24.5171	27.5292	20.6921	17.0687	22.0109	3.48715
50	26.973	20.9518	20.8228	25.2772	21.6651	20.0587	25.5299	23.4736	23.6568	30.8523	23.9261	3.34127
60	21.0934	23.7832	29.3299	17.3626	17.7178	25.9997	18.4943	20.9153	22.2201	27.2757	22.4192	4.12526
70	29.3405	40.151	25.5671	38.8008	26.743	37.3644	17.6797	28.4428	36.6927	27.7315	30.8514	7.16729

ตารางที่ ก.13 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทองแดง ทรงกระบอกตันที่พลังงานลำอิเล็กตรอน 250 keV

Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	51.945	67.9088	71.6164	55.3024	68.52	60.8273	73.67	70.1758	67.8646	63.4071	65.1237	7.14193
-60	54.1007	63.849	77.5086	71.5616	57.7709	59.4211	61.1879	58.3983	42.4933	61.4491	60.7741	9.43817
-50	65.6206	85.098	75.771	57.6965	59.744	56.4389	78.5538	69.2815	59.2207	74.7061	68.2131	10.0055
-40	69.0732	71.1019	64.6847	76.1073	76.128	71.1051	80.2624	76.2101	88.878	82.3184	75.5869	7.04168
-30	72.5865	62.0632	77.4305	75.8867	62.336	84.2962	72.5249	81.2686	67.9647	71.5811	72.7938	7.33795
-20	57.3707	65.548	68.0034	78.3671	97.981	79.5714	81.8516	73.9803	63.9743	40.8812	70.7529	15.5017
-10	85.4433	58.2911	64.8619	68.0145	68.0145	68.0145	63.8053	65.8113	81.3506	69.4121	69.3019	8.12437
0	59.6844	59.4899	51.6129	46.5874	60.414	48.4804	48.7922	46.5771	57.3177	55.9026	53.4859	5.66574
10	55.2585	49.8765	53.357	63.0355	62.0565	92.2196	81.2739	82.5152	63.3706	81.6796	68.4643	14.701
20	77.4057	66.5655	61.7992	76.7821	87.6612	93.0201	70.8171	69.7153	72.2933	87.8477	76.3907	10.2082
30	57.6909	83.1362	54.0009	59.8692	63.4552	82.3649	66.3658	68.8041	69.7927	78.8372	68.4317	10.2555
40	56.0344	64.0022	84.5046	70.1209	60.3944	61.6534	80.9986	61.9982	60.0056	48.3064	64.8019	10.9982
50	70.3982	75.787	67.5833	92.1517	64.9618	57.1442	79.8774	52.1748	50.2542	74.6954	68.5028	13.0199
60	56.9085	84.9132	69.9222	72.9231	78.0997	77.4537	75.8881	53.8611	67.8389	54.0132	69.1822	10.9148
70	66.0795	76.5674	54.7718	61.3714	57.386	85.4003	66.9767	64.7226	76.8919	69.2249	67.9393	9.45021

ตารางที่ ก.14 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทังสเตน ทรงกระบอกตันที่พลังงานลำอิเล็กตรอน 250 keV

Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	11.284	14.2692	7.00314	17.3135	4.32553	9.39376	16.3155	13.053	14.5194	6.92867	11.4406	4.38713
-60	5.09508	13.608	10.9111	19.0629	9.06094	4.98641	11.2353	9.3089	19.7668	13.7234	11.6759	5.0468
-50	6.43565	14.9598	6.31704	8.59415	9.89975	11.6739	18.1507	11.0603	9.73097	13.0452	10.9867	3.6942
-40	16.7418	16.6621	15.5457	14.6787	6.5034	10.6579	14.7353	12.5614	13.8864	7.7156	12.9688	3.59485
-30	11.4433	8.42768	6.61995	7.01533	9.57201	8.54632	15.347	16.2583	9.48382	9.34912	10.2063	3.25245
-20	16.1806	12.0022	9.39805	8.48647	3.03518	7.15376	10.6322	10.8334	8.1204	3.99756	8.98398	3.82688
-10	9.33572	11.9585	12.5112	8.52903	4.2934	19.8945	3.57972	12.633	4.10232	12.8973	9.97347	5.10486
0	4.56946	6.04711	14.604	4.71526	8.49057	5.39136	8.49091	11.2774	1.99487	11.7196	7.73005	3.90414
10	12.5701	13.9569	10.5257	6.49943	3.06152	7.72388	5.1272	9.65272	10.6758	8.93624	8.87295	3.34775
20	13.9291	10.1636	8.60922	12.9988	14.0707	6.52008	6.35776	22.4191	20.2953	0.58675	11.595	6.59742
30	2.94512	7.71551	8.88596	11.1848	15.1977	7.82552	12.9726	4.63309	8.09222	19.0699	9.85224	4.86146
40	9.60695	9.22054	2.04437	12.2425	12.7046	11.0343	3.86463	11.4812	12.445	11.0001	9.56442	3.68759
50	13.0084	13.6524	7.0811	12.9997	10.8713	5.77003	1.15813	11.4339	6.9771	8.38731	9.13394	3.98655
60	13.0374	4.34285	6.23782	8.12591	10.5319	13.9304	8.35495	8.86516	9.37639	10.0323	9.28351	2.86505
70	11.108	19.5759	11.7419	12.767	19.4642	6.27612	7.47214	10.4406	20.9215	19.9643	13.9732	5.52112

ตารางที่ ก.15 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทองแดง ทรงกระบอกเจาะรูที่พลังงานลำอิเล็กตรอน 250 keV

Angle	rup 1	run 2	rup 3	rup (run 5	rup 6	rup 7	run 8	rup Q	rup 10	Average	SD
Angle	TUITI	TUITZ	Turi J	TUT 4	Turi J	TULLO		Turro	Turi 🦻	101110	Average	30
-70	25.1199	15.1133	24.4507	27.5922	21.0931	15.3289	32.3809	29.1739	36.3477	26.9192	25.352	6.80433
-60	20.4418	31.6112	29.6073	38.6098	19.9608	33.9769	25.9688	20.9129	29.564	21.9422	27.2596	6.44364
-50	21.7408	30.094	29.3603	24.404	25.9132	20.9465	23.3297	18.2474	28.2442	19.9851	24.2265	4.0999
-40	26.6876	19.3859	24.3858	20.036	21.0206	33.2735	13.8627	17.5175	27.0009	12.8447	21.6015	6.32417
-30	19.1205	23.9323	29.9065	35.0807	20.3485	28.573	23.0564	22.3029	16.011	31.337	24.9669	6.03514
-20	18.8598	15.2137	27.5694	26.2695	38.3972	25.7097	38.0235	26.525	6.71952	29.7433	25.3031	9.71465
-10	31.2944	22.2411	19.4196	24.6226	31.7799	25.5426	29.477	24.5089	22.2095	28.5725	25.9668	4.16684
0	21.8839	17.9215	19.3626	25.3679	18.5875	19.7937	9.04656	22.9711	20.3916	16.6738	19.2	4.38115
10	23.1175	25.1154	28.0948	34.5964	32.3849	24.7203	20.7285	47.13	14.5633	28.0754	27.8527	8.84955
20	20.3127	25.0618	21.4703	26.9404	23.9453	36.6187	22.9849	42.1907	18.7653	17.6765	25.5967	7.90802
30	27.0139	23.7448	26.017	28.5831	24.5772	29.2877	22.5126	23.978	22.9585	24.3419	25.3015	2.33312
40	22.1495	31.8684	24.941	23.2255	23.4362	22.5185	33.3138	27.7847	16.6891	14.8263	24.0753	5.84954
50	27.0227	15.5189	15.2793	14.4959	23.8844	36.5663	36.0316	27.3008	37.403	33.2315	26.6734	9.15552
60	31.9244	42.3112	17.2098	24.9538	37.1296	22.4402	38.3581	28.9136	32.0804	42.8747	31.8196	8.56556
70	26.1145	24.3455	27.0225	27.2215	17.0336	20.3269	25.377	16.9592	25.0807	28.5016	23.7983	4.19816

ตารางที่ ก.16 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทังสเตน ทรงกระบอกเจาะรูที่พลังงานลำอิเล็กตรอน 250 keV

Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	63.0808	56.754	54.9304	63.9687	79.0608	52.7887	61.7583	71.5336	68.6601	46.8107	61.9346	9.57102
-60	70.7553	40.7032	82.9756	61.105	55.8309	63.1697	79.4728	65.0688	52.104	57.2253	62.8411	12.6438
-50	36.4406	77.0596	62.6794	51.1148	52.2484	76.483	62.3691	51.3906	80.7873	75.7975	62.637	14.7416
-40	54.9014	52.6927	86.8455	61.5922	66.1696	73.3562	57.714	68.1298	75.7697	47.6523	64.4823	11.975
-30	71.0488	46.0934	68.8407	47.8577	56.6464	42.2055	64.739	64.963	65.1257	60.4918	58.8012	10.1554
-20	60.5523	61.065	70.3522	81.9815	75.5112	51.6418	71.5433	49.2722	59.3896	61.1378	64.2447	10.3927
-10	84.9763	72.6752	83.781	61.9682	48.6426	59.4738	55.6794	76.0339	82.5846	64.5402	69.0355	12.794
0	44.2298	40.0187	49.2203	63.0946	69.1516	43.646	63.9271	48.4962	44.2509	53.3236	51.9359	10.083
10	77.939	82.6296	78.2219	49.9742	71.9281	70.0716	74.6972	44.9762	76.216	53.6948	68.0349	13.3709
20	54.3263	73.0883	67.0029	39.1237	85.8312	49.8602	76.6556	85.6364	62.1863	76.1181	66.9829	15.5278
30	62.228	54.7478	58.4917	73.5194	62.2451	65.3119	78.8972	44.6817	70.4796	59.4591	63.0062	9.78863
40	55.0175	67.0532	53.5775	52.781	65.9523	82.5795	81.308	68.7074	67.9073	73.0778	66.7962	10.6183
50	61.1282	67.1314	55.3122	49.6896	55.9316	35.1161	62.3569	44.7133	56.989	65.2464	55.3615	9.87049
60	73.3432	57.3192	38.2055	56.3743	80.3261	69.5552	53.0151	61.9758	53.4523	70.8844	61.4451	12.3422
70	88.1588	54.7595	39.5437	43.229	76.3657	53.0997	48.1311	55.7952	64.5659	54.026	57.7675	14.9101

