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Although stops from “Stop, Question, and Frisk” program have decreased
dramatically after the New York Police Department (NYPD) reform in 2013, the unnecessary
stops and weapon use against innocent citizens remain critical problems. This study analyzes
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Chapter 1 : Introduction

1.1 Background

The ‘Stop, Question, and Frisk (SQF)’ program in New York City was established from the
decision of Terry v. Ohio by The United States Supreme Court in 1968. A Terry Stop is a lawful
practice that allows the United States officers to stop and temporarily detain suspects when
there is a reasonable suspicion of criminal involvement. The officers are also allowed to pat
down the suspect’s clothing in order to search for weapons and contrabands, known as ‘Frisk’.
Arresting and issuing a search warrant may proceed if probable cause is found. When a police
officer stops a suspect on a street or in a vehicle, it is called ‘Stop and Frisk’ and ‘Vehicle Stop’
respectively.

Nowadays, U.S. police officers are questioned about their biased behaviors towards
suspects, including those in New York City, where the population is highly diverse. The New York
Police Department (NYPD) has a high number of officers per capita among others in the United
States. Despite the benefit of law enforcement, unnecessary stops and excessive actions were
frequently mentioned in recent years.

From the statistical record of stops published, the number of stops rapidly increased,
from 97,296 stops in 2002 to its peak at 685,724 stops in 2011. Since its peak in 2011, the
number of stops has significantly dropped as shown in Figure 1. Although the proportion of stops
without arrest or summon issued has also dropped after the reform as shown in Figure 2, it is still
high (76.6% of all stops after the reform) compared to those that resulted in a conviction (23.4%

of all stops after the reform).

The number of stops of NYPD in 2011-2019
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Figure 1 The number of stops by NYPD in 2011-2019
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Figure 2 The percentage of stops without arrest or summon issued

During the Stop, Question, and Frisk practices, the officers may use physical forces
against suspects in various ways, with or without weapons, such as handcuffs, baton, conducted
energy weapon (CEW), and firearm. Although it is legal to use weapons during SQF practices, a
suspect who was not convicted should not encounter any forces. After the reform, 12.21% of

innocent suspects were stopped with police’s use of weapons, and the percentage tends to

increase as shown in Figure 3.

16% +

14% A

12% A

10%

8% A

4%

2% o

The percentage of innocent suspects stopped with police’s use of weapons

Reform

0%

2011

2012 2013 2014 2015 2016 2017 2018 2019
Year

——other weapons ——firearm

Figure 3 The percentage of innocent suspects stopped with police’s use of weapons



As demonstrated, despite the NYPD reform, the unnecessary stops and physical force with
weapons used towards innocent citizens by officers still are critical problems. To investigate the
issue, this study will analyze the SQF dataset during 2014 - 2019 retrieved from the NYPD
website. With data analytic techniques, driven factors for stops which resulted in a conviction and
police’s weapons usage can be found. These factors can be analyzed whether an officer used
weapons based on a sign of guilty suspect or suspect’s other characteristics. Furthermore, the
discovered insights can be applied to enhance law enforcement in New York City.

Additionally, with a lot of social issues that have been continuously gaining public’s
interest in recent years, exploring this issue is the opportunity to extend the usability of data
analytics, especially machine learning methods. it is also crucial to analyze this area with
quantitative reference besides other established areas, such as finance and healthcare. However,
lack of data collection was the main obstacle for the social area. The SQF dataset of New York
City is, fortunately, one of the very detailed police operation dataset published. Taken together,
analysis of this dataset using machine learning methods was the chosen topic to experiment in

this project.

1.2 Objectives of the study

1. To create a model and investigate the factors relating to an arrest or a summon issued
after a stop, using classification machine learning techniques.

2. To create a model and investigate the factors relating to police’s weapons usage during
a stop, using classification machine learning techniques.

3. To explore a hybrid approach aiming to enhance the performance of the established

models.

1.3 Scope of the study

1. This study analyzed the Stop, Question, and Frisk datasets during 2014 — 2019, published
on the NYPD website.

2. The model creation was based on stopped suspects during 2014 — 2019 as population,
which did not include all of New York City citizens.

3. The study only explored the factors contained in the datasets.

4. The investigated machine learning techniques were tree-based classification, such as

Decision Tree, Random Forest, and XGBoost.



5. The hybrid technique, Super Learner, was explored. It was composed of various base
learners such as Decision Tree, Random Forest, XGBoost, Logistic Regression, and
Gaussian Naive Bayes, with a meta leamer such as Logistic Regression, Decision Tree,

Random Forest, XGBoost, and Neural Network.

1.4 Benefits of the study

1. The driven factors for an arrest or a summon issued after a stop and police’s weapons
usage during a stop can be identified.

2. NYPD officer’s behavior in SQF practices can be analyzed in terms of its
appropriateness

3. The performance of the hybrid approach can be explored, and the performance of

established models can be improved.



Chapter 2 : Related Theories and Literature Review
2.1 Related Work

2.1.1 Studies analyzing NYPD Stop, Question, and Frisk datasets

The United States officers’ behavior has been an interesting issue in society as well as
researchers for many years. Terry Stop or Stop and Frisk practices in many states were also
investigated. In recent years, many researchers have focused on analyzing the Stop, Question,

and Frisk practices of NYPD officers by using quantitative methods.

The racial disparity in SQF practices before the NYPD reform was investigated by some
researchers. A study from SQF records during 1998-1999, using Poisson regression models,
showed that African and Hispanic pedestrians were stopped more than whites after controlling
for racial population variability and crime rate across precincts (Gelman et al., 2007). However, a
study conducted later which used SQF data during 2003-2011 with precinct-level fixed regression
models, indicated that race was not a significant factor for deciding whom to stop (Coviello &

Persico, 2015).

The consequence of the NYPD reform was also examined by a study using external and
internal benchmarking approach, with indicators measuring whether the stops resulted in frisk,
search, summon issued, arrest, and use of force. The study showed that during 2013-2015 after
the reform, race was no longer a significant factor, even though there was some racial disparity in

2012 before the reform (MacDonald & Braga, 2019).

In addition to ethnics, several studies suggested some relationships between SQF
practices in New York City and other suspect characteristics. Using the generalized linear mixed
models to analyze SQF data during 2006-2013, a study showed that among male suspects who
were above 18 years old, Black and Hispanic men with large BMI (body mass index) were more
likely to be frisked, searched, or encountered physical force (Milner et al., 2016). Some situational
characteristics, such as a suspect was proximal to the scene, had significant relationships to
physical force usage as well. The evidence was shown in another study using SQF data in 2012
with logistic regression models (Morrow et al., 2017). The summary of this topic is shown in Table

1.



Table 1 Studies analyzing NYPD Stop, Question, and Frisk datasets

Researchers | Data used Techniques Results
Gelman et SQF records Poisson regression African and Hispanic pedestrians were
al.,, 2007 during 1998- models, controlling | stopped more than whites.
1999 racial population
variability and crime
rate across precincts
Coviello & SQF records Precinct-level fixed Race was not a significant factor for

Persico, 2015

during 2003-
2011

regression models

deciding whom to stop.

MacDonald &

SQF records

External and internal

After the reform, race was no longer

Braga, 2019 during 2012- benchmarking a significant factor measuring whether
2015 approach the stops resulted in frisk, search,
summon issued, arrest, and use of
force, even though there was some
racial disparity in 2012 before the
reform.
Milner et al., | SQF records Generalized linear Among male suspects who were
2016 during 2006- mixed models above 18 years old, Black and
2013 Hispanic men with large BMI (body
mass index) were more likely to be
frisked, searched, or encountered
physical force.
Morrow et SQF records Logistic regression Some situational characteristics, such
al,, 2017 during 2012 models as a suspect was proximal to the

scene, had significant relationships to

physical force usage.

2.1.2 Studies relating to police behavior using tree-based classification

machine learning methods.

Apart from the NYPD SQF dataset, tree-based machine learning classifiers were used in

several research papers that focused on the U.S. police law enforcement. Public perception of




police behavior during traffic stops was predicted in a study, using Random Forest classification
and conventional logistic regression. The results of both approaches were consistent in terms of a
principal factor, which was drivers’ belief that a stop is legal (Hu et al, 2021). Another study,
aiming to predict the U.S. police adverse incidents, compared the performance among tree-based
classifiers. The result showed that Extra Tree, similar to Random Forest, had the best

performance among others (Helsby et al., 2017).

Police law enforcement outside the United States was also investigated. Supervised
machine learning techniques, including Decision Tree and Random Forest, were used to predict
re-arrest by police in Santiago, Chile. The prediction was conducted based on data regarding to
previous arrests and personal information, such as gender and age. The study showed that all
models had achieved excellent performance (van ‘t Wout et al,, 2021). The summary of this

topic is shown in Table 2.

Table 2 Studies relating to police behavior using tree-based classification machine learning

methods.

Researchers

Data used

Techniques

Results

Hu et al, 2021

Police traffic stops
surveys in 2005, 2008,
2011, and 2015, from
BJS police-public
contact surveys (PPCS)

Random Forest
classification and

Logistic Regression

Public perception of police
behavior during traffic
stops was predicted. The
results of both approaches
were consistent in terms

of a principal factor.

Helsby et al,,
2017

Datasets from
Charlotte-Mecklenburg

Police Department

Extra Tree, Random
Forest, Logistic
Regression, and Ada

Boost

Extra Tree, similar to
Random Forest, had the
best performance among

others (AUC = 0.67).

van ‘t Wout et

al., 2021

Arrests history in
Santiago de Chile and
personal metadata,
such as age and

gender

Decision Tree,
Random Forest,
Logistic Regression,
Naive Bayes,

Multilayer Perceptron

All models had achieved
excellent performance
(AUC = 0.81 for all

models).




2.1.3 Studies relating to the performance of tree-based classification

techniques.

Tree-based classification techniques were applied and compared by many researchers in
various fields. A study regarding to star and galaxy classification with a photometric dataset was
carried out. They used many classification algorithms including Function Tree, Random Forest,
Gradient Boosting Decision Tree (GBDT), Adaboost, and XGBoost (eXtreem Gradient Boosting). The
result showed that XGBoost outperformed other models (Chao et al,, 2019). In another study,
cardiovascular disease was investigated by analyzing data with machine learning techniques such
as Random Forest, GBDT, and XGBoost. From experimental results, XGBoost had the best
performance among other models (Jiang et al., 2021). XGBoost also outperformed Random Forest

in a study predicting water table depth, for improving agricultural production efficiency (Brédy et

al., 2020).The summary of this topic is shown in Table 3.

Table 3 Studies relating to the performance of tree-based classification techniques

Researchers Data used Techniques Results
Chao et al,, Photometric data set Function tree (FT), XGBoost outperformed
2019 from Sloan Digital Sky | Adaptive boosting other models (accuracy
Survey-DR7. (Adaboost), Random 99.87% for bright
Forest (RF), Gradient stellar, 95.72% for dark
Boosting Decision Tree stella, and 79.48% for
(GBDT), Stacked the darkest stellar).
Denoising AutoEncoders
(SDAE), and Deep Belief
Nets (DBN)
Jiang et al,, Data from patients XGBoost, Gradient XGBoost had the best
2021 with suspected Boosting Decision Tree, performance among
cardiovascular disease | Random Forest, other models (AUC =
presenting at ED Multinomial Logistic 0.937)
triage. Regression.
Brédy et al,, Water table depth Random Forest and XGBoost outperformed
2020 measured from a XGBoost. Random Forest, in
cranberry farm, near terms of RMSE and
Québec City, Québec, NSE.
Canada




2.1.4  Studies relating to Super Learner technique for improving the

performance of established models.

To improve the performance of tree-based classifiers, Super Learner technique, which
combined various types of classifiers was proposed and explored by many researchers. Transient
prediction of CO2 and NOx of diesel trucks was conducted in a study, using tree-based classifiers
including Random Forest, XGBoost, LightGBM, and CatBoost as base learners for Super Learner.
The result showed that the Super Learner model outperformed the traditional method (Wei et
al., 2022). A Super Learner ensemble was also proposed for the vehicle-type image classification
problem in a study. Several types of neural networks were used as base learners. The Super
Learner was then used to optimize the weight combination of the base learers. The result
showed that Super Learner outperformed base learners on accuracy (Hedeya et al,, 2020). In
another study, Super learner was used to predict flight delay. Base learners were Gaussian Naive
Bayes, Random Forest, K Nearest Neighbor, Logistic Regression, and Decision Tree, and Meta
learner was Logistic Regression. Super Learner with all base learners outperformed on accuracy
and f1 score compared with other combinations of base learners (Yi et al,, 2021). The summary

of this topic is shown in Table 4.



Table 4 Studies relating to Super Learner technique for improving the performance of

established models.

10

Researchers | Data used Techniques Results
Weij et al,, Onboard test data of 9 | Tree-based classifiers Super Learner model
2022 China VI N2 vehicles including Random Forest, outperformed the
XGBoost, LightGBM, and traditional method
CatBoost as base learners for
Super Learner.
Hedeya et | The MIOvision Traffic Several types of neural Super Learner
al., 2020 Camera Dataset (MIO- networks were used as base outperformed base
TCD) and the Beijing learners. The Super Learner learners on accuracy
Institute of was used to optimize the
Technology’s (BIT) weight combination of the
vehicle classification base learners.
dataset.
Yi et al, Flight data from Super Learner. Base learners Super Learner with
2021 January to December were Gaussian Naive Bayes, all base learners

2019 at Logan
International Airport in
Boston, Massachusetts,

the United States.

Random Forest, K Nearest
Neighbor, Logistic Regression,
and Decision Tree, and Meta

learner was Logistic Regression

outperformed on
accuracy and f1
score compared with
other combinations

of base learners

According to all studies mentioned above, it suggests that there are possible

relationships between suspects’ or situational characteristics and SQF practices. However, the

SQF datasets in the last few years, after the reform, are not much explored. Moreover, most

methods used in previous works with the NYPD SQF datasets are statistical methods, while

machine learning models seem to be effective tools used by researchers in relevant fields. Tree-

based algorithms such as Decision Tree and Random Forest showed great performance in related

predictive problems. Also, according to the previous section, XGBoost is an algorithm that

outperformed Random Forest in many studies. Since this study aims to find related factors to the

practices, it examines the NYPD SQF dataset in the last few years with tree-based machine
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learning algorithms including Decision Tree, Random Forest, and XGBoost to create predictive
models. With these models, the driven factors for probable cause that leads to an arrest or

issuing a summon, and a decision on weapons used, can be found.

Additionally, this study explores the potential hybrid approach, Super Learner, on top of
the established models previously mentioned, to seek opportunities for enhancing the prediction
performance. For base learners, Decision Tree, Random Forest, and XGBoost are chosen from a
past study which showed a good performance of Super Learner with tree-based models as base
models (Wei et al,, 2022). In order to explore other predictive models with different structures,
Logistic Regression and Gaussian Naive Bayes are used with tree-based models, inspired by a past
study that showed Super Learner with various base leamers, including Decision Tree, Logistic
Regression, and Gaussian Naive Bayes, performed well on accuracy and f1 score (Yi et al., 2021).
For meta learners, Logistic Regression is chosen from its good performance in the past study (Yi
et al,, 2021). A neural network algorithm, Multilayer Perceptron (MLP), is also chosen inspired by
the past study using neural networks for Super Learner (Hedeya et al.,, 2020). However, due to
heavy computation, this study only uses MLP as a meta learner and not as base learners. Lastly,
since tree-based models are not much explored as meta learners in past studies, this study uses
Decision Tree, Random Forest, and XGBoost to investigate how well tree-based models perform

as meta learners.

