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ABSTRACT (ENGLISH) # # 6370204721 : MAJOR CHEMICAL ENGINEERING 

KEYWOR

D: 

Tetracycline, Adsorption, Magnetic biochar 

 Phisit Thairattananon : Tetracycline sorption by magnetic biochar derived 

from watermelon rind: performance and influential factors. Advisor: Prof. 

TAWATCHAI CHARINPANITKUL 

  

Tetracycline (TC) antibiotic is one of emerging contaminants in water 

reservoirs that causes undesirable effects on environment and human health. 

Magnetic biochar (MBC) is considered a promising sorbent in adsorption process 

for removal of contaminants with highly efficient and facile operation.  In this 

work, MBC was synthesized by pyrolysis of watermelon rind impregnated with 

FeCl3 at different pyrolysis temperatures in a range of 600-900 °C prior to applying 

for TC adsorption. Characteristics of MBC were analyzed by scanning electron 

microscopy, elemental analyzer, N2 adsorption/desorption, Fourier-transform 

infrared spectroscopy, Raman spectroscopy, vibrating sample magnetometry, and 

X-ray diffractometry.  The adsorption kinetics, isotherm, effect of solution pH, and 

reusability were investigated. Moreover, an emperical and semi-empiriacl model of 

TC adsorption capacity under influential factors based on response surface 

methodology (RSM) and machine learning (ML) were developed.  From the results, 

an increase in the pyrolysis temperature from 600 to 900 °C significantly affects on 

characteristics of MBC. The adsorption kinetics of MBC600 follows pseudo-first-

order kinetic model while MBC700, MBC800, and MBC900 follow pseudo-

second-order kinetic model.  The adsorption isotherm fitted well with Freundlich 

isotherm investigating heterogeneous adsorption site.  In addition, the 

highest maximum adsorption capacity of 77.60 mg/g could be obtained 

from MBC900.  The adsorption process is pH-dependent.  The reusability test 

revealed adsorption capacity decrease from 100 to 83.89% after five 

cycles.  ANOVA results confirmed an empirical model was significantly at 95% 

confidence.  In addition, the order of influential terms is solution pH > interaction 

between initial TC concentration and solution pH > square effect of initial TC 

concentration > initial TC concentration.  Three different ML algorithms were used 

to develop the semi-empirical model.  It was found that Catboost outperformed 

random forest and boosted regression tree.  The feature important revealed SBET 

provided the largest effect on TC adsorption capacity followed by (O+N)/C, initial 

TC concentration, H/C, and C%, respectively.   
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Motivation for this research work 

 

 Tetracycline (TC) is one of widely used antibiotics for suppression of bacteria 

and pathogens in humans and animals and is used as growth stimulant in animal 

husbandry and aquaculture [1] because TC provides good antimicrobial properties and 

absence of adverse side effects [2].  However, 30-90% of TC cannot be metabolized 

[3] along with the use of antibiotics in aquaculture, crop growing, and contaminated 

sewage sludge from antibiotic manufacturing, leading to excessive release of TC to 

water reservoirs [4].  It causes undesirable effects with antibiotic resistance 

genes(ARG) and antibiotic-resistant bacteria(ARB) [5], which could contaminate in 

human food chain.  When humans consume those contaminated, it will lead to 

increased medical costs and rate of mortality [6].  Therefore, antibiotics have become 

an emerging contaminant.  Among various methods for the removal of antibiotics 

from contaminated water, including biological treatment, advanced oxidation process, 

and membrane filtration, adsorption is a common method due to its advantages of low 

cost, high removal efficiency, and easy operation [7]. 

In comparison to carbon nanotubes and activated carbon, biochar is 

recognized as a cost-effective and renewable sorbent [4], which can be produced from 

agricultural wastes.  Global total watermelon production in 2020 was 101.62 million 

tons, which covered 11.46% of overall fruit production [8].  Approximately 30% of 

the total mass of watermelon is its rind [9], resulting in a large amount of agricultural 

waste.  Watermelon rind is composed of carbon-rich material, such as cellulose, and 

pectin [10].  Moreover, it contains alkaline, alkaline earth, and other metals [11, 12], 

which can activate and create porosity of biochar during pyrolysis [13]. Therefore, 

watermelon rind is a promising raw material to produce biochar and the utilization of 

watermelon rind could reduce agricultural waste.  However, pristine biochar possesses 

low specific surface area resulting in poor TC adsorption capacity[14]. Chemical 

modification of biochar could improve desirable characteristics of biochar along with 
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enhancing adsorption capacity [15], especially modified by an iron compound known 

as magnetic biochar(MBC), which not only enhances adsorption capacity but also 

ease the separation and recycling of spent sorbent [16] via utilizing its magnetic 

property.  MBC can be synthesized from various methods, such as impregnation-

pyrolysis [17], chemical co-precipitation [18], solvothermal [19], and reductive co-

precipitation [20].  Impregnation-pyrolysis can provide MBC with one-step synthesis 

including both magnetization and pyrolysis of biochar [21].  Biochar synthesized from 

watermelon rind has been applied for adsorption of heavy metals and dyes [22].  

However, synthesized MBC from watermelon rind as sorbent for TC adsorption is 

still limited.  There are two key factors could significantly affect TC adsorption 

capacity, including physicochemical properties of adsorbent (which depends on 

pyrolysis conditions) and adsorption conditions (initial TC concentration, adsorbent 

dosage, solution pH, and contact time). 

However, batch adsorption experiments are often high cost and time-

consuming.  Accordingly, it would be useful to develope empirical models for TC 

adsorption capacity [23].  Central composite design (CCD) is a useful approach in 

response surface methodology (RSM) for designing a small number of experimental 

runs compared with “one variable at a time” approach [24].  RSM possesses the 

ability to evaluate the combined effect of all factors, modeling, and optimization [25].  

Machine learning (ML) algorithms such as random forest, Catboost, and boosted 

regression tree could deal with complex and non-linear problem [26]. 

This research aims to synthesize MBC by pyrolysis of watermelon rind-

impregnated with FeCl3 for TC adsorption.  The effect of pyrolysis temperature on 

characteristics of MBCs was investigated.  TC adsorption kinetics and isotherm of 

MBCs were investigated.  CCD was applied to design experimental runs, then RSM 

and was applied to develop the emoirical models of TC adsorption capacity under 

various influential factors i.e., initial TC concentration, adsorbent dosage, solution 

pH, and contact time. ML algorithms such as random forest, Catboost, and boosted 

regression tree were applied to develop the semi-empirical model of TC adsorption 

capacity under collected data of SBET, H/C, (O+N)/C, C%, and initial TC 

concentration.   



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3 

MBC was characterized by using an environmental scanning electron 

microscope (ESEM), Element analyzer, N2 adsorption/desorption, Fourier-transform 

infrared spectroscopy (FTIR), Raman spectroscopy, vibrating sample magnetometer 

(VSM), and X-ray diffraction spectroscopy (XRD).  

 

1.2 Research objectives 

 This research aims to synthesize MBC from watermelon rind for TC 

adsorption.  Effect of pyrolysis temperature on characteristics of MBCs was 

investigated.  The adsorption experiments were investigated.  An empirical and semi-

empirical model of TC adsorption capacity were developed using RSM and ML under 

influential factors. 

 

1.3 Scope of this research  

The scope of this research consists of 3 parts, which are synthesized MBC by 

pyrolysis of watermelon rind-impregnated with FeCl3, TC adsorption experiments, 

and generation of a prediction model 

1.3.1 Synthesis of MBC by pyrolysis of watermelon rind-impregnated with FeCl3 

MBCs were synthesized from pyrolysis of watermelon rind 

impregnated with FeCl3 when impregnation ratio of FeCl3 to watermelon rind 

is 2:1 at various temperatures (600, 700, 800, and 900°C) under N2 

atmospheric.  The characterization of MBC using SEM, Element analyzer, N2 

adsorption/desorption isotherms, FTIR, Raman spectroscopy, VSM, and XRD. 

1.3.2 TC adsorption experiments 

MBCs were employed as sorbents for adsorption of TC for 

investigating the adsorption kinetic, isotherm, effect of initial pH, and 

reusability of MBCs.  The concentration of TC was measured by UV-VIS. 

1.3.3 Development of an empirical model 

MBC pyrolyzed from designed pyrolysis temperature was used for 

another adsorption experiment designed by CCD.  Then RSM was applied to 

develop the empirical model of TC adsorption capacity.   ML algorithms were 
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used to develop semi-empirical models of TC adsorption capacity from 

collected data. 

1.4 Expected benefit 

Understanding of MBC synthesis by pyrolysis of watermelon rind-

impregnated with FeCl3 at different pyrolysis temperatures would be obtained.  

Ability in TC adsorption and development of empirical model would be obtained.  

Moreover, the ability to interpret the characterization results and explain the effect of 

influential factors would be investigated.  
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CHAPTER 2 

FUNDAMENTAL KNOWLEDGE 

 

2.1 Contamination of tetracycline in water reservoirs 

Approximately 70% of global antibiotic is used whether for suppression of 

bacteria and growth stimulant in animals or crop growing.  Another 30% is used for 

suppression of bacteria in humans [27].  Van Boeckel et al. [28] used statistical 

models combine with livestock densities, demand for meat products, and antibiotic 

consumption to estimate the global consumption of antibiotics in animals that will 

increase from 63,000 tons to 105,600 tons from 2010 to 2030 due to the rising of 

animal protein demand for humans.  Eili Klein et al. [29] used a database of antibiotic 

sales in 76 countries from 2000 through 2015 to estimate global antibiotic 

consumption that increased by 65% from 21.1 to 34.8 billion defined daily doses and 

to project that will increase by 200% from 2015 to 2030. Therefore, the excessive 

consumption of antibiotics has become a serious problem. 

Tetracycline is one of the most used antibiotics due to its good antimicrobial 

properties and absence of side effects [2].  The widely and excessive use of 

tetracycline causes releasing of tetracycline into the water reservoirs by several 

pathways including manufacturing pharmaceuticals; wastewater from treatment plants 

can detect a significantly residual antibiotic [30], human consumption; unmetabolized 

antibiotics further transported from sewage sludge to soil and water reservoirs[4], 

animal consumption; unmetabolized antibiotics is a contaminant in manures can 

further enter water reservoirs [31], the use of antibiotics in aquaculture, it can directly 

enter water reservoirs [27], and crop growing; during spraying, antibiotics can enter 

soil and water reservoirs.  Tetracycline is the most frequently detected antibiotic in 

manures [32] and seawater [33].  The contamination of tetracycline in water can 

further contaminate food products and drinking water [30].  Consumption of 

contaminated food and water causes antibiotic resistance leading to higher medical 

costs and an increased rate of mortality [6].   
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2.2 Treatment method  

 There are various methods for removal of antibiotics such as biodegradation 

[34], advanced oxidation process [35], membrane filtration [36], and adsorption [7]. 

 

2.2.1 Biodegradation 

 Biodegradation is one of important methods for antibiotic degradation in 

wastewater.  Generally, biodegradation is combined with adsorption in biological 

wastewater treatment.  Biodegradation rate in TC is quite slow.  However, it is 

important for sulfamethazine and trimethoprim.  The major benefit of this method is 

can transmit antibiotics into small molecules i.e., H2O and CO2, which does not cause 

environmental risk [34]. 

 

2.2.2 Advanced oxidation process 

 Hydroxyl radical is the main character of advanced oxidation process.  With 

the high reactive hydroxyl radical, it would react with antibiotic molecules very fast.  

Hydroxyl radicals could degrade antibiotic molecules by attacking antibiotic 

molecules at high electron density sites and generating a chain of oxidation reactions.  

However, this process requires chemicals for generating the hydroxyl radical such as 

ozone and hydrogen peroxide [35]. 

 

2.2.3 Membrane filtration 

 Membrane filtration is a process with pressured driving force.  This process 

provides both mechanical and chemical sieving of contaminated molecules with high 

efficiency.  However, fouling could occur on membrane surface so regeneration of the 

membrane is needed [37]. 

 

2.2.4 Adsorption 

 Adsorption is a transfer process between liquid bulk called adsorbate and solid 

called adsorbent.  The adsorption process could occur in both physical and chemical 

adsorption [38].  Various types of adsorbents are available such as activated carbon 

and biochar which can be produced from agricultural waste.  The operation of this 

process is simple with high efficiency could be obtained [7]. 
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Among various methods for removal of antibiotics, adsorption is recognized 

as low cost, high removal efficiency, and easy operation.  Therefore, it is employed in 

this work. 

 

2.3 Biochar-based sorbents 

 Based on synthesis method, biochar-based sorbents could be divided into 

pristine biochar and modification biochar. 