ตารางที่ ก.17 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทองแดง ทรงกระบอกตันที่พลังงานลำอิเล็กตรอน 300 keV

Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	127.207	157.473	141.993	115.407	187.045	130.437	164.398	166.329	141.21	181.621	151.312	23.8632
-60	166.672	141.405	129.545	148.468	150.537	131.679	165.386	157.067	122.991	196.573	151.032	21.8151
-50	169.99	165.777	190.776	142.108	167.793	182.146	155.054	167.447	140.92	153.116	163.513	16.0541
-40	160.548	201.008	223.234	172.675	199.251	179.732	171.117	161.783	169.078	177.432	181.586	20.0686
-30	170.587	189.409	161.903	165.932	158.389	171.729	194.172	194.911	163.781	179.432	175.025	13.6504
-20	195.236	179.636	213.809	212.684	223.402	186.7	168.67	161.104	220.809	171.433	193.348	23.1291
-10	142.54	209.366	176.148	185.114	210.976	219.75	187.101	199.846	165.185	201.339	189.737	23.611
0	157.879	163.029	170.414	164.115	154.69	133.367	175.209	159.664	176.805	115.657	157.083	19.066
10	197.91	213.436	202.981	185.757	203.747	202.184	205.441	195.315	195.032	215.021	201.682	8.74969
20	211.652	163.846	183.147	167.716	186.086	167.866	190.357	198.91	196.004	204.77	187.035	16.4905
30	165.868	152.528	178.612	168.337	190.373	181.419	168.133	176.2	190.714	135.733	170.792	16.9433
40	182.888	138.997	207.199	176.521	165.262	161.051	166.269	152.054	153.938	149.445	165.362	19.6002
50	182.459	141.095	160.178	161.285	187.701	131.343	154.205	167.115	149.842	141.679	157.69	18.0178
60	152.895	192.529	178.598	140.142	166.894	169.191	151.3	186.19	134.303	112.38	158.442	25.047
70	148.313	170.44	139.456	137.613	150.661	141.76	167.776	125.274	162.554	165.615	150.946	15.1783

ตารางที่ ก.18 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทังสเตน ทรงกระบอกตันที่พลังงานลำอิเล็กตรอน 300 keV

Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	19.4304	17.0312	31.8304	15.5065	26.1158	21.7856	28.6925	23.2417	15.1508	11.0183	20.9803	6.58722
-60	12.1349	15.2229	19.0426	23.0749	9.32613	27.2789	17.8075	12.4601	36.2684	21.4024	19.4019	8.07378
-50	12.1595	21.5182	11.9777	21.7833	15.7087	33.913	22.0612	25.2865	17.5847	18.1161	20.0109	6.53945
-40	21.0742	14.4136	15.5929	24.6472	21.9001	22.9781	11.6679	19.0665	29.4988	19.8439	20.0683	5.23196
-30	17.6859	16.0835	17.1612	9.5717	29.0992	30.5313	34.4041	14.4219	17.4094	27.8412	21.4209	8.28522
-20	21.6041	36.1122	14.4853	14.9641	25.3002	17.0171	19.7681	19.7027	22.1146	14.6446	20.5713	6.5402
-10	11.6962	13.9898	22.6269	20.9823	22.1704	16.025	23.8319	17.3036	37.2198	23.3681	20.9214	7.10854
0	11.6284	18.2051	31.195	26.6786	17.3629	15.9373	23.5482	16.1273	12.8049	15.6398	18.9128	6.26493
10	22.5643	15.402	16.1679	28.8678	24.4354	22.7807	16.4291	18.3374	16.0151	36.54	21.754	6.8528
20	7.87512	28.7351	19.3058	24.4413	10.3269	17.7026	12.861	18.9109	37.8218	19.0291	19.701	8.8956
30	21.2061	18.9865	14.2045	25.5277	14.4145	15.531	29.1421	13.9458	5.96273	19.9662	17.8887	6.587
40	20.2078	18.9927	22.5554	12.9722	9.26552	14.6629	10.6453	15.7451	18.8402	15.6375	15.9525	4.25385
50	18.5443	9.44036	24.9567	19.5537	29.6225	20.1686	11.8976	19.4358	29.6886	30.9748	21.4283	7.38539
60	23.6231	15.6476	22.5713	17.9233	28.2592	12.2058	10.3679	15.9939	15.6615	19.2239	18.1478	5.43549
70	11.8175	14.5207	19.8514	16.2388	13.2152	10.7406	25.7784	15.6585	15.1411	24.1973	16.716	5.03907

ตารางที่ ก.19 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทองแดง ทรงกระบอกเจาะรูที่พลังงานลำอิเล็กตรอน 300 keV

Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	48.1063	43.1296	42.5629	24.4303	60.802	35.2251	63.7947	38.0143	69.8148	34.2563	46.0136	14.5694
-60	51.4852	52.9614	62.6426	54.7167	40.6742	36.5528	45.2155	45.8617	43.6958	53.1244	48.693	7.69773
-50	52.6355	44.3532	63.6194	36.0303	72.1157	58.5523	49.466	60.7773	52.3737	36.1356	52.6059	11.6814
-40	60.3124	52.1559	74.8646	59.0017	73.9931	38.4455	44.7765	46.2162	50.6202	60.2223	56.0608	12.012
-30	70.0126	66.1975	60.7959	63.2848	62.5595	42.915	68.2069	45.6685	55.1581	35.4453	57.0244	11.828
-20	65.0781	48.5871	50.564	48.1994	72.722	54.5279	67.6165	55.6319	79.1892	52.104	59.422	10.9567
-10	50.5043	69.7579	58.7913	58.0169	64.9947	44.6662	59.326	56.9071	93.605	76.7213	63.3291	13.9799
0	58.9997	53.7922	36.3703	64.6397	87.3144	58.2926	59.1284	49.7248	47.0067	65.337	58.0606	13.4761
10	58.1929	63.5982	34.354	61.0815	78.8122	53.8964	59.1304	45.1939	75.2805	74.6854	60.4225	13.8788
20	68.31	54.4523	74.4499	69.4722	63.7405	49.0283	62.8827	62.3683	54.6851	41.0239	60.0413	10.1924
30	63.2294	44.678	40.106	48.8998	64.2474	51.2094	54.3437	59.4267	48.1284	51.2656	52.5534	7.84947
40	50.4058	68.7713	48.8233	74.7115	33.8508	62.062	78.7038	55.7024	83.5043	56.4904	61.3026	15.3278
50	39.7181	67.8703	50.1156	57.5036	58.3207	55.0329	56.3072	63.4297	75.7269	51.0845	57.511	9.97213
60	34.8052	29.3056	40.21	51.7955	65.133	53.8996	44.1659	49.8791	48.2381	46.8308	46.4263	10.121
70	49.0094	48.0756	55.1206	65.0662	16.0664	34.9396	52.7479	22.5049	39.8656	45.3452	42.8741	14.9678

ตารางที่ ก.20 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทังสเตน ทรงกระบอกเจาะรูที่พลังงานลำอิเล็กตรอน 300 keV

Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	112.779	106.299	84.3536	112.364	55.9657	53.9591	69.4791	85.917	92.2578	63.4125	83.6787	22.4203
-60	75.3084	80.9511	95.6125	103.554	125.153	71.891	111.952	129.041	77.003	126.35	99.6816	22.6951
-50	74.2978	93.7235	105.053	96.897	121.816	112.021	98.8401	113.561	128.023	105.376	104.961	15.3077
-40	127.562	83.9835	101.1	97.4227	94.9032	96.6726	87.3959	89.2196	81.1723	78.8911	93.8323	13.9676
-30	120.43	106.029	109.823	103.944	122.981	101.133	101.365	99.785	132.359	116.967	111.482	11.1246
-20	142.113	121.521	108.51	108.854	110.669	106.293	122.275	129.911	98.6741	109.996	115.882	12.9579
-10	142.661	141.943	122.318	97.6479	115.183	120.224	124.485	158.831	132.275	135.073	129.064	17.0213
0	103.754	118.374	125.624	98.9665	122.451	105.142	110.535	103.754	77.7543	95.3747	106.173	14.1427
10	82.8156	106.795	105.197	147.816	102.743	103.381	149.925	109.481	132.338	111.742	115.223	21.4018
20	123.822	103.038	119.254	112.509	117.247	96.1374	111.503	109.904	87.9297	96.8641	107.821	11.5015
30	102.52	127.879	95.4031	106.41	99.0084	95.7543	122.085	106.297	102.455	119.646	107.746	11.4709
40	85.9876	97.1801	111.357	86.586	104.21	123.701	111.378	86.6696	87.3204	88.1472	98.2537	13.6243
50	100.92	121.932	108.06	71.4372	92.6186	97.373	87.9365	120.229	87.4425	101.766	98.9715	15.3804
60	101.38	67.1494	98.3557	85.3812	95.1184	95.1429	114.216	83.8472	78.1387	98.0989	91.6828	13.3237
70	83.5655	82.8565	79.4274	73.224	75.993	76.0735	89.6437	80.4302	67.0161	98.9551	80.7185	8.90998

