= aa Q‘ o L% v 1 a 1 o dl % a 1 v
‘I/li]‘lﬂz;]UVlaﬁJmLaﬁl\l?%ﬂ/la’]‘iﬁiUNai'DiJ“UENM'JLL“LJ'ﬁ?LfLI LLamwnmmmuLﬁwL‘Uuaaﬁmaﬂu

%mﬁwuﬁ‘ﬁﬂuﬁawﬁwmmiﬁﬂmmwé’ﬂqmﬂ%zy@ﬁwmmam‘mmﬁmsﬁm
AN91VIAUAANEAT NPTV IAINAIANILAZINYINIIADUNINDS
AN INIANENT TN ING R
Un1sfine 2564

fuansvesnmaINIalumInedy



LOCAL LIMIT THEOREMS FOR SUMS OF INDEPENDENT INTEGER-VALUED LATTICE
RANDOM VARIABLES

Mr. Punyapat Kammoo

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in Mathematics
Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Academic Year 2021
Copyright of Chulalongkorn University



Thesis Title LOCAL LIMIT THEOREMS FOR SUMS OF
INDEPENDENT INTEGER-VALUED LATTICE

RANDOM VARIABLES

By Mr. Punyapat Kammoo
Field of Study Mathematics
Thesis Advisor Professor Kritsana Neammanee, Ph.D.

Assistant Professor Kittipong Laipaporn, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in

Partial Fulfillment of the Requirements for the Master’s Degree.

......................... Dean of the Faculty of Science

(Professor Polkit Sangvanich, Ph.D.)
THESIS COMMITTEE

......................... Chairman

(Associate Professor Songkiat Sumetkijakan, Ph.D.)

......................... Thesis Advisor

(Professor Kritsana Neammanee, Ph.D.)

......................... Co-Advisor
(Assistant Professor Kittipong Laipaporn, Ph.D.)

......................... Examiner

......................... External Examiner

(Assistant Professor Dawud Thongtha, Ph.D.)



q o

Unyeyiiond Amy - wqwﬁwﬁﬁmLawwﬁﬁm%wanmaqﬁaLLUiz{uLLamﬁ%ﬂ'ﬁm’suLﬁu
ﬁLJuﬁaizm'aﬁu (LOCAL LIMIT THEOREM FOR SUMS OF INDEPENDENT INTEGER-
LATTICE RANDOM VARIABLES)

0. iUSnu e dnusudn : fes. nquae e uae

2. 7USAYAINYTNUSTIN : KeLAS. Neaned Ianinsal, 61 witi.

W X1, Xo,..., X, Lijué]’al,l,ﬂﬁe{uLLamﬁ%ﬁﬂuﬁmw'aﬁu warld S, = S X
mmu’wzLﬁuﬁugmﬁmau%ﬁammu’w%L‘Juﬁqmimw{fa ffudie P(S, = k) laoi
k € ImS, wqwﬁwﬁﬁmLawwﬁﬁamwﬁwﬁ%ﬁﬂﬁulﬁuasmé? Fauszana P(S, =
k) feviariduanumnuiuresaruhasduaesimiswanuasnd lud 2021 A5Uszan
$niluag iouuddliinguiun & daenig i dviunasauves fauus du uanfie i e T
nseluud ianudandsn dufe EIXi2i< oo dwiunn j = 1,2,....n Ty
Lim%fwj‘amaé’wésummﬂLmﬁm%'mm’iﬁﬂwawasmé Feauudls E|X;]* < o0
dmiunn j = 1,2,....nlaeft of € (0;1] sinnlunintiusldenpsindaaueouLn

AUARIALARDUTI L ANUTUTDULAYNINHNAANT NOUNLNYL IWALAVDILSIABDIT NS NINTU

ANWLLANY
DVAIVY oo AVDUDVDTAN & oo
ANUIIVUY 2 oo, ALY D.AUSAYINAN ¢ oo

UNISENYY oo, ANUYD DAUSTAYITI ¢ oo



## 6370174023 : MAJOR MATHEMATICS
KEYWORDS : LOCAL LIMIT THEOREM / NORMAL DENSITY FUNCTION / LATTICE RAN-
DOM VARIABLE / RATE OF CONVERGENCE / CHARACTERISTIC FUNCTION
PUNYAPAT KAMMOO : LOCAL LIMIT THEOREMS FOR SUMS OF INDEPENDENT
INTEGER-VALUED LATTICE RANDOM VARIABLES.
ADVISOR :  PROF. KRITSANA NEAMMANEE, Ph.D. and
CO-ADVISOR :  ASST. PROF. KITTIPONG LAIPAPORN, Ph.D., 61 pp.