 

2.3.1 Pristine biochar 

Pristine biochar is a carbon-rich solid product obtained from pyrolysis of 

biomass under oxygen-limited [39-41].  Slow pyrolysis with heating rate (<10 

°C/min) provides favored yield of resultant biochar [42].   Biochar has been used as 

sorbents for adsorption of contaminants in soil and water[41], due to favorable 

physicochemical surface characteristics [43].  However, pristine biochar exhibited 

unsatisfactory adsorption capacity in the case of adsorption mechanism based on pore 

filling, due to low specific surface area and pore volume [4, 14]. 

 

2.3.2 Modification biochar 

Modification of biochar including physical and chemical modification could 

develop pore structure and improve surface functional groups of biochar. 

Physical modification 

Steam/gas activation, ball milling, and microwave are physical modification 

methods, which could improve pore structure and lead to enhanced adsorption 

capacity without adding any impurities [44].  

Chemical modification 

Modification by oxidizing agents including H3PO4, H2SO4, HNO3, HCl, H2O2, 

and KMnO4 could oxidize surface of biochar to hydroxyl and aldehyde groups leading 

to ability in binding cation along with development of microporous and SBET [44-46].  
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Modification by reducing agents including NaOH, KOH, and NH4OH could decrease 

hydroxyl functional groups on biochar surface increasing hydrophobicity as well as 

significantly increasing porosity [45].  

Modification methods including physical modification, modification by 

oxidizing agents, and reducing agents could develop porosity of biochar and enhance 

adsorption capacity.  However, it is hard to separate and recycle spent sorbent.  

Modification by iron compound known as magnetic biochar (MBC) could solve the 

above problem via utilizing its magnetic property.  It also improves porosity of 

biochar leading to enhance adsorption capacity [21]. 

 

2.4 Synthesis of MBC 

Commonly, there are four synthesis routes to produce MBC, such as 

Impregnation-pyrolysis, chemical co-precipitation, solvothermal, and reductive co-

precipitation [21]. 

2.4.1 Impregnation-pyrolysis  

Pyrolysis is thermal decomposition of biomass in absence of oxygen[47], 

which is divided into conventional pyrolysis, fast pyrolysis, and flash pyrolysis.  

Generally, conventional pyrolysis is used for production of MBC, because the highest 

biochar yield could be obtained.  First, biomass was impregnated with magnetic 

precursor solution. Then, placed in furnace for pyrolysis.  In this process, biomass can 

be activated to biochar and magnetic precursor can be transformed into magnetic 

particle [21].  MBC produced from this method provides good stability and less metal 

leaching during preparation.  However, tar and gas pollutants were produced during 

pyrolysis[48, 49]. 

2.4.2 Chemical co-precipitation 

First, biochar is immersed in magnetic precursor solution. Magnetic precursor 

commonly used is ferric and ferrous salts, the molar ratio of Fe3+ to Fe2+ is 2:1 [50].  

Then, dropping alkaline solution, magnetic particles precipitate on biochar surface 

[21].   The Fe3O4 is completely precipitation at pH around 8-12 [51].  This process is 

easy to control, and MBC produced from this method provides excellent stability.  
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However, adding alkaline solution could increase cost, and wastewater of alkaline 

needs to be treated [21]. 

 

2.4.3 Solvothermal 

Solvothermal is thermal treatment method for removing water, CO2, SO4, and 

other volatile components.  Generally, solvothermal is used for production of 

magnetic nanomaterials.  MBC produced from this process is biomass and magnetic 

precursor placed in pressurized autoclave with operating temperature of 100-300 °C.  

Reductants, alkaline salts, and surfactants are needed to add in solvothermal method 

for preventing agglomeration of particles [21]. 

 

2.4.4 Reductive co-precipitation 

Reductive co-precipitation is adding reductants such as NaBH4 to mixed 

solution of Fe2+/Fe3+ and biochar.  The reductants can reduce Fe2+/Fe3+ to zero-valent 

iron [21]. 

Among various methods for synthesis of MBC, impregnation-pyrolysis has 

several advantages, such as time-saving, due to pyrolysis and magnetization of 

biochar are completed at the same time.  Therefore, it is employed in this work.   

 

2.5 Response surface methodology 

 Adsorption model could help to save time and cost, response surface 

methodology is one of powerful tools for modeling. 

Response surface methodology (RSM) is a group of mathematical and 

statistical techniques used to define relationships between response and input 

variables (or independent variables) [52].  RSM is widely used for optimization and 

modeling, it has several advantages, such as it provides a lot of information with a 

small number of experiments, time-saving compared with one variable at a time 

technique, and ability in observed interaction effect of input variable [53]. 
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The commonly used model in RSM is second-order model [54], which can be 

written as follow: 

 y = β0 +  ∑ β𝑖𝑥𝑖
𝑘
𝑖=1 + ∑ β𝑖𝑖

𝑘
𝑖=1 𝑥𝑖

2 + ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗𝑖<𝑗 + 𝜀   (1) 

where, 

y is a response. 

β0, β𝑖 , β𝑖𝑖 , 𝛽𝑖𝑗 are regression coefficients of intercept, linear, quadratic, and interaction 

respectively. 

𝑥𝑖  and 𝑥𝑗 are input variables. 

𝜀 is a random experimental error. 

 

2.6 Machine learning 

 Machine learning (ML) is a branch of artificial intelligence that can learn and 

make decisions from the data without program [55].  Generally, there are three types 

of ML such as supervised, unsupervised, and reinforcement learning.  Supervised 

learning algorithms can be used to model relationships between independent variables 

and dependent variables known as labeled data.  To build prediction model, first, 

labeled data is randomly separated into training data and testing data.  Training data is 

used to build a statistical model via machine learning algorithms.  Then, the statistical 

model is validated by testing data.  Finally, prediction model is obtained [56].  Many 

ML algorithms could deal with complex relationships between independent variables 

and dependent variables[26], e.g. random forest, Catboost, and boosted regression 

tree. 

2.6.1 Random forest 

Random forest (RF) is a classification algorithm, which can used for 

regression problems.  It is consist of many decision trees generated by bagging and 

random selection[57].  Schemetic diagram of random forest is exhibited in Fig. 2.1.  

The advantages of this algorithm are high accuracy and resistant to overfitting[26]. 
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Fig. 2.1 Schemetic diagram of random forest [23] 

 

2.6.2 CatBoost 

CatBoost or Catagorical Boosting is one of ML algorithms, which generated 

by modification of gradient boosting algorithm with a new categorical features.  In 

comparison to other boosting algorithms, CatBoost is outperformance in quality of 

variety of datasets.  Moreover, it could deal with prediction shift of the present 

gradient boosting algorithms[58]. 

 

2.6.3 Boosted regression tree 

Boosted regression tree (BRT) is algorithm that fitting many single models 

and combine them for optimizing prediction model.  Two algorithms are used in BRT 

such as decision tree and boosting.  This algorithm can be used with a variety of 

response types.  It can accommodate missing data.  Moreover, data transformation 

and elimination are no need for BRT[59]. 
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Fig. 2.2 Schematic diagram of boosted regression tree [23] 

 

2.7 Literature review 

Many years ago, many research about biochar and MBC synthesis have been 

developed to study the effect of various parameters on the characteristics of MBC.  

Among all parameters, the effect of pyrolysis temperature on characteristics of MBC 

and prediction model of TC adsorption capacity under various adsorption conditions 

have been reported in many research as follows. 

 

2.5.1 Use of watermelon rind as a precursor for synthesis of magnetic biochar 

 Synthesis of magnetic watermelon rind biochar (MWBC) from watermelon 

rind was reported by Lingamdinne et al. [60].  They started by synthesis of biochar at 

various pyrolysis temperatures (300, 400, and 500 °C).  They found that biochar 

pyrolyzed at temperature of 500 °C showed the highest removal of uranium.  

Therefore, they used biochar pyrolyzed from temperature of 500 °C for synthesis of 

WMBC.  The MWBC was synthesized by chemical co-precipitation of FeCl3.6H2O 

and FeSO4.7H2O solution in molar ratio of 2:1.   The process was adjusted pH to 10 

by adding NH3 solution for complete precipitation.  Morphology of MWBC was 

observed by scanning electron microscope (SEM) as shown in Fig. 2.1a.  Porous and 

rough surfaces of WMBC could be observed.  Several black spots are present in TEM 

image as shown in Fig. 2.1b suggesting the co-precipitation method could provide 

uniform Fe3O4 particles on biochar.  
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Fig. 2.3 (a) SEM and (b) TEM image of MWBC sample [60] 

 

 The characteristic bands of watermelon rind biochar (WBC) and MWBC are 

shown in Fig. 2.2.  They found characteristic peaks of WBC around 3268, 1342, 1584 

cm-1, assigned to -OH, aliphatic C-H, and aromatic C=C respectively.   

 

Fig. 2.4 FTIR spectrum of MBC and MWBC [60] 

 

2.5.2 Effect of pyrolysis temperature on characteristics of magnetic biochar. 

 Pyrolysis temperature is a major factor that affects the characteristics of 

magnetic biochar.  There were many studies reported on the effect of pyrolysis 

temperature on characteristics of magnetic biochar as follows. 
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 Hu et al. [61] synthesized MBC by pyrolysis of rattan sawdust and iron salt.  

Rattan sawdust was used as a carbon precursor, then mixed with Fe2+ and Fe3+ 

solution.  The mixture was pyrolyzed from room temperature to setting temperature 

(600, 700, 800, and 900 °C) with a heating rate of 5 °C/min.  After holding for 2 hr in 

N2 gas flow of 80 mL/min, MBC was obtained. 

 Jiang et al. [62] synthesized MBC by fast pyrolysis.  Firstly, sawdust was 

immersed in FeCl3.6H2O solution, then shaken at 200 rpm for 5 hr.  The rotary 

evaporation was used for removing water followed by drying at 80 °C overnight.  The 

impregnated sawdust was pyrolyzed under N2 gas flow of 400 mL/min.  Pyrolysis 

temperatures varied from 500-800 °C while holing times also varied from 0-1 hr. 

 

2.5.2.1 Yield of MBC product 

From Hu et al. [61], they found that with an increase in pyrolysis temperatures 

from 600 °C to 900 °C increased degree of graphitization, resulting in yield of MBC 

decreasing from 34.49% to 25.30% as shown in Table 2.1. 

 

Table 2.1 Yield of MBC [61]  

 

Sample Yield (%) 

MBC600 34.49 

MBC700 31.71 

MBC800 24.82 

MBC900 25.30 

 

 

 

2.5.2.2 Morphology of MBC 

From Hu et al. [61], they observed morphology of MBC by FESEM (FEIXL-

30) and EDAX (FEG 132-10) with operating voltage of 20kV.  It could be observed 

that iron particles formed on biochar surface.  At pyrolysis temperatures of 600 °C 

and 700 °C, smooth and octahedral crystal faces of magnetic particles formed on 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 15 

biochar matrix as exhibited in Fig. 2.3a and Fig. 2.3b.  When pyrolysis temperatures 

increased to 900 °C, ovoid morphologies could be observed together with magnetic 

particles assembled as exhibited in Fig. 2.3c. 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.5 FESEM images of  (a) MBC600, (b) MBC700, and (c) MBC900 [61] 

 

From Jiang et al. [62], they observed morphology of MBC by SEM (FEI 

Company, Hillsboro, OR, USA).  A large nanoparticle could be observed in MBC500 

as shown in Fig. 2.4a.  Some small nanofibers were formed when pyrolysis 

temperature increased to 600 °C (Fig. 2.4b).  With pyrolysis temperatures of 700 °C 

and 800 °C, more nanofibers formed together with more regular morphology. 
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Fig. 2.6 SEM image of (a) MBC500, (b) MBC600, (c) MBC700, (d) MBC800 [62] 

 

2.5.2.3 Crystallinity of MBC 

Jiang et al. [62], used Raman spectroscopy (LabRamHR, HORIBA Jobin 

Yvon, Paris, France) to analyze the crystallinity of MBC. 1355 cm-1 according to D 

band which represented amorphous carbon.  The peak at 1592 cm-1 according to G 

band represented graphitic carbon.  With an increase in pyrolysis temperatures from 

500 °C to 800 °C, IG/ID ratio was increased from 1.06 to 1.27.  The results indicate the 

degree of graphitization increase with pyrolysis temperatures. 
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Fig. 2.7 Raman spectra of MBC samples [62] 

 

 

2.5.2.4 Magnetic phase of MBC 

From Hu et al. [61], they used an X-ray diffractometer with 40 keV, 40 mA, 

and λ = 1.5460 Å to identify magnetic phase of MBC between 2θ of 10-80°.  XRD 

patterns of MBC are exhibited in Fig 2.6.  The peaks at 2θ = 18.2°, 30.0°, 35.4°, 

43.0°, 56.9°, and 62.5° (JCPDS 89-0688) attributed to Fe3O4 were found in MBC600.  