ตารางที่ ก.21 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทองแดง ทรงกระบอกตันที่พลังงานลำอิเล็กตรอน 350 keV

					// V/AC/2644	A TELE CARL						
Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	206.187	255.746	211.307	177.075	215.153	208.678	212.58	205.88	199.665	214.441	210.671	19.3418
-60	266.607	239.301	235.035	223.606	238.64	251.279	237.527	200.517	222.934	236.891	235.234	17.5425
-50	250.493	226.062	236.859	205.035	245.483	274.659	227.394	226.178	262.973	202.757	235.789	23.2273
-40	263.236	252.179	278.427	266.867	233.231	266.362	250.161	201.232	253.464	235.745	250.09	22.1483
-30	245.656	237.144	250.026	271.252	246.306	282.533	218.837	322.739	277.755	286.468	263.872	30.085
-20	265.429	289.431	314.71	272.241	263.973	283.473	269.999	278.018	275.229	323.821	283.632	20.413
-10	338.969	305.917	253.847	297.603	302.05	321.772	308.709	323.864	289.942	351.425	309.41	27.23
0	242.194	232.031	268.53	214.713	241.088	210.235	216.085	235.497	223.502	212.111	229.599	18.1633
10	289.327	342.824	276.39	279.921	308.272	326.844	347.424	282.897	263.166	318.036	303.51	29.4351
20	311.886	289.966	270.541	251.18	299.404	280.981	289.765	308.11	310.917	295.767	290.852	19.2238
30	359.415	259.678	248.009	308.795	300.867	248.091	266.674	302.926	206.658	250.595	275.171	43.1272
40	238.401	207.974	217.915	269.723	216.756	250.218	274.849	277.022	270.57	266.479	248.991	26.7842
50	217.39	205.675	281.24	166.788	239.517	218.302	263.896	187.79	260.941	276.666	231.821	38.9187
60	259.918	248.771	232.051	217.416	206.185	190.176	243.217	301.505	223.888	182.763	230.589	35.1441
70	212.521	177.491	193.019	217.502	228.965	227.749	214.492	202.155	208.574	216.7	209.917	15.6741

ตารางที่ ก.22 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทังสเตน ทรงกระบอกตันที่พลังงานลำอิเล็กตรอน 350 keV

Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	46.0923	21.0879	13.911	26.4803	31.1838	18.9616	23.6253	34.483	15.1671	33.1042	26.4097	9.96861
-60	19.078	16.1123	19.9726	25.0388	35.0936	16.7159	31.0539	38.4198	20.688	29.0812	25.1254	7.89991
-50	24.7066	26.7214	24.5196	28.8806	24.8273	25.4272	42.8466	22.8132	33.5514	23.1389	27.7433	6.17494
-40	29.7426	22.118	28.992	20.0371	31.9224	46.4782	28.2853	10.5403	35.5678	20.2868	27.3971	9.87088
-30	22.7697	28.062	28.1814	39.8908	38.813	33.3218	30.5355	28.4622	34.0488	27.6662	31.1751	5.33909
-20	20.9883	45.8345	27.5899	60.9469	37.162	29.7222	25.5887	35.1744	13.7611	46.0106	34.2779	13.8649
-10	42.4448	28.2519	50.347	31.551	69.4855	41.7627	35.7516	22.3962	53.4318	36.3397	41.1762	13.7552
0	21.8233	30.1423	26.4514	33.2968	34.1001	34.7616	20.3489	33.6944	30.5559	22.8306	28.8005	5.51703
10	21.5651	33.7719	36.9539	49.3211	44.0207	23.9986	22.9554	26.4299	42.4444	29.4377	33.0899	9.78497
20	30.3872	30.5488	27.3707	31.0548	34.6422	31.4649	35.551	60.6852	30.4963	30.3663	34.2567	9.56702
30	41.1576	31.6345	51.9361	25.5328	42.2484	17.0802	47.379	26.3932	38.6668	45.1401	36.7169	11.1229
40	32.4744	16.1567	45.8958	27.7973	27.3728	37.1772	38.2423	40.7217	21.0691	21.6271	30.8534	9.65618
50	26.9861	32.6553	26.8735	13.6672	18.1944	20.1365	26.2249	24.17	42.5803	23.3238	25.4812	8.00146
60	34.8831	14.8179	14.4864	17.7506	20.2155	20.2998	30.057	26.6134	37.9912	23.629	24.0744	8.16281
70	33.1897	23.5164	10.7053	40.0546	18.7749	9.14258	36.8209	11.394	14.9871	24.4912	22.3077	11.2711

ตารางที่ ก.23 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทองแดง ทรงกระบอกเจาะรูที่พลังงานลำอิเล็กตรอน 350 keV

Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	70.9558	69.3535	73.5827	51.1605	53.7076	52.79	41.3886	71.49	51.9639	53.8995	59.0292	11.2175
-60	54.4491	64.3303	75.4725	71.4284	75.4425	59.3404	70.8516	52.2943	82.1058	77.3196	68.3035	10.1914
-50	59.343	77.3358	81.0855	76.9627	65.9209	53.1873	69.063	51.587	62.8817	46.169	64.3536	11.9152
-40	61.1465	81.7057	82.1033	80.2554	52.2163	86.0646	67.2868	81.3065	64.857	90.0089	74.6951	12.3961
-30	74.2912	52.8543	87.5158	97.1755	102.528	90.227	55.7421	72.7009	89.3752	105.144	82.7554	18.3151
-20	75.2836	99.0684	80.8278	99.6222	114.978	102.317	111.176	75.445	79.1479	96.5071	93.4373	14.7323
-10	106.118	109.017	110.452	93.5186	78.2421	129.748	98.9981	118.911	116.435	99.3198	106.076	14.4851
0	89.8757	74.9604	79.3581	78.0191	99.4119	46.7058	97.121	81.6293	94.6608	77.5991	81.9341	15.2449
10	109.491	84.7519	107.283	97.7052	161.41	68.8559	118.808	105.424	130.388	125.695	110.981	25.5669
20	105.258	96.8628	121.263	60.3663	86.7889	76.3173	78.6313	90.1713	76.5109	91.2143	88.3384	17.0557
30	72.1851	87.8601	92.7585	78.0027	97.4501	71.656	108.227	53.434	91.6706	110.556	86.38	17.7297
40	94.62	95.7297	58.9899	71.4287	65.0738	68.9293	67.0167	74.8634	49.7182	78.3478	72.4718	14.4119
50	74.2393	92.0257	61.5231	82.6686	87.9612	42.0359	66.9586	70.2906	59.5331	81.2082	71.8444	15.0943
60	61.3219	44.5598	76.9514	73.8082	71.4465	83.5431	61.4548	58.7593	76.7764	64.4335	67.3055	11.4238
70	49.5065	72.6852	54.1816	61.7334	83.9873	56.2898	55.4055	37.1621	67.9821	55.7755	59.4709	12.9892

ตารางที่ ก.24 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทังสเตน ทรงกระบอกเจาะรูที่พลังงานลำอิเล็กตรอน 350 keV

Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	102.481	129.626	142.39	87.6786	88.3417	76.2777	121.271	109.758	102.054	107.751	106.763	20.2371
-60	119.648	112.342	153.856	109.902	131.591	120.335	125.252	103.324	119.337	122.733	121.832	13.8301
-50	163.72	116.221	107.533	138.97	154.044	142.809	122.635	95.0503	146.432	136.367	132.378	21.5614
-40	95.3498	164.107	115.02	128.518	113.492	180.385	160.533	132.889	114.42	121.678	132.639	27.0486
-30	165.615	191.1	131.815	134.522	155.439	133.248	155.413	150.144	130.249	149.983	149.753	18.9512
-20	152.982	179.868	134.886	138.209	142.268	133.159	147.83	148.957	176.657	143.503	149.832	16.2281
-10	187.803	157.831	184.401	184.399	169.681	202.389	117.818	196.487	193.867	160.276	175.495	25.2006
0	144.953	111.454	120.54	126.323	114.892	151.68	151.043	84.5136	145.328	127.587	127.831	21.277
10	203.318	125.786	158.235	156.924	174.704	202.997	172.36	167.387	139.025	152.994	165.373	24.793
20	143.044	149.298	106.137	189.019	147.535	178.108	137.94	149.853	150.718	151.108	150.276	22.2059
30	125.946	175.346	135.739	156.851	140.911	136.381	130.645	135.701	137.519	167.064	144.21	16.4325
40	119.693	104.063	145.321	156.101	115.243	107.438	160.231	133.294	149.361	131.179	132.192	20.2065
50	107.071	115.034	143.413	111.355	154.035	114.652	132.013	112.382	115.702	124.047	122.97	15.4584
60	116.785	90.6869	133.848	76.9019	112.684	89.2325	98.2595	80.5783	109.71	128.85	103.754	19.6933
70	104.47	69.1112	88.5254	116.949	132.093	117.056	127.026	95.7619	105.274	109.008	106.527	18.6939

ตารางที่ ก.25 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทองแดง ทรงกระบอกตันที่พลังงานลำอิเล็กตรอน 400 keV