Besides different techniques, this study also explores how the optimization of base
models affects Super Learner, by using both tuned and untuned base models. Since the Super
Learner consists of many models and training processes, using untuned base models may have
benefits in terms of efficient resource usage, and this kind of experiment is not much explored in

past studies.

2.2 Related Theories

2.2.1 Classification models

2.2.1.1 Decision Tree

Decision Tree is one of the supervised learning algorithms, for both regression and
classification problems. The model is relating to recursively partition or segment attributes space
into several regions. Predictors’ value is compared to a threshold for numerical predictors or a

set of values for categorical predictors. Decision Tree is commonly used because its model is
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understandable, which is beneficial for interpretation. An example of decision tree analyzed from

a training set is shown in Figure 4 (Kotsiantis, 2013; Lin et al., 2006).

atd

atl at2 atd atd Class

Fig. 1 A decision tree

Table 1 Training set

al a2 a3 bd Yes
al b2 a3 ad Yes
al b2 b3 bd No
al 2 ald ad Yes
al 2 a3 b4 No
bl b2 b3 b4 No
el b2 b3 b4 No

Figure 4 Example of a decision tree for a training set (Kotsiantis, 2013).

In classification problems, the predicted class for each record is the most frequently
occurring class for the region in which the record comes under. Splitting each node can be
impure if not all training observations in divided regions fall into the same class. The process of
partitioning or splitting nodes is commonly measured its purity by two metrics, Gini Index and

Entropy. Gini index can be written as Equation 1, and Entropy as Equation 2 (Lin et al., 2006).
G = Yk=1Pmi(1 = Pmi) M
k=1DPmk Pmk

D= - Zlk(;:l ﬁmklogﬁmk (2)

Where 0 < pAmk < 1 is the proportion of k™ class training observations that fall into the

m" region. The smaller value of both metrics refers to more node purity.

2.2.1.2 Random Forest, Extra Tree, and Balanced Random Forest

Random forest is an ensemble of decision trees trained with bagging method. Bootstrap

aggregation or bagging is a process of decreasing variance by building separate models from sets
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of observations sampled from the dataset. The result is the average of all predictions as shown in

Equation 3.

~ 1 ~
fbag (x) = B 5:1 f*b(x) (3)
Where f*b (x) is the result from each b™ bootstrapped training set.

For classification problems, fbag (x) is obtained from the most common result from
all models. Since the Decision Tree model mentioned earlier mostly results in high variance, the
Bagging method helps improve the algorithm. However, all trees from the traditional bagging
method are mostly similar, with the same strong predictors in the top nodes. Random forest
increases randomness in the traditional brageing method by instead of selecting the most
important attributes while growing the trees, it selects from a random subset of all attributes (Lin

et al,, 2006).

Extra Tree is another decision tree ensemble approach. When splitting, the features and
cut-off values are randomized in each node. Extra Tress has the benefit of being efficient, and it

can be improved by tuning hyperparameters for each problem (Geurts et al., 2006).

Balanced Random Forest is an adaptation of Random Forest. The training set for each

tree is modified for class imbalance. It is built by combining two bootstrapped data sets, the

minority class and the majority class. Both have the size of the minority class (Kobytiﬁski &

Przepiorkowski, 2008).

2.2.1.3 Gradient Boosting Decision Tree, XGBoost, AdaBoost, and Histosram-based

Gradient Boostineg Classification Tree.

Gradient Boosting Decision Tree (GBDT) is an algorithm based on aggregated Decision

Trees as shown in Equation 4.
fu () = En=a T(x; 0) @
Where X is the sample dataset
T(x; QM) is the Decision Tree
0y is the parameters of the Decision Tree

M is the number of Decision Trees
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The model is sequentially built by previous trees, the m™ step model is shown in

Equation 5.

fm () = fn—1 () + T (x; 6) (5)

~

Where fm_l(x) is the present model, the next model parameters or B, is

calculated from minimizing loss function as shown in Equation 6.
A . N .
em =arg r21n2i=1 L(yi' f(m—l) (x) + T(x» gm)) (6)
m

Where Y; is true class of the i observation. The L function is a loss function which
depends on the type of the problem, negative binomial log-likelihood may be used for

classification problems as shown in Equation 7-9 (Jerome, 2001)

L(y,F) = log (1 + exp(—2yF)) @)
1 pr(y = 1|x
Where  F(x) = Elog [Prg]y: —L?)C)] (8)
And the pseudorespond (Pr) is
Vi = 2y;/(1 + exp(2y;Fpn_1(x;))) ©)

XGBoost is different from Gradient Boosting Decision Tree by adding second-order Taylor
expansion for optimizing the loss function, while the first-order derivative information obtained in
GBDT is still preserved. This technique makes the model converge quicker. Furthermore, a regular
term is also added in the loss function to prevent the model from overfitting (Chen & Guestrin,

2016)

Another Boost algorithm is AdaBoost. AdaBoost is the algorithm that trains the weak
learners (in this case, decision tress) by starting from using original dataset. Then sequentially
trains other same weak learners with weight-adjusting datasets, focusing more on the wrongly

predicted samples (Freund & Schapire, 1997).

Lastly, Histogram-based Gradient Boosting Classification Tree is the implementation of
GBDT based on LightGBM (Ke et al., 2017). The histogram-based models are significantly faster
than GBDT when the dataset is large. The splitting nodes are greatly decreased by separating data
into integer bins, as in a histogram. The algorithm also supports missing values (Pedregosa et al.,

2011).
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2.2.1.4 Logistic Regression

Logistic Regression is a model which is widely used for classification problems, it is

defined as the conditional probability shown in Equation 10.

1

Ply;= +1|x) = my = —=3

(10)

Where X, | = 1,2,3, ..., N is a sample from n observations with the vectors of

independent variables which have (1 X k) dimensions.
Vi € {0,1} L= 1,2,3, ..., N is a class label for the ith observation

The maximum likelihood estimates for regression parameters, ,Br, r = 1,2, . k, can

be obtained by the score equation as shown in Equation 11.

dloglL
dlogB,

= U(.Br) = Z?:l(yi - ﬂi)xi =0 (11)
Where L is a likelihood function.

To generate finite estimates while minimizing bias, maximizing Equation 12 is

recommended (Firth, 1993).

logL(B)* = logL(B) + 0.5log |I(B)] (12)

Where 0.510g |I(ﬂ)| is a penalty function (Bacaksiz & Kog, 2021; Ecevit, 2008; Yu et
al,, 2011).

2.2.1.5 Gaussian Naive Bayes and Multinomial Naive Bayes

Naive Bayes is a supervised learning algorithm based on Bayes’ theorem. The algorithm is
popular because of its simplicity, making it easier to construct and more effective. According to

Bayes’ theorem, the probability of an instant E being in a class C is shown in Equation 13.

_ p(El9p©
p(c|E) = v (13)

E is classified as class C = 4+ (positive class) only if Equation 14 is satisfied.

fo(E) = Zggz—jg >1 (14)

Where fb (E) is called a Bayesian Classifier.
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Given an instant E is represented by the features X1, vy Xpn. Naive Bayesian is

assumed that all features are independent given class C, that is shown in Equation 15.

p(E|C) = p(xy, ..., x,|C) = I}z, p(x;]C) (15)

Then a Naive Bayesian classifier fnb (E) is shown as Equation 16 (Zhang, 2004).

p(C +) l—[n p(xi|C=+)
—_— (16)
frr(E) = p(€=-) Lp(xilc=-)
For Gaussian Naive Bayesian algorithm, when a feature has continuous values, the

probability of the value is assumed to be under Gaussian Distribution, defined by Equation 17.

_(x=w?

POGIC) = glopm o) = e 27 0

Where U is a mean and O is a standard deviation (Han et al., 2011).

For Multinomial Naive Bayesian algorithm, which is suitable for discrete features and

widely used in text classification, the probability of a text given class C is shown in Equation 18.

P(wp|c)/ni

P(t;10) = Cn fu)! [ ln——— ol (18)

Where fni is the count of word W, in the size of word vocabulary N and P(Wnlc)

is the probability of Wy, given class C (Kibriya et al., 2004).

2.2.1.6 K Nearest Neighbor

K Nearest Neighbor classification is another one of the basic and simple classification
algorithms. It is recommended when the distribution of data is unknown or has not been

determined.

The Euclidean distance between a test sample and the required training samples is
widely used to train the K Nearest Neighbor classifier. The Euclidean distance between the

sample X; (i =12,3.., Tl) and X (l=1,2,3,.. ,n) is shown in Equation 19.

2
d(x;, x;) = \/(xm —x11)% + (i —x2)% + - + (xip - xlp) (19)

Where each X has P features (xil, Xioy e, xip)
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The nearest neighbor is based on the Voronoi tessellation concept as shown in Figure 5.
The Voronoi cells surround all 19 “+” marks, which are 19 samples. Each Voronoi cell, Ri,
contains all of the surrounding points that are closest to each sample X;, as defined in Equation

20.

Figure 5 Voronoi tessellation (Peterson, 2009).

R, ={x € Rp:d(x,x;) < d(x, %), Vi # m} (20)
Where X is all possible points within Voronoi cell Ri (Peterson, 2009).

2.2.1.7 Multilayer Perceptron Neural Network

Artificial Neural Network (ANNs) has been driven from the concept of the way a human
brain works, which is different from a normal digital computer. Because it is highly complex,
nonlinear, and can work in parallel, the brain is capable of specific calculations by organizing its

structural units, called neurons.

Multilayer Perceptron is a structure of neural networks which consists of hidden layers
besides the input and output layer. Each neuron in the network has a “differentiable” nonlinear
activation function and the network is highly connected. These hidden layers detect features that
characterize the data. Figure 6 shows a Multilayer Perceptron Neural Network that is fully
connected, which means each neuron is connected to all neurons in the former layer (Haykin,

2009).
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Input

signal

. Output

signal

Input First Second Output
layer hidden hidden layer
layer layer

Figure 6 Example structure of a Multilayer Perceptron Neural Network with 2 hidden layers
(Haykin, 2009)
Given a network that has one hidden layer, the inputs X; are multiplied by their weight
Wijj to generate preactivation functions ) for each neuron. Yj are input into the non-linear
activation function f} in the hidden layer to generate outputs hj. The preactivation functions of
output neurons Yj are also generated with all hj multiplied by their weight Wik. The final
output Py is calculated using linear activation function fk~ The computation is shown in

Equation 21 - 24.

yj = bj + X x;wy; (21)

h; = fi(bj + Xix;w;j) (22)

Vi = b+ X fi(bj + Xixiwij) wig (23)

Pk = fiu(b + X fi(bj + X xiwij) wix) (24)

Where bj, bk are biases of neurons in hidden and output layers. The error function is

defined from the difference of the outputs and the expected results as shown in Equation 25.

1
E = EZk(tk — Pr)? (25)

Where T, is the expected result.
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The basic training method of the network is the Back-Propagation algorithm. This
technique is used to identify the effect of weights on the output prediction and to change the

obtained weights for error reduction (Agustika et al., 2021; Akbas & Ozdemir, 2020).

2.2.2 Super Learner

Super Learner is an ensemble algorithm based on the idea of stacking, which is the
process of combining outputs from trained models together for the final prediction (Wolpert,
1992). The Super Learner algorithm involves combining results of various learers and uses cross-
validation to select the learners among the candidates. To compute the best ensemble weight
vector, it finds the optimal combination of the base learners by minimizing the v-fold cross-

validation loss. (Laan et al., 2007; Polley & Laan, 2010; van ‘t Wout et al., 2021).

The structure of Super Learner is shown in Figure 7. The training dataset is divided into V
blocks, each block is trained with base learners, then the validation set of each block is
predicted. After that, predictions from all base learners of every block are combined as the input
for training the meta model. Finally, evaluation is made by training each base learner with the
entire train dataset and then predicting the validation dataset. The meta learner then also uses
the predictions of all base learners to predict the validation set. Performance on validation set

between each base learmer and the Super Learner can be compared (Neto et al., 2020).

2, Split the data

into_V blocks
1
2 3. Train all the candidate 4, Predi_c! each instance of _the
leamers validation block based on its
rresponding training block
o e —{RFJoBT] . [swm] co
Learners Pred.
V RF GBT SVM Y
L 1 1 1 1 5. Model selection
Dataset and fitting for all
2 — 2 2 2 2 the observed
output from the
candidate
— .. __I RF | GBT ‘ | SVM }— learners
Model Selection
v v Y; v v
1
2
Eval | Super
Joo J RE | GBT ‘ | SVM }7 6. Evaluate super learner | p1oq0)
by combining predictions
y 1. Train each candidate learner from each candidate
with the entire dataset learner

l RF | GBT SVM ‘

Figure 7 Example structure of Super Learmner algorithm (Neto et al., 2020)
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2.2.3 Classification Metrics

The evaluation of binary classification problems is basically based on the confusion

matrix as shown in Table 5.

Table 5 Confusion matrix

Actual Positive Class Actual Negative Class
Predicted Positive Class True positive False Positive
Predicted Negative Class False Negative True Negative

Accuracy

Accuracy is a widely used metric for classification problems, defined as the ratio of

correctly predicted observations over total observations.

True Positive+True Negative

Accuracy = , (26)
Total observations

Accuracy is easy to use and understand, but with imbalanced datasets, the result can be

misleading due to less favor towards minority class (Chawla et al., 2004).
Precision
Precision is used to measure the ratio of actual positive observations among predicted

positive observations.

. . True Positive
Precision = i y A (27)
True Positive+False Positive

Recall

Recall or Sensitivity is used to measure the ratio of predicted positive observations

among actual positive observations.

True Positive

Recall = — , (28)
True Positive+False Negative

F-Measure or F1 score

F-Measure or F1 score is the harmonic mean between Precision and Recall, it combines
Precision and Recall into one metric. For imbalanced data, maximizing Recall often decreases

Precision, because increasing True Positive often increases False Positive. F1 score is widely used
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as a performance metric for imbalanced data, as it expresses both Precision and Recall, which

refers to the overall predictive performance of the positive class.

2xPrecision*Recall
F1 score = — (29)
Precision+Recall

Specificity

Specificity is used to measure the ratio of predicted negative observations among actual
negative observations, just like the Recall of negative class. The inverse of Specificity, known as
False Positive rate (1 - Specificity), is calculated in plotting ROC curve (Receiver operating

characteristic curve).

True Negati
Specificity = 2ot el (30)

True Negative+False Positive

All previously mentioned metrics are single-threshold metrics, which represent only for
individual thresholds of a model and cannot measure the overall performance across various

thresholds.

Receiver operating characteristic curve (ROC curve) and Area under curve

AUC

Receiver operating characteristic curve (ROC curve) is a plot showing the trade-off
between Sensitivity and Specificity across thresholds. Area under curve (AUC) is an area under
ROC curve, showing the probability that the model will value a random positive observation over
a random negative observation. AUC is also used as a metric for evaluating model’s performance,
the model is better when AUC gets close to 1. Figure 8 shows an example of ROC curve from 2
models, A and B, where AUC is the area shaded. The inverse of Specificity, known as False
Positive rate (1 — Specificity), is plotted on the x-axis, while the Sensitivity or Recall, known as
True Positive rate, is plotted on the y-axis. As the True Positive rate increases, the False Positive
rate increases, which shows the trade-off between Sensitivity and Specificity. Model B has better

performance than Model A since it has a higher AUC (Fawcett, 2006).
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(a) False positive rate

Figure 8 Example of ROC curve and AUC (Fawcett, 2006)

Precision-Recall curve

Precision-Recall curve is a plot showing the trade-off between Precision and Recall
(Sensitivity). The curve is plot across various thresholds, similar to ROC curve. It can measure the

overall performance of models and is useful for model comparison (Saito & Rehmsmeier, 2015).