When pyrolysis temperatures were increased to 700 °C and 800 °C, magnetic phase 

transformed to FeO confirmed by the peaks at 2θ = 35.9°, 41.6°, 60.4°, and 72.3° 

(JCPDS 89-0687).  The peaks at 2θ = 44.7° and 65.2° (JCPDS 87-0721) suggested 

that magnetic phase completely transformed to α-Fe and γ-Fe when pyrolysis 

temperature was increased to 900 °C. 
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Fig. 2.8 XRD pattern of MBC [61] 

 

From Jiang et al. [62], they used an X-ray diffractometer (XRD, MXPHF; 

Rigaku Corp., Tokyo, Japan) with 30 kV, 160 mA, and λ = 1.5460 Å to identify 

magnetic phase of MBC.  They found the peak of Fe, FeO, and Fe3O4 with the peaks 

located at 2θ = 44.7° and 65.0° (JCPDS 06-0696), 2θ = 41.7°, 36.3°, and 61.9° 

(JCPDS 06-0615) 30.1°, 35.4°, 43.1°, and 56.9° (JCPDS 19-0629), respectively in 

MBC500 and MBC600.  When pyrolysis temperature was increased to 700 °C, FeO 

and Fe3O4 were completely transformed into Fe together with the formation of Fe3C.  

The peaks of Fe3C were not detected when pyrolysis temperature was increased to 

800 °C as shown in Fig. 2.7. 
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Fig. 2.9 XRD pattern of MBC [62] 

 

2.5.3 The development model of TC adsorption capacity under various adsorption 

conditions 

Adsorption conditions are one of important factors affecting the TC adsorption 

capacity.  There were some studies reported on the adsorption model of TC under 

various adsorption conditions as follows. 

Foroughi et al. [63] studied TC adsorption using Fe3O4-g-CN@PEI-β-CD 

nanocomposite as sorbent.  Adsorption conditions under various adsorption 

parameters including TC concentration (31-268.9 mg/L), pH (1.93-9), adsorbent 

dosage (1.55-13.45 g/L), temperature (23-47 °C), and contact time (3.2-20 min) were 

designed by central composite design (CCD).  The studied factors and levels are 

shown in Table 2.2.  Adsorption process was modeled by response surface 

methodology (RSM), boosted regression tree (BRT), and general regression neural 

network (GRNN) under various adsorption conditions.   The result revealed BRT 

showed the most accurate prediction model.  The order of influential factors was as 

follows pH > adsorbent dosage > TC concentration. 
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Table 2.2 The studied factors and levels [63] 

 

Factor Unit 

Level 

-α (-2) -1 0 +1 +α (+2) 

A-Initial TC 

concentration mg/L 31 100 150 200 268.9 

B-pH - 1.93 4 5.5 7 9 

C-Adsorbent dose g/L 1.55 5 7.5 10 13.45 

D-Temperature °C 23 30 35 40 47 

E-Time min 3.2 8 11.5 15 20 

 

 Topal et al. [64] studied TC adsorption by chitosan from mussel shells.  

Central composite design (CCD)-based response surface methodology was used to 

optimize the adsorption process.  Four studied factors i.e., initial TC concentration 

(25-125 mg/L), Time (0-80 min), adsorbent dosage (1-13 g/L), and temperature (0-40 

°C).  The optimal conditions for maximum adsorption efficiency were initial TC 

concentration of 90.5 mg/L, time of 35.9 min, temperature of 29.9 °C, and adsorbent 

dosage of 0.4 g. 

 

Table 2.3 The studied factors and levels [64] 

 

Factor Unit 

Level 

-α (-2) -1 0 +1 +α (+2) 

A-Initial TC 

concentration mg/L 25 50 75 100 125 

B-Time min 0 20 40 60 80 

C-Adsorbent 

dosage g 1 4 7 10 13 

D-Temperature °C 0 10 20 30 40 

 

  

Nasiri et al. [65] studied TC adsorption by magnetic nanocomposite.  The 

adsorption process was modeled and optimized by response surface methodology.  

CCD was used to define the experimental runs under four factors i.e., pH (3-11), 

initial TC concentration (4-20 mg/L), adsorbent dosage (0.05-0.25 g/L), and time (15-

115 min).  The maximum TC adsorption capacity was 79.45%. 
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Table 2.4 The studied factors and levels [65] 

 

Factor Unit 

Level 

-α (-2) -1 0 +1 +α (+2) 

A-pH - 3 5 7 9 11 

B-Initial TC 

concentration mg/L 4 8 12 16 20 

C-Adsorbent 

dosage g/ L 0.05 0.1 0.15 0.2 0.25 

D-Time min 15 40 65 90 115 

 

However, the synthesis of MBC from agricultural waste, especially, 

watermelon rind by impregnation-pyrolysis for TC antibiotic adsorption and the effect 

of pyrolysis temperature on characteristics of MBC is still limited.   It would be 

beneficial to develop TC adsorption model of MBCs derived from watermelon rind 

under various adsorption conditions based on RSM.  Moreover, it would be beneficial 

to develop TC adsorption model using ML under characteristics of the adsorbent with 

updated data.  
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CHAPTER 3 

METHODOLOGY 
 

 This research, this chapter would be divided into 5 parts. The first part is 

chemicals and materials.  The second part is synthesis of MBC. The third part is 

characterization techniques.  The fourth part is adsorption experiments, and the last is 

the development of empirical model. 

 

3.1 Chemicals and materials 

A batch of watermelon rind was collected from a single local market in 

Bangkok, Thailand for ensuring the whole investigation.  Morphology of watermelon 

rind with 1300X magnification as shown in Fig. 3.1.  Elemental composition of 

watermelon rind (dry basis) is listed in Table 3.1.  Iron (III) chloride hexahydrate 

(99% purity, AR grade, QReC) was used to impregnate on watermelon rind.  Nitrogen 

(99.6% ultra-high purity industrial grade, Linde) was used to make pyrolysis system 

fully with inert gas.  Tetracycline (≥98% purity, Sigma-Aldrich) was used for 

adsorption experiment. 

 

Fig. 3.1 Morphology of watermelon rind 
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Table 3. 1 The elemental content of watermelon rind 

 

Element Percentage composition (%) 

Carbon 35.17 

Hydrogen 5.24 

Nitrogen 2.20 

Oxygen 57.39 

 

3.2 Synthesis of MBC  

Watermelon rind was cut, dried, and sieved to a size less than 300 µm.  A 

particulate sample of watermelon rind was immersed in FeCl3 solution with a 2:1 

weight ratio of FeCl3 to watermelon rind for 2 h with magnetic stirring, then the solid 

residue was filtered and dried at 80 °C overnight. Then, FeCl3-impregnated sample 

was pyrolyzed from room temperature with a heating rate of 8 °C/min to designated 

temperatures (600, 700, 800, and 900 °C), then, hold for 2 h under N2 atmosphere 

(0.05 L/min) using electrical quartz tube furnace.  Experimental schematic is shown in 

Fig. 3.2.  After being cooled down, the resultant sample was labeled as MBCT, where 

T represented the pyrolysis temperature (T=600, 700, 800, and 900°C).   

 

 

Fig. 3.2 The experimental schematic of MBC synthesis 
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3.3 Characterization techniques 

3.3.1 Surface morphology of MBCs  

Surface morphology of MBCs was observed by environmental scanning 

electron microscope (Quanta450, FEI, Czech), which showed in Fig.3.3.   SEM 

images were performed with 1,300X magnification. 

 

 

Fig. 3.3 Environmental scanning electron microscope model Quanta450 

 

3.3.2 Chemical composition 

 The chemical composition of dried watermelon rind and MBCs were analyzed 

by an elemental analyzer (Thermo flash 2000, Thermo Fisher Scientific), which 

showed in Fig 3.4.  The oxygen content (O%) was calculated by subtracting total C%, 

H%, and N% from 100%. 
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Fig. 3.4 Element analyzer model Thermo flash 2000 
 

3.3.3 Specific surface area and pore volume of MBCs 

The specific surface area and pore volume of MBCs were analyzed by N2 

adsorption/desorption isotherms (ASAP2460, Micromeritics, Thailand), which 

showed in Fig. 3.5.  First, samples were degassed at 300 °C for 5 h. Then, degassed 

samples were taken to measure N2 adsorption/desorption.  The data is shown in the 

form of BET isotherm, which is relationship between gas adsorbed and relative 

pressure.  Specific surface area and total pore volume were calculated by BET 

equation. 
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Fig. 3.5 Surface area and porosimetry analyzer model ASAP2460 

 

3.3.4 Surface functional groups of MBCs 

The surface functional groups of MBCs were identified by FTIR spectrometer 

(Nicolet 6700, Thermo Fisher Scientific, USA), which showed in Fig.3.6.  

Wavelength was studied in the range of 500 cm-1 to 3700 cm-1. 

 

Fig. 3.6 FTIR spectrometer model Nicolet 6700 
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3.3.5 Crystallinity of MBCs 

The crystallinity of MBCs was identified by Raman spectroscopy (NTEGRA 

spectra, NT-MDT, Russia), which showed in Fig. 3.7.  Red laser with a wavelength of 

632.8 nm was used and Raman shift was studied in the range of 1000 to 2000 cm-1.  

 

 

Fig. 3. 7 Raman spectroscopy model NTEGRA spectra 
 

3.3.6 Magnetic property of MBCs 

The magnetic moment of MBCs was investigated by vibrating sample 

magnetometer (7404, Lake Shore, USA), which showed in Fig. 3.8.  The magnetic 

field was studied between -6000 G and +6000 G. 
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Fig. 3.8 Vibrating sample magnetometer model 7404 

 

3.3.7 Magnetic phases of MBCs 

The magnetic phases of MBCs were identified by x-ray diffraction 

spectroscopy (D8 Discover, Bruker), which showed in Fig. 3.9.  XRD pattern was 

recorded in the 2θ range from 10° to 80° (Cu, 40 kV, 40 mA) with scanning speed of 

10°/min. 

 

Fig. 3.9 X-ray diffraction spectroscopy model D8 Discover 
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3.4 Adsorption experiments 

Adsorption kinetic experiment was carried out with conditions as follows 50 

mL of TC solution with initial concentration of 40 mg/L was added in 60 mL amber 

glass bottle, and then MBC dosage of 0.3 g/L was added.  The bottles were placed in 

an orbital shaker (NR-201M, N-TER) at 120 rpm. shaken up for 180 min, the solution 

was periodically taken off for TC concentration measurement using UV-Vis 

spectrophotometer (UV-2600 240V EN, Shimadzu, Japan) at a wavelength of 359 nm.  

Adsorption isotherm experiments were carried out by adding 50 mL of TC solution 

with different initial concentrations varied 10-100 mg/L in amber glass bottle, then 

MBC dosage of 0.3 g/L was added.  The amber glass bottle was placed in the orbital 

shaker at 120 rpm.  shaken up for 3 hr to reach equilibrium. 

  

The TC adsorption capacity was calculated based on equation below: 

 q =  
(Ci−Ct)

C0
                                                                                                              (2) 

Where, 

q is TC adsorption capacity (mg/g). 

Ci is initial TC concentration (mg/L). 

Ce is TC concentration at time t (mg/L). 

C0 is adsorbent dosage (g/L). 

The effect of solution pH on TC adsorption capacity of MBC was examined 

between 3 and 11. The solution pH was adjusted by adding 0.1M of HCl solution or 

0.1M of NaOH solution into 50 mL of TC solution with initial TC concentration of 20 

mg/L, then 15 mg of MBC900 was added.  The amber glass bottles were placed in 

orbital shaker at 120 rpm. shaken up for 180 min, then TC solutions were taken to 

measure concentration. 

The reusability of MBC was investigated by adsorption-desorption process.  

The 15 mg of MBC900 was added into 40 mg/L and 50 mL of TC solution.  Then the 

amber glass bottle was placed in orbital shaker at 120 rpm.  After 180 min, the 
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solution was taken off for TC concentration measurement and MBC900 was separated 

by external magnet.  The MBC900 was immersed in 0.5M NaOH solution and shaken 

for 5 h, then wash MBC900 with DI water until neutral.  The above process was 

repeated in five cycles. 

 

3.5 Development of model 

3.5.1 Development of empirical model based on RSM 

 MBC900 was employed as adsorbent for studying development of empirical 

model.  CCD was used to define experimental runs using Design Expert 11 software 

to model TC adsorption capacity under studied factors i.e., A-initial TC concentration, 

B-adsorbent dosage, C-solution pH, and D-contact time.  The studied factors and 

levels are provided in Table 3.2.  The experimental runs are provided in Table 3.3.  