Let X4, Xy, ..., X, be independent lattice random variables and let S, =
Z;;l X;. One interesting fundamental probability is the probability at a particular
point, i.e., P(S, = k) where k & T §,. The local limit theorem is the well-known
theorem which estimates P(S,, = k) by the probability density function of a normal
distribution. In 2021, Siripraparat'and Neammanee gave the local limit theorems for
sums of integer-valued lattice random variables in the case of finite third moment,
e, E|X;]* < oo forall j =1,2,....m 1In this work, we improve their results for
generality of this sums which assumes E|X;{*T* < oo forall j = 1,2,...,n where
a € (0,1]. Moreover, we obtain-expticit constants-of the error bound which are less

complicated than the previous result. Qur technique is the characteristic function

method.
Department : ...Mathematics and..... Student’s Signature @ ...
..Computer Science...  Advisor’s Signature : .......cccceeeeene.
Field of Study : .....Mathematics...... Co-Advisor’s Signature : .....ccccevvenee.

Academic Year : ............ 2021



Vi

ACKNOWLEDGEMENTS

| would first like to thank my thesis advisor, Professor Dr. Kritsana Neammanee,
for his invaluable advance and constant encouragement throughout the course of
this thesis. His insightful feedback pushed me to sharpen my thinking and brought
my work to a higher level. | would not have achieved this far and this thesis would
not have been completed without all the support that | have always received from
him. Besides my advisor, | would also like to-thank my co-advisor, Assistant
Professor Dr. Kittipong Laipaporn, for his vatuable guidance throughout my thesis
process. He additionally provided me with the tools that | needed to choose the
right direction and successfully complete my thesis. Sincere thanks are also ex-
tended to Associate Professor’Dr. Songkiat Sumetkijakan, the chairman, Dr. Raywat
Tanadkithirun and Assistant Professor Dr. Dawud Thongtha, the committee mem-
bers, for their comments and suggestions.

Special thanks go to the Development and Promction of Science and Technol-
ogy Talents Project (DPST) for financial supports.

Additionally, | would like to thank my family, my friends and those whose names
are not mentions here but have greatly inspired and encouraged me throughout

the period of this research.



CONTENTS

page
ABSTRACT IN THAL e e e v
ABSTRACT IN ENGLISH . . . e %
ACKNOWLEDGEMENTS . . . . Vi
CONTENTS . Vil
CHAPTER
I INTRODUCTION . oo e e e e e e e e e e e 1
II' LOCAL LIMIT THEOREMS FOR LATTICE RANDOM VARIABLES WITHOUT ASSUM-
ING FINITE THIRD MOMENT o o e e e 12
I LOCAL LIMIT THEOREMS FOR LATTICE RANDOM VARIABLES WITH ASSUMING
FINITE THIRD MOMENT . . . . o o e e e e e e 35
VI LOCAL LIMIT THEOREMS FOR GENERAL WEIGHTED SUMS OF BERNOULLI RAN-
DOM VARIABLES . . . o o e a6
APPENDIX ........... ... SSEaEsey). .. . 56
REFERENCES . . . . . . . s s TSNS T TPy - o oo oo e e 59



CHAPTER |

INTRODUCTION
Let X1, Xy, ..., X, beindependent integer-valued random variables with means
p; and variances o7 for j = 1,2,...,n. Then, let