				1 m /	11 V NORMAN	Manar 12 V						
Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	247.222	321.493	234.186	255.812	238.335	233.884	228.316	207.682	266.998	286.164	252.009	32.6871
-60	206.683	278.515	296.579	296.747	282.456	282.036	242.925	292.178	275.298	293.385	274.68	28.6438
-50	299.957	331.027	258.619	253.184	310.549	283.503	240.097	222.946	255.405	234.39	268.968	35.6515
-40	306.197	260.513	264.153	336.345	273.932	294.014	274.903	305.49	280.259	239.654	283.546	27.6947
-30	367.704	296.411	296.347	293.756	320.543	292.449	351.039	319.569	323.896	371.695	323.341	30.5127
-20	338.213	320.08	273.849	285.63	397.107	362.976	302.16	305.71	315.954	362.318	326.4	38.5219
-10	369.125	357.882	310.046	379.725	371.364	414.055	455.266	452.61	410.491	375.355	389.592	44.3519
0	282.199	314.003	336.046	356.222	287.827	273.531	278.698	270.734	345.361	285.081	302.97	32.1873
10	415.968	381.805	388.735	273.97	466.848	372.357	380.986	426.463	379.658	328.091	381.488	52.7562
20	360.526	376.873	325.325	340.773	360.414	360.006	376.891	337.58	359.245	274.829	347.246	30.3191
30	371.781	365.863	298.49	358.48	289.872	375.861	352.845	313.175	352.535	400.074	347.898	35.8534
40	278.342	313.192	312.94	223.382	320.558	328.888	279.767	299.767	272.266	296.164	292.527	30.8632
50	313.977	269.526	241.89	277.396	292.69	245.008	276.446	273.119	231.303	253.429	267.478	25.1181
60	290.632	253.408	243.784	269.14	297.68	196.983	245.227	245.081	265.952	265.678	257.357	28.2013
70	150.837	222.471	283.269	228.151	306.934	250.591	193.996	264.421	218.537	233.166	235.237	44.5415

ตารางที่ ก.26 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทังสเตน ทรงกระบอกตันที่พลังงานลำอิเล็กตรอน 400 keV

Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	18.699	35.867	37.4369	41.9449	11.309	45.4146	41.1841	26.8382	12.0266	18.9952	28.9716	12.9775
-60	28.3013	24.1624	39.5112	32.623	20.9935	37.5056	42.3042	30.0692	18.133	34.8767	30.848	8.03169
-50	15.7756	50.9245	36.9021	34.929	42.3578	30.1056	39.9983	31.1084	31.756	47.156	36.1013	9.95084
-40	39.8931	21.5862	30.9735	35.8229	19.8571	33.2362	28.2818	34.3199	40.8852	25.4037	31.026	7.20781
-30	26.2218	45.6446	39.8377	58.1683	24.193	34.9575	39.9659	42.8662	49.9516	36.2531	39.806	10.2633
-20	32.8472	43.4581	43.951	38.6687	37.1847	43.2813	47.9454	42.5199	22.9656	53.6277	40.645	8.43538
-10	43.4852	36.4751	52.8805	50.3674	48.0793	31.8883	71.6007	50.1787	54.9	41.6953	48.1551	11.0105
0	19.9955	27.725	38.5146	37.9827	23.8738	43.2098	15.98	24.0226	44.3408	37.5668	31.3212	10.1722
10	52.5577	48.1374	73.8277	27.3873	51.087	41.2606	53.287	36.6972	54.5583	28.2169	46.7017	13.9081
20	61.0384	26.5202	50.1621	45.721	66.8906	52.3762	49.8132	48.6384	39.3383	42.4539	48.2952	11.1846
30	47.5002	49.4894	39.7974	50.8117	40.3025	28.5283	58.6218	44.7731	45.8728	30.5364	43.6234	9.17268
40	23.3423	37.6066	45.0278	31.7516	33.9337	22.0477	28.8297	25.5817	33.9354	42.1701	32.4227	7.71433
50	24.8528	50.2406	14.4773	42.3362	32.8473	34.0577	35.767	27.724	26.1232	27.4696	31.5896	9.93583
60	34.214	50.424	44.0717	42.9104	21.2912	27.7216	31.5475	38.2164	30.121	16.3436	33.6861	10.5471
70	31.1932	40.1239	23.1991	25.6951	29.2445	49.81	34.7375	22.8401	17.2956	27.8269	30.1966	9.43489

ตารางที่ ก.27 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทองแดง ทรงกระบอกเจาะรูที่พลังงานลำอิเล็กตรอน 400 keV

				- //	11 13 13 18 18 28	ACTION OF A ALL						
Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	91.1143	62.2764	59.4434	85.7302	74.4898	82.6476	71.545	71.8863	61.0061	49.7333	70.9872	13.0482
-60	71.3066	88.5117	109.161	101.339	79.1198	75.0301	69.7703	71.037	98.8014	95.2106	85.9288	14.5203
-50	76.1478	62.8865	80.8274	67.0971	89.1791	74.1196	68.6941	54.3977	96.709	78.7877	74.8846	12.4544
-40	129.074	69.4753	98.2727	132.112	67.5012	68.5854	64.4038	105.881	95.6911	97.2307	92.8227	25.0933
-30	94.6551	117.215	118.688	114.115	99.489	123.486	85.746	108.886	120.017	106.264	108.856	12.3063
-20	140.836	102.618	171.884	123.447	114.298	102.089	157.576	146.707	135.287	118.906	131.365	23.2425
-10	142.27	151.839	124.3	123.366	148.135	154.608	136.315	97.8748	152.413	83.6178	131.474	24.3636
0	75.8525	105.513	135.914	127.777	75.4217	150.731	97.2137	58.2136	125.559	111.495	106.369	29.7885
10	161.449	117.094	175.364	137.263	128.259	105.728	158.702	163.256	145.062	133.302	142.548	22.2397
20	104.219	158.742	79.7313	111.466	139.49	106.417	136.873	88.0088	106.392	100.196	113.154	24.5527
30	126.319	110.928	110.147	80.5155	82.9354	118.077	117.945	111.994	133.253	59.9814	105.21	23.1287
40	124.759	80.042	114.133	88.5295	123.867	112.188	62.5876	61.4563	101.644	83.3554	95.2562	23.5722
50	115.659	92.6529	118.087	90.227	75.916	86.499	83.1629	70.1113	84.0531	100.843	91.7211	15.743
60	59.6011	73.3056	91.1673	83.5721	103.352	74.7767	87.0827	74.1134	66.686	72.3928	78.605	12.7866
70	81.0239	94.727	52.1558	92.5789	76.9385	76.2645	72.8532	65.9786	59.1949	85.679	75.7394	13.7681

ตารางที่ ก.28 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทังสเตน ทรงกระบอกเจาะรูที่พลังงานลำอิเล็กตรอน 400 keV

Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	141.167	102.67	85.0642	139.153	126.905	128.577	123.716	130.97	112.394	108.375	119.899	17.5879
-60	116.137	118.906	81.4157	155.004	108.152	135.779	117.426	143.407	113.328	100.527	119.008	21.3122
-50	178.072	169.759	163.955	133.334	133.86	116.068	116.867	150.449	132.748	130.336	142.545	21.831
-40	143.04	161.641	158.973	168.993	158.324	194.247	180.683	140.104	158.775	167.868	163.265	16.0844
-30	170.892	199.146	131.246	194.103	152.73	134.78	181.042	153.489	160.996	175.203	165.363	22.9963
-20	197.749	174.533	135.763	159.729	211.465	149.182	181.576	195.993	153.326	198.696	175.801	25.3761
-10	221.099	196.999	199.996	194.832	150.395	188.843	216.038	211.86	193.832	208.876	198.277	19.8635
0	129.568	140.814	186.893	128.784	119.131	151.611	167.486	175.341	146.974	118.331	146.493	23.8178
10	166.666	206.073	180.197	166.065	166.076	223.46	231.4	219.955	216.755	214.396	199.104	26.3673
20	195.812	175.935	128.289	144.543	194.468	202.881	172.551	156.274	179.902	186.837	173.749	24.0487
30	152.727	143.295	187.801	134.599	157.038	129.768	215.887	97.9526	150.585	179.456	154.911	33.0895
40	203.516	137.514	148.723	169.359	213.721	146.879	171.444	197.608	141.488	144.778	167.503	28.341
50	96.9739	90.1508	148.273	144.81	173.914	120.424	164.393	175.007	111.269	160.131	138.535	31.6068
60	159.193	100.446	135.379	155.537	125.004	101.07	138.719	118.076	91.1316	121.183	124.574	23.048
70	125.554	147.275	102.268	118.396	139.669	117.806	145.881	117.317	131.678	98.8832	124.473	16.8085

ตารางที่ ก.29 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทองแดง ทรงกระบอกตันที่พลังงานลำอิเล็กตรอน 450 keV

				- //	11 13 6 8771	ACTION OF ALL ALL						
Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	339.574	225.739	271.523	271.533	205.591	275.25	252.457	229.32	262.058	263.864	259.691	36.4858
-60	278.575	238.15	354.759	325.194	347.766	304.267	308.778	272.048	355.647	282.659	306.784	39.4587
-50	222.145	291.884	268.445	302.458	313.943	320.546	277.77	251.307	296.61	343.513	288.862	35.3948
-40	332.337	334.619	317.108	298.25	303.435	312.003	388.16	375.55	357.886	373.819	339.317	32.5197
-30	378.751	331.627	324.477	344.445	309.431	314.593	291.792	316.352	397.165	332.399	334.103	32.0998
-20	367.55	429.54	363.482	431.67	466.275	383.056	474.966	327.099	391.209	378.796	401.364	47.5913
-10	469.345	434.478	382.575	551.644	469.215	465.948	583.183	401.156	467.16	414.433	463.914	63.1254
0	243.691	288.157	320.269	305.45	334.669	353.268	350.216	308.983	262.739	283.082	305.052	36.2286
10	513.463	508.069	514.479	471.15	470.382	413.75	493.403	386.811	375.379	396.336	454.322	55.6496
20	371.412	404.698	401.039	302.618	398.77	429.041	444.815	400.618	370.238	416.159	393.941	39.38
30	325.439	368.194	353.856	364.185	355.265	365.461	412.119	301.04	344.297	370.878	356.073	29.3873
40	335.831	333.853	345.63	351.369	313.378	355.755	331.685	329.025	378.06	343.688	341.827	17.6113
50	362.917	262.417	276.581	245.256	308.456	238.448	273.024	301.497	377.072	351.035	299.67	49.4975
60	286.732	307.36	247.727	283.937	215.65	318.839	326.449	281.65	284.851	314.121	286.732	33.9856
70	248.791	256.193	326.904	202.165	289.163	254.992	295.205	335.665	250.357	290.808	275.024	40.2577