The CCD design contains five coded levels of -α, -1, 0, +1, +α, representing lower 

axial, low, medium, high, and upper axial points, respectively.  Where α is calculated 

by α = 2
𝑘

4 which k is the number of factors.  TC adsorption capacities were fitted with 

a second-order model of RSM as described in equation (1) to investigate the 

relationship between the factors.  Analysis of variance (ANOVA) was used to 

investigate the quality of the model and estimate the significance of each term in the 

model. 

 

Table 3.2 The studied factors and levels used to design experimental runs 

 

Factor Unit 

Level 

-α (-2) -1 0 +1 +α (+2) 

A-Initial TC 

concentration mg/L 20 40 60 80 100 

B-Adsorbent 

dosage g/L 0.1 0.2 0.3 0.4 0.5 

C-Solution pH - 3 5 7 9 11 

D-Time Min 15 30 45 60 75 
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Table 3.3 Experimental runs designed based on CCD 

 

Run 

Initial TC 

concentration 

(mg/g) 

Adsorbent 

dosage (g/L) Solution pH Time (min) 

1 60 0.3 7 45 

2 60 0.3 11 45 

3 80 0.2 5 60 

4 40 0.2 9 60 

5 80 0.2 9 30 

6 40 0.2 5 60 

7 60 0.3 7 45 

8 20 0.3 7 45 

9 80 0.4 9 30 

10 40 0.4 9 30 

11 40 0.2 9 30 

12 60 0.3 7 45 

13 80 0.4 5 60 

14 60 0.3 7 75 

15 60 0.3 3 45 

16 80 0.4 5 30 

17 40 0.4 5 30 

18 40 0.4 5 60 

19 40 0.4 9 60 

20 100 0.3 7 45 

21 60 0.3 7 45 

22 80 0.2 9 60 

23 60 0.3 7 45 

24 60 0.1 7 45 

25 60 0.3 7 45 

26 60 0.3 7 45 

27 40 0.2 5 30 

28 80 0.4 9 60 

29 60 0.5 7 45 

30 60 0.3 7 15 

31 80 0.2 5 30 
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3.5.2 Development of semi-empirical model based on ML 

The 100 different adsorbents for TC adsorption were collected from 37 journal 

publications including data from this reserach. The data of characteristics of the 

adsorbents and references are summarized in Table F.1. The data of SBET, C%,  

H/C, (O+N)/C, and initial TC concentration toward TC adsorption capacity of 100 

different adsorbents were collected.   The data were normalized by z-score as shown 

in following equation. 

                                        𝑧𝑖 =  
𝑥𝑖−µ

σ
                                                                  (3) 

Where, 𝑧𝑖 is normalized data, 𝑥𝑖 is originally data, µ is average of data, and σ 

is standard deviation of data for each variable.  The normalized data were randomly 

split into training set and testing set in a ratio of 85:15.  RF, Catboost, and BRT 

algorithms were applied to the development of semi-empirical model using Python.  

The source codes are provided in Appendix G. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

This chapter is divided into three parts.  Firstly, effect of pyrolysis temperature 

on product yield and characteristics of pyrolyzed products including morphology, 

chemical composition, specific surface area (SBET), total pore volume (VP), surface 

functional groups, and crystallinity were analyzed.  Magnetic phase and magnetic 

moment of all pyrolyzed products were analyzed to confirm their magnetic property 

could facilitate separation and recycling processes.  Secondly, the pyrolyzed products 

obtained from different pyrolysis temperatures were employed for TC adsorption for 

examining their adsorption kinetics, isotherm, effect of initial pH, and reusability.  

Finally, the models of TC adsorption capacity based on RSM and ML were 

developed. 

 

4.1 Effects of pyrolysis temperature on characteristics of pyrolyzed products 

Morphology of as-synthesized samples was observed by SEM as shown in 

Fig. 4.1.  Similar porous morphology of all pyrolyzed products could be observed.  N2 

adsorption/desorption method was used for quantitative analysis of specific surface 

area (SBET), pore volume (VP), and pore size distribution of pyrolyzed products.  Table 

4.1 exhibited that with pyrolysis temperature of 600 °C, pyrolyzed sample (MBC600) 

possesses the lowest SBET of 58.14 m2/g of and VP of 0.046 cm3/g.  However, an 

increase in pyrolysis temperature could enhance both SBET and VP of MBC. 

Correspondingly, at temperature of 900 °C, pyrolyzed sample (MBC900) possesses 

the highest SBET of 401.11 m2/g and VP of 0.236 cm3/g.  The average pore size 

diameter (Davg) of MBC600, MBC700, MBC800, and MBC900 were 3.19, 2.33, 2.31, 

and 2.36 nm, respectively.  BET isotherm of all pyrolyzed sample reveals isotherm 

type IV as shown in Fig. 4.2, suggesting SBET and Vp that reported in Table 4.1 are 

mesoprous.  However, pore size distribution of all synthesized MBCs as shown in 

Fig. 4.3 reveals pyrolyzed products consists of both mesoporous (4nm) and 

microporous (≤2nm)[66].  From these results, it should be noted that an increase in 

pyrolysis temperature would enhance SBET along with mesopore and micropore of 

resultant products.   
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Meanwhile, product yield of pyrolyzed products decreased from 35.51 % to 

26.76 % with pyrolysis temperature increased from 600 to 900 °C as shown in Table 

4.1.  These results would be concluded that such porous structure would be created 

from the decomposition of lignocellulosic components within the watermelon rind 

precursor at an elevated temperature[67, 68].  An increase in the pyrolysis 

temperature would enhance the decomposition, which would result in a decreased 

product yield of the resultant products. 

Similar trend of effect of pyrolysis temperature on product yield of magnetic 

biochar was also observed.  Hu et al. [61] reported that product yields of as-

synthesized magnetic biochar were 34.49, 31.71, 24.82, and 25.30% when using 

pyrolysis temperatures of 600, 700, 800, and 900 °C.   

   

 

Fig. 4.1 SEM images of pyrolyzed samples obtained at pyrolysis temperature of (a) 

600 (b) 700 (c) 800 (d) 900 °C 

 

(b) (a) 

(c) (d) 
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Table 4.1 SBET, Vp, and yield of different MBC samples 

 

Sample SBET (m2/g) Vp (cm3/g) Davg (nm) Yield (%) 

MBC600 58.14 0.046 3.19 33.51 ± 0.94 

MBC700 358.05 0.208 2.33 30.93 ± 0.40 

MBC800 374.81 0.216 2.31 28.30 ± 1.16 

MBC900 401.11 0.236 2.36 26.76 ± 1.31 

 

 

 

Fig. 4. 2 BET isotherm of pyrolyzed samples 
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Fig. 4. 3 Pore size distribution of pyrolyzed samples 

 

For employed MBC as the adsorbent chemical composition, surface functional 

groups, and crystallinity of MBC were investigated.  The chemical composition of 

MBC samples is shown in Table 4.2.  When pyrolysis temperature was increased 

from 600 °C to 900 °C, the C content of MBC samples significantly increased from 

64.31 to 67.31 % meanwhile the O content of MBC samples decreased from 32.28 to 

30.98 %.  These results indicate that an increase in pyrolysis temperature enhances the 

degree of carbonization, dehydration reaction, and decomposition of oxygenated 

bonds[69].  The ratio of O/C and (O+N)/C represent the polarity of the MBC.  The 

pyrolysis temperature significantly affects to O/C ratio of MBC, which decreased 

from 0.37 to 0.34 when pyrolysis temperature increased from 600 °C to 900 °C.  A 

similar trend in O/C ratio could be observed in (O+N)/C ratio, indicating a more 

hydrophobic surface of MBC at higher pyrolysis temperature [70].   

A similar trend of chemical composition with pyrolysis temperature was 

reported in Wang et al. work [71].   It was reported that the C content of rice straw 

biochar increased from 45.22% to 56.00% while O content decreased from 23.41 % to 

11.38 % when pyrolysis temperature was increased from 300 °C to 700 °C due to an 

increase in degree of carbonization. 
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Table 4.2 Chemical composition of MBCs 

 

Sample C (%) H (%) N (%) O (%) O/C  (O+N)/C 

MBC600 64.31±0.25 1.50±0.08 1.90±0.24 32.28±0.05 0.37 0.40 

MBC700 64.72±0.06 0.92±0.10 1.60±0.02 32.76±0.13 0.38 0.40 

MBC800 66.83±0.25 0.60±0.11 1.12±0.02 31.46±0.11 0.35 0.37 

MBC900 67.31±0.54 0.91±0.12 0.81±0.00 30.98±0.30 0.34 0.35 

 

 Surface functional groups of pyrolyzed products were investigated by FTIR 

spectrometer.  FTIR spectra of all pyrolyzed samples are shown in Fig. 4.3.  

Characteristic peak at 3450 cm-1 represents O-H stretching vibration [72].  The peak at 

1100 cm-1 corresponded to C-O-C stretching [73].  Additionally, characteristic peak 

of O-H stretching vibration of pyrolyzed sample synthesized at higher pyrolysis 

temperature is distinctly smaller, indicating the acceleration of dehydration reaction at 

high temperature [67], which is consistent with the chemical composition of MBC 

(Table 4.2).  The upper peak at 2900 cm-1 appeared maybe due to impurity in the 

sample chamber. The upper peak at 2300 cm-1 is assigned to CO2 peak from the 

difference of CO2 in sample and background.  These results would also support the 

decrease in product yield (Table 4.1).  
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Fig. 4.4 FTIR spectra of different MBC samples 

 

Raman spectroscopy was employed for investigating crystallinity of pyrolyzed 

products, especially, sp2 at Raman shift around 1600 cm-1, which is graphitic carbon, 

and sp3 at Raman shift around 1300 cm-1, which is amorphous carbon[74].  Raman 

spectra of all pyrolyzed samples are shown in Fig. 4.4. The intensity of sp3 carbon 

representing amorphous carbon at Raman shift around 1300 cm-1 (also known as D-

band) and the intensity at Raman shifts around 1600 cm-1 (G-band) could be detected 

in all MBC samples.  When pyrolysis temperature was increased from 600 °C to 

900 °C, IG to ID ratio representing degree of graphitic carbon to amorphous carbon 

(IG/ID) increased from 0.80 to 0.86.  The calculation of IG/ID ratio was obtained from 

curve fitting of Raman spectra as shown in Fig. D1. These results would be ascribed 

that an increase in pyrolysis temperature would enhance degree of graphitization. 

There were some studies on effect of pyrolysis temperature on Raman spectra 

of magnetic biochar.  Jiang et al. [62] found that IG/ID of magnetic sawdust biochar 

increased from 1.06 to 1.27 when pyrolysis temperature was increased from 500 °C to 

800 °C.  Due to the increase in degree of graphitization at high pyrolysis temperature. 
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Fig. 4.5 Raman spectra of pyrolyzed samples 

 

Magnetic phases of all pyrolyzed samples were identified by X-ray diffraction 

as shown in Fig. 4.5.  The pyrolyzed sample obtained at pyrolysis temperature of 

600 °C (MBC600) exhibited magnetic phase of Fe3O4 confirmed by peaks around 2θ 

= 18.2°, 30.0°, 35.4°, 43.0°, 56.9°, 62.5° (JCPDS 89-0688)[75].  At pyrolysis 

temperature of 700 °C, the magnetic phases of resultant product (MBC700) 

transformed to FeO and α-Fe confirmed by peaks around 2θ = 35.9°, 41.6°, 60.4° 

(JCPDS 89-0687), and 2θ = 44.7°, 65.2° (JCPDS 87-0721) respectively [61, 76].  

However, when pyrolyzed temperature was increased from 800 to 900 °C (MBC800 

and MBC900), the magnetic phase of resultant sample is completely transformed to α-

Fe. 