For imbalanced data, Precision-Recall curve is more informative than ROC curve because
ROC curve only demonstrates value calculated from columns in the confusion matrix (Sensitivity
and Specificity). Thus, ROC curve will not change if the proportion of positive to negative
observations changes and may provide an overly optimistic result for large skewed data. On the
other hand, Precision-Recall curve uses value calculated from both rows and columns in the
confusion matrix, so it can provide a more informative evaluation. Figure 9 shows ROC curve and
Precision-Recall curve of 2 models. When the ratio of positive class to negative class changes
from 1:1 to 1:10, the Precision-Recall curve shows worse performance while the ROC curve does
not change, which can lead to an overly optimistic result (Davis & Goadrich, 2006; Fawcett, 2006;

Saito & Rehmsmeier, 2015).



23

[T} [T} 0 [T} [ [T [T}

(a) ROC curves, 1:1 (b) Precision-recall curves, 1:1

(¢) ROC curves, 1:10 (d) Precision-recall curves, 1:10

Figure 5. ROC and precision-recall curves under class skew.

Figure 9 ROC and Precision-Recall Curve under skewed data (Fawcett, 2006)

2.2.4 SHAP (Shapley Additive eXplanation) value

Despite the understandable structure of tree-based models, the effect of significant
features in the model needs to be interpreted. It is straightforward to obtain ‘Feature
Importance’ through the trained model, which is calculated from decreasing in Gini impurity or

Entropy and the possibility of reaching that feature’s nodes.

Unfortunately, the importance ranking directly generated from the models is not enough
to explain features’ contribution to the outcome. To clarify, though it showed which features are
important, how the values of each feature affect the outcome is unknown. Thus, the additive

future attribution methods are used in this study as shown in Equation 31.
n — M /
9(z") = @g + Xi=1 0:Z'; 31)

Where g is a linear function of the feature attribution values, ®i is the feature attribution

value of feature i, M is the number of features and Zi’ € {0,1} stands for whether i is the

observed feature (Meng et al., 2021).
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The value of @ in Equation 15 is calculated from the method based on game theory.

Classic Shapley values attribute (Z)l- for each feature i can be calculated as shown in Equation 32.

IS|'(|F|-|S|-1)!
Oi= Lscry— [fsuiy (xsuy) — fs(xs)] (32)

Where F is the set of all features, S is the subset of F, fS is the model trained with

features in set S and Xg is the dataset contained features in set S.

With some limitations in the calculation of Equation 32, a tree SHAP value estimation

algorithm is implemented for using with tree-based models (Lundberg et al., 2018).
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Chapter 3 : Methodology

3.1 Problem Approach

As mentioned earlier, this study aims to investigate the driven factors for stops which
resulted in a conviction, as well as the driven factors for weapons usage during stops. Thus,
predictive models were created to find significant features for both issues. In addition, to analyze
the appropriateness of an officer’ decision on weapon usage, those driven factors for both issues
were compared due to the assumption that an officer should decide to use weapon based on a

sign of guilty suspect.

3.2 Data source

Stop, Question, and Frisk datasets used in this study were originally retrieved from the
New York Police Department (NYPD) website. The data were recorded by the NYPD officers, each
row in datasets represents each stop. Since the files posted on the website were annually
published, the format of the SQF records may be changed through the years. Focused on the
records during 2014-2019, there were major changes in dataset format after 2016. In other words,
there were 2 versions of SQF records (2014-2016 and 2017-2019). In the former version (2014-
2016), there were 80,753 records with 112 features and in the later version (2017-2019), there

were 36,095 records with 83 features.

3.3 Data Preparation and Output labeling

Since there were differences between 2 versions, such as some features appeared only
in one version, combining both versions was an essential process aside from the conventional

data cleaning process.

To maintain consistency of the ageregated dataset, some features which did not include
in both versions were dropped, some similar features were grouped in order to match those in
another version, and values in some columns were grouped or changed. The features in the
ageregated dataset adopted from the original versions had 50 columns in total and divided into 8

categories.

1. Date and Time
- Year of stop
- Month of stop

- Date of stop



Days in week of stop

Time of stop

Authority

Was stop inside or outside?

Jurisdiction

Location

Precinct
Borough
X Coordinate

Y Coordinate

Police action

Observed duration

Stop duration

Was stop initiated by radio run?

Did officers explain reason of stop?

Was an arrest made?

Was a summon issued?

Were officers in uniform?

Were ID cards provided by officers? (if officers were not in uniform)
Was verbal statement provided by officers? (if officers were not in uniform)
Were shields provided by officers? (if officers were not in uniform)
Was suspect frisked?

Was suspect searched?

Physical force used

Was physical force without weapon used?
Was physical force with gunfire used?
Was physical force with other weapons used?

Was other physical force used?

Crime details

Crime suspected
Were other persons stopped?

Was any weapon found on suspect?

26



27

- Was contraband found on suspect?
- Was gun found on suspect?
- Was knife found on suspect?

- Was other weapons found on suspect?

7. Situational Characteristics

Did stop relate to suspect carrying suspicious object?

- Did stop relate to suspicious appearance of the suspect?

- Did stop relate to suspect casing a victim or location?

- Did stop relate to suspect acting as a lookout?

- Did stop relate to drug transaction?

- Did stop relate to identified crime pattern?

- Did stop relate to proximity to crime scene?

- Did stop relate to evasive or other actions? (Combined due to discontinuous of
features. Including furtive movements, evasive response to questioning, refuse
to comply with officers’ directions, change direction at sight of officers, verbal
threats by suspect, and others)

8. Suspect Characteristics

- Suspect’s sex

- Suspect’s race

- Suspect’s age

- Suspect’s height

- Suspect’s weight

- Suspect’s hair color

- Suspect’s eye color

- Suspect’s build

Outcome columns were calculated from related features. A suspect was “Guilty” if an
arrest or issuing a summon occurred in stop records. Police’s physical force usage was divided

into 3 levels. The definition in each outcome column is described in Table 6.
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Table 6 Outcome description

Outcome label Description

Guilty 1 if an arrest made or summon issued
0 otherwise

Level of force 0 if no physical force or physical force without
weapon

1 if physical force with other weapons, without
gunfire

2 if physical force with gunfire

3 if only other physical force

Finally, duplicate records had been removed. The combined dataset totally had 116,574

records, with 52 columns.

3.4 Exploratory Data Analysis

After combining datasets and labeling the outcome columns, the dataset was explored.

As shown in Figure 10, out of 116,574 observations, 23.40% fell into the “Guilty=1" class.

The number of observations for each "Guilty” class

89,566

90K

80K

70K

60K

50K

40K

30K

20K

10K

0 1

Figure 10 The number of observations for each “Guilty” class
For level of force column, out of 116,574 observations, 83.01% (96,766 observations) fell
into the “Level of force = 0” class, 13.05% (15,214 observations) fell into the “Level of force =
1”7 class, 2.50% (2,917 observations) fell into the “Level of force = 2” class and 1.67% (1,951

observations) fell into the “Level of force = 3” class, as shown in Figure 11. Since the “Level of
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force = 3”7 class is defined as only other physical force used, which is ambiguous, the class was

excluded from the analysis process.

The number of observations in each ”Level of force” class
100K 96,766
90K
80K
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40K
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2,917 1951
0K I s—
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Figure 11 The number of observations in each “Level of force” class

3.5 Tools and Model Construction

This study used Python 3.6 as a programming language, operating on Jupyter Notebook,
a web-based application for data analysis. Python libraries, such as Pandas and NumPy, were
implemented as tools for data preparation. For data visualization, Tableau 2020.3 along with
Python libraries such as Matplotlib and Seaborn running on Jupyter Notebook were used. For
training and optimizing models as well as evaluation, Python libraries such as XGBoost and Scikit-

learn were implemented.
The steps of model training are as follows:
1. Data adjustment

1.1 Drop some columns which directly correlated to the outcome of the predictions or
were not causation of the outcome. Those included “Was an arrest made?”, “Was a
summon issued?”, “Was suspect frisked?”, “Was suspect searched?”, “Stop duration”,
“Did officers explain the reason for stop?”, “Were ID cards provided by officers?”, “Was
verbal statement provided by officers?”, “Were shields provided by officers?”, “Was
contraband found on suspect?” and all “Physical forced used” columns. As a result, the

dataset had 36 features in total.
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1.2 Transform categorical features into numeric values for training models, the
transformation can be conducted in various ways, such as ordinal encoding and one-hot
encoding. Ordinal encoding was used to transform binary features or categorical features
of which the values orderly related to one another, such as days of a week (Monday to

Sunday), otherwise, one-hot encoding was used, such as crime suspected.

1.3 Some continuous numerical features were transformed into discrete values by

binning, such as height of suspects.
2. Dividing dataset

Model training was performed using the prepared dataset, which was divided into 3 sets:
Training set (60%), Validation set (20%) and Test set (20%) Due to the imbalance of the dataset,

the sampling was stratified by using a stratified train-test split in Scikit-learn.
3. Model training and optimization

Training set was used for fitting the model in the training period. The classifier of each
technique has various parameters, tuning the parameters was carried out using GridSearchCV in
Scikit-learn to search over parameter values for the best performance. The steps of parameters

tuning for each model are as follows:
3.1 Define specific ranges of each parameter to search over for the best value

3.2 Divide Training set into 3 subsets, for a set of parameters, do the cross-validation by
training 2 subsets using those parameters and evaluate the performance with another subset.

Repeat the steps for 2 times by using different training and evaluating subsets.
3.3 Repeat step 3.2 with all possible combination of the parameters.

3.4 Average the F1 scores of each combination of parameters from cross-validation

process.
3.5 Choose the combination of parameters that had the best performance.
For Super Learner, the meta learners were optimized as well.

4. Dropping insignificant features

4.1 Train the tuned model with all features using Training set.
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4.2 Obtain the importance of features and sort from minimum to maximum value.

4.3 Drop the least significant feature. Train the model with the remaining features and

evaluate the model with the validation set.

4.4 Repeat step 4.3 until F1 score does not improve.

4.5 Use the remaining features that give the best performance.
5. Repeat step 3 with the remaining features

6. Threshold Adjustment

Threshold is the cut-off probability to determine whether each sample is in the class.
Basically, the models predict the probability of being in the outcome class for each record in the
test set. For binary classification, the default threshold is set to 0.5, which is, if the predicted
probability for the positive class of a sample is more than 0.5, then the sample will result in the
positive class. For imbalance data, adjusting threshold plays a significant role in optimizing the

evaluation metrics, as mentioned in Chapter 2.
7. Evaluate the result of each model
7.1 Combine Training and Validation set and divide into 4 subsets

7.2 Do 4-folds cross-validation by training 3 subsets with the optimal model and

evaluating with another subset.

7.3 Average the performance from all folds.
8. Compare the results and choose the best model
9. Calculate SHAP value for each feature from the best model
10. Test the best model with Test set to obtain the final result.

3.6 Evaluation metric

For Guilty Prediction, which is binary classification with imbalance, Area Under Curve of
Precision-Recall Curve was used for comparing the model’s performance among techniques, as
well as selecting the best threshold for each model which was calculated from the threshold

that optimizes the F1 score.
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For Level of Force Prediction, which is multiclass classification with imbalance, F1 score
of minority class (level 1 and level 2) was used for comparing the model’s performance among
techniques to harmonize between Precision and Recall. So, the macro average (simple average

with no weight considered) of F1 score was implemented.

F1 score, Accuracy, Precision and Recall were measured for evaluating the best model’s

performance when testing with Test set.

Finally, for investigating the contribution of features in all techniques, SHAP values for

each feature were calculated from the best models of each technique.

3.7 Super Learner experiment

To explore various structural designs for Super Learner, experiments were divided into 2
sections, Guilty Prediction (section A) and Level of Force Prediction (section B). Each section
contains 4 experiments as described in Table 7. Each section was divided into 4 experiments
based on base models; (1) Tree-based without tuning, (2) Tree-based tuned, (3) Tree-based,
Logistic Regression, and Gaussian Naive Bayes, all without tuning, and (4) Tree-based, Logistic

Regression, and Gaussian Naive Bayes, all were tuned.

Table 7 Super Learner experimental plan

Prediction Experiment | Base models Meta model

Guilty Prediction | Al DF, RF, XGB (No tuning) DT, RF, XGB, LR, MLP
A2 DF, RF, XGB (tuned) (5 meta models for
A3 DF, RF, XGB, LR, GB (No tuning) each experiment)
Ad DF, RF, XGB, LR, GB (tuned)

Level of Force B1 DF, RF, XGB (No tuning) DT, RF, XGB, LR, MLP

Prediction B2 DF, RF, XGB (tuned) (5 meta models for
B3 DF, RF, XGB, LR, GB (No tuning) each experiment)
B4 DF, RF, XGB, LR, GB (tuned)

*DF = Decision Tree, RF = Random Forest, XGB = XGBoost, LR = Logistic Regression, GB = Gaussian Naive Bayes,
MLP = Multilayer Perceptron Neural Network

* tuned = single model optimization
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Chapter 4 : Results and Discussion
4.1 Results of tree-based models

4.1.1 Guilty Prediction

The models of all techniques were optimized by parameters and threshold tuning. The

ranges and optimum values for each technique are demonstrated in Appendix.

After tuning the parameters and threshold, cross-validation was conducted. The average

results from 4-fold cross-validation of all techniques are shown in Table 8.

Table 8 Average results from 4-fold cross-validation for Guilty Prediction

Models Metrics (4 fold cross validation)
AUC of PCR | Accuracy F1 Score Precision Recall
Decision Tree 0.612 0.801 0.569 0.578 0.560
Random Forest | 0.692 0.824 0.622 0.626 0.618
XGBoost 0.731 0.841 0.662 0.657 0.667

XGBoost had the best performance among all models since it obtained the highest score
in all metrics, followed by Random Forest and Decision Tree, which had the lowest score in all
metrics. All techniques reached good performance with more than 80% accuracy especially
XGBoost, which obtained 84.1% accuracy while maintained both good Precision and good Recall
at 65.7% and 66.7% respectively. Precision-Recall Curves and AUC from the best models of each
technique are shown in Figure 12, XGBoost also outperformed other models across all thresholds

with the highest AUC.
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Precision-Recall Curve for Guilty Prediction
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Figure 12 Precision-Recall Curves for Guilty Prediction
The best XGBoost model was evaluated using Test set and the results are shown in
Table 9. The average results from 4-fold cross-validation mentioned above are also shown in this
table for comparison. It showed that the model was reliable because the results of predicting the

unseen dataset (Test set) conformed to those of the training period.