Sn:in, ,u:i,uj and 0222032-.
Jj=1 J=1

j=1

One interesting fundamental probability is the probability at a particular point, i.e.,

for some k € Z. The local limit theorem describes how P(S,, = k) approaches
the normal density #ﬁe*%. There are two well-known techniques for deriving
this theorem: the characteristic function method and the Bernoulli part extraction
method. The characteristic function method is to estimate the characteristic func-
tion of a random variable. This method has been used in a number of studies such
as ([1]1, [2], [3], [4] and [5]) in the case of bounded random variables and ([5],[6], [7],
[8] and [9] ) in the case of lattice random variables. The extraction method of the
Bernoulli part of a random variable is to extract an integer-valued random variable
into sums of independent Bernoulli random variables. It was developed by Mc-
Donald ([10], 1979), for proving local limit theorems based on the assumption that
the central limit theorem holds. However, twenty years before McDonald, there
was a similar approach in research of Kolmogorov ([11]). In 2009, this idea was also
developed for general random variables by Aizenmann, Germinet, Klein and Warzel
([12)).

If P(X; =1) =p;, =1— P(X; = 0), then X is called a Bernoulli random



variable with parameter p; and S, is said to be a Poisson binomial random vari-
able. In addition, when p; = py = --- = p, = p, we call S,, a binomial random
variable with parameter n and p and use the notation S,, ~ B(n,p). The first local
limit theorem was proved by De Moivre and Laplace ([13], 1754) for a binomial
random variable. We call X a lattice random variable with parameter (a,d), if
the values of X belong to L(a,d) = {a +md : m € Z} where a and d > 0 are
integers. In addition, d is said to be maximal, if there are no other integer numbers
a’ and d' > d for which P(X € L(d',d')) = 1; we call X a maximal lattice random
variable with parameter (a,d), if X is a lattice random variable with parameter
(a,d) and d is maximal. Observe that the Bernoulli random variable is a maximal
lattice random variable with parameter (0, 1). In 1948, Gnedenko [14] generalized
the local limit theorem of De Moivre and Laplace to identically distributed maximal

lattice random variables having finite expectation and variance and showed that

d A (na+kd—27zu1)2
sup | P(S, = na A+ kd) = e g — 0
keZ ( ) a1V 2nm
as n — oco. We denote
d. (na+kd—pu)2
ALY = sup WP (Sp= na + kd)— e 22
DI .

In 1971, Ibragimov and Linnik ([17]) improved the result of Gnedenko by giving the
1

rate of convergence O (—) where 0 < a < % Their result is given by the following
/n/Oé

theorem.

Theorem 1.1. ([17], Theorem 4.5.3, p.138) Let X1, X, . .., X,, be independent iden-
tically distributed lattice random variables with parameter (a,d) which have zero
expectation and finite variance. Let F' denote the distribution function of Xi. In
order that the property

1 1
Alad — O(—), for0<a< =, (1.1)
ne 2

holds, it is necessary and sufficient that the following conditions are satisfied:



(i) d is maximal,

(i) [ 2*F(dz) =O0(=) as u — oc.
a2

A few years later, Petrov ([18], 1975) proved that if E|X;]*> < oo, then (1.1) holds
with o = 1. Moreover, for the case that X;’s are non-identically distributed lattice

random variables with parameter (0, 1), Petrov gave the following theorem.

Theorem 1.2. ([18], Theorem 6, p.197) Let X;, Xs, ..., X,, be independent lattice

random variables with parameter (0, 1) satisfying the following condlitions,
(i) 02 = 00 asn — oo,
(i) - EIX; — pyl* = O(c?),
j=1

(i) P(X; =0)> P(X; =m)forall'j=1,2,...,nand m € Z,

(iv) gcd{m : loén i P(X; = 0)P(X;=m)—>ocoasn— oo} =1L
=1

Then,

A0 O
n ——

The previous studies had not given explicit constants of the error bound until the
twenty-first century. Giuliano and Weber ([15], 2017) cave the rate of convergence
O(%) with explicit constants of the error bound in the case of non-identically
distributed common lattice random variables with parameter (a,d). Denote for a

lattice random variable X; with parameter (a, d),

6j:ZP(Xj:a+md)/\P(Xj:a+(m+1)d),

meZ

where a A b = min(a,b). If 6; > 0, forall j =1,2,...,n, then they showed that

X; 2V + 5L,



where (V},¢;), Lj, for j = 1,2,...,n are mutually independent; ¢;, L;, for j =
1,2,...,n,areindependent Bernoullirandom variables with P(e; = 1) = 1-P(¢; =
0) =9;,0<9; <d;and P(L; =0) = P(L; = 1) =  (see [20], [21], [22] for more
details). From these assumptions, Giuliano and Weber ([15]) illustrated the following

theorem.