According to XRD pattern of as-synthesized product, the transformation of 

magnetic phase could be described as follow.  First FeCl3 reacts with water and then 

form Fe2O3 as given in Equation (3) and (4)[77].  When pyrolysis temperature is 

higher than 570 °C, Fe2O3 could be reduced by CO and H2 to form Fe3O4, FeO, and 

Fe in three steps as shown in Equations (5), (6), (7), (8), (9), and (10)[78]. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 40 

FeCl3 + 6H2O → Fe(H2O)6
3+ + 3Cl-      (4) 

2Fe(H2O)6
3+ → Fe2O3 +6H+ + 9H2O      (5) 

3Fe2O3 + CO ⇌ 2Fe3O4 + CO2      (6) 

Fe3O4 + CO ⇌ 3FeO + CO2       (7) 

FeO + CO ⇌ Fe + CO2       (8) 

3Fe2O3 + H2 ⇌ 2Fe3O4 + H2O      (9) 

Fe3O4+ H2 ⇌ 3FeO + H2O                 (10) 

FeO + H2 ⇌ Fe + H2O                 (11) 

 

 

Fig. 4.6 Magnetic phases of pyrolyzed samples 

 

For investigating magnetic property of all pyrolyzed samples, external magnet 

and vibrating sample magnetometer were employed.  Magnetic moment of pyrolyzed 

samples is exhibited in Fig. 4.6.  All pyrolysis products exhibited ferromagnetic 
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behavior due to originality of magnetic phase (Fe3O4, FeO, and α-Fe) with non-nano-

size [79].  The size analysis of α-Fe in MBC900 from ImageJ program revealed mean 

diameter of α-Fe is 2.07 µm (data are provided in Table B.1).  The pyrolyzed sample 

obtained at pyrolysis temperature of 600 °C (MBC600) possessed low saturation 

magnetization (MS) value of 4.49 emu/g and high coercivity (HC) of 53.93 G.  

However, pyrolyzed samples obtained at pyrolysis temperatures of 800 and 900 °C 

possessed higher MS values and lower HC values as shown in Table 4.2.  The 

difference in MS may be due to the purity or the size of magnetic particles being 

different [80]. The higher magnetic saturation (MS) value of MBC, the faster 

separation of MBC could be obtained when induced by an external magnet.  After 

removing the external magnet, MBC with low HC value will be able to not accumulate 

[81].  In Fig. 4.7a, MBC900 was added into DI water and then used external magnet 

to induce MBC sample.  It was found that MBC could be easy and completely 

separated by the external magnet as shown in Fig. 4.7b.  Based on these results, such 

magnetic property of the MBC samples would be beneficial for the recovery of 

sorbents after treatment process.  These results could be implied that pyrolysis of 

FeCl3-impregnated watermelon rind could provide biochar with magnetic property.   
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Fig. 4.7 Magnetic hysteresis of pyrolyzed samples 

 

 

 

Fig. 4.8 Dispersion of MBC900 (a) before induced by external magnet (b) induced by 

external magnet 
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Table 4.3 Saturation magnetization (MS) and Coercivity (HC) of pyrolyzed samples 

 

Sample MS (emu/g) HC (G) 

MBC600 4.49 53.95 

MBC700 12.60 29.12 

MBC800 48.32 15.10 

MBC900 55.29 17.81 

 

4.2 Adsorption experiments 

 MBCs were employed as adsorbents for investigating TC adsorption 

experiments.  Adsorption kinetics and isotherm were studied for understanding 

adsorption behavior.  Influences of initial pH on TC adsorption capacity and 

reusability test of MBC were also conducted. 

4.2.1 Tetracycline adsorption kinetic of MBCs 

 Adsorption kinetic is used to study the reaction rate and adsorption 

mechanisms.  The relationship between adsorption amount and contact time is 

exhibited in Fig. 8a.  The fast adsorption could be observed in the first 30 min.  

However, after 30 min, the adsorption is slower.  This is because the remaining 

adsorption site is decreased due to the occupation of TC.  Additionally, adsorption 

process could reach equilibrium within 60 min.  The adsorption process was studied 

by two kinetic models, i.e., pseudo-first-order kinetic model and pseudo-second-order 

kinetic model, which are expressed in equations (11) and (12) [82]: 

Pseudo-first-order kinetic equation: 

ln(qe-qt)=ln(qe)-k1t                    (12) 

Pseudo-second-order kinetic equation: 

t

qt
=

1

k2qe
2 +

t

qe
                   (13) 
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(a) 

Where t is contact time (min), qt is TC adsorption amount at time t (mg.g-1), qe 

is TC equilibrium concentration (mg.g-1), k1, and k2 is rate constant (min-1 for pseudo-

first-order, g.mg-1min-1 for pseudo-second-order).  

Linear plot of ln(qe-qt) versus t is shown in Fig. 4.8b.  The slope of the plot 

was used to calculate k1 and the intercept value was used to calculate qe which are 

exhibited in Table 4.4.  Meanwhile, linear plot of t/qt versus t is shown in Fig. 4.8c. 

The slope of the plot was used to calculate qe and the intercept and qe values were 

used to calculate k2 which are also exhibited in Table 4.4.  The linear coefficient of 

pseudo-first-order kinetic model (R2 = 0.99) was higher than pseudo-second-order 

kinetic model (R2 =0.96) in MBC600.  However, in the case of MBC700, MBC800, 

and MBC900, linear coefficient of pseudo-second-order kinetic model (R2 = 0.99) 

was higher than pseudo-first-order kinetic model (R2 = 0.89-0.92) indicating the 

adsorption depends on concentration of two molecules, which are TC and active sites 

of  MBC. 
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(c) 

(b) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.9 (a) Adsorption kinetics, (b) Linearized pseudo-first-order kinetic model, and 

(c) Linearized pseudo-second-order kinetic model 
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Table 4.4 Adsorption kinetics parameter 

 

Sample Pseudo-first-order model Pseudo-second-order model 

k1 (min-1) qe (mg.g-1) R2 k  

(g.mg-1min-1) 

qe (mg.g-1) R2 

MBC600 0.025 4.46 0.99 0.002 4.82 0.96 

MBC700 0.097 6.54 0.91 0.012 9.08 0.99 

MBC800 0.129 15.52 0.92 0.007 17.28 0.99 

MBC900 0.093 16.32 0.89 0.004 22.96 0.99 

 

4.2.3 Tetracycline adsorption isotherm of MBCs 

Adsorption isotherm was performed to study adsorption behavior.  The 

relationship between adsorption capacity (qe) and concentration of adsorbate (Ce) at 

equilibrium is shown in Fig. 4.9.  The qe values of all MBCs increased with an 

increase in Ce values.  The adsorption equilibrium data were fitted by Linearized 

Langmuir and Freundlich isotherm models, which are expressed in equations (13) and 

(14) [83]: 

Langmuir isotherm equation: 

Ce

qe

= 
1

qm×KL
+ 

Ce

qm

                     (14) 

Freundlich isotherm equation: 

lnq
e
= 

1

n
lnCe+lnKf                                                           (15) 

Where Ce is concentration of adsorbate at equilibrium (mg/L), qe is adsorption 

capacity at equilibrium (mg/g), qm is maximum adsorption capacity (mg/g), KL is 

Langmuir isotherm constant, KF and n are Freundlich isotherm constant. 

 Linear plots of Ce/qe versus Ce and lnqe versus lnCe are shown in Fig. 9(b-c).  

The qm values and adsorption isotherm constant are exhibited in Table 4.5, which are 
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calculated from the slope of the plot.  The qm values of MBC600, MBC700, MBC800, 

and MBC900 were 14.42, 17.59, 52.25, and 77.60 mg/g respectively.  An increase in 

qm values possesses a positive trend with SBET.  MBC with higher SBET could provide 

more active site for adsorption of TC[23].  However, previous works reported that π-π 

electron donor−acceptor (EDA) interaction was the main mechanism of TC 

adsorption [4, 84].  In this work, MBC700, MBC800, and MBC900 possessed 

graphitic carbon which could be electron donors while TC could be electron acceptors  

(π-π EDA interaction) [4, 84].  Raman spectra (Fig. 4.4) investigated that an increase 

in pyrolysis temperature increased degree of graphitization.  Therefore, π-π EDA 

interaction was promoted, which would enhance adsorption capacity.  Additionally, 

the higher linear coefficient of Freundlich isotherm model (R2=0.96-0.99) than 

Langmuir isotherm model (R2=0.84-0.97) suggests the adsorption process based on 

heterogenetic adsorption site [85].  It is consistent with the results of Raman spectra 

(Fig. 4.4) that MBC possesses amorphous and graphitic carbon. 
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Fig. 4.10 (a) Adsorption isotherm, (b) Linearized Langmuir isotherm model, and (c) 

Linearized Freundlich isotherm model 
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Table 4.5 Adsorption isotherm parameter 

 

 

Sample 

Langmuir Freundlich 

qm 

(mg/g) 

KL 

(L/mg) 

R2 N KF R2 

MBC600 14.42 0.016 0.91 1.40 0.36 0.96 

MBC700 17.59 0.023 0.97 1.82 1.04 0.98 

MBC800 52.25 0.013 0.84 1.49 1.46 0.98 

MBC900 77.60 0.014 0.92 1.47 2.21 0.99 

 

By analyzing the effect of pyrolysis temperature on characteristics of MBC, 

MBC900 is found to possess the highest SBET, VP, IG/ID ratio, and MS value.  

Moreover, the study of adsorption kinetics and isotherm experiments revealed that 

MBC900 possessed the highest maximum adsorption capacity.  Therefore, MBC900 

was selected for further investigation of TC antibiotic removal. 

 

4.2.4 Effect of initial pH 

The TC adsorption capacity of MBC900 under various initial pH is shown in 

Fig. 4.10.   The surface charges of TC could be varied by changing the solution pH 

[23].  Therefore, electrostatic interaction could affect the adsorption mechanism.  TC 

is amphoteric molecule with different change under different pH (H4TC+, pH < 3.3; 

H3TC, pH = 3.3–7.7; H2TC–, pH = 7.7–9.7; HTC2–, pH > 9.7)[86].  FTIR results 

confirmed that MBC possessed oxygenated group on its surface, which is negative 

charge.  The adsorption capacity was highest at pH 3.  At pH 3, TC was positive 

charge while MBC contain negative charge from oxygenated group.  Therefore, 

electrostatic attraction occurred (i.e., positive-negative attraction).  The adsorption 

capacity rapidly decreased from 21.67 to 8.31 mg/g when initial pH increased from 5 

to 11.  At pH 7, 25% of TC was anionic form[87] and at pH higher than 7, TC charge 

was more negative leading to an increase in electrostatic repulsion between TC 

molecule and MBC resulting in a decrease in adsorption capacity. 
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Fig. 4.11 Effect of initial pH on TC adsorption capacity 

 

4.2.5 Reusability of MBC 

The reusability test was performed by adsorption-desorption process in five 

cycles to study the stability of MBC900 as shown in Fig. 4.11.  Percent of adsorption 

of each cycle was calculated by equation below: 

Adsorption percentage =
qi

q1
× 100                       (5) 

Where qi is adsorption capacity of cycle i and q1 is adsorption capacity of first cycle.             

 Adsorption capacity decreased by less than 10% after three cycles (100 to 

93.46%).  After four cycles, adsorption capacity decreased by 10% (100 to 89.56%).  

The adsorption capacity decreased by 16% (100 to 83.89%) after five cycles, the 

decrease in adsorption capacity was due to the decrease in active sites of MBC after 

each regeneration cycle confirmed by SBET of MBC before adsorption and after five 

cycles decreased from 401.11 m2/g to 365.26 m2/g.    These results indicated that 

MBC was reusable and had good stability. 
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Fig. 4.12 Reusability of MBC900 

 

4.3 Development of an empirical model of TC adsorption capacity 

4.3.1 Development of an empirical model of TC adsorption capacity based on RSM 

 The development of an empirical model of TC adsorption capacity under four 

studied factors, including A-Initial TC concentration, B-Adsorbent dosage, C-

Solution pH, and D-Contact time, which were experimentally studied following Table 

3.4.  The experimental adsorption capacities of each condition are shown in Table 

4.6.  The highest adsorption capacity of 69.61 mg/g could be obtained from Run 

number 15 (Initial concentration of 60 mg/L, adsorbent dosage of 0.3 mg/L, solution 

pH of 3, and contact time of 45 min). 

An empirical model was generated by fitting it with quadratic model, which is 

exhibited in equation (3).  Predicted adsorption capacities of each condition, which 

are calculated from equation (3) and exhibited in Table 4.6. 