Table 9 Performance of the best XGBoost model on Test set for Guilty Prediction

(comparing with 4-fold cross-validation on Training set)

Results Metrics (4 fold cross validation)
Accuracy F1 Score Precision Recall
Test set 0.840 0.659 0.659 0.659
4-fold cross- 0.841 0.662 0.657 0.667
validation

In terms of important factors, the best models from each technique were analyzed and
SHAP values of all factors were calculated. The important features ranked by the average
magnitude of SHAP values are illustrated in Figure 13 — 15. The top 10 features are described in

Table 10.
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Figure 13 Important features in the best Decision Tree model for Guilty Prediction
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Table 10 Top 10 important features for Guilty Prediction
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Decision Tree

Random Forest

XGBoost

1. Year of the stop

1. Was crime suspected
Criminal Possession of

Weapon?

1. Year of the stop

2. Was any weapon found on

suspect?

2. Was any weapon found on

suspect?

2. Was crime suspected
Criminal Possession of

Weapon?

3. Was crime suspected
Criminal Possession of

Weapon?

3. Year of the stop

3. Was any weapon found on

suspect?

4. Was crime suspected

Criminal Trespass?

4. Did stop relate to suspect

casing a victim or location?

4. Y coordinate of the stop

5. Did stop relate to suspect

carrying suspicious object?

5. Was crime suspected

Criminal Trespass?

5. X coordinate of the stop

6 Did stop relate to suspicious

appearance of the suspect?

6. Did stop relate to suspect

carrying suspicious object?

6. Did stop relate to suspect

carrying suspicious object?

7. Did stop relate to suspect

casing a victim or location?

7. Precinct (New York City

regions)

7. Precinct (New York City

regions)

8. Did Patrol Service Bureau

have jurisdiction?

8. Y coordinate of the stop

8. Was crime suspected

Criminal Trespass?

9. Y coordinate of the stop

9. Did Patrol Service Bureau

have jurisdiction?

9. Suspect’s age

10. Was crime suspected other

crime?

10. Did stop relate to
suspicious appearance of the

suspect?

10. Did stop relate to suspect

casing a victim or location?

According to Table 10, the bold features are ones that appear in all columns, which

means they were important in all techniques. The important features were similar among

techniques as most of the features were bold. Moreover, all techniques obtained the same top 3

important features which were “Year of stop”,

» o«

crime suspected Criminal Possession of Weapon?”.

Was any weapon found on suspect?” and “Was
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Since the XGBoost model had the best performance among others, its effects of features
on outcome column were focused. Raw SHAP values calculated from samples are plotted in

Figure 16 to show effects toward Guilty class from features.
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Figure 16 Effects of important features toward Guilty class based on SHAP value

From Figure 16, among top 10 features, “Y coordinate”, “X coordinate”, “Precinct” and
“Suspect’s age” did not clearly show direction of values that led to Guilty class. Thus, SHAP

value for those features were plotted as illustrated in Figure 17
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Figure 17 SHAP value of “Y coordinate”, “X coordinate”, “Precinct” and “Suspect’s age”

According to Figure 17, entire range of “Y coordinate”, “X coordinate” and “Precinct”
could possibly lead to Guilty class as there were positive SHAP value (plotted above the red line)
over entire range. However, the range of “Suspect’s age” that had positive SHAP value (plotted
above the red line) was in the range of around 15- 60 years old. In summary, effects of Top 10

important features on the outcome column are shown in Table 11.



Table 11 Effects toward Guilty class of important features the best XGBoost model

(Features which were important in all techniques were also bold)
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Top 10 Important Features

Value that led to Guilty

1. Year of the stop

Close to 2019

2. Was crime suspected Criminal Possession of No
Weapon?

3. Was any weapon found on suspect? Yes

4.Y coordinate of the stop -
5. X coordinate of the stop -
6. Did stop relate to suspect carrying suspicious object? | Yes

7. Precinct (New York City regions) -
8. Was crime suspected Criminal Trespass? Yes

9. Suspect’s age

Around 15 - 60

10. Did stop relate to suspect casing a victim or

location?

Yes

4.1.2 Level of Force Prediction

The models of all techniques were optimized by parameters tuning. The ranges and

optimum values for each technique are demonstrated in Appendix.

After tuning the parameters and threshold, cross-validation was conducted. The average

results from 4-fold cross-validation of all techniques are shown in Table 12.

Table 12 Average results from 4-fold cross-validation for Level of Force Prediction

Models Accuracy F1 score Precision Recall
Level 1 | Level 2 Macro | Level 1 | Level2 | Levell | Level 2
average
Decision Tree 0.694 0.311 0.187 0.249 0.245 0.135 0.426 0.306
Random Forest | 0.788 0.382 0.289 0.336 0.351 0.273 0.420 0.309
XGBoost 0.806 0.401 0.366 0.384 0.376 0.389 0.430 0.346
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XGBoost had the best performance among all models since it obtained the highest score
in all metrics, followed by Random Forest and Decision Tree, which had the lowest score in all
metrics except Recall of Level 1. XGBoost reached good performance with more than 80%
accuracy while F1 scores of the minority classes, level 1 and level2, were 40.1% and 36.6%
respectively.

The best XGBoost model was evaluated using Test set and the results are shown in
Table 13. The average results from the d-fold cross-validation mentioned above are also shown
in this table for comparison. It showed that the model was reliable because the results of

predicting the unseen dataset (Test set) conformed to those of the training period.

Table 13 Performance of the best XGBoost model on Test set for Level of Force Prediction

(comparing with 4-fold cross-validation on Training set)

Results Accuracy F1 score Precision Recall

Level 1 | Level 2 | Macro Level 1 | Level 2 | Level 1 Level 2

average
Test set 0.804 0.407 0.350 0.379 0.375 0.373 0.444 0.330
4 folds cross- 0.806 0.401 0.366 0.384 0.376 0.389 0.430 0.346

validation

In terms of important factors, the best models from each technique were analyzed and
SHAP values of all factors were calculated. The important features ranked by the average
magnitude of SHAP values are illustrated in Figure 18 — 20, and the top 10 features are described

in Table 14.
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Table 14 Top 10 important features for Level of Force Prediction

Decision Tree

Random Forest

XGBoost

1. Was crime suspected
Criminal Possession of

Weapon?

1.. Was crime suspected
Criminal Possession of

Weapon?

1. Y Coordinate of the

stop

2. Year of the stop

2. Year of the stop

2. Year of the stop

3. Y Coordinate of the stop

3. Was stop initiated by radio

run?

3. Was crime suspected
Criminal Possession of

Weapon?

4. X Coordinate of the stop

4. Were officers in uniform?

4. X Coordinate of the

stop

5. Did stop relate to

identified crime pattern?

5. Did stop relate to suspect

casing a victim or location?

5. Did stop relate to
identified crime

pattern?

6. Did stop relate to suspect

casing a victim or location?

6. Precinct (New York City

regions)

6. Precinct (New York

City regions)

7. Precinct (New York City

regions)

7.Y Coordinate of the stop

7. Suspect’s age

8. Was stop initiated by radio

run?

8. Did stop relate to

identified crime pattern?

8. Did stop relate to

evasive or other actions?

9. Suspect’s age

9. Did stop relate to suspect

carrying suspicious object?

9. Day of the stop

10. Hour of the stop

10. Were other persons

stopped?

10. Was stop initiated by

radio run?

According to Table 14, same as Guilty Prediction, the bold features are ones that appear
in all columns, which means they were important in all techniques. The important features were
similar among techniques as most of the features were bold. Note that “Year of the stop” and

“Was crime suspected Criminal Possession of Weapon?” were ranked in the top 3 for all

techniques in both Guilty and Level of Force Prediction.




Since the XGBoost model had the best performance among others, its effects of features
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on the outcome column were focused. Raw SHAP values calculated from samples are plotted in

Figure 21 to show effects toward each Level from features.
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Figure 21 Effects of important features toward each Level based on SHAP value

From Figure 21, ranks of features were different for each Level and different from the
overall rank shown in Figure 20. This is because it was ranked by sum of the magnitude of each

Level. Thus, only the top 10 features from the overall rank were focused. From the plots, some
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features did not clearly show the direction of values that led to each Level. Therefore, SHAP

values of those features were plotted and investigated.

” o«

As a result, some features including “Y coordinate”, “X coordinate”, “Day of the stop”
and “Precinct” could lead to any Level in a wide range of values (similar to the plots shown in
Figure 17). Some features clearly showed the direction of values in some Levels, for example,
“Year of the stop” showed the clear direction in Level 0 and 2, but not in Level 1. The effects of
Top 10 important features on the outcome column are summarized in Table 15. Additionally, the
plot of SHAP values toward Level 1 for “Suspect’s age” is shown in Figure 22, in order to clarify

the value in Table 15.

Table 15 Effects toward each Level of important features in the best XGBoost model

(Features which were important in all techniques were also bold)

Top 10 Important Features Value that leads to each level

1. Y Coordinate of the stop -

2. Year of the stop Close to - Close to

2014 2019
3. Was crime suspected Criminal Possession of - No Yes
Weapon?

4. X Coordinate of the stop -

5. Did stop relate to identified crime pattern? No - Yes

6. Precinct (New York City regions) -

7. Suspect’s age - Around 15-60 -

8. Did stop relate to evasive or other actions? No Yes Yes

9. Day of the stop -

10. Was stop initiated by radio run? No No Yes
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Figure 22 SHAP values toward Level 1 for “Suspect’s age’

4.2 Discussion of tree-based models

4.2.1 Results interpretation

Although accuracy is a basic metric for model evaluation, focusing only on accuracy may
lead to misinterpretation when it comes to an imbalanced dataset. Regarding Guilty Prediction, if
all samples were predicted as “Not Guilty”, the model would simply achieve 76.63% accuracy
while all “Guilty” cases were wrongly predicted. That was why Precision and Recall of the
“Guilty” class were taken into consideration in this problem. This issue was also applied to the
Level of Force Prediction, in which the “Level 1”7 class and “Level 2”7 class were minority but

interesting classes.

As previously mentioned in Chapter 2, maximizing Precision often decreases Recall, and
vice versa. Referring to the context of this problem, low Precision means when the model
predicted that a record was “Guilty” or experienced force at “Level 1 or 2”7, most of the
predictions were wrong. Meanwhile, low Recall means the model cannot recall most of the
records which were actually “Guilty” or experienced force at “Level 1 or 2”. Since both “low
Precision” and “low Recall” cases were unacceptable, the F1 score was focused to maximize

both metrics simultaneously.

From the results of Test set in Chapter 4, the best XGBoost model for Guilty Prediction
obtained F1 score at 65.9% with both Precision and Recall at 65.9%. This means that 65.9% of all

stops that the model predicts “Guilty” are really “Guilty” (precision) and means that 65.9% of all
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stops that are “Guilty” are correctly predicted (recall). This shows that the model can increase
the possibility of detecting the minority class which was originally 23.37% (stops with “Guilty” are

23.37% of the population).

For Level of Force Prediction, the best XGBoost model obtained F1 score for “Level 1”
at 40.7% (37.5% Precision and 44.4% Recall), and for “Level 2” at 35.0% (37.3 Precision and
33.0% Recall). While the performance seems inferior to those in Guilty Prediction, the model
increased the significant probability of detecting the minority classes, which were originally
13.04% and 2.49% of the population for “Level 1”7 and “Level 2”7 respectively. Aiming to
optimize F1 score of both Level 1 and Level 2, the process optimized macro average F1 score
which resulted in similar F1 score for both Levels. In addition, obtaining 80.4% accuracy might be
lower than 82.8% accuracy when the model just predicted “Level 0” for all samples. However,
the decreased accuracy was traded off by increasing the ability to detect more severe usage of

force, which was the focused issue of this project as mentioned earlier.

4.2.2 XGBoost Performance

According to the results, XGBoost outperformed other tree-based models, Decision Tree
and Random Forest, by all metrics in both predictions. Different scheme of building trees was
probably a major cause of this. Trees in Random Forest were built separately and the result
came from the majority votes among the trees. Meanwhile, trees in the XGBoost model were
sequentially built by the previous trees with parameters calculated to minimize loss function,
then the result came from the last tree. This ability to learn from the previous trees possibly led

to a better fit with the dataset.

Optimization also played a significant role in model construction. Parameter tuning and
dropping insignificant features helped to increase the performance in all techniques. For
example, the F1 score in XGBoost for Guilty Prediction was increased from 55.7% to 66.2% by the
optimization. The optimal model contained 63 from 112 columns with tuned parameters, namely

as a learning rate of 0.01 (default at 0.3), max depth of 25 (default at 6), etc.

4.2.3 Interpretation of important features’ effect

4.2.3.1 Guilty Prediction

“Year” had the largest impact on Guilty Prediction, and later years (close to 2019) led to

more possibility for a record to be “Guilty”. The result conformed to Figure 2 in Chapter 1, the
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plot shows the decrease in “Not Guilty” proportion, and thus the increase in “Guilty” proportion.
This was a good sign that NYPD had a tendency to lessen the “Not Guilty” cases. However, as

mentioned in Chapter 1, the proportion of “Not Guilty” was still high.

Crimes suspected including “Criminal Possession of Weapon” and “Criminal Trespass”
were significant driving factors. From the results shown, when the police suspected a case to be
Criminal Trespass, the case tended to be Guilty since trespassing was quite an explicit crime to
commit. On the other hand, a case tended to be “Not Guilty” when the police suspected a case
to be “Criminal Possession of Weapon”, which was an interesting finding especially because this
feature had the second-largest impact on the model. Moreover, “Criminal Possession of
Weapon” was the most suspected crime. All above could imply that police often assumed that
suspects committed “Criminal Possession of Weapon” when they did not, and this may have

contributed to high unnecessary stops.

In terms of the suspect’s actions from the police’s point of view, “Carrying suspicious
object” and “Casing a victim or location” were the significant factors. Both actions led to “Guilty”
cases as expected. Another important factor, the third-largest impact on the model, was
“Weapon found on suspect”, which also led to “Guilty” cases. The results of this factor, together
with “Carrying suspicious object”, pointed to the fact that weapons carriage was a major element
of criminal in New York City. However, the effect from “Criminal Possession of Weapon” was the

opposite, indicating that there was significant false suspicion in the operation.

Lastly, the result, which showed that suspects who were in the range of around 15 — 60
years old led to “Guilty” cases, was sensible. Although the location features including “X
coordinate”, “Y coordinate” and “Precinct” were important, values of these features that led to

“Guilty” were widespread, meaning that crime areas were spread out in all direction of NYC.

4.2.3.2 Level of Force Prediction

In Level of Force Prediction, Year also played a significant role as the second-largest
impact feature. The result showed that the former years (close to 2014) led to “Level 0” and the
later years (close to 2019) led to “Level 2”. This corresponds to Figure 3 in Chapter 1, which

indicates increases in police force usage over years.

Criminal Possession of Weapon was the only significant crime suspected. According to

the results, when the police suspected that a case was Criminal Possession of Weapon, they
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tended to use “Level 2”7 of Force, and use “Level 1”7 when it was other crimes. This indicates the
possibility of gunfire usage if the police assumed that the suspect possessed weapons. Another
significant police’s action was “Stop initiated by radio run”, which led to “Level 27 if it was and
led to other levels if it was not. This also suggested that cases initiated by radio run tended to
experience gunfire usage. From “Street Stop Encounter Report” published on New York City
website, police might receive a radio report from a third party other than personal observation.
Further inspection should be done to investigate why these radio-initiated cases tended to

encounter more severe force.