ตารางที่ ก.30 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทังสเตน ทรงกระบอกตันที่พลังงานลำอิเล็กตรอน 450 keV

Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	14.764	41.4748	20.0672	23.0053	21.369	49.5853	17.1404	24.4364	38.1782	41.071	29.1092	12.2352
-60	33.3873	13.0955	29.0679	48.5949	17.7511	26.3264	45.3237	48.2008	21.291	24.3667	30.7405	12.8045
-50	45.4079	34.4175	55.1151	33.5981	34.4131	36.3216	29.3182	25.9187	21.832	31.6504	34.7993	9.52367
-40	33.8002	23.1363	22.2517	42.6292	54.9045	49.3929	46.1202	72.4556	27.594	39.5814	41.1866	15.5847
-30	30.4574	36.9091	44.3582	42.1931	60.0842	36.5068	52.9317	39.8027	36.1095	35.5184	41.4871	8.94657
-20	51.4311	21.8649	39.6017	36.5582	39.5497	64.1961	75.5339	47.3244	52.406	47.6628	47.6129	14.9316
-10	42.5136	42.1473	49.2641	70.5101	54.5914	56.0747	38.9271	60.2932	45.6105	57.6175	51.755	9.84296
0	36.0734	42.0654	46.4749	39.09	43.585	41.0419	72.2664	55.4546	37.766	49.4535	46.3271	10.8032
10	40.3042	43.5327	61.9278	65.3091	58.9603	81.0583	67.7589	72.0078	51.3615	66.8839	60.9105	12.7089
20	63.2785	43.8937	56.6849	67.4323	51.6685	35.0506	88.1749	68.8525	45.2017	62.7178	58.2955	15.2672
30	35.6652	51.4807	50.9088	27.6202	44.2426	31.6651	53.3579	36.711	15.1211	58.1322	40.4905	13.5192
40	51.1985	49.4284	46.5464	38.3219	44.399	53.327	31.1974	35.9615	26.6928	69.2494	44.6322	12.3323
50	45.3845	44.017	25.0251	34.3642	52.6332	35.2337	33.9708	37.0873	46.0212	35.9793	38.9716	7.95917
60	42.2468	35.0341	20.1075	41.445	38.6944	23.6093	28.2779	51.9974	35.536	43.5662	36.0515	9.7522
70	33.5874	39.2965	22.6818	29.6506	34.6704	33.641	50.1541	23.0941	12.485	43.2164	32.2477	10.9181

ตารางที่ ก.31 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทองแดง ทรงกระบอกเจาะรูที่พลังงานลำอิเล็กตรอน 450 keV

Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	54.2203	54.3422	92.422	70.1449	88.2487	44.0991	53.9164	117.703	68.5967	46.0301	68.9723	23.8072
-60	107.06	70.1462	115.028	94.5108	65.3751	80.9387	54.7985	107.528	88.9647	103.987	88.8337	20.4123
-50	69.0186	41.2491	128.719	76.6265	107.177	73.3351	77.6894	107.999	84.044	102.151	86.8009	24.9976
-40	88.9509	111.405	111.841	109.228	59.603	78.7474	115.05	91.4845	75.6901	68.2718	91.0272	20.1458
-30	129.916	121.079	163.639	136.91	88.5249	103.898	89.4824	151.939	150.692	114.663	125.074	26.2555
-20	147.628	129.076	129.834	101.805	176.734	128.258	98.5008	134.115	143.873	128.093	131.792	22.2781
-10	184.603	137.574	183.656	192.023	177.289	147.642	227.778	233.442	185.732	179.141	184.888	29.7525
0	101.241	114.538	157.092	126.053	97.1738	80.4926	106.077	113.706	90.7842	107.864	109.502	21.1038
10	204.778	177.222	179.702	154.533	165.088	166.513	153.272	143.788	132.386	132.04	160.932	22.6856
20	138.735	110.888	133.322	149.225	115.506	115.824	166.521	128.917	122.652	136.445	131.804	17.0984
30	133.293	89.857	116.779	114.511	141.782	123.157	103.087	104.353	131.847	120.205	117.887	15.7651
40	76.3689	88.8657	108.319	135.596	103.552	117.083	74.6022	111.123	82.5004	109.16	100.717	19.6551
50	76.9017	66.2135	87.278	113.992	112.21	95.5564	104.36	110.485	99.7479	88.0842	95.4829	15.8761
60	83.0144	56.2597	77.6034	141.068	73.3283	95.8076	115.043	100.084	101.463	58.3218	90.1993	26.085
70	83.4033	81.5022	73.55	95.5662	75.5925	80.9241	58.5779	59.2875	67.1407	89.9033	76.5448	12.2474

ตารางที่ ก.32 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทังสเตน ทรงกระบอกเจาะรูที่พลังงานลำอิเล็กตรอน 450 keV

Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	127.479	135.885	161.299	87.7041	147.588	108.581	182.012	131.08	191.207	136.952	140.979	31.3996
-60	185.805	123.542	108.445	95.1281	125.006	94.9398	129.48	102.679	134.652	148.297	124.797	27.7352
-50	208.509	176.984	149.058	176.258	165.626	137.674	144.162	187.137	127.765	104.198	157.737	30.9924
-40	164.335	169.971	219.089	166.9	178.717	210.887	140.181	133.851	172.981	181.181	173.809	26.6331
-30	142.42	169.932	211.408	137.821	200.114	162.543	172.896	134.716	200.311	197.521	172.968	28.5086
-20	217.709	144.469	184.402	213.11	160.227	235.741	229.077	245.768	191.806	130.542	195.285	39.8347
-10	207.309	232.502	187.315	271.449	271.576	245.138	156.018	208.455	255.218	269.011	230.399	39.5989
0	191.809	132.983	159.365	140.005	203.359	157.643	130.002	140.929	203.66	201.549	166.13	30.8181
10	228.378	232.389	233.068	186.807	203.704	191.502	252.65	162.823	245.228	208.991	214.554	28.6167
20	172.835	164.656	243.648	219.44	184.65	202.788	247.478	160.819	209.093	187.678	199.309	30.7908
30	213.562	157.777	169.046	153.503	195.143	148.139	144.999	238.159	205.638	225.633	185.16	34.5893
40	178.662	122.601	208.183	146.511	185.731	134.44	179.328	155.705	161.009	142.308	161.448	26.3544
50	150.365	150.96	165.409	147.666	140.093	124.102	152.294	218.729	133.029	113.961	149.661	28.5334
60	146.767	165.916	173.104	189.373	170.333	188.498	138.613	141.643	152.194	172.314	163.876	18.319
70	148.353	155.705	142.229	120.518	138.592	125.96	219.394	116.885	143.097	157.377	146.811	29.0314

ตารางที่ ก.33 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทองแดง ทรงกระบอกตันที่พลังงานลำอิเล็กตรอน 500 keV

Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	322.641	264.481	262.27	297.622	295.347	329.208	239.026	220.074	345.025	287.23	286.292	40.1324
-60	271.293	299.372	286.278	347.552	350.579	260.39	336.67	335.534	264.694	234.039	298.64	41.6165
-50	330.63	327.189	395.405	303.852	321.631	297.963	363.63	310.81	304.723	312.107	326.794	30.5901
-40	370.577	363.47	304.769	350.291	431.157	384.143	439.957	404.52	341.118	350.187	374.019	41.8695
-30	304.671	405.614	412.601	315.828	394.407	412.283	312.944	380.911	356.469	410.665	370.639	44.5675
-20	482.666	503.52	412.92	481.093	374.87	341.674	448.925	372.639	439.32	446.78	430.441	53.6831
-10	510.3	567.279	513.092	486.643	530.616	464.251	511.703	453.365	418.217	410.133	230.399	39.5989
0	401.489	376.732	367.488	348.05	327.121	381.524	295.591	426.625	350.067	298.278	166.13	30.8181
10	462.039	522.064	494.823	456.951	488.867	425.624	472.22	559.109	503.195	525.879	491.077	38.8915
20	539.612	448.003	450.271	352.613	502.328	449.015	433.652	431.681	419.42	459.091	448.569	49.2814
30	395.121	453.748	394.584	318.092	388.175	338.282	432.774	403.928	425.79	438.319	398.881	43.2183
40	326.299	394.754	303.347	406.295	356.762	382.851	313.309	343.113	298.461	370.619	349.581	38.742
50	313.334	297.629	352.683	273.447	318.052	260.177	345.891	260.111	269.541	263.316	295.418	35.4908
60	263.134	325.068	275.174	282.987	334.407	308.79	259.015	279.423	282.851	288.002	289.885	25.1053
70	295.517	236.961	294.541	297.417	303.941	200.303	267.048	282.055	299.013	319.413	279.621	35.9291