Predicted adsorption capacity (mg/g) = -1.2+2.082A-40B-1.46C+0.213D-

0.00654A2+14B2+0.312C2+0.00486D2+0.352AB-0.169AC-0.0018AD+4.48BC-

0.198BD-0.0635CD                                                                                                  (6) 
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Table 4.6 Experimental and predicted adsorption capacity under CCD design 

Run 

Initial TC 

concentration 

(mg/L) 

Adsorbent 

dosage (g/L) Solution pH Time (min) 

Experimental 

adsorption 

capacity 

(mg/g) 

Predicted 

adsorption 

capacity 

(mg/g) 

1 60 0.3 7 45 32.74 31.16 

2 60 0.3 11 45 4.54 1.17 

3 80 0.2 5 60 58.92 59.29 

4 40 0.2 9 60 17.54 15.64 

5 80 0.2 9 30 3.70 8.32 

6 40 0.2 5 60 46.32 42.70 

7 60 0.3 7 45 31.76 31.16 

8 20 0.3 7 45 13.65 15.14 

9 80 0.4 9 30 13.95 14.51 

10 40 0.4 9 30 15.35 19.99 

11 40 0.2 9 30 17.73 16.62 

12 60 0.3 7 45 30.19 31.16 

13 80 0.4 5 60 62.66 60.70 

14 60 0.3 7 75 33.33 36.69 

15 60 0.3 3 45 69.61 71.13 

16 80 0.4 5 30 50.51 57.41 

17 40 0.4 5 30 39.60 35.85 

18 40 0.4 5 60 40.93 41.30 

19 40 0.4 9 60 17.51 17.82 

20 100 0.3 7 45 29.58 26.25 

21 60 0.3 7 45 25.58 31.16 

22 80 0.2 9 60 4.49 5.18 

23 60 0.3 7 45 24.93 31.16 

24 60 0.1 7 45 28.19 29.33 

25 60 0.3 7 45 43.63 31.16 

26 60 0.3 7 45 29.19 31.16 

27 40 0.2 5 30 32.01 36.06 

28 80 0.4 9 60 9.23 10.18 

29 60 0.5 7 45 37.09 34.11 

30 60 0.3 7 15 39.59 34.38 

31 80 0.2 5 30 58.18 54.81 
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The plot between predicted adsorption capacity versus experimental data as 

shown in Fig 4.12 revealed that the data arrangement is in line with the perfect line 

(blue line (y=x)) with a high R2 value of 0.9492, suggesting that the prediction data is 

consistent with experimental data.  Moreover, predicted R2 of 0.8195 reasonable 

agreement with adjusted R2 of 0.9048 because the difference was less than 0.2. 

 

 

Fig. 4.13 Predicted adsorption capacity against experimental data (red line is 

regression line and blue line is perfect line (y=x)) 

 

 The ANOVA results of empirical model of tetracycline adsorption capacity 

are exhibited in Table 4.7.  At 95% confidence or level of significance equal to 0.05, 

when p-value less than 0.05 indicates model term is significant while p-value greater 

than 0.05 indicates model term is not significant.  The model is significant with F-

value of 21.37 and p-value less than 0.0001 while the lack of fit is not significant with 

F-value of 0.6 and p-value of 0.776.  The significant effects of this model terms on 

TC adsorption capacity are initial TC concentration, solution pH, interaction between 

initial TC concentration and solution pH, and square effect of initial TC concentration 

with p-value less than 0.05.  From sum of squares, the significant effect on TC 
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adsorption capacity is as follows order: solution pH > interaction between initial TC 

concentration and solution pH > square effect of initial TC concentration > initial TC 

concentration as shown in Fig. 4.13. 

 

Table 4.7 ANOVA of an empirical model of tetracycline adsorption capacity 

 

Source Sum of squares DF Mean square F-value p-value 

Model 8693.08 14 620.93 21.37 < 0.0001 

A-Initial TC concentration 184.37 1 184.37 6.34  0.023 

B-Adsorbent dosage 34.22 1 34.22 1.18 0.294 

C-Solution pH 7342.3 1 7342.3 252.67 < 0.0001 

D-Time 8.24 1 8.24 0.28 0.6022 

A2 195.86 1 195.86 6.74 0.019 

B2 0.55 1 0.55 0.02 0.892 

C2 44.53 1 44.53 1.53 0.234 

D2 34.23 1 34.23 1.18 0.294 

AB 7.92 1 7.92 0.27 0.609 

AC 731.16 1 731.16 25.16 < 0.0001 

AD 4.69 1 4.69 0.16 0.693 

BC 12.82 1 12.82 0.44 0.516 

BD 1.4 1 1.4 0.05 0.829 

CD 58.06 1 58.06 2.00 0.177 

Error 464.94 16 29.06   
  Lack-of-Fit 231.82 10 23.18 0.6 0.776 
  Pure Error 233.11 6 38.85   
Total 9158.02 30    
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Fig. 4.14 Sum of squares of significantly terms 

 

 3-D Plots of interaction effect are exhibited in Fig. 4.14(a-c), which could 

provide a clear understanding of how these factors interacted and gave synergistic 

effects on the sorption capacity. There are three interaction effects discussed in this 

section, including initial TC concentration-contact time, solution pH-adsorbent 

dosage, and initial TC concentration-solution pH.  Fig. 4.14a shows the interaction 

effect between initial TC concentration and contact time on adsorption capacity.  At 

each level of initial TC concentration in the range of 40-80 mg/L, contact times varied 

from 30 - 60 min do not affect adsorption capacity.  From adsorption kinetics, the 

adsorption capacity slightly increases after 30 min and there are small differences in 

adsorption capacity between 30 to 60 min of contact time.  Therefore, the effect of 

contact time in the range of 30 to 60 min could not affect the adsorption capacity.  In 

the case of the effect of initial TC concentration, Fig. 4.14a reveals that, with an 

increase in initial TC concentration from 40 mg/L to 80 mg/L, adsorption capacity 

was increased.  Because an increase in TC concentration leads to increase in driving 

force or concentration gradient, resulting in adsorption capacity increased.   
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 The effect of interaction between solution pH and adsorbent dosage on 

adsorption capacity is shown in Fig. 4.14b.  At each level of solution pH, the 

adsorbent dosages varied from 0.2-0.4 g/L do not affect the adsorption capacity due to 

the adsorption capacity was calculated by the amount of adsorbed TC per mass of the 

adsorbent [88].  However, the adsorbent dosage affects adsorption efficiency with the 

result provided in Fig. 1A.  Fig. 4.14b also shows effect of solution pH while constant 

adsorbent dosage.  The highest adsorption capacity could be obtained at low pH.  

When solution pH was increased, adsorption capacity decreased.  The result is 

consistent with Fig.4.10.  Because of the effect of electrostatic attraction between TC 

which is positive charge and MBC which is negative charge from oxygen group at 

high pH.  Meanwhile, electrostatic repulsion between TC and MBC are both negative 

charges at low pH. 

Fig. 4.14c shows the decrease in adsorption capacity at high initial TC 

concentration and high solution pH with constant adsorbent dosage.  This is because, 

at high pH, an increase of Na+ from NaOH solution that can be competitive to TC 

molecules [89] indicates at a high concentration of TC, there is not enough site 

available for TC molecules.  These results are also consistent with a previous study by 

M. Foroughi et al. [63].   With the increase in initial TC concentration at low solution 

pH, the adsorption capacity was increased.  Because of an increase in concentration 

gradient which has been explained in the above paragraph. 
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Fig. 4.15 3-D surface plots of an interaction effect between (a) Initial TC 

concentration and contact time (b) Solution pH and adsorbent dosage (c) Initial TC 

concentration and solution pH on adsorption capacity 

 

4.3.2 Development of semi-empirical model of TC adsorption capacity based on ML 

The collected data of training data set were used to develop the model for 

prediction of TC adsorption capacity under influential factors including SBET, 

(b) 

(c) 
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(O+N)/C, H/C, C%, and initial TC concentration.  The plots of predicted adsorption 

capacity versus experimental adsorption capacity from random forest, Catboost, and 

boosted regression tree algorithms are shown in Fig. 4.16-18, respectively.  The 

results revealed that Catboost provides the highest R2 followed by random forest and 

boosted regression tree.   

The testing data, which are considered as new observation data, were used to 

validate the models.  The result is in the term of predicted R2.  The highest predicted 

R2 could be obtained in Catboost of 0.7426, while predicted R2 of random forest and 

boosted regression tree are 0.6419 and 0.5671, respectively.  The novelty of machine 

learning models is that they could develop the model using the data from literature.   

Moreover, the fundamental assumptions of traditional isotherm models are not 

needed.  Therefore, the use of machine learning models are better in applications and 

different types of adsorbents[23]. 
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Fig. 4.16 Predicted adsorption capacity versus experimental adsorption capacity from 

(a) random forest, (b) Catboost, and (c) boosted regression tree algorithms 

 

 The highest R2 and predicted R2 could be obtained from Catboost model.  

Thus, a feature of importance is performed based on Catboost algorithms.  The factor 

(b) 

(c) 
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with a larger effect on TC adsorption capacity possesses a higher score of feature 

importance as shown in Fig. 4.18. The order of feature importance is SBET > (O+N)/C 

> initial TC concentration > H/C > C%.  The higher SBET could provide a more active 

site for binding TC molecules.  (O+N)/C represents the hydrophobicity of adsorbents.  

There is hydrophobic interaction between TC and adsorbent [90].  With the decrease 

in (O+N)/C of the adsorbents, hydrophobicity increased.  Therefore, it would enhance 

hydrophobic interaction.  Initial TC concentration affects adsorption capacity by 

increasing the driving force.  H/C ratio indicates the degree of aromaticity of 

adsorbents, which could act as electron acceptors.  There is aromatic ring structure in 

TC molecule, which could act as electron donor.  Therefore, H/C ratio could affect to 

π-π electron donor−acceptor (EDA) interactions between adsorbent and TC 

molecules[4]. 

 

Fig. 4.17 Feature importance of influential factors on TC adsorption capacity
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

 

This chapter provided conclusions of key findings in this work.  This work 

included three main investigations: (i) the study of effect of pyrolysis temperature on 

characteristics of magnetic biochar (ii) the study of TC adsorption experiments 

including adsorption kinetics, adsorption isotherm, effect of solution pH, and 

reusability of MBC (iii) the study of development of an empirical model of TC 

adsorption capacity under various adsorption conditions using RSM.  Lastly, this 

chapter provided some recommendations from this research work for guidance a 

future investigation. 

 

5.1 Conclusions 

5.1.1 Effect of pyrolysis temperature on characteristics of magnetic biochar 

 Magnetic biochar (MBC) has been widely employed in environmental 

remediation, especially in adsorption of contaminants.  MBC has been employed as 

the adsorbent for adsorption process due to the facile separation of MBC after 

treatment process via utilizing its magnetic properties.  There are various methods for 

synthesis of MBC such as impregnation-pyrolysis, chemical co-precipitation, 

solvothermal, and reductive co-precipitation.  In this work, impregnation pyrolysis 

was selected due to its advantage in time-saving and good stability of product could 

be obtained.  Abundant available agricultural waste which is watermelon rind 

impregnated with FeCl3 as famous magnetic precursor was used to produce MBC. 

One important factor for synthesis of MBC such as pyrolysis temperature was 

investigated.  The effect of pyrolysis temperature was studied at 600, 700, 800, and 

900 °C.  For the synthesis, watermelon rind was impregnated with FeCl3.  

Impregnated watermelon rind was put in ceramic boat, then, placed in quartz tube in 

electrical furnace.  The temperature was increased with a constant heating rate until 

reached a setting point (600, 700, 800, and 900 °C) and held for 2 hr, then cooling 
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down to room temperature.  After cooling down, MBC product was collected and 

weighted for determining the product yield. 

 It was found that product yield dramatically decreased with an increase in 

pyrolysis temperature.  Because the increase in pyrolysis temperature could enhance 

the decomposition of lignocellulose and volatile components.  In addition, various 

characterization techniques including SEM, N2 adsorption/desorption, elemental 

analyzer, FTIR, Raman, XRD, and VSM were applied to study properties of MBC 

such as morphology, specific surface area, chemical composition, surface functional 

group, crystallinity, magnetic phase, and magnetic property.  It was found that 

pyrolysis temperature exhibits a significant effect on properties of MBC samples, for 

example, specific surface area and graphitic carbon would enhance by increasing 

pyrolysis temperatures.  Additionally, magnetic phase was reduced from Fe3O4 to Fe 

with higher MS values and lower HC values when pyrolysis temperature increased 

from 600 °C to 900 °C. 

5.1.2 Adsorption of tetracycline 

 MBC samples were employed as adsorbents for studying adsorption of 

tetracycline (TC).  Adsorption kinetics and isotherm experiment were conducted to 

study adsorption behaviors.  Effects of solution pH and reusability were also 

examined. 

5.1.2.1 Adsorption kinetics 

 The study of adsorption kinetic was experimentally conducted using 40 mg/L 

and 50 mL of TC with adding 15 mg of MBC.  The solution was periodically taken 

off for TC concentration measurement between 5-180 min.  It was found that the 

adsorption process reached equilibrium within 60 min.  In addition, the adsorption 

process of MBC600 followed pseudo-first-order kinetic model while MBC700, 

MBC800, and MBC900 followed pseudo-second-order kinetic model.  