The suspect’s actions that had an important impact on Level of Force Prediction were
“Identified Crime Pattern” and “Evasive or others”. From the results, the police possibly used
“Level 2”7 of Force when they “Identified Crime Pattern”, and “Level 0” when they did not. This
might happen because the pattern indicated violent crimes. “Evasive or others” was also a
combination of multiple actions, including “Refuse to comply with officers’ directions” and
“Verbal threats by the suspect”. The effect led to Level 2 when suspects doing those actions.
These findings suggested that the suspect's acts connected with violent crime and threat to
officers increased the likelihood of police drawing firearms, which was also highlighted in past

studies.

Finally, the results showed that suspects who were in the range around 15 - 60 years
old led to “Level 1”7 of Force. Other important features, including “Day of the stop”, “Y
Coordination”, “X Coordination” and “Precinct”, were not clearly showed the direction of values
that led to specific Level. However, there were potential directions of values in “Precinct”. Plots
of SHAP value toward each Level for Precinct are shown in Figure 23. From the plots, the higher
Precinct number had potential leading to “Level 0”, while the lower number had potential
leading to “Level 1”. The information about which Borough each Precinct number belongs to is

provided in Table 16, the data was obtained from the NYPD website for better understanding.
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Borough Precinct
Manhattan 1-34
Bronx 40-52
Brooklyn 60-94
Queens 100-115
Staten Island 120-123

Table 16 Boroughs and Precinct numbers in New York City

Figure 23 Plots of SHAP value toward each Level for Precinct

4.2.4  Appropriateness of the NYPD officer’s behavior in SQF practices

As discussed in the previous sections, the results of “Criminal Possession of Weapon”

feature had high impact on both predictions, but there was a conflict in terms of effects

interpretation. While the high number of unnecessary stops probably caused from the false
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assumption of this crime suspected, its effect led to the police’s gunfire usage. Moreover, the
high contribution of “Weapon found” feature toward “Guilty” class pointed to the actual suilty
cases with weapons carriage, but the feature did not show any importance in Level of Force
Prediction for all techniques. This indicated lack of precise assumption about suspect’s weapons

possession during the operation, which may lead to force usage toward innocence citizen.

Suspect’s actions from police’s point of view appeared to be significant features in both
predictions, but they were different actions for each prediction. “Carrying suspicious object” and
“Casing a victim or location” led to actual guilty cases, but they were not the driving factors in
force usage selection. Meanwhile, “Identified Crime Pattern” and “Evasive or others” were the
driving factors for police’s weapons usage, but it did not contribute to “Guilty” of the case. This

conflict can be further analyzed to ensure appropriateness of police’s weapons usage.

Lastly, from the findings, suspect’s race was not the significant factor in any problems
and techniques. Although races may not be the main driving factor from the methodology used
in this project, we cannot claim that there was no different treatment in the operation among
racial groups. To further investigate racial discrimination in the SQF practices, as mentioned in

Chapter 1, additional hypothesis testing was done in the next section.

4.2.5 Supplementary hypothesis testing among racial groups

There were 8 racial groups in this dataset, including “Missing” group (cases of which
suspect’s race were missing). As shown in Figure 24, there was the significant imbalance in those
groups. More than half of all suspects stopped were “Black”, and more than 80% of all suspects

stopped were “Black”, “White Hispanic” and “White”.
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The number of observation of each racial group
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Figure 24 The number of observations for each racial group

Hypothesis testing was conducted in 2 parts, “False stop” and “Level of Force” among
racial groups. A “False stop” case actually was a “Not Guilty” case because stops with no
conviction were acted on innocent citizen and were unnecessary. From Figure 25, there were
some differences in the proportion of “False stop” among the groups. Thus, the objective of the

“False stop” part is to explore whether those differences were significant.
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Figure 25 Percentages of “False stop” for each racial group
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To achieve the objective of this part, Chi-square test was conducted to analyze

difference in proportion of guilty among races. The results are shown in Table 17.

Table 17 Results of hypothesis testing for “False stop” among racial groups

Variable Value

X2 496.2199534

No. of racial groups 8

Df 7

Critical value 14.06714045

p-value 0.00

Alpha 0.05

Result Reject null hypothesis
Cramer's V 0.065243352

Result Little association

The conclusion from Table 17 is that there was a significant difference in the proportion
of “False stop” among racial groups at 95% confidence level. It thus suggests that the operation
proceeding with some racial groups, such as “American Indian/ Alaskan Native” and “Asian/
Pacific Islander”, can be further investigated due to high “False stop” proportion. However, the
Cramer’s V value, which was used to eliminate the influence of sample size, indicated that there

was minor association between races and “False stop”.

Another testing part was “Level of Force” used among racial groups. Figure 26 illustrates
percentages of each “Level of Force” based on racial groups. Since there were some differences
among the groups, Kruskal Wallis H test was conducted to analyze the significance of those

differences. The results are shown in Table 18.
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Table 18 Results of hypothesis testing for “Level of Force” among racial groups
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Variable Value

H 183.80

Df E

p-value 0.00

Alpha 0.05

Result Reject null hypothesis

From Table 18, the conclusion is that there was a significant difference for “Level of

Force” used among racial groups at 95% confidence level. According to Figure 26, “Black

Hispanic”, “White Hispanic” and “Black” had high proportion of non-gunfire weapons used by

police (Level 1). However, those groups also had high proportion of “Guilty” cases (low “False

stop” proportion) regarding Figure 25. “Missing” group had high proportion of gunfire weapon

used by police (Level 2), it suggests that further investigation can be done, due to lack of clear

racial information.
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To summarize, even though race was not the main driving factor of the predictions, there
was significantly difference in SQF practices among the racial groups. Thus, NYPD should not

overlook the racial issue and proceed the operation with caution and fairness.

4.3 Results of Super Learners

4.3.1 Guilty Prediction

In order to be used as base learners in experiment A2 and A4, single Logistic Regression
and single Gaussian Naive Bayes were optimized by parameter tuning. During the Super Learners
constructing process, meta models were also optimized by parameters and threshold tuning. The

ranges and optimum values for each technique are demonstrated in Appendix.

After tuning the parameters and threshold, cross-validation was conducted. The average
results from d-fold cross-validation of base models and Super Learners of all experiments are
shown in Table 19 — 20. Base models were evaluated on the validation set before using meta
models. Super Learners were evaluated on the validation set after using meta models. Bold

numbers are the best results in each experiment.



Table 19 Average results from 4-fold cross-validation of the base models
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Base models

Metrics (4 fold cross validation)

Accuracy F1 Score
Al DT 0.776 0.522
Without tuning RF 0.844 0.560
XGB 0.798 0.607
A2 DT 0.745 0.555
Tuned RF 0.824 0.621
XGB 0.848 0.660
A3 DT 0.776 0.521
Without tuning RF 0.844 0.560
XGB 0.798 0.607
LR 0.591 0.385
GNB 0.707 0.343
Ad DT 0.745 0.555
Tuned RF 0.824 0.621
XGB 0.848 0.660
LR 0.736 0.536
GNB 0.764 0.511

*DT = Decision Tree, RF = Random Forest, XGB = XGBoost, LR = Logistic Regression, GNB = Gaussian Naive Bayes
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Experiment Meta Metrics (4 fold cross validation) Most
model important
(optimal) AUC of | Accuracy | F1 Score | Precision | Recall e —
PRC
Al DT 0.681 0.820 0.641 0.602 0.687 RF
(Base models: | RF 0.685 0.831 0.645 0.632 0.659 RF
DT, RF, XGB XGB 0.700 0.825 0.645 0.615 0.679 RF
without LR 0.714 0.832 0.646 0.636 0.683 RF
tuning) MLP 0.713 0.838 0.646 0.660 0.634 -
A2 DT 0.694 0.826 0.656 0.611 0.709 XGB
(Base models: | RF 0.695 0.833 0.658 0.630 0.689 XGB
DT, RF, XGB
XGB 0.730 0.838 0.659 0.647 0.672 XGB
tuned)
LR 0.729 0.840 0.660 0.657 0.663 XGB
MLP 0.730 0.837 0.659 0.645 0.674 -
A3 DT 0.680 0.820 0.640 0.601 0.686 RF
(Base models: | RF 0.713 0.825 0.646 0.614 0.681 RF
DT, RF, XGB, | xGB 0.714 0.823 0.644 0.609 0.683 DT
LR, GNB
LR 0.714 0.824 0.646 0.609 0.686 RF
without '
tuning) 0.717 0.828 0.648 0.624 0.675
A4 DT 0.680 0.820 0.640 0.601 0.686 XGB
(Base models: | pr 0.690 0.833 0.657 0.631 0.687 | XGB
DT, RF, XGB, | ycB 0730 | 0834 | 0658 | 0635 | 0683 | XGB
LR, GNB
LR 0.729 0.840 0.660 0.656 0.664 XGB
tuned)
MLP 0.730 0.839 0.660 0.654 0666 |~

*DT = Decision Tree, RF = Random Forest, XGB = XGBoost, LR = Logistic Regression, GNB = Gaussian Naive Bayes,

MLP = Multilayer Perceptron Neural Network
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XGBoost, Logistic Regression and Multilayer Perceptron (MLP) performed good as meta
model across all experiments. Experiment A2 and A4 had better performance from tuned base
models. XGBoost, Logistic Regression and MLP in both A2 and A4 showed similar performance.
The best result among all was MLP in A4 (highlighted in Table 20), which reached 73.0% AUC and
66.0% F1 score. However, according to Table 8, the best Super Learner performance still did not

reach the best single XGBoost performance (73.1% AUC, 66.2% F1 score).

In order to improve Super Learner performance, additional experiments were done. Even
though experiment A2 and experiment A4 performed better, the performance did not improve
from tuned base models shown in Table 19. And when adding more tuned base models, the
performance of A4 did not improve form A2. Meanwhile, experiment Al and experiment A3
significantly improved performance from their untuned base models, from F1 score 60.7% to
64.6% in experiment Al, and to 64.8% in experiment A3. Adding more untuned base models, in
this case Logistic Regression and Gaussian Naive Bayes, had potential to improve the

performance.

So, the additional experiment A5 and experiment A6 were created as shown in Table 21.
A5 focused on adding advanced tree-based models like XGBoost, in order to have base models
with good performance. And A6 focused on adding simple classification models, in order to have
base models with various structures and small run time. For meta model, XGBoost, Logistic
Regression, and MLP were selected as they had good performance in previous experiments. The
ranges and optimum values for each technique are demonstrated in Appendix. The performance
of base models and Super Learners in experiment A5 and experiment A6 are shown in Table 22 -

23.

Table 21 Additional Super Learner experimental plan (Guilty Prediction)

Prediction Experiment | Base models Meta model
Guilty Prediction | A5 DT, RF, XGB, BRF, AB, BG, ET, GBDT, XGB, LR, MLP
HGB (No tuning) (3 meta models for
A6 DT, LR, GNB, MNB, KNN (No tuning) each experiment)

*DT = Decision Tree, RF = Random Forest, XGB = XGBoost, BRF = Balanced Random Forest, AB = AdaBoost,
BG = Bagging, ET = Extra Trees, GBDT = Gradient Boosting Decision Tree, HGB = HistGradientBoost, LR = Logistic
Regression, GNB = Gaussian Naive Bayes, MNB = Multinomial Naive Bayes, KNN = K Nearest Neighbor, MLP =

Multilayer Perceptron Neural Network



Table 22 Results from 4-fold cross-validation of the base models (additional experiments)

Base models Metrics (4 fold cross validation)
Accuracy F1 Score
A5 DT 0.776 0.521
without tuning RF 0.844 0.600
XGB 0.800 0.607
BRF 0.796 0.622
AB 0.810 0.546
BG 0.837 0.559
ET 0.846 0.579
GB 0.826 0.495
HGB 0.834 0.539
A6 DT 0.776 0.521
without tuning LR 0.591 0.385
GNB 0.707 0.343
MNB 0.591 0.387
KNN 0.760 0.359

*DT = Decision Tree, RF = Random Forest, XGB = XGBoost, BRF = Balanced Random Forest, AB = AdaBoost,
BG = Bagging, ET = Extra Trees, GB = GradientBoost, HGB = HistGradientBoost, LR = Logistic Regression,
GNB = Gaussian Naive Bayes, MNB = Multinomial Naive Bayes, KNN = K Nearest Neighbor
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Table 23 Average results from 4-fold cross-validation of the Super Learners (additional

experiments)

Experiment Meta Metrics (4 fold cross validation) Most
model important
(optimal) AUC of | Accuracy | F1 Score | Precision | Recall base
PRC model
as Re8 0.724 0.838 0.655 0.651 0.659 RF
(Base models:
LR GB
DT, RF, XGB, 0.721 0.844 0.654 0.680 0.629
BRF, AB, BG, ET,
GB, HGB, MLP -
0.723 0.843 0.654 0.675 0.635
without tuning)
A6 XGB 0.561 0.766 0.543 0.499 0.595 DT
(Base models:
DT, LR, GNB, LR 0.551 0.768 0.537 0.503 0.576 | GNB
MNB, KNN
without tuning) | MLP 0.558 | 0.745 0.540 | 0.467 0.641 |-

*DF = Decision Tree, RF = Random Forest, XGB = XGBoost, BRF = Balanced Random Forest, AB = AdaBoost,
BG = Bagging, ET = Extra Trees, GB = GradientBoost, HGB = HistGradientBoost, LR = Logistic Regression,
GNB = Gaussian Naive Bayes, MNB = Multinomial Naive Bayes, KNN = K Nearest Neighbor, MLP = Multilayer Perceptron

Neural Network

All tree-based base models in A5 showed better performance compared to A3 (best
71.7% AUC and 64.8% F1 score). All meta models showed similar performance, the best among
others was XGBoost (highlighted in Table 23) with 72.4% AUC and 65.5% F1 score. Meanwhile, all
A6 experiments showed significantly worse performance compared to A3. The best meta model
was also XGBoost, with 56.1% AUC and 54.3% F1 score.

Even though adding more advanced tree-based base models helped improve
performance, it still did not reach the performance of A4 which used tuned base models (best at

73.1% AUC and 66.0% F1 score).
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4.3.2 Level of Force Prediction

In order to be used as base learners in experiment B2 and B4, single Logistic Regression
and single Gaussian Naive Bayes were optimized by parameter tuning. During the Super Learners
constructing process, meta models were also optimized by parameter tuning. The ranges and

optimum values for each technique are demonstrated in Appendix.

After tuning the parameters, cross-validation was conducted. The average results from 4-
fold cross-validation of base models and Super Learners of all experiments are shown in Table
24 — 25. Base models were evaluated on the validation set before using meta models. Super
Learners were evaluated on the validation set after using meta models. Bold numbers are the

best results in each experiment.