Theorem 1.3. ([15], Corollary 1.8, p.3274) Let X;, Xs,..., X, be independent

lattice random variables with parameter (a,d) such that E|X;|> < oo, for all

n n

ji=12...,n Let W, =YV, B, =Y ¢ and S, =W, + 4B,. Suppose that
j=1 =1
10%?” < 1—14 where ©,, = Zl Y;. Then, for allkye Z such that
J:
(na + kY = B8)* (O \*
o ~ \14log®,, ) ’
we have
1
loe®,\? H,+06!
Aled < Old - °
N Oy e |
where
8
C, = 27 max —,Cp 7,
1 {\/27T O}
1 2 22—n)? C
Cy is the constant such that ' sup P(B(n, =)= z) r \/—e_( = | < =
2€{1,2...,n} 2 ™ n2
S — E(S!
H, =sup P(”—(”) < x) — ®(z)| and ®(z) is the standard normal distri-
zeR Var(Sq’l)
bution.

Three years later, Siripraparat and Neammanee ([9], 2021) had given the result
for non-identically distributed random variables taking values in a common lat-
tice L(a, d) as d is maximal. In case of assuming finite third moment, they gave the

1
rate of convergence O (—2> with the explicit bound in the following theorem.
o

Theorem 1.4. ([9], Theorem 1.3, p. 4) Let X1, X5, ..., X,, be independent maximal



lattice random variables with parameter (a,d) such that E|X;]* < oo, for all

7=1,2,...,n. Then,

. -~ 2.2 .2
Alwd) < 1.7898d ZE\X]- Py 075(#*;'

"o ot ‘= T3
where
B=> 8, B;=2 Y PX;=a+dm)P(X;=a+d(m+1))and
7j=1 m=—o0
1
T = T
n 3
10( Z El defa |3)
j=1

Notice that this result is less complicated than before and, thus, easier to use. Fur-
thermore, in the case of S,, being’Poisson binomial, they cave the smaller constant

of the error bound according to the following statement,

I etz
sup |P(S, =k)— e7 202
ke{0,1,...,n} oV 2
0.1194 0.0749 0.2107 0.4579 L 0.4725 oio
T o2(1- )P o3 TR — =B Vo o\/o '
(1.2)

Note that (1.2) improved the result of Zolotukhin et al. ([23], 2018) which gave the

bound where S,, ~ B(n,p) as follows:

—np)2
sup P(Sn = k)— L 6_2(:10(11317) < mln{ 1 ’ 0.516 }
FEO L) 2np(l — p)m 2enp(l —p) np(l—p)

From the past until today, there are many works which investigate the local limit
theorem for a generality of Bernoulli sums (see [9], [14], [15] and [16] for examples)
including sums of lattice random variables explained above. The generalization of
a binomial random variable is a Poisson binomial random variable which can be
generalized to be the weighted sums of Bernoulli random variables. These sums

are defined by §n = a1 X1 +as Xo+- - -+a, X, where X;’s are independent Bernoulli



random variables and a;’s are any integers. On the other hand, the weighted sums
of Bernoulli random variables are sums of random variables X;’s satisfying P(X; =
aj) =1— P(X; = 0) > 0 for some integers a;. Giuliano and Weber ([21], 2016)
gave the local limit theorem for these sums and showed applications such as a
probabilistic model for the Dickman function, a diophantine equation and Freiman-
Pitman’s probabilistic model of the partition function (see more details in [21]).

Their result is given in the following statement.