5.1.2.2 Adsorption isotherm 

 Langmuir and Freundlich's models were applied to study adsorption isotherm 

of TC adsorption.  The experiments were conducted by varying initial TC 
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concentrations in the range of 10 – 100 mg/L with 50 mL of TC, then adding 15 mg 

of MBC.  The result revealed that all MBC samples fitted with Freundlich isotherm 

model better than Langmuir isotherm model suggesting the adsorption process is 

based on heterogeneous adsorption site. 

5.1.2.3 Effect of solution pH 

Effect of solution pH on TC adsorption capacity of MBC was studied.  The 

solution pH was studied in the range of 3-11.  The solution pH was adjusted by HCl 

and NaOH solution.  It was found that the adsorption process was pH-dependent due 

to effect of electrostatic force between TC and MBC.  The electrostatic attraction 

between TC molecule which is positive charge and MBC which is negative charge 

from oxygenated group.  Meanwhile, the electrostatic repulsion between TC molecule 

and MBC are both negative charges.  Therefore, the adsorption capacity of 22.51 

mg/g could be obtained at pH 3 when pH was increased to pH 11, the adsorption 

capacity decreased to 8.31 mg/g. 

5.1.2.4 Reusability test 

The ideal adsorbent is the adsorbent with easy separation from the solution 

and excellent reusability.  In this work, MBC could easily separate from TC solution 

via inducing by the external magnet.  Moreover, the reusability test confirmed that 

MBC provides good recyclability and reusability with adsorption capacity of 83.89% 

(compared with the first cycle) after five cycles. 

5.1.3 Development of an empirical model 

 Adsorption conditions and characteristics of adsorbent are the main influential 

factors on TC adsorption capacity.  In this work, response surface methodology 

(RSM) and machine learning (ML) were applied to develop the empirical model and 

semi-empirical models. 

5.1.3.1 Development of empirical model based on RSM 

The adsorption conditions are one of influential factors, which are affecting 

the adsorption capacity of MBC toward TC.  Central composite design (CCD) was 

applied to design the experimental runs under studied factors such as initial TC 
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concentration, adsorbent dosage, solution pH, and contact time.  In the studied range 

of 20-100 mg/g of initial TC concentration, 0.1-0.5 g/L of adsorbent dosage, 3-11 of 

solution pH, and 15-75 min of contact time.  The results were analyzed by RSM.  

From ANOVA results at 95% confidence, the model is significant with high R2 of 

0.9492.  The order of influential terms is solution pH > interaction between initial TC 

concentration and solution pH > square effect of initial TC concentration > initial TC 

concentration. 

5.1.3.2 Development of semi-empirical model based on ML 

 Apart from the adsorption conditions, characteristics of the adsorbent such as 

SBET, (O+N)/C, H/C, C%, and initial TC concentration are influential factors affecting 

the TC adsorption capacity.  Three different ML algorithms including random forest 

(RF), Catboost, and boosted regression tree (BRT) were used to develop the semi-

empirical model by using 96 data from literature and 4 data from this work.  It was 

found that Catboost outperformed random forest and boosted regression tree.  The 

feature important revealed SBET provided the largest effect on TC adsorption capacity 

followed by (O+N)/C, initial TC concentration, H/C, and C%.   

 

5.2 Recommendations for future work 

This work studied only preliminary effect of impregnation ratio between 

watermelon rind and FeCl3 on tetracycline adsorption capacity.  There is no 

characterization of synthesized magnetic biochar from different impregnation ratios.  

Therefore, the effect of impregnation ratio between watermelon rind and FeCl3 should 

be more studied.  In addition, the study of feature importance cannot tell whether it 

had positive or negative effect on TC adsorption capacity.  Thus, the effect of each 

influential factor should be studied in the future.  Moreover, if the data were more 

collected from literature, it can improve the accuracy of the development model. 
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APPENDIX A 

Preparation of watermelon rind impregnated with FeCl3 

 

FeCl3.6H2O was used as magnetic precursor to impregnate with watermelon 

rind.  Impregnation ratio between watermelon rind and FeCl3 of 2:1 was used for the 

whole investigation.  The calculation of FeCl3.6H2O requirement was shown in 

Equation A.1 

FeCl3.6H2O required per 1 g of watermelon rind = 
𝑀𝑊𝐼𝑟𝑜𝑛 𝑐ℎ𝑙𝑜𝑟𝑖𝑑𝑒 ℎ𝑒𝑥𝑎ℎ𝑦𝑑𝑟𝑎𝑡𝑒 × 2

𝑀𝑊𝐼𝑟𝑜𝑛 𝑐ℎ𝑙𝑜𝑟𝑖𝑑𝑒
      (A.1) 

Where, 

MWIron chloride hexahydrate is molecular weight of FeCl3.6H2O (270 g/mol) 

MWIron chloride is molecular weight of FeCl3. (162 g/mol) 

 

Example 

FeCl3.6H2O required per 1 g of watermelon rind = 
270×2

162
 = 3.33 g 
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APPENDIX B 

Size analysis of magnetic particle 

 

The size of magnetic particle was analyzed to study characteristics of 

magnetic property.  In this case, MBC900 was used to analyze because there is only 

α-Fe on its surface.  The diameter of α-Fe was analyzed using SEM image of 

MBC900 at 1300X magnification as shown in Fig. B1 with Image processing and 

Analysis in Java (ImageJ).  Fifty of α-Fe (spherical particles) were selected to analyze 

the diameter (N = 50) with the data shown in Table B.1. 

 

 

Fig. B1 SEM image of MBC900 (red line shows how to collect the data for ImageJ) 
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Table B.1 Diameter analysis data of α-Fe 

 

Label 

Diameter 

(µm) 

1 2.07 

2 1.92 

3 1.85 

4 1.93 

5 1.79 

6 1.63 

7 1.81 

8 2.07 

9 1.35 

10 1.50 

11 2.07 

12 2.02 

13 4.04 

14 1.81 

15 1.63 

16 0.92 

17 2.34 

18 1.81 

19 2.70 

20 2.01 

21 1.00 

22 2.70 

23 3.05 

24 2.12 

25 2.85 

26 2.70 

27 2.62 

28 2.29 

29 1.36 

30 1.36 

31 1.92 

32 1.79 

33 2.48 

34 1.79 

35 2.34 

36 3.27 

37 1.79 

38 1.42 
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39 2.62 

40 2.69 

41 1.92 

42 2.73 

43 1.85 

44 2.01 

45 2.01 

46 2.07 

47 2.02 

48 1.50 

49 1.81 

50 2.25 

Mean 2.07 

Standard deviation 0.57 
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APPENDIX C 

Product yield of synthesized MBC 

 

 Weight of watermelon rind impregnated with FeCl3 and weight of product at 

various pyrolysis temperatures are shown in Table C.1 while product yield of 

synthesized MBC at various pyrolysis temperatures was calculated by Equation C.1. 

and was shown in Table C.2. 

 

Table C.1 Weight of watermelon rind impregnated with FeCl3 and weight of product 

at various pyrolysis temperatures 

 

 

Sample 

Repeatability Weight of watermelon rind 

impregnated with FeCl3 (g) 

Weight of 

product (g) 

 

MBC600 

Run 1 2.0045 0.6906 

Run 2 2.0078 0.6798 

Run 3 2.0061 0.6466 

 

MBC700 

Run 1 2.0014 0.6290 

Run 2 2.0070 0.6200 

Run 3 2.0056 0.6109 

 

MBC800 

Run 1 2.0034 0.5814 

Run 2 2.0074 0.5866 

Run 3 2.0055 0.5347 

 

MBC900 

Run 1 2.0047 0.5645 

Run 2 2.0088 0.5024 

Run 3 2.0048 0.5437 

 

Product yield (%) = 
𝑊𝑝

𝑊𝑊𝐼𝐹
× 100%              (C.1) 

Where, 

WP is weight of product 

WWIF is weight of watermelon rind impregnated with FeCl3 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 70 

Example 

Product yield (%) = 
0.6906

2.0045
× 100% = 34.45 % 

 

Table C.2 Product yield (%) of synthesized MBC at various pyrolysis temperatures 

 

Sample Repeatability 

Yield 

(%) 

Average 

yield 

(%) 

Standard 

deviation 

MBC600 

Run 1 34.45 

33.51 0.94 Run 2 33.86 

Run 3 32.23 

MBC700 

Run 1 31.43 

30.93 0.40 Run 2 30.89 

Run 3 30.46 

MBC800 

Run 1 29.02 

28.30 1.16 Run 2 29.22 

Run 3 26.66 

MBC900 

Run 1 28.16 

26.76 1.31 Run 2 25.01 

Run 3 27.12 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 71 

(a) 

(b) 

APPENDIX D 

Curve fitting of Raman spectra 

 

 The Raman spectra of all synthesized MBC were fitted by Origin 2021 to find 

the intensity of D-band and G-band as shown in Fig. E1 (a-d).  The obtained data 

were used to calculate the IG/ID ratio. 
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(c) 

(d) 

 

 

 

Fig. D1  Raman spectra of synthesized MBC at various pyrolysis temperatures (a) 600 

°C (b) 700 °C (c) 800 °C and (d) 900 °C 
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APPENDIX E 

Adsorption of TC 

 

The experimental results of TC adsorption kinetics and isotherm are shown in 

Table E.1 and Table E.2. Meanwhile, linearized fitting of each equation is also 

provided in this part. 

 

Table E.1 Experimental data of TC adsorption capacity of MBCs at different contact 

times 

 

Time (t) 

(s) 

Adsorption capacity (qt) (mg/g) 

MBC600 MBC700 MBC800 MBC900 

0 0.00 0.00 0.00 0.00 

5 0.00 2.87 5.99 7.62 

10 0.18 4.95 9.68 13.35 

20 0.20 6.44 11.04 15.76 

30 0.24 6.93 12.09 17.84 

45 1.63 7.31 15.69 18.45 

60 1.85 7.59 15.89 18.69 

90 2.65 8.44 16.63 19.76 

120 3.01 8.51 16.44 21.75 

180 3.16 8.57 16.15 21.88 

 

Linearlized fitting of pseudo-first-order kinetics equation: 

MBC600 : y = -0.011x + 1.495 

MBC700 : y = -0.042x + 1.878 

MBC800 : y = -0.056x + 2.742 

MBC900 : y = -0.040x+ 2.792 

Linearlized fitting of pseudo-second-order kinetics equation: 

MBC600 : y = 0.207x + 17.629 

MBC700 : y = 0.110x + 1.039 
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MBC800 : y = 0.058x + 0.472 

MBC900 : y = -0.044x+ 0.435 

 

 The kinetics constants such as rate constant (k) and equilibrium concentration 

were calculated using slope and intercept of linearized equation as below. 

 

Example The calculation of pseudo-first-order kinetics parameter 

MBC700 : Slope = 
−𝑘1

2.303
 

-0.042  = 
−𝑘1

2.303
 

k1 = 0.097 min-1 

Intercept = lnqe 

1.878 = lnqe 

qe = exp(1.878) 

qe = 6.54 mg.g-1 

Example The calculation of pseudo-second-order kinetics parameter 

MBC700 : Slope = 
1

𝑞𝑒
 

0.110 = 
1

𝑞𝑒
 

qe = 9.09 mg.g-1 

Intercept = 
1

𝑘2𝑞𝑒
2 

1.039 = 
1

𝑘2×9.092 

k2 = 0.012 g.mg-1min-1 
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Table E. 2 Experimental data of TC adsorption isotherm with initial TC concentration 

varied from 10-100 mg/L 

 

MBC600 MBC700 MBC800 MBC900 

Ce 

 (mg/L) 

qe  

(mg/g) 

Ce  

(mg/L) 

qe  

(mg/g) 

Ce  

(mg/L) 

qe  

(mg/g) 

Ce  

(mg/L) 

qe  

(mg/g) 

9.51 1.63 8.91 3.62 8.15 6.16 7.39 8.70 

18.98 3.40 18.61 4.61 17.30 8.98 15.81 13.98 

38.52 4.94 37.56 8.14 34.66 17.79 33.17 22.77 

57.62 7.92 56.88 10.39 54.19 19.36 49.50 34.98 

77.62 7.92 76.65 11.17 72.67 24.45 68.91 36.95 

97.43 8.58 96.32 12.27 90.50 31.68 86.44 45.21 

 

 

Linearlized Langmuir isotherm equation : 

MBC600: y = 0.069x + 4.338 

MBC700: y = 0.057x + 2.422 

MBC800: y = 0.019x + 1.419 

MBC900: y = 0.013x + 0.877 

Linearlized Freundlich isotherm equation : 

MBC600: y = 0.716x -1.007 

MBC700: y = 0.550x – 0.039 

MBC800: y = 0.668x + 0.381 

MBC900: y = 0.678x + 0.792 

 

The calculation of Langmuir and Freundlich isotherm parameter is calculated 

using slope and intercept of linearized equation as follows. 
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Example The calculation of Langmuir isotherm parameter: 

MBC700 : Slope = 
1

𝑞𝑚
 

0.057 = 
1

𝑞𝑚
 

qm = 17.54 mg.g-1 

Intercept = 
1

𝑞𝑚×𝐾𝐿

 

2.422 = 
1

17.54×𝐾𝐿
 

KL = 0.023 L.mg-1 

 

Example The calculation of Freundlich isotherm parameter: 

MBC700: Slope = 
1

𝑛
 

0.550 = 
1

𝑛
 

n = 1.182 

Intercept = lnKF 

-0.039 = lnKF 

KF = exp(-0.039) 

KF = 1.04 
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APPENDIX F 

Source code of ML 

 

The source code of random forest  algorithm is as follows. 