Table 24 Results from 4-fold cross-validation of the base models

Base models Metrics (4 fold cross validation)
Accuracy F1 Score
(Macro average)
B1 DT 0.774 0.240
without tuning RF 0.850 0.118
XGB 0.681 0.280
B2 DT 0.694 0.249
Tuned RF 0.730 0.309
XGB 0.806 0.384
B3 DT 0.773 0.240
without tuning RF 0.850 0.117
XGB 0.681 0.280
LR 0.538 0.137
GNB 0.583 0.147
B4 DT 0.694 0.249
Tuned RF 0.730 0.310
XGB 0.806 0.384
LR 0.493 0.216
GNB 0.519 0.179

*DT = Decision Tree, RF = Random Forest, XGB = XGBoost, LR = Logistic Regression, GNB = Gaussian Naive Bayes



Table 25 Results from 4-fold cross-validation of the Super Learners
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Experiment | Meta Metrics (4 fold cross validation) Most
model | Accuracy F1 Score Precision | Recall important
(optimal) Level | Level | Macro | (Macro (Macro base
1 2 average | average) | average) model
B1 DT 0.570 0.352 | 0.212 | 0.282 0.182 0.644 RF
(Base RF 0.735 0.409 | 0.275 | 0.342 0.261 0.497 XGB
models: XGB 0.786 0.395 | 0.320 | 0.357 0.337 0.388 RF
DT, RF, LR 0.810 0.402 | 0.302 | 0.352 0.331 0.406 RF
XGB MLP 0.857 0.234 | 0.346 | 0.290 | 0.759 0.180 -
without
tuning)
B2 DT 0.559 0.360 | 0.173 | 0.267 0.176 0.650 XGB
(Base RF 0.754 0.408 | 0.294 | 0.351 0.285 0.461 XGB
models:
XGB 0.785 0.294 | 0.335 | 0.365 0.344 0.395 XGB
DT, RF,
%GB tuned) LR 0.803 0.3293 | 0.298 | 0.345 0.318 0.399 XGB
MLP 0.851 0.224 | 0.344 | 0.284 0.625 0.185 -
B3 DT 0.572 0.356 | 0.200 | 0.278 0.181 0.647 RF
(Base RF 0.752 0.416 | 0.301 | 0.358 0.284 0.486 XGB
models: XGB 0.763 0.406 | 0.294 | 0.350 | 0.290 0442 | RF
DT, RF, LR 0.810 0.401 | 0.305 | 0.353 0.332 0.405 RF
XGB, LR,
MLP 0.854 0.279 | 0.347 | 0.313 0.656 0.206 -
GNB
without
tuning)
B4 DT 0.579 0.364 | 0.185 | 0.274 0.180 0.637 XGB
(Base RF 0.713 0.339 | 0.270 | 0.304 0.220 0.339 XGB
models: | yqp 0758 | 0402|0282 | 0342 [o0280 [o0aa0 |RF
DT, RF,
LR 0.803 0.291 | 0.299 | 0.345 0.318 0.401 XGB
XGB,
MLP 0.854 0.229 | 0.359 | 0.294 0.671 0.190 _
LR, GNB
tuned)

*DT = Decision Tree, RF = Random Forest, XGB = XGBoost, LR = Logistic Regression, GNB = Gaussian Naive Bayes,

MLP = Multilayer Perceptron Neural Network
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As best results (bold numbers) in all metrics were scattered among techniques, the
macro average of F1 score was the focused metric. Therefore, Random Forest, XGBoost, and
Logistic Regression performed well as meta models across all experiments. The best result
among all was XGBoost in B2, which reached a 36.5% macro average F1 score. However,
according to Table 12, the best Super Learner performance still did not reach the best single

XGBoost performance (38.4% macro average F1 score).

As well as Guilty Prediction, additional experiments were done. The performance of
experiments B2 and experiment B4 did not improve from the tuned base models shown in Table
24. Meanwhile, experiment B1 and experiment B3 significantly improved performance from their
untuned base models, from a macro average F1 score of 28.0% to 35.7% in experiment B1, and
to 35.8% in experiment B3. Using untuned base models had the potential to improve the

performance of Super Learners.

So, the additional experiment B5 and experiment B6 were created as shown in Table 26.
B5 focused on adding advanced tree-based models like XGBoost, in order to have base models
with good performance. And B6 focused on adding simple classification models, in order to have
base models with various structures and small run times. For meta model, Random Forest,
XGBoost, and Logistic Regression were selected as they had g¢ood performance in previous
experiments. The performance of base models and Super Learners in experiment B5 and

experiment B6 are shown in Table 27 - 28.

Table 26 Additional Super Learner experimental plan (Level of Force Prediction)

Prediction Experiment | Base models Meta model

Level of Force B5 DT, RF, XGB, BRF, AB, BG, ET, GB, RF, XGB, LR

Prediction HGB (No tuning) (3 meta models for
B6 DT, LR, GNB, MNB, KNN each experiment)

*DT = Decision Tree, RF = Random Forest, XGB = XGBoost, BRF = Balanced Random Forest, AB = AdaBoost,
BG = Bagging, ET = Extra Trees, GB = GradientBoost, HGB = HistGradientBoost, LR = Logistic Regression,
GNB = Gaussian Naive Bayes, MNB = Multinomial Naive Bayes, KNN = K Nearest Neighbor
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Table 27 Average result from d-fold cross-validation of the base models (additional experiments)

Base models

Metrics (4 fold cross validation)

Accuracy F1 Score
(Macro average)
B5 DT 0.773 0.239
without tuning RF 0.850 0.117
XGB 0.681 0.280
BRF 0.524 0.242
AB 0.853 0.192
BG 0.848 0.184
ET 0.854 0.191
GB 0.843 0.030
HGB 0.845 0.083
Bé6 DT 0.774 0.241
without tuning LR 0.538 0.137
GNB 0.583 0.147
MNB 0.547 0.141
KNN 0.825 0.106

*DT = Decision Tree, RF = Random Forest, XGB = XGBoost, BRF = Balanced Random Forest, AB = AdaBoost,

BG = Bagging, ET = Extra Trees, GB = GradientBoost, HGB = HistGradientBoost, LR = Logistic Regression,

GNB = Gaussian Naive Bayes, MNB = Multinomial Naive Bayes, KNN = K Nearest Neighbor
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Table 28 Average results from 4-fold cross-validation of the Super Learners (additional

experiments)

Experiment | Meta Metrics (4 fold cross validation) Most
model important
Accuracy F1 Score Precision | Recall P
(optimal) base
Level |Level | Macro |(Macro | (Macro
model
1 2 average average) | average)
B5 RF 0.785 0.427 | 0.332 | 0.379 0.331 0.446 BRF
(Base
models:
DT, RF, XGB 0.785 0.419 | 0.347 | 0.383 0.346 0.436 BRF
XGB, BRF,
AB, BG, ET.
7777 LR 0.813 0.406 | 0.297 | 0.351 0.335 0.404 XGB
GB, HGB,
without
tuning)
B6 RF 0.682 0.310 | 0.207 | 0.259 0.196 0.384 GNB
(Base
models: XGB 0.698 0.304 | 0.207 | 0.255 0.199 0.361 KNN
DT, LR,
GNB, MNB,
LR 0.592 0.312 | 0.153 | 0.232 0.159 0.499 GNB
KNN
without
tuning)

*DT = Decision Tree, RF = Random Forest, XGB = XGBoost, BRF = Balanced Random Forest, AB = AdaBoost,
BG = Bagging, ET = Extra Trees, GB = GradientBoost, HGB = HistGradientBoost, LR = Logistic Regression,
GNB = Gaussian Naive Bayes, MNB = Multinomial Naive Bayes, KNN = K Nearest Neighbor

All tree-based base models in B5 showed better performance compared to B1-B4 (best
36.5% macro average F1 score). All meta models showed similar performance, the best among
others was XGBoost (highlighted in Table 28) with a 38.3% macro F1 score. Meanwhile, all B6
experiments showed significantly worse performance compared to B1-B4. The best meta model

was Random Forest, with a 25.9% macro average F1 score.
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Unlike Guilty Prediction, the performance of B5, which added advanced tree-based base
models, surpassed B1-B4. And the performance almost reached the single XGBoost performance

(38.4% macro F1 score)

4.3.3 Confusion Matrix observation

Since F1 score, which is the focused metric in this study, is calculated from precision and
recall, it is not clearly shown how precision and recall were changed through the process. Thus,
the Confusion Matrix of some models were discussed in this section, in order to clearly see the

change when the F1 score increased or decreased.

4.3.3.1 Guilty Prediction

Confusion Matrix of the best untuned and tuned base model, XGBoost, are shown in
Table 29 and Table 30, respectively. The result was obtained from testing trained models with

the validation set.

Table 29 Confusion matrix and related metrics of single XGBoost (untuned)

Predicted Not Guilty Predicted Guilty
Actual Not Guilty 14994 2772
Actual Guilty 1875 3674
Class Precision Recall F1 score
Not Guilty 0.89 0.84 0.87
Guilty 0.57 0.66 0.61
Table 30 Confusion matrix and related metrics of single XGBoost (tuned)

Predicted Not Guilty Predicted Guilty
Actual Not Guilty 16001 1865
Actual Guilty 1821 3628
Class Precision Recall F1 score
Not Guilty 0.90 0.90 0.90
Guilty 0.66 0.67 0.66
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From Table 29 and Table 30, after the XGBoost was tuned it predicted “Not Guilty” class

more accurately. This reduced False Positive and significantly increased precision.

As mentioned in the previous section, Super Learners which used untuned base models

can improve the performance from their base models. Confusion Matrix of the best Super

Learner from Experiment Al is shown in Table 31 as an example. For Super Learner which used

tuned base models, the result is omitted as it is similar to the tuned base model (Table 30).

Table 31 Confusion matrix and related metrics of Super Learner in Experiment Al (Untuned tree-

based models as base models, Logistic Regression as meta model)

Predicted Not Guilty

Predicted Guilty

Actual Not Guilty 15809 2057

Actual Guilty 1872 3577

Class Precision Recall F1 score
Not Guilty 0.89 0.88 0.89
Guilty 0.63 0.66 0.65

From Table 31, the meta model predicted “Not Guilty” class more accurately than the

untuned base models (Table 29). This also increased precision but still not as much as the tuned

base model (Table 30). Both tuning the model and using a meta model used the same approach

for increasing the F1 score, which is predicting the majority class more accurately.

4.3.3.2 Level of Force Prediction

Confusion Matrix of the best untuned and tuned base model, XGBoost, are shown in

Table 32 and Table 33, respectively. The result was obtained from testing trained models with

the validation set.




Table 32 Confusion matrix and related metrics of single XGBoost (untuned)
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Predicted Level 0

Predicted Level 1

Predicted Level 2

Actual Level O 13730 3492 2126
Actual Level 1 1875 3674 383
Actual Level 2 145 108 322
Class Precision Recall F1 score
Level 0 0.91 0.71 0.80
Level 1 0.29 0.48 0.36
Level 2 0.11 0.56 0.19

Table 33 Confusion matrix and related metrics of single XGBoost (tuned)

Predicted Level 0

Predicted Level 1

Predicted Level 2

Actual Level O 16957 2099 248
Actual Level 1 1638 1348 54
Actual Level 2 286 98 198
Class Precision Recall F1 score
Level 0 0.90 0.88 0.89
Level 1 0.38 0.44 0.41
Level 2 0.40 0.34 0.37

From Table 32 and Table 33, after the XGBoost was tuned the precision of both “Level 1”

and “Level 2”7 increased, while recall decreased. This was caused by predicting fewer “Level 1”

and “Level 27, so it significantly reduced samples that were wrongly predicted but also reduced

samples that were correctly predicted.

As mentioned in the previous section, Super Learners which used untuned base models

can improve the performance from their base models. Confusion Matrix of the best Super

Learner from Experiment B1 and B3 are shown in Table 34 and Table 35, respectively.
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Table 34 Confusion matrix and related metrics of Super Learner in Experiment B1 (untuned tree-

based models as base models, XGBoost as meta model)

Predicted Level 0

Predicted Level 1

Predicted Level 2

Actual Level 0 16395 2554 355
Actual Level 1 1513 1452 75
Actual Level 2 294 111 177
Class Precision Recall F1 score
Level O 0.90 0.85 0.87
Level 1 0.35 0.48 0.41
Level 2 0.29 0.30 0.30

Table 35 Confusion matrix and related metrics of Super Learner in Experiment B3 (untuned tree-

based, Logistic Regression, and Gaussian Naive Bayes as base models, Random Forest as meta

model)

Predicted Level 0

Predicted Level 1

Predicted Level 2

Actual Level 0 15198 3396 710
Actual Level 1 1127 1768 145
Actual Level 2 212 140 230
Class Precision Recall F1 score
Level 0 0.92 0.79 0.85
Level 1 0.33 0.58 0.42
Level 2 0.21 0.40 0.28

From Table 34, the meta model made the precision of both “Level 1”7 and “Level 2”

increase, while recall of “Level 2” decreased compared to their untuned base models (Table 32).

This was caused by predicting fewer “Level 1”7 and “Level 27, so it significantly reduced samples

that were wrongly predicted but also reduced samples that were correctly predicted. While in

Table 35, the meta model made the recall of “Level 1” and “Level 2”7 high, while precision

decreased compared to their untuned base model (Table 32). This was caused by predicting

more “Level 1”7 and “Level 27, so it significantly increased samples that were correctly predicted

but also increased samples that were wrongly predicted. This demonstrates that two Super
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Learners with different base learners and meta learner have different approaches to increase F1

score.

Additionally, from the result in the previous section, Super Learners using tuned base

learners got a lower F1 score than their base models. To investigate the issue, Confusion Matrix

of the best Super Learner from Experiment B2 and B4 are shown in Table 36 and Table 37,

respectively.

Table 36 Confusion matrix and related metrics of Super Learner in Experiment B2 (tuned tree-

based models as base models, XGBoost as meta model)

Predicted Level 0

Predicted Level 1

Predicted Level 2

Actual Level O 16344 2675 285
Actual Level 1 1533 1452 55
Actual Level 2 282 111 189
Class Precision Recall F1 score
Level 0 0.90 0.85 0.87
Level 1 0.34 0.48 0.40
Level 2 0.36 0.32 0.34

Table 37 Confusion matrix and related metrics of Super Learner in Experiment B4 (tuned tree-

based, Logistic Regression, and Gaussian Naive Bayes as base models, Logistic Regression as meta

model)

Predicted Level 0

Predicted Level 1

Predicted Level 2

Actual Level O 17026 1603 675
Actual Level 1 1714 1174 152
Actual Level 2 283 61 238
Class Precision Recall F1 score
Level O 0.90 0.88 0.89
Level 1 0.41 0.39 0.40
Level 2 0.22 0.41 0.29

From Table 36, the meta model predicted many samples as “Level 1” but they were

actually “Level 07, this made the precision of both “Level 1”7 and “Level 2” significantly
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decreased from its tuned base model (Table 33), while the recall of “Level 1” increased and
“Level 2”7 decreased. While in Table 37, the meta model predicted many samples as “Level 2”
but they were actually “Level 07, this made the precision “Level 2” significantly decreased from
its tuned base model (Table 33), while the recall of “Level 2” increased. The meta model also
predicted fewer samples as “Level 1”7, so it reduced samples that were correctly predicted but
also reduced samples that were wrongly predicted. This caused the precision of “Level 1”7 higher

and the recall of “Level 1” lower, compared to its tuned base models (Table 33).

To summarize, it was found that Super Learners with untuned base models increased F1
score by 2 approaches; one is predicting the majority class more accurately, which caused higher
precision, and another one is predicting the minority class more, which caused higher recall. On
the other hand, the reason that some Super Learners had lower F1 score than their base models
was the Super Learner predicted more samples as minority class but inaccurately, this

significantly decreased precision.

4.4 Discussion of Super Learners

4.4.1 Base models

According to Table 20 and Table 25, when focusing on the F1 score, tuned base models
performed better than untuned ones for Guilty Prediction, but for some experiments in Level of

Force Prediction, the results were worse when using tuned base models.

Even though most experiments performed better when using tuned base models, they
did not improve from the performance of their own base models. On the other hand, when using
untuned base models, Super Learners could improve performance from their own base models.
This happened in both Guilty and Level of Force Prediction. It can be implied that well-groomed
base models may not be suitable for Super Learners. However, as Super Learners performed just
almost as good as the single best XGBoost, it is questionable whether using tuned base models
really did not cause better performance or the performance could not be any better as it had

reached the limitations of the data itself.