ตารางที่ ก.34 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทังสเตน ทรงกระบอกตันที่พลังงานลำอิเล็กตรอน 500 keV

Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	27.7415	20.4208	34.4649	45.4146	41.5335	38.9923	49.9146	16.7217	32.1988	49.3757	35.6778	11.5425
-60	48.0587	29.8578	38.2672	62.2846	38.8763	44.8757	23.0671	36.817	33.4226	36.4272	39.1954	10.7438
-50	37.0074	39.224	53.4732	44.8383	43.4356	34.7158	36.9325	39.0325	41.8788	29.0919	39.963	6.55802
-40	54.0552	39.8674	29.2771	54.9476	22.228	44.726	40.6967	51.665	61.7418	42.4923	44.1697	12.0912
-30	52.0387	53.1558	65.1626	35.6627	65.1469	76.1658	61.7495	33.4943	28.3583	42.0208	51.2955	15.9492
-20	49.3548	60.4426	71.1578	67.7608	42.9233	48.7526	45.5162	81.9166	37.9442	74.4633	58.0232	15.1403
-10	46.9411	74.0772	62.7607	61.6519	44.3374	68.1474	120.865	69.1518	31.2249	75.2656	65.4423	24.1383
0	70.591	45.7592	73.767	38.95	42.7616	72.5787	41.1682	38.1156	56.1462	46.5148	52.6352	14.4947
10	75.4249	44.4989	75.1144	84.3734	103.185	46.9538	71.3579	73.3085	97.0124	65.7178	73.6947	18.7651
20	56.3818	59.3667	56.3187	101.699	68.0803	62.178	56.9689	83.0015	77.8747	82.5677	70.4437	15.3197
30	52.1577	61.2222	67.3468	61.6896	35.2728	39.3759	62.2196	56.8038	62.4986	52.1899	55.0777	10.5235
40	38.5281	74.2714	23.6548	54.6024	40.223	32.4244	81.6114	23.5177	38.9692	37.4969	44.5299	19.7761
50	31.082	19.6341	41.3997	27.933	48.6868	37.6878	60.2536	43.7276	33.8826	59.0493	40.3337	13.1063
60	47.0148	37.3098	22.6322	20.627	34.8079	37.9721	36.9928	39.5658	18.3026	47.8026	34.3028	10.4391
70	22.3267	46.6173	25.8139	25.8223	25.9127	40.5988	31.6967	16.2855	33.585	57.9184	32.6577	12.524

ตารางที่ ก.35 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทองแดง ทรงกระบอกเจาะรูที่พลังงานลำอิเล็กตรอน 500 keV

				- //	A G STTL	A REAL AND						
Angle	run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8	run 9	run 10	Average	SD
-70	108.955	86.1276	48.3489	51.4763	95.7711	89.754	95.0281	110.175	89.369	64.3274	83.9332	21.9856
-60	90.9008	98.3992	45.8339	100.373	109.56	105.126	75.7475	62.6085	99.9088	97.6796	88.6137	20.6354
-50	90.0309	144.32	120.928	95.8054	93.8787	100.634	99.9349	77.3554	93.3215	162.534	107.874	26.6769
-40	128.341	90.1229	98.4527	128.573	68.1159	120.669	93.0998	127.168	127.269	94.6163	107.643	21.4413
-30	128.434	153.185	93.2515	110.488	129.8	96.7358	118.374	101.18	144.188	86.3121	116.195	22.4786
-20	151.093	147.238	126.709	145.971	154.17	172.844	152.447	126.806	160.199	163.118	150.06	14.6317
-10	210.089	172.919	211.38	279.743	184.663	143.279	208.029	165.759	180.704	186.976	194.354	36.8725
0	95.8072	125.407	121.171	114.543	123.561	118.797	83.0725	131.895	86.5467	171.99	117.279	25.632
10	247.157	179.344	203.844	179.424	188.713	155.499	233.218	159.143	189.099	210.784	194.623	29.6555
20	165.457	206.049	206.513	183.134	144.669	166.352	149.309	137.228	132.926	136.737	162.837	27.7906
30	188.55	125.212	127.748	107.758	133.475	125.691	163.038	125.759	117.173	111.07	132.547	24.8304
40	128.63	130.854	108.206	96.5063	98.8914	121.59	141.741	111.24	107.065	72.0272	111.675	20.1564
50	105.948	101.544	65.1787	132.099	124.361	84.628	131.766	97.4709	115.742	81.7117	104.045	22.471
60	48.4698	83.2911	69.9715	85.5314	163.949	127.694	91.3306	93.8232	76.2129	88.7113	92.8985	31.9797
70	107.083	89.398	80.1303	72.1681	138.973	82.3669	57.0333	63.3704	58.1473	86.0948	83.4765	24.865

ตารางที่ ก.36 แสดงปริมาณรังสีเอกซ์ ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานกรณีใช้ขั้วแอโนดทังสเตน ทรงกระบอกเจาะรูที่พลังงานลำอิเล็กตรอน 500 keV

ภาคผนวก ข

ข.1 การเปรียบเทียบอัตราส่วนปริมาณรังสีเอกซ์เฉลี่ยระหว่างขั้วแอโนดที่มีรูปร่างต่างกัน

ทำการเปรียบเทียบเป็นอัตราส่วนแสดงเป็นตารางโดยกำหนดให้

- Solid Cu / Hollow Cu คือ อัตราส่วนระหว่างขั้วแอโนดทองแดงทรงกระบอกตัน ต่อขั้วแอโนดทองแดงเจาะรู
- Solid W / Hollow W คือ อัตราส่วนระหว่างขั้วแอโนดทั้งสเตนทรงกระบอกตัน ต่อขั้วแอโนดทั้งสเตนเจาะรู

		2000
	Solid-Cu/	Solid-W/
Angle	Hollow -Cu	Hollow -W
-70	0.655026	1.281272
-60	1.19884	4.635439
-50	0.896913	0.982593
-40	1.004688	0.418598
-30	1.219634	1.486702
-20	0.949927	1.269911
-10	0.592412	1.291933
0	0.476631	1.482726
10	0.452301	3.501419
20	1.286418	1.475248
30	0.115096	0.920683
40	0.250812	0.443162
50	0.486829	0.424522
60	0.345437	0.646635
70	2.208935	0.948118

2		Solid-Cu/	Solid-W/
	Angle	Hollow -Cu	Hollow -W
	-70	1.188492	2.161283
	-60	0.702824	1.712066
5	-50	1.338987	1.17333
	-40	2.131713	10.91483
	-30	3.478525	1.583421
	-20	2.567017	0.808399
	-10	2.704003	1.370582
	0	1.598157	2.885984
Ê	10	1.414826	6.064433
1	20	3.274146	0.387607
	30	2.100218	0.491585
	40	0.909852	3.710562
ľ	50	2.181596	2.762129
	60	1.556846	2.49981
	70	1.966792	3.275186

ตาราง ข.1 อัตราส่วนเปรียบเทียบขั้วแอโนด ต่างรูปร่างที่พลังงานลำอิเล็กตรอน 100 keV ตาราง ข.2 อัตราส่วนเปรียบเทียบขั้วแอโนด ต่างรูปร่างที่พลังงานลำอิเล็กตรอน 150 keV

	Solid-Cu/	Solid-W/
Angle	Hollow -Cu	Hollow -W
-70	2.500236	2.568783
-60	2.094262	2.229457
-50	2.210521	2.815638
-40	2.123444	3.499148
-30	2.149639	2.915616
-20	2.388357	2.796219
-10	2.279227	2.668865
0	2.091591	2.78572
10	2.412091	2.458089
20	2.315741	2.984402
30	2.275248	2.704654
40	2.301327	2.691633
50	2.619475	2.568203
60	2.414949	2.174201
70	2.2079	2.854794

ตาราง	ข.4	อัตร	าส่วน	เปรียเ	มเทียเ	บขั้วแก	อโนด

ุ ต่างรูปร่างที่พลังงานลำอิเล็กตรอน 250 keV

~	Solid-Cu/	Solid-W/
Angle	Hollow -Cu	Hollow -W
-70	3.168489	3.568931
-60	3.967362	3.44395
-50	3.783289	3.663965
-40	3.424905	3.34815
-30	3.575978	3.188573
-20	3.380655	3.035537
-10	3.134433	2.91687
0	3.686493	2.802234
10	3.482134	2.734788
20	3.147434	3.292472
30	2.934503	3.185584
40	3.18453	3.435693
50	3.884098	3.226701
60	3.808314	3.426006
70	3.618419	3.52974

ตาราง ข.6 อัตราส่วนเปรียบเทียบขั้วแอโนด ต่างรูปร่างที่พลังงานลำอิเล็กตรอน 350 keV

	Solid-Cu/	Solid-W/
Angle	Hollow -Cu	Hollow -W
-70	1.571364	1.539246
-60	1.615971	3.832722
-50	2.889382	1.808785
-40	1.718704	2.293603
-30	2.338482	1.77833
-20	2.849432	3.047043
-10	1.841261	2.858117
0	2.586432	2.582646
10	1.732572	1.968921
20	1.094724	3.243287
30	2.232249	1.912877
40	1.373987	1.651851
50	1.126626	2.612068
60	0.991491	2.241836
70	1.851394	1.891621

ตาราง ข.3 อัตราส่วนเปรียบเทียบขั้วแอโนด ต่างรูปร่างที่พลังงานลำอิเล็กตรอน 200 keV