 

# data analysis and wrangling 

import pandas as pd 

import numpy as np 

import random as rnd 

 

# visualization 

import seaborn as sns 

import matplotlib.pyplot as plt 

from scipy.stats import norm 

from scipy import stats 

%matplotlib inline 

 

# machine learning 

from sklearn.linear_model import LinearRegression 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.preprocessing import PolynomialFeatures 

from sklearn.svm import SVR 

from sklearn.ensemble import BaggingRegressor 

from lightgbm import LGBMRegressor 

from xgboost import XGBRegressor 

from sklearn.ensemble import GradientBoostingRegressor 

from sklearn.preprocessing import StandardScaler 

from sklearn.metrics import mean_squared_error 
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from sklearn.metrics import r2_score 

 

#K-Cross-Validation 

from sklearn.model_selection import RepeatedStratifiedKFold 

from sklearn.model_selection import GridSearchCV 

from sklearn.model_selection import RepeatedKFold 

from sklearn.model_selection import KFold, cross_val_score, train_test_split 

 

dataset = pd.read_excel('Data-for-ML.xlsx' ) 

dataset["Sbet"].fillna(dataset["Sbet"].mean() , inplace = True) 

dataset["%C"].fillna(dataset["%C"].mean() , inplace = True) 

dataset["H/C"].fillna(dataset["H/C"].mean() , inplace = True) 

dataset["(O+N)/C"].fillna(dataset["(O+N)/C"].mean() , inplace = True) 

X = dataset.iloc[:, 1:-1].values 

y = dataset.iloc[:, -1].values 

 

scalerX = StandardScaler() 

scaledX = scalerX.fit_transform(X) 

X = scaledX 

scalerY = StandardScaler() 

scaledY = scalerY.fit_transform(y.reshape(-1 , 1)) 

y = scaledY.reshape(100) 

 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.15, random_state 

= 1) 

 

# define models and parameters 

model = RandomForestRegressor() 
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n_estimators = [10 , 50 , 300 , 400] 

max_features = ['sqrt', 'log2'] 

 

# define grid search 

grid = dict(n_estimators=n_estimators,max_features=max_features) # list of dicts 

cv = RepeatedKFold(n_splits=10, n_repeats=3, random_state=1) #create CV 

grid_search = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1, cv=cv, 

scoring='neg_mean_absolute_error',error_score=0) #grid paramater 

grid_result = grid_search.fit(X_train, y_train) #fit the grid 

 

# summarize results 

params = grid_result.best_params_ 

print("Best: %f" % grid_result.best_score_) 

""" 

means = grid_result.cv_results_['mean_test_score'] 

stds = grid_result.cv_results_['std_test_score'] 

params = grid_result.cv_results_['params'] 

for mean, stdev, param in zip(means, stds, params): 

    print("%f (%f) with: %r" % (mean, stdev, param)) 

""" 

means = grid_result.cv_results_['mean_test_score'] 

 

cnt = 0 

print('model = RandomForestRegressor(' , end = '') 

for key , value in params.items(): 

    cnt += 1 

    if(type(value) == str): 

        print(key, '=' , "'" + value + "'" , end = '') 

    else: 
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        print(key , '=' , value , end = '') 

    if cnt != len(params): 

        print(end = ', ') 

print(")") 

print("model.fit(X_train, y_train)") 

print("y_pred = model.predict(X_test)") 

 

model = RandomForestRegressor(max_features = 'log2', n_estimators = 400) 

model.fit(X_train, y_train) 

y_pred = model.predict(X_test) 

 

scaled_result = model.predict(X_test) 

unscaled_predict = scalerY.inverse_transform(scaled_result.reshape(-1 , 1)) 

unscaled_result = scalerY.inverse_transform(y_test.reshape(-1 , 1)) 

r2 = r2_score(unscaled_predict , unscaled_result) 

rms = mean_squared_error(unscaled_predict , unscaled_result, squared=False) 

print("r2: " , r2) 

print("rms: " , rms) 

 

The source code of Catboost algorithm is as follows. 

 

# data analysis and wrangling 

import pandas as pd 

import numpy as np 

import random as rnd 

 

# visualization 

import seaborn as sns 

import matplotlib.pyplot as plt 
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from scipy.stats import norm 

from scipy import stats 

%matplotlib inline 

 

# machine learning 

from sklearn.linear_model import LinearRegression 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.preprocessing import PolynomialFeatures 

from sklearn.svm import SVR 

from sklearn.ensemble import BaggingRegressor 

from lightgbm import LGBMRegressor 

from xgboost import XGBRegressor 

from sklearn.ensemble import GradientBoostingRegressor 

from sklearn.preprocessing import StandardScaler 

from sklearn.metrics import mean_squared_error 

from sklearn.metrics import r2_score 

from catboost import CatBoostRegressor 

 

#K-Cross-Validation 

from sklearn.model_selection import RepeatedStratifiedKFold 

from sklearn.model_selection import GridSearchCV 

from sklearn.model_selection import RepeatedKFold 

from sklearn.model_selection import KFold, cross_val_score, train_test_split 

 

 

 

dataset = pd.read_excel('Data-for-ML.xlsx' ) 

dataset["Sbet"].fillna(dataset["Sbet"].mean() , inplace = True) 

dataset["%C"].fillna(dataset["%C"].mean() , inplace = True) 
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dataset["H/C"].fillna(dataset["H/C"].mean() , inplace = True) 

dataset["(O+N)/C"].fillna(dataset["(O+N)/C"].mean() , inplace = True) 

X = dataset.iloc[:, 1:-1].values 

y = dataset.iloc[:, -1].values 

 

scalerX = StandardScaler() 

scaledX = scalerX.fit_transform(X) 

X = scaledX 

scalerY = StandardScaler() 

scaledY = scalerY.fit_transform(y.reshape(-1 , 1)) 

y = scaledY.reshape(100) 

 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.15, random_state 

= 1) 

 

# define models and parameters 

 

model = CatBoostRegressor() 

parameters = { 

                  'depth'         : [6,8,10], 

                  'learning_rate' : [0.01, 0.05, 0.1], 

                  'iterations'    : [30, 50, 100] 

             } 

 

# define grid search 

grid = parameters # list of dicts  

cv = RepeatedKFold(n_splits=10, n_repeats=3, random_state=1) 

grid_search = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1, cv=cv, 

scoring='neg_mean_absolute_error',error_score=0) # grid paramater 
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grid_result = grid_search.fit(X_train, y_train) # grid fit 

 

# summarize results 

params = grid_result.best_params_ 

print("Best: %f" % grid_result.best_score_) 

""" 

means = grid_result.cv_results_['mean_test_score'] 

stds = grid_result.cv_results_['std_test_score'] 

params = grid_result.cv_results_['params'] 

for mean, stdev, param in zip(means, stds, params): 

    print("%f (%f) with: %r" % (mean, stdev, param)) 

""" 

means = grid_result.cv_results_['mean_test_score'] 

 

cnt = 0 

print('model = CatBoostRegressor(' , end = '') 

for key , value in params.items(): 

    cnt += 1 

    if(type(value) == str): 

        print(key, '=' , "'" + value + "'" , end = '') 

    else: 

        print(key , '=' , value , end = '') 

    if cnt != len(params): 

        print(end = ', ') 

print(")") 

print("model.fit(X_train, y_train)") 

print("y_pred = model.predict(X_test)") 
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model = CatBoostRegressor(depth = 6, iterations = 100, learning_rate = 0.1) 

model.fit(X_train, y_train) 

y_pred = model.predict(X_test) 

 

scaled_result = model.predict(X_test) 

unscaled_predict = scalerY.inverse_transform(scaled_result.reshape(-1 , 1)) 

unscaled_result = scalerY.inverse_transform(y_test.reshape(-1 , 1)) 

r2 = r2_score(unscaled_predict , unscaled_result) 

rms = mean_squared_error(unscaled_predict , unscaled_result, squared=False) 

print("r2: " , r2) 

print("rms: " , rms) 

 

The source code of BRT algorithm is as follows. 

 

# data analysis and wrangling 

import pandas as pd 

import numpy as np 

import random as rnd 

 

# visualization 

import seaborn as sns 

import matplotlib.pyplot as plt 

from scipy.stats import norm 

from scipy import stats 

%matplotlib inline 

 

# machine learning 

from sklearn.linear_model import LinearRegression 
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from sklearn.ensemble import RandomForestRegressor 

from sklearn.preprocessing import PolynomialFeatures 

from sklearn.svm import SVR 

from sklearn.ensemble import BaggingRegressor 

from lightgbm import LGBMRegressor 

from xgboost import XGBRegressor 

from sklearn.ensemble import GradientBoostingRegressor 

from sklearn.preprocessing import StandardScaler 

from sklearn.metrics import mean_squared_error 

from sklearn.metrics import r2_score 

 

#K-Cross-Validation 

from sklearn.model_selection import RepeatedStratifiedKFold 

from sklearn.model_selection import GridSearchCV 

from sklearn.model_selection import RepeatedKFold 

from sklearn.model_selection import KFold, cross_val_score, train_test_split 

 

dataset = pd.read_excel('/content/Data-for-ML.xlsx' ) 

dataset["Sbet"].fillna(dataset["Sbet"].mean() , inplace = True) 

dataset["%C"].fillna(dataset["%C"].mean() , inplace = True) 

dataset["H/C"].fillna(dataset["H/C"].mean() , inplace = True) 

dataset["(O+N)/C"].fillna(dataset["(O+N)/C"].mean() , inplace = True) 

X = dataset.iloc[:, 1:-1].values 

y = dataset.iloc[:, -1].values 

 

scalerX = StandardScaler() 

scaledX = scalerX.fit_transform(X) 

X = scaledX 

scalerY = StandardScaler() 
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scaledY = scalerY.fit_transform(y.reshape(-1 , 1)) 

y = scaledY.reshape(100) 

 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.15, random_state 

= 1) 

 

# define models and parameters 

model = GradientBoostingRegressor() 

n_estimators = [30 , 35 , 40 , 45 , 50] 

 

# define grid search 

grid = dict(n_estimators=n_estimators) # list of dicts 

cv = RepeatedKFold(n_splits=10, n_repeats=3, random_state=1) #create CV 

grid_search = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1, cv=cv, 

scoring='neg_mean_absolute_error',error_score=0) #grid paramater 

grid_result = grid_search.fit(X_train, y_train) #fit the grid 

 

# summarize results 

params = grid_result.best_params_ 

print("Best: %f" % grid_result.best_score_) 

""" 

means = grid_result.cv_results_['mean_test_score'] 

stds = grid_result.cv_results_['std_test_score'] 

params = grid_result.cv_results_['params'] 

for mean, stdev, param in zip(means, stds, params): 

    print("%f (%f) with: %r" % (mean, stdev, param)) 

""" 

means = grid_result.cv_results_['mean_test_score'] 
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cnt = 0 

print('model = GradientBoostingRegressor(' , end = '') 

for key , value in params.items(): 

    cnt += 1 

    if(type(value) == str): 

        print(key, '=' , "'" + value + "'" , end = '') 

    else: 

        print(key , '=' , value , end = '') 

    if cnt != len(params): 

        print(end = ', ') 

print(")") 

print("model.fit(X_train, y_train)") 

print("y_pred = model.predict(X_test)") 

 

model = GradientBoostingRegressor(n_estimators = 50) 

model.fit(X_train, y_train) 

y_pred = model.predict(X_test) 

 

scaled_result = model.predict(X_test) 

unscaled_predict = scalerY.inverse_transform(scaled_result.reshape(-1 , 1)) 

unscaled_result = scalerY.inverse_transform(y_test.reshape(-1 , 1)) 

r2 = r2_score(unscaled_predict , unscaled_result) 

rms = mean_squared_error(unscaled_predict , unscaled_result, squared=False) 

print("r2: " , r2) 

print("rms: " , rms)
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