Adding Logistic Regression and Gaussian Naive Bayes as base models also had mixed
results in both predictions. None of both models were important base models in any experiment,

it can be implied that those two models had little impact on Super Learners. From Table 19 and
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Table 24, base models with high accuracy or high F1 score were the most significant base model
for all experiments. Because adding low-performance models may not be any help, the

additional experiments were created to investigate more about adding various base models.

The results of additional experiments showed that the performance of base models
significantly influenced the performance of meta models. Having high-performance base models
improved meta models’ performance and vice versa. Another interesting observation was the
structure similarity of base models did not seem to impact the performance. Using various types
of base models but with low accuracy, as in experiment A6 and experiment B6, did not help

boost the performance, as well as adding different types of base models from A1/B1 to A3/B3.

4.4.2 Meta models

For Guilty Prediction, XGBoost, Logistic Regression, and MLP had high AUC, Accuracy, and
F1 score across all experiments. But for Level of Force Prediction, which was a multi-class
classification, MLP did not have a hish macro average F1 score. It was Random Forest that had a
high macro average F1 score, although it had lower accuracy. Due to multiple classes and highly
imbalance in Level of Force, MLP which cannot determine class weight may probably struggle to

have high F1 score for minority classes.

So, the meta models that performed well across experiments were XGBoost and
Logistic Regression. XGBoost has an advanced way of building trees that is probably the major
cause of high predictive power as discussed in 4.2.2. On the other hand, Logistic Regression,
which is one of the simple classification models, had a competitive performance as meta
models. It is noteworthy that Logistic Regression had a significantly worse performance as base
models compared to XGBoost but had close performance to XGBoost as meta models. It is
possibly due to different kinds of problems in the input data between base models and meta
models. The data input in base models were the SQF datasets, which had high numbers of
features and required complex strategies to predict the results. Meanwhile, the data input in
meta models were probabilities, only a few columns, and the goal was to find the best
combination of those probabilities from base models. With the scheme of Logistic Regression
that can be written as a formula of variables with coefficients, it might be more suitable for
finding the best coefficients as weights for each probability of each base model, than solving the

original predictions as base models.
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4.4.3 Summarized findings for structural designs of Super Learners

Summarized findings for structural designs of Super Learners are demonstrated in Table

38 for base models and Table 39 for meta models. Please note that the evaluation metrics that

define how well the performance was, were AUC for Guilty Prediction and macro average F1

score for Level of Force Prediction.

Table 38 Summarized findings for structural designs of Super Learners (base models)

Base model strategies

Not tuned

Tuned

Tree-based

- Improve from base models

- Worse than tuned

- Not improve from base
models

- Better than not tuned

Tree-based with

additional simple models

- Improve from base models

- Worse than tuned in Guilty
Prediction and better in Level of
Force Prediction

- Improve from only tree-based

- Not Improve from base
models

- Better than tuned in Guilty
Prediction and worse in Level of
Force Prediction

- Equal and worse performance

from only tree-based

Several advanced tree-

based

- Improve from base models

- Best among all untuned base
models

- Competitive performance to

tuned base models and single

XGBoost

Several various simple

models

- Improve from base models
- Worst among all untuned base

models




Table 39 Summarized findings for structural designs of Super Learners (meta models)
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Meta model

Guilty Prediction

Level of Force Prediction

Decision Tree

- Worst performance

- High recall

- Worst performance

- High recall

Random Forest

- Competitive performance

- Good performance

- High F1 score for Level 1

XGBoost - Good performance - Good performance
- Worse performance when adding Logistic
Regression and Gaussian Naive Bayes to
tree-based base models
Logistic - Good performance - Good performance
Regression - High recall with untuned base | - Worse performance with tuned base
models and high precision with models than untuned
tuned base models
MLP - Good performance - High accuracy and Precision

- High Precision

- High F1 score for Level 2 but Low for

Level 1

Super Learners have competitive performance but still could not reach the best

performance of a single XGBoost. Despite that, the main advantage of Super Learner found in this

study is less effort used for optimizing models, in terms of computation time and resources.

Logistic Regression is a simple model with a small run time, and the optimization process takes

less effort and run time due to few parameters. Thus, in the case of Super Learner with untuned

base models and Logistic Regression as a meta model, the performance comparison between

optimized single XGBoost and the Super Learner is shown in Table 40.
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Table 40 Performance comparison between optimized single XGBoost and Super Learner with

Logistic Regression as meta model

Prediction Model Metric
Base model Meta model | F1 score Accuracy

Guilty Single XGBoost (untuned) 0.613 0.801

Single XGBoost (tuned) 0.662 0.841

DT, RF, XGB, BRF, LR (tuned) 0.654 0.844
AB, BG, ET, GB, HGB, | LR (without 0.648 0.811
(without tuning) tuning)

Level of Force Single XGBoost (untuned) 0.275 0.676

(F1 score is Single XGBoost (tuned) 0.384 0.806

macro average for | DT, RF, XGB, BRF, LR (tuned) 0.351 0.813

Level 1 and 2) AB, BG, ET, GB, HGB, | LR (without 0.307 0.653
(without tuning) tuning)

*DF = Decision Tree, RF = Random Forest, XGB = XGBoost, BRF = Balanced Random Forest, AB = AdaBoost,
BG = Bagging, ET = Extra Trees, GB = GradientBoost, HGB = HistGradientBoost, LR = Logistic Regression

Optimizing a single XGBoost takes a certain time and resources, on the other hand, using
Super Learner with untuned base models and a simple meta model like Logistic Regression does
not require such effort. From Table 40, for Guilty Prediction, simply using the Super Learner with
untuned Logistic Regression as meta model obtained competitive performance compared to a
single XGBoost. In this case, the Super Learner can be ready for implementation without an
optimization process. For Level of Force Prediction, even though the Super Learner with untuned
Logistic Regression as meta model did not have competitive performance, using the Super
Learner with tuned Logistic Regression as meta model still takes less effort in the optimization

process than a single XGBoost model.

For further study, Super Learner could be implemented for different kinds of problems,
such as regression. Other base models and meta models could be explored. Also, the different
structures of Super Learner could be investigated and improved, such as the number of folds for

training base models.
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Chapter 5 : Conclusion

The objective of this study is to analyze the appropriateness of the NYPD officer’s
behavior in SQF practices. To achieve the objective, predictive models were created. Factors,
relating to a stop that resulted in a conviction (Guilty Prediction) and police’s weapon usage
during a stop (Level of Force Prediction), were investigated using tree-based machine learning
techniques. XGBoost models outperformed other techniques in both predictions. The
performance of Guilty Prediction was at 65.9% F1 score and 84.0% accuracy. For Level of Force
Prediction, the F1 score obtained for “Level 1”7 and “Level 2” were 40.7% and 35.0%
respectively, with 80.4% overall accuracy.

The main findings are as follows. First, later years (close to 2019) led to more possibility
for a case to be “Guilty” and also led to “Level 2” of Force usage. This indicates a tendency of
fewer unnecessary stops but more police’s weapons usage over time. Second, carrying weapons
or carrying suspicious objects were the suspect’s actions which led to “Guilty” cases. This
suggests that weapons carriage was still a major element of criminal in the city. However, when
“Criminal Possession of Weapon” was the suspected crime, the result led to “Not Guilty” cases
yet “Level 2” of force usage. Taken together, these findings indicate a lack of accurate
assumption about the suspect’s weapons possession, which could be a major cause of
unnecessary stops and overuse of force toward innocent citizens. Lastly, some suspect’s actions
led to “Level 2”7 of Force usage but did not lead to “Guilty” cases, and vice versa. This conflict
showed that some protocols of the operation may be adjusted for appropriateness. Even though
race was not the main driving factor of the predictions, there was significant different treatment in
SQF practices among the racial groups. This suggests that NYPD should not overlook the racial
issue and proceed the operation with caution and fairness. For further study, updated data could
be gathered, and other actions that occurred during a stop, such as a frisk, might be explored to

extend the perspective on the issue.

Additionally, this study also explored a hybrid technique called Super Learner.
Experiments on various structures of Super Learners were done. The best model for Guilty
Prediction used tuned classifiers including Decision Tree, Random Forest, XGBoost, Logistic
Regression, and Gaussian Naive Bayes, as base models, and used MLP as a meta model. It

obtained 66.0% F1 score and 83.9% accuracy. And For Level of Force Prediction, the best model
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used no-tuned various tree-based classifiers, such as XGBoost, Balanced Random Forest, as base
models, and used XGBoost as a meta model. It obtained 41.9% F1 score and 34.7% F1 score for
“Level 17 and “Level 2” respectively, with 78.5% accuracy.

The interesting findings of Super Learner structural designs are as follows. For base
models, Super Learners could improve performance from their own base models when using
untuned base models but did not improve when using tuned base models. The performance of
base models also played a significant role in the performance of Super Learners, having high-
performance base models improved meta models’ performance, and vice versa. For meta
models, XGBoost and Logistic Regression outperformed other meta models across both
predictions. It is worth noting that Logistic Regression performed much worse as base models
than XGBoost but performed similarly as meta models. For further study, different kinds of
problems, such as regression, could be solved with Super Learner. Also, other experiments on

structural design might be explored.
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APPENDIX

Guilty Prediction (single model)

Ranges and optimum values of parameters and threshold for Decision Tree (Guilty Prediction)

Parameter/Threshold Default Range Optimum Value
class weight ‘balanced’ (manually set for imbalance data)
criterion ‘gini’ [‘eini’, ‘entropy’] ‘gini’
max_depth None [5, 10, 15] 10
min_samples_leaf 1 [1, 2, 4] 1
min_samples_split 2 [4, 6, 8, 10] 8

Threshold 0.5 0-1 0.585819

Ranges and optimum values of parameters and threshold for Random Forest (Guilty Prediction)

Parameter/Threshold Default Range Optimum Value
bootstrap True [True,False] False
class_weight ‘balanced subsumple’ (manually set for imbalance data)
criterion ‘gini’ [‘gini’, ‘entropy’] ‘entropy’
max_depth None [5, 10, 12, 15, 18, 20, | 18

22, 25]
max_features ‘sgrt’ [fauto’, ‘sgrt’, ‘log2’] | ‘auto’
min_samples_leaf 1 [1, 2,4, 6, 8] 4
min_samples_split 2 4, 6,8, 10, 12] 8
n_estimators 100 [100, 200, 500, 800, 1600

1000, 1400, 1500,

1600, 1800]
Threshold 0.5 0-1 0.501037
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Parameter/Threshold Default Range Optimum Value
colsample_bylevel 1 [0.5, 0.6, 0.8, 1] 0.6
colsample_bynode 1 [0.5, 0.6, 0.8, 1] 0.6
colsample bytree 1 [0.6, 0.8, 1] 0.6
gamma 0 [0,0.1,0.2,0.3,3,5,6,7,8,10] | 5
learning rate 0.3 [0.01, 0.02, 0.03, 0.04, 0.05, 0.01
0.07, 0.08, 0.1]
max_depth 6 [10, 15, 18, 20, 22, 25, 28, 30] 25
min_child_weight 1 [1,2,4,6, 8] 1
n_estimators 100 1-1974 1874
reg alpha 0 [0, 0.1, 0.2, 0.3, 0.4, 0.5] 0.2
reg_lambda 1 [0.4, 0.6, 0.8, 1] 0.6
scale_pos_weight 3 (manually set for imbalance data)
subsample 1 [0.6, 0.8, 1] 0.8
Threshold 0.5 0-1 0.444231

Ranges and optimum values of parameters and threshold for Logistic Regression (Guilty

Prediction)

Parameter/Threshold Default Range Optimum value

C 1 [0.01, 0.1, 1, 10, 100] 100

class_weight ‘balanced’ (manually set for imbalance data)

penalty ‘12’ [‘none’, ‘117, ‘127, ‘elasticnet’] ‘127

solver ‘lbfgs’ [‘newton-cg’, ‘lbfes’, ‘liblinear’, ‘newton-cg’
‘sag’, ‘saga’l

Threshold 0.5 0-1 0.510124
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Ranges and optimum values of parameters and threshold for Gaussian Naive Bayes (Guilty

Prediction)
Parameter/Threshold Default Range Optimum value
Var_smoothing le-9 [1e-2, 1e-3, le-4, 1e-5, 1e-6, le-11
le-7, le-8, le-9, 1le-10, le-11,
le-12, 1e-13, le-14, le-15]
Threshold 0.5 0-1 0.679297

Level of Force Prediction (sinele model)

Ranges and optimum values of parameters for Decision Tree (Level of Force Prediction)

Parameter Default Range Optimum Value
class_weight ‘balanced’ (manually set for imbalance data)
criterion “gini’ [‘gini’, ‘entropy’] ‘gini’
max_depth None [15,18,20,22,25,28,30] 20
min_samples_leaf 1 [1,2,3,4,5] 1
min_samples_split 2 [2,3,4,5,6] 3

Ranges and optimum values of parameters for Random Forest (Level of Force Prediction)

Parameter Default Range Optimum Value
bootstrap True [True,False] False
class_weight ‘balanced_subsumple’ (manually set for imbalance data)
criterion ‘gini’ [‘gini’, ‘entropy’] ‘gini’
max_depth None (8, 10, 11, 12, 13, 15,18, | 15

20, 22, 25]
max_features ‘sqrt’ [‘auto’, ‘sart’, ‘log2’] ‘auto’
min_samples_leaf 1 [1, 2,4, 6,8, 10] 2
min_samples_split 2 [2,4,5,8,10, 12, 16, 20] 16
n_estimators 100 [100, 300, 400, 500, 600, 2000

700, 800, 1000, 1200,

1400, 1500, 1600, 1800,

2000, 2200, 2500]
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Ranges and optimum values of parameters for XGBoost (Level of Force Prediction)

Parameter Default | Range Optimum Value
colsample_bylevel 1 [0.3, 0.4, 0.5, 0.6, 0.8, 1] 0.4
colsample_bynode 1 [0.6, 0.8, 1] 1

colsample bytree 1 [0.2,0.3, 0.4, 0.5, 0.6, 0.8, 1] 0.6

gamma 0 [0,0.1,0.2,0.3, 0.5, 0.7, 1] 0.1

learning rate 0.3 [0.03, 0.05, 0.07, 0.1, 0.3] 0.03
max_depth 6 (6, 8, 10, 12, 15, 20] 8

min_child weight 1 [1,2,4,6,8,10, 12] 8

n_estimators 100 1-2669 2569

num_class 3 (manually set from number of class in dataset)
objective multi : softmax (manually set for multi-class classification)
reg alpha 0 [0, 0.2, 0.4] 0.2

reg_lambda 1 [0.6, 0.8, 1] 0.8

subsample 1 [0.6, 0.8, 1] 0.8

Ranges and optimum values of parameters and threshold for Logistic Regression (Level of Force

Prediction)

Parameter Default Range Optimum value
C 1 [0.01, 0.1, 1, 10, 100] 1

class_weight ‘balanced’ (manually set for imbalance data)

penalty ‘2’ [‘none’, ‘117, ‘127, ‘elasticnet’] ‘127

solver ‘lbfgs’ [‘newton-cg’, ‘lbfgs’, ‘liblinear’, | ‘newton-cg’

‘sag’, ‘saga’]

Ranges and optimum values of parameters and threshold for Gaussian Naive Bayes (Level of