		1-11	
	Solid-Cu/	Solid-W/	
Angle	Hollow -Cu	Hollow -W	
-70	2.952034	3.288417	
-60	3.238917	3.101723	
-50	3.130147	3.108258	รณว
-40	3.213141	3.239085	GKOI
-30	2.745034	3.069291	
-20	3.123025	3.253816	
-10	3.299756	2.996041	
0	2.746078	2.7055	
10	3.127469	3.337867	
20	3.399981	3.115111	
30	3.522118	3.249867	
40	4.1872	2.69748	
50	2.583568	2.741916	
60	3.385825	3.41277	
70	3.455829	3.520682	

ตาราง ข.5 อัตราส่วนเปรียบเทียบขั้วแอโนด ต่างรูปร่างที่พลังงานลำอิเล็กตรอน 300 keV

		Solid-Cu/	Solid-W/
	Angle	Hollow -Cu	Hollow -W
	-70	4.118948	3.765146
	-60	3.871377	3.453468
	-50	4.096202	3.327871
	-40	3.964027	3.727642
	-30	3.985881	2.671237
	-20	3.692303	3.045445
	-10	3.831073	2.509161
	0	3.162151	2.785812
	10	3.268804	2.823066
	20	2.980489	2.988849
	30	3.825859	3.020461
2	40	3.752961	3.393939
2	50	3.554754	3.138472
	60	3.455446	3.178867
	70	3.859891	3.592986

	Solid-Cu/	Solid-W/
Angle	Hollow -Cu	Hollow -W
-70	3.685095	3.550063
-60	3.949428	3.196604
-50	3.666849	3.591763
-40	4.275103	3.054705
-30	3.762069	2.970351
-20	3.686359	2.484682
-10	3.644378	2.963265
0	4.08131	2.848293
10	3.541048	2.67621
20	3.111612	3.068806
30	3.305805	3.306712
40	4.077161	3.070946
50	3.892753	2.916214
60	3.080009	3.274049
70	3.527797	3.105876

ตาราง ข.7 อัตราส่วนเปรียบเทียบขั้วแอโนด

ต่างรูปร่างที่พลังงานลำอิเล็กตรอน 400 keV

ตาราง ข.8 อัตราส่วนเปรียบเทียบขั้วแอโนด ต่างรูปร่างที่พลังงานลำอิเล็กตรอน 450 keV

		V.E.	CONTRACTOR OF THE PARTY OF THE
	Solid-Cu/	Solid-W/	Language and the second second
Angle	Hollow -Cu	Hollow -W	DADA ARKING
-70	3.951436	3.410954	
-60	3.183979	3.370133	
-50	3.947079	3.029397	รถเ้มหาวิท
-40	3.935034	3.474631	
-30	3.371993 G	3.189809	GKORN UNI
-20	3.365637	2.868467	
-10	3.520645	1.18546	
0	3.156259	1.41654	
10	2.91139	2.523229	
20	2.829329	2.754703	
30	3.361795	3.009348	
40	3.625602	3.13034	
50	3.710569	2.839332	
60	4.777327	3.12045	
70	4.495444	3.349696	
70	4.495444	3.349696	

ตาราง ข.9 อัตราส่วนเปรียบเทียบขั้วแอโนด ต่างรูปร่างที่พลังงานลำอิเล็กตรอน 500 keV
ข.2 การเปรียบเทียบอัตราส่วนปริมาณรังสีเอกซ์เฉลี่ยระหว่างขั้วแอโนดที่ชนิดวัสดุต่างกัน

1.การคำนวณอัตราส่วนระหว่างชนิดวัสดุ 2 ชนิด

พิจารณาจากสมการความเข้มของการแผ่รังสีแบบเบรมส์ชตราลุงต่อความถี่และปริมาณ สมการที่ (8)

$$\dot{E}_{f} = 0.499 \times 10^{-36} n_{e} (k_{B}T_{e})^{0.5} \sum_{j} Z_{j}^{2} n_{j}$$

โดยพิจารณาว่าความหนาแน่น (n_e) และอุณหภูมิ (T_e) ของอิเล็กตรอนของระบบนั้นมี ค่าคงที่ จะได้ว่า

$$\vec{E}_f = c \sum_j Z_j^2 n_j \tag{(21)}$$

เมื่อ c มีค่าคงที่จะได้ว่า $\dot{E_f}$ นั้นมีค่าแปรผันตรงกับ Z_j^2 และ n_j

$$\dot{E}_{f} \propto Z_{j}^{2} n_{j}$$
 (92)

หากพิจารณาว่า $n_j(\frac{\text{particle}}{\text{cm}^3}) = \rho_j(\frac{g}{\text{cm}^3}) \times \frac{1}{M_j}(\frac{\text{mole}}{g}) \times 6.02 \times 10^{23}(\frac{\text{particle}}{\text{mole}})$

ฉะนั้น CHULALON
$$n_j = \frac{p_j}{M_j} \times 6.02 \times 10^{23}$$
 (ข3)

แทนสมการ (ข3) ใน (ข2) จะได้ว่า

$$\dot{E}_{f} \propto Z_{j}^{2} \frac{\rho_{j}}{M_{j}}$$
 (94)

และเมื่อพิจารณาจากโดสที่

$$Dose(Gy) = \left(\frac{j}{kg}\right) = \frac{E_f}{m_{detector} \times t}$$

โดยสมมติว่าในการทดลองทุกการทดลอง m_{detector} จะมีค่าคงที่เสมอ และ t จะใช้ เวลาในการทำอันตรกิริยาเท่ากัน ฉะนั้นจะได้ว่า

$$\mathsf{Dose}(\mathsf{Gy}) \propto \dot{\mathsf{E}}_{\mathsf{f}} \tag{95}$$

แทนสมการ (ข5) ใน (ข4) จะได้ว่า

$$Dose(Gy) \propto Z_j^2 \frac{\rho_j}{M_j}$$
(96)

จากสมการ (ข6) ที่ได้นี้เมื่อคำนวณหาค่าของพจน์ $Z_j^2 \, rac{
ho_j}{M_j}\,$ ของทองแดงและทังสเตน จะได้ว่า

nosulos Cu →
$$Z_{Cu}^2 \frac{\rho_{Cu}}{M_{Cu}} = (29)^2 \times \frac{8.996}{63.546} = 119.058$$

GHULALONGKORN ONIVERSITY
ทังสเตน W →
$$Z_W^2 \frac{\rho_W}{M_W} = (74)^2 \times \frac{19.25}{183.84} = 573.395$$

เมื่อค่าที่ได้มาหาอัตราส่วนโดยจะทำการหาเป็นสัดส่วนของทั้งสเตนต่อทองแดงจะได้ว่า W/Cu มีค่าเท่ากับ 573.935/119.058 ≈ 4.821

2. การเปรียบค่าอัตราส่วนจากการทดลองและอัตราส่วนจากการคำนวน

ทำการเปรียบเทียบอัตราส่วนแสดงเป็นตารางโดยกำหนดให้

- Solid W / Solid Cu คือ อัตราส่วนระหว่างขั้วแอโนดทองแดงทรงกระบอกตันต่อ ขั้วแอโนดทองแดงเจาะรู
- Hollow W / Hollow Cu คือ อัตราส่วนระหว่างขั้วแอโนดทั้งสเตนทรงกระบอก ตันต่อขั้วแอโนดทั้งสเตนเจาะรู

Angle	Solid-W/ Solid -Cu	%error - S	Hollow-W/ Hollow -Cu	%error - H
-70	1.309453	268.1689988	0.669433	620.1616891
-60	1.138977	323.2745701	0.294568	1536.633986
-50	0.979394	392.2431626	0.893993	439.2659674
-40	0.952995	405.8788346	2.28731	110.7716051
-30	1.052281	358.1475861	0.863251	458.4702479
-20	0.983454	390.2110317	0.73565	555.338816
-10	1.661181	190.2152144	0.76173	532.9014218
0	2.931007	64.48271874	0.942191	411.6796913
10	2.745256	75.61203764	0.354623	1259.47189
20	0.490395	883.0850641	0.427625	1027.389652
30	5.978902	-9.36646562	0.747428	545.011961
40	1.96041	145.9179457	1.109516	334.513788
50 🧃	0.625959	670.1782385	0.717831	571.6065481
60	2.012774	139.5201846	1.075237	348.3662672
70	1.084694	344.4571464	2.527131	90.76969101

ตารางที่ ข.10 อัตราส่วนเปรียบเทียบและความคาดเคลื่อนจากผลการคำนวณของขั้วแอโนดต่างชนิด ที่พลังงานลำอิเล็กตรอน 100 keV

Angle	Solid-W/ Solid -Cu	%error - S	Hollow-W/ Hollow -Cu	%error - H
-70	0.862017	459.2697128	0.474024	917.037112
-60	0.851264	466.3342982	0.349454	1279.580717
-50	0.5515	774.1613781	0.629364	666.011402
-40	1.368505	252.282235	0.267275	1703.760172
-30	0.686686	602.0676117	1.508539	219.5807334
-20	0.990559	386.6948864	3.145454	53.26881271
-10	1.146889	320.3545417	2.262681	113.0658277
0	0.838779	474.764032	0.464486	937.9214874
10	1.238745	289.1842147	0.288998	1568.177634
20	0.202219	2284.048977	1.708162	182.233184
30	0.223084	2061.069373	0.953089	405.8289415
40	1.963218	145.5662081	0.481393	901.4686545
50	1.825615	164.0753938	1.441914	234.3472634
60	1.440509	234.6733689	0.897129	437.3809118
70	1.008959	377.8192176	0.605893	695.6850467

ตารางที่ ข.11 อัตราส่วนเปรียบเทียบและความคาดเคลื่อนจากผลการคำนวณของขั้วแอโนดต่างชนิด