Force Prediction)

Parameter

Default

Range

Optimum value

Var_smoothing

le-9

[1e-2, 1e-3, le-4, 1e-5, 1e-6, 1e-7, 1e-8, 1e-9,
1e-10, le-11, 1le-12, 1e-13, le-14, 1e-15]

1le-10
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Ranges and optimum values of parameters and threshold for Decision Tree as meta model

(Guilty Prediction)

Parameter/Threshold | Default Range Optimum Value for each experiment
Al A2 A3 Ad

class weight ‘balanced’ (manually set for imbalance data)
criterion ‘gini’ [‘gini’, ‘entropy’ | ‘entropy’ | ‘entropy’ | ‘entropy’

‘entropy’]
max_depth None [1, 2, 3,5, 8, 1 1 1 1

10, 15]
min_samples_leaf 1 [1,2,4] 1 1 1 1
min_samples_split 2 [2, 4, 6, 8] 2 2 2 2
Threshold 0.5 0-1 0.5 0.5 0.5 0.5

Ranges and optimum values of parameters and threshold for Random Forest as meta model

(Guilty Prediction)

Parameter Default | Range Optimum Value for each experiment
/Threshold Al A2 A3 Ad
bootstrap True [True,False] True True True True
class_weight ‘balanced_subsumple” (manually set for imbalance data)
criterion ‘gini’ [‘gini’, ‘entropy’] | ‘entropy’ | ‘entropy’ ‘entropy’ | ‘entropy’
max_depth None (1, 3,5, 8, 10, 1 1 5 1
15]
max_features ‘sgrt’ [‘auto’, ‘sqrt’, ‘auto’ ‘auto’ ‘auto’ ‘sgrt’
‘log2’]
min_samples_leaf | 1 [1, 2,4, 6,8, 10] 1 2 4 8
min_samples_split | 2 (2,5, 8, 10, 12] 2 2 10 8
n_estimators 100 [100, 200, 500, 200 1000 1000 500
800, 1000, 1200,
1500]
Threshold 0.5 0-1 0.601776 | 0.507906 0.568302 | 0.568302
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Ranges and optimum values of parameters and threshold for XGBoost as meta model (Guilty

Prediction)
Parameter/Threshold | Default | Range Optimum Value for each experiment
Al A2 A3 Ad
colsample_bylevel 1 [0.2, 0.3, 0.4, 0.4 1 0.6 0.6
0.5, 0.6, 0.8, 1]
colsample_bynode 1 [0.6, 0.8, 1] 1 1 0.6 1
colsample bytree 1 [0.6, 0.8, 1] 1 1 0.8 1
gamma 0 [0, 0.1, 1, 3] 0 0 5 1
learning rate 0.3 [0.01, 0.02, 0.01 0.07 0.05 0.07
0.03, 0.05,
0.07, 0.1]
max_depth 6 [1,2,3,5] 1 1 3 1
min_child_weight 1 (1, 4, 8] 1 1 1 q
n_estimators 100 [60, 80, 100, 100 500 100 500
200, 300, 500,
1000]
reg_alpha 0 [0, 0.2, 0.4] 0 0 0 0
reg_lambda 1 [0.6, 0.8, 1] 1 1 0.8 1
scale_pos_weight 3 (manually set for imbalance data)
subsample 1 [0.6, 0.8, 1] 1 1 0.6 1
Threshold 0.5 0-1 0.525549 | 0.581517 0.54389 0.562639
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Ranges and optimum values of parameters and threshold for Logistic Regression as meta model

(Guilty Prediction)

Parameter/Threshold | Default | Range Optimum Value for each experiment
Al A2 A3 Ad

C 1 [0.01, 0.1, 1, 1 0.01 1 0.01
10, 100]

class weight ‘balanced’ (manually set for imbalance data)

penalty ‘2’ [‘none’, ‘L1, v 1 ‘2’ ‘0’
‘127,
‘elasticnet’]

solver ‘lbfgs’ [‘newton-cg’, ‘lbfgs’ ‘saga’ ‘lbfgs’ ‘saga’
“lofes’,
‘liblinear’,
‘sag’, ‘saga’]

Threshold 0.5 0-1 0.572728 | 0.606267 | 0.528609 | 0.604695
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Ranges and optimum values of parameters and threshold for Multilayer Perceptron Neural

Network as meta model (Guilty Prediction)

Parameter Default Range Optimum Value for each experiment

/Threshold Al A2 A3 Ad

activation ‘relu’ [‘identity’, ‘relu’ ‘tanh’ ‘relu’ ‘logistic’
‘logistic’,
‘tanh’,

relu’]

alpha 0.0001 [0.00001, 0.0001 0.01 0.0001 0.00001
0.00005,
0.0001,
0.05]

hidden layer | (100,) [(10,30,10), (100,) (10,30,10) (50,100,50) | (40,)
_sizes (20,), (40,),
(40,40),
(40,40,40,),
(50,50,50),
(50,100,50,),
(60,), (80.),
(100,),
(100,100,10
0]

’ ’ bl

learning rate | ‘constant [‘constant’, | ‘constant’ | ‘constant ‘constant’ | ‘constant

‘invscaling’,

‘adaptive’]

random_stat 99

e

solver ‘adam’ [‘lbfgs’, ‘adam’ sgd’ ‘adam’ ‘adam’
sed’,

‘adam’]

Threshold 0.5 0-1 0.342049 0.32137 0.289899 0.335143
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Ranges and optimum values of parameters and threshold for Decision Tree as meta model

(Level of Force Prediction)

Parameter Default Range Optimum Value for each experiment
B1 B2 B3 B4
class weight ‘balanced’ (manually set for imbalance data)
criterion ‘gini’ [“gini’, ‘gini’ ‘gini’ ‘gini’ ‘entropy’
‘entropy’]
max_depth None 1,2, 35,810, | 2 2 2 3
15]
min_samples_leaf 1 [1, 2, 4] 1 1 1 1
min_samples_split 2 [2, 4,6, 8] 2 2 2 2

Ranges and optimum values of parameters and threshold for Random Forest as meta model

(Level of Force Prediction)

Parameter Default Range Optimum Value for each experiment
B1 B2 B3 Bd
bootstrap True [True,False] True True True True
class_weight ‘balanced_subsumple’ (manually set for imbalance data)
criterion ‘gini’ [‘gini’, fgini’ ‘gini’ ‘gini’ ‘gini’
‘entropy’]
max_depth None (1, 3,5, 8, 10, 15 15 15 15
15, 18, 20]
max_features ‘sqrt’ [‘auto’, ‘sqrt’, ‘auto’ ‘log2’ ‘log2’ ‘sqrt’
‘log2’]
min_samples_leaf 1 [1,2,4,6,8, 4 4 4 4
10]
min_samples_split 2 [2, 5, 8, 10, 12] 10 8 5 2
n_estimators 100 [100, 200, 500, 200 500 1500 500
800, 1000,
1200, 1500,
1800]
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Ranges and optimum values of parameters and threshold for XGBoost as meta model (Level of

Force Prediction)

Parameter Default | Range Optimum Value for each experiment
B1 B2 B3 B4

colsample_bylevel 1 [0.4,0.5,0.6,0.8,1] | 0.8 0.8 0.8 0.5

colsample_bynode 1 [0.4,0.5,0.6,08,1] |1 1 0.5 0.4

colsample_bytree 1 [0.2, 0.3, 0.4, 0.5, 0.5 0.5 0.4 0.5
0.6, 0.8, 1]

gamma 0 [0,0.1,0.5,1,15,3, | 1 1 1 1
571

learning rate 0.3 [0.03, 0.05, 0.07, 0.05 0.05 0.1 0.1
0.1, 0.2, 0.3]

max_depth 6 [1, 5,8, 10, 12, 15, 15 15 10 10
18]

min_child weight 1 (1, 4, 8] 1 il 1 1

n_estimators 100 [100, 200, 300, 500, | 500 500 300 300
800, 1000]

num_class 3 (manually set from number of class in dataset)

objective multi : softmax (manually set for multi-class classification)

reg_alpha 0 [0, 0.2, 0.4] 0 0 0.2 0

reg_lambda 1 [0.6, 0.8, 1] 0.8 0.8 0.8 1

subsample 1 [0.6, 0.8, 1] 0.8 0.8 1 0.8
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Ranges and optimum values of parameters and threshold for Logistic Regression as meta model

(Level of Force Prediction)

Parameter Default Range Optimum Value for each experiment
B1 B2 B3 B4
C 1 [0.01,0.1, 1,10, | 1 0.01 10 0.01
100]
class weight ‘balanced’ (manually set for imbalance data)
penalty ‘2’ [‘none’, ‘L1, 2’ ‘1’ 2’ 1
‘127,
‘elasticnet’]
solver ‘lbfgs’ [‘newton-cg’, ‘liblinear’ | ‘liblinear’ | ‘liblinear’ | ‘liblinear’
‘lbfes’,

‘liblinear’, ‘sag’,

‘saga’]
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Ranges and optimum values of parameters and threshold for Multilayer Perceptron Neural

Network as meta model (Level of Force Prediction)

Parameter

Default

Range

Optimum Value for each experiment

Bl

B2

B3

B4

activation

‘relu’

[‘identity’,
‘logistic’,

‘tanh’, relu’]

‘relu’

‘tanh’

‘tanh’

‘relu’

alpha

0.0001

[0.00001,
0.00005,
0.0001, 0.05]

0.0001

0.0001

0.0001

0.0001

hidden layer

_sizes

(100,)

[(10,30,10),
(20,), (40,),
(40,40),
(40,40,40,),
(50,50,50),
(50,100,50,),
(60,), (80.),
(100,),
(100,100,100)
]

(100,)

(50,50,50)

(100,200,1
00)

(100,)

learning rate

3’

‘constant

[‘constant’,
‘invscaling’,

‘adaptive’]

‘constant’

)

‘constant

)

‘constant

’

‘constant

random_stat

e

99

solver

‘adam’

[ Ibfgs’,
‘Sgd”

‘adam’]

‘adam’

‘Sgd’

‘adam’

‘adam’
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Guilty Prediction (Super Learner Experiment A5-A6)

Ranges and optimum values of parameters and threshold for XGBoost as meta model in

additional experiments (Guilty Prediction)

Parameter/Threshold | Default | Range Optimum Value for each

experiment

A5 A6

colsample_bylevel 1 [0.6, 0.8, 1] 0.6 1
colsample_bynode 1 [0.6, 0.8, 1] 0.6 1
colsample bytree 1 [0.6, 0.8, 1] 0.6 1
gamma 0 [0,0.1,1, 3, 5,7, 10] 0 7
learning_rate 0.3 [0.01, 0.02, 0.03, 0.05, 0.07, 0.1, 0.3] | 0.05 0.02
max_depth 6 (1,2, 3,57, 10] 7 3
min_child weight 1 (1, 4, 8] 1 1
n_estimators 100 [60, 80, 100, 200, 300, 500] 100 300
reg_alpha 0 [0,0.2,0.4, 1, 3] 0.2 0
reg lambda 1 [0, 0.6, 0.8, 1, 3] 0.8 1
scale_pos_weight 3 (manually set for imbalance data)
subsample 1 [0.4, 0.5, 0.6, 0.8, 1] 1 0.5
Threshold 0.5 0-1 0.581434 0.522632

Ranges and optimum values of parameters and threshold for Logistic Regression as meta model

in additional experiments (Guilty Prediction)

Parameter/Threshold | Default | Range Optimum Value for
each experiment
A5 A6

C 1 [0.01, 0.1, 1, 10, 100] 1 0.01

class_weight ‘balanced’ (manually set for imbalance data)

penalty ‘2’ [‘none’, ‘117, ‘127, ‘elasticnet’] ‘127 ‘27

solver “lbfgs’ [‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’, | ‘lbfgs’ ‘liblinear’

‘saga’]
Threshold 0.5 0-1 0.639204 | 0.570276
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Ranges and optimum values of parameters and threshold for Multilayer Perceptron Neural

Network as meta model in additional experiments (Guilty Prediction)

Parameter Default Range Optimum Value for each
/Threshold experiment
A5 A6

activation ‘relu’ [‘identity’, ‘logistic’, ‘tanh’, relu’] | ‘logistic’ ‘relu’
alpha 0.0001 [0.0001, 0.001, 0.01, 0.05] 0.0001 0.0001
hidden_layer sizes | (100,) [(30,30,30), (50,), (50,50), (80,) (50,50,50)

(50,50,50), (50,100,50,), (60,), (80.),

(80,80), (80,80,80), (100,),

(100,100,100)]
learning rate ‘constant” | [‘constant’, ‘invscaling’, ‘constant’ ‘constant’

‘adaptive’]
random_state 99
solver ‘adam’ [‘lbfes’, ‘sed’, ‘adam’] ‘adam’ ‘adam’
Threshold 0.5 0-1 0.351285 0.240983

Level of Force Prediction (Super Learner Experiment A5-A6)

Ranges and optimum values of parameters and threshold for Random Forest as meta model in

additional experiments (Level of Force Prediction)

Parameter Default Range Optimum Value for

each experiment

B5 B6
bootstrap True [True,False] True True
class_weight ‘balanced_subsumple’ (manually set for imbalance data)
criterion ‘gini’ [‘gini’, ‘entropy’] ‘entropy’ ‘gini’
max_depth None [5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20] | 15 14
max_features ‘sqrt’ [‘auto’, ‘sgrt’, ‘log2’] ‘auto’ ‘auto’
min_samples_leaf | 1 [1,2,3,4,5,6,8] 3 4
min_samples_split | 2 [2,3,4,5,6, 10] 5 5
n_estimators 100 [100, 200, 300, 400, 500, 600, 700, 800, | 700 600
900]
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Ranges and optimum values of parameters and threshold for XGBoost as meta model in

additional experiments (Level of Force Prediction)

Parameter Default | Range Optimum Value for
each experiment
B5 B6
colsample bylevel |1 [0.4, 0.5, 0.6, 0.8, 1] 0.6 .0.6
colsample _bynode | 1 [0.6, 0.8, 1] 1 1
colsample bytree 1 [0.4, 0.5, 0.6, 0.8, 1] 0.6 1
gamma 0 [0,0.5,1, 1.5, 2,3, 5, 7, 10] 1 3
learning rate 0.3 [0.05, 0.07, 0.1, 0.3] 0.07 0.01
max_depth 6 [1,5,6,7,8, 10, 15] 10 8
min_child weight 1 [1, 4,8, 10, 20] 1 1
n_estimators 100 [100, 200, 300, 500, 800] 300 500
num_class 3 (manually set from number of class in dataset)
objective multi : softmax (manually set for multi-class classification)
reg alpha 0 [0, 0.2, 04, 0.5, 1, 5, 10] 1 0
reg_lambda 1 [0.5, 0.6, 1, 1.5, 3, 5, 10] 1 1
subsample 1 [0.6, 0.8, 1] 0.8 0.8

Ranges and optimum values of parameters and threshold for Logistic Regression as meta model

in additional experiments (Level of Force Prediction)

Parameter Default Range Optimum Value for
each experiment
B5 B6

C 1 [0.01, 0.1, 1, 10, 100] 0.1 0.01

class_weight ‘balanced’ (manually set for imbalance data)

penalty ‘127 [‘none’, ‘117, ‘12°, ‘elasticnet’] ‘1’ ‘27

solver ‘lbfgs’ [‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘liblinear’ | ‘newton-

‘sag’, ‘saga’] cg’
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