ทีพลังงานลำอิเล็กตรอน	150	keV

	10 10	and the second second		
Angle	Solid-W/ Solid -Cu	%error - S	Hollow-W/ Hollow -Cu	%error - H
-70	1.82588	164.0370671	1.863979	158.6402529
-60	1.975472	144.0429426	0.832908	478.8154274
-50 🧃	1.457858	230.6906434	2.328806	107.0159558
-40	2.198425	119.2933577	1.647383	192.6459724
-30	1.389591	246.9366166	1.827296	163.8324606
-20	1.723171	179.7749034	1.611418	199.1774946
-10	2.117809	127.6409251	1.364338	253.3581854
0	1.445426	233.5348887	1.447545	233.046641
10	2.000746	140.9601219	1.760577	173.8306816
20	3.11715	54.66050719	1.052149	358.2050641
30	1.214138	297.071832	1.41685	240.2618485
40	1.962681	145.6333964	1.63253	195.3085089
50	2.469305	95.23712138	1.06505	352.6548049
60	1.963077	145.5838462	0.868205	455.2836024
70	1.437574	235.3566495	1.407002	242.6434362

ตารางที่ ข.12 อัตราส่วนเปรียบเทียบและความคาดเคลื่อนจากผลการคำนวณของขั้วแอโนดต่างชนิด

ที่พลังงานลำอิเล็กตรอน 150 keV

Angle	Solid-W/ Solid -Cu	%error - S	Hollow-W/ Hollow -Cu	%error - H
-70	2.276725	111.7515291	2.215972	117.5569005
-60	2.485406	93.97233289	2.33469	106.4942241
-50	2.808692	71.64573403	2.205068	118.6327134
-40	2.744763	75.64358016	1.665649	189.4367301
-30	3.317887	45.30332106	2.446227	97.07901188
-20	3.297434	46.20459424	2.816464	71.1720796
-10	3.048677	58.13416771	2.603589	85.16747459
0	3.308108	45.7328479	2.483814	94.09665941
10	3.198913	50.70744343	3.139052	53.58139973
20	2.844974	69.45673317	2.207552	118.3867016
30	3.052767	57.92230458	2.568093	87.72684634
40	2.944086	63.75200996	2.517173	91.52438072
50	2.863097	68.38409596	2.920257	65.0882097
60	3.085845	56.22949306	3.427538	40.65489573
70	2.202148	118.9226156	1.703143	183.0648982

ตารางที่ ข.13 อัตราส่วนเปรียบเทียบและความคาดเคลื่อนจากผลการคำนวณของขั้วแอโนดต่างชนิด

		HEROMENTO .	1	
Angle	Solid-W/	%error - S	Hollow-W/	%error - H
70	2.442002	07 22102406	2 102191	110 0176006
-70	2.445095	91.55102400	2.195101	119.0170900
-60	2.403402	100.5906627	2.509708	92.09406034
-50	2.61048	84.67867978	2.628864	83.3871969
-40 🧃	2.816055	71.1969404	2.793499	72.5792635
-30	2.976546	61.96625216	2.662087	81.09851406
-20	3.009561	60.18947614	2.888588	66.89815232
-10	2.74839	75.41178654	3.027	59.26660059
0	3.024555	59.39534907	3.069917	57.04007633
10	2.964398	62.62998423	2.777541	73.57079517
20	2.792286	72.65423384	3.047634	58.18828639
30	2.710715	77.84975551	2.937799	64.1024454
40	2.475628	94.73846636	3.842828	25.454483
50	2.848375	69.25439944	2.683879	79.62806818
60	2.578597	86.96213484	2.558239	88.44994545
70	2.612997	84.50078588	2.564864	87.96318245

ที่พลังงานลำอิเล็กตรอน 250 keV

ตารางที่ ข.14 อัตราส่วนเปรียบเทียบและความคาดเคลื่อนจากผลการคำนวณของขั้วแอโนดต่างชนิด

ที่พลังงานลำอิเล็กตรอน 300 keV

Angle	Solid-W/ Solid -Cu	%error - S	Hollow-W/ Hollow -Cu	%error - H
-70	2.517621	91.49029977	2.235138	115.6913801
-60	2.359851	104.2925591	2.718501	77.34037986
-50	2.24645	114.6052661	2.31961	107.8366622
-40	2.665291	80.88081189	2.726392	76.82710337
-30	2.366952	103.679669	2.654532	81.61393421
-20	2.447605	96.96805653	2.725879	76.86038155
-10	2.397335	101.0983029	2.576146	87.14001458
0	2.162496	122.9368286	2.844882	69.4622132
10	2.634102	83.02252532	3.353933	43.74169073
20	2.697547	78.7179241	2.578716	86.95350709
30	2.553889	88.77092936	2.352597	104.922475
40	2.534161	90.24047801	2.348903	105.2447462
50	2.342296	105.8236875	2.819507	70.98733928
60	2.515073	91.68429704	2.79573	72.44154478
70	2.600603	85.380083	2.66594	80.83677802

ตารางที่ ข.15 อัตราส่วนเปรียบเทียบและความคาดเคลื่อนจากผลการค่ำนวณของขั้วแอโนดต่างชนิด

ที่พลังงานล้ำอีเล็	กตรอน	350	keV
Z 11 - SSGESTAN	λ (1)	-	

	11 13			
Angle	Solid-W/ Solid -Cu	%error - S	Hollow-W/ Hollow -Cu	%error - H
-70	2.360457	104.2401111	2.45024	96.75623612
-60	2.254582	113.8312113	2.785552	73.07162099
-50 🧃	2.031814	137.2756561	2.074289	132.4169872
-40	2.137724	125.5202262	2.991776	61.14174323
-30	2.159164	123.2808624	2.734668	76.2919667
-20	2.178439	121.3052557	3.232007	49.16428089
-10	2.219958	117.1662707	2.73022	76.57917677
0	2.370077	103.4111128	3.396076	41.95795383
10	2.306834	108.9877295	3.052306	57.94615612
20	2.310723	108.6359983	2.342954	105.7658836
30	2.412432	99.83982968	2.41177	99.89468316
40	2.212885	117.8603949	2.937951	64.09395528
50	2.175145	121.6403964	2.903525	66.03955537
60	2.480458	94.35926752	2.333451	106.603867
70	2.208232	118.3194519	2.508211	92.20870971

ตารางที่ ข.16 อัตราส่วนเปรียบเทียบและความคาดเคลื่อนจากผลการคำนวณของขั้วแอโนดต่างชนิด

ที่พลังงานลำอิเล็กตรอน 400 keV

Angle	Solid-W/ Solid -Cu	%error - S	Hollow-W/ Hollow -Cu	%error - H
-70	2.165912	122.5852205	2.369438	103.4659696
-60	2.577842	87.01689242	2.889791	66.82867377
-50	2.026465	137.9019623	2.494331	93.27827782
-40	2.078321	131.9660919	2.210116	118.1333468
-30	2.020427	138.6129269	3.014776	59.91237823
-20	2.283058	111.1641491	2.767984	74.17008191
-10	2.339725	106.0498563	3.572373	34.95231321
0	2.082364	131.5157196	2.363673	103.9622232
10	2.28183	111.2777902	2.642111	82.4677313
20	2.267296	112.6321398	2.260953	113.2286695
30	2.29857	109.7390987	2.911477	65.58605821
40	2.040724	136.2396875	2.256598	113.6401787
50	2.163145	122.8699417	2.450061	96.77061102
60	2.3017	109.4538819	2.50196	92.68893188
70	2.209515	118.1926803	2.373648	103.1050939

ตารางที่ ข.17 อัตราส่วนเปรียบเทียบและความคาดเคลื่อนจากผลการคำนวณของขั้วแอโนดต่างชนิด

ที่พลังงานลำอิเล็กตรอน	450	keV

	(P) 15	17.		
Angle	Solid-W/ Solid -Cu	%error - S Hollow-W/ Hollow -Cu		%error - H
-70	2.360457	104.2401111	2.45024	96.75623612
-60	2.254582	113.8312113	2.785552	73.07162099
-50 🧃	2.031814	137.2756561	2.074289	132.4169872
-40	2.137724	125.5202262	2.991776	61.14174323
-30	2.159164	123.2808624	2.734668	76.2919667
-20	2.178439	121.3052557	3.232007	49.16428089
-10	2.219958	117.1662707	2.73022	76.57917677
0	2.370077	103.4111128	3.396076	41.95795383
10	2.306834	108.9877295	3.052306	57.94615612
20	2.310723	108.6359983	2.342954	105.7658836
30	2.412432	99.83982968	2.41177	99.89468316
40	2.212885	117.8603949	2.937951	64.09395528
50	2.175145	121.6403964	2.903525	66.03955537
60	2.480458	94.35926752	2.333451	106.603867
70	2.208232	118.3194519	2.508211	92.20870971

ตารางที่ ข.18 อัตราส่วนเปรียบเทียบและความคาดเคลื่อนจากผลการคำนวณของขั้วแอโนดต่างชนิด

ที่พลังงานลำอิเล็กตรอน 500 keV

Chulalongkorn University

ประวัติผู้เขียน

ชื่อ-สกุล วัน เดือน ปี เกิด สถานที่เกิด วุฒิการศึกษา ที่อยู่ปัจจุบัน ผลงานตีพิมพ์ รางวัลที่ได้รับ

ภัคจิรา คซเสนี 11 เมษายน 2539 กรุงเทพมหานคร ประเทศไทย วิทยาศาสตรบัณฑิต สาขาฟิสิกส์ จุฬาลงกรณ์มหาวิทยาลัย 53 ถ.เทเวศน์ ต.ท่าราบ อ.เมืองเพชรบุรี จ.เพชรบุรี 76000

จุฬาลงกรณมหาวทยาลย Chulalongkorn University