Theorem 1.5. [21] Let X4, X, ..., X,, be independent Bernoulli random variables

with parameters py, pa, . .., pn, respectively. Let ay,as, ..., a, € N be such that
a; # a; (1.3)
foranyi,j =1,2,...,nsuch that i # j and
Sp = di Xy FaaXopd - - + a, X,

with mean u and variance o Then,

sup | P(S), =) — e—220 < —
keZ oV 2w S s

for some unknown constant C.

In this work, we investigate local limit theorems for sums of independent lattice
integer-valued random variables without or with finite third moment assumption
and also give explicit constants of the error bound. Our technique is the charac-
teristic function method. First, we give the local limit theorems for sums of lattice
random variable with or without finite third moment condition in Chapter 2. The

followings are our main results.

Theorem 1.6. Let X1, X5, ..., X, be independent lattice random variables with

parameter (a,d) such that E|X;|*t® < oo for j = 1,2,...,n, where 0 < a < 1,



and let S, = 7", X; with mean p and variance o*. Let B := 3 f3; where
j=1
/Bj =2 Z DjmPj(m+1) and Pjm = P(XJ =a+ md) /fO'2 > d? and 5 > (), then
2+a)(1+a) a’—o 3—a
0.0020d =2~ 4.6171(32)d" = 2
AgLa,d) S - I-‘rToz + ( 0_4) <ZE|X a|2+a)
(£ 1%, - ape)
j=1
0.3184d* _o22 15708 -2
T ¢t
where T = d

2+«
1
3% z E|X;—a|2+o

Furthermore, if Xl, X, ..., X, areidentically distributed and (8, > 0, then

Nfailrigy 1
n - nHTa
where
o 0 002045 N 2 (B X — o)
(BIX1 — af*+) % ay
| 06368 33 d(EIX, — a7 ) 7t= | 155032 33 (E|X — af>t®)74e
of d* B '
Theorem 1.7. Let X, X5, ..., X,, be independent lattice random variables with

parameter (a,d) such that E|X;|**™ < oo for j = 1,2,...,n, where 0 < a < 1,

2

and let S, = 377, X; with mean p and variance o Let v := min v; where

1<j<n
;=2 Y PimPji(mty)- Ifo? > d*and v; > 0 forall j =1,2,...,n, then

m=—00

(2+a)(1+0<) 1 a?—a+2 n 3—a
0.0020d

. 4.6171(3%)d" D7
A; ,d) < HT& + ( 04) (ZE’X] . (Z’2+ )
( S EIX; - a|2+a) =1

J—

0.3184d?% _-2-2 nv . nr\ 2
+ ———€ 2> +exp| ——min (1, | —
o2T 4 27




d

241»04 ’
1 n
33 ( S E|Xj_a|2+a)

i=1

where T =

Furthermore, if X1, X, ..., X, are identically distributed and v; > 0 for all j =

24«

33 _gl2teyzta | 1t
1,2,...,n, then forn > (2”3Q(EIX1d a|2+e) ’

nv

n 2
where
0.0020d %5 46171 .35 d T2 (B| X, — af?t*) 5"
0 = (E|X1 i a|2+04)1+Ta + 0‘%
| 06368 - 33 d(BIX; = a|tro)ze
s :
01

Moreover, we consider in the case that the third moment of every X is finite.
From Theorem 1.6 and Theoren 1.7, we directly obtain Corollary 1.8 and Corollary

1.9, respectively.

Corollary 1.8. Let X, X, ..., X, be independent lattice random variables with
parameter (a,d) such that E{X;f*<sc-and#=> 0 and let S, = Y7, X; with
mean p and variance o? >{d?. Then,

e 242 —+ e =
o’k k3

13.8513d 0.0020d° 0.3184d> _o22  1.5708 s
AL < 22N RIX —af 4 — + G -=F

g

J

j=1 E|Xj — a|3
=1

where k = d

n i-
3( ZIE'|Xjfa\3) s
=
Furthermore, if X1, Xs, ..., X, are identically distributed and (3, > 0, then

Alad) < &3
" T on

where

0.0020d°  31.0449dE5(X, —af® | 418.5864E(X, — af?

Cs =
PTEX —aP ot B3




Corollary 1.9. Let X3, Xs, ..., X,, be independent lattice random variables with
parameter (a,d) such that E|X;|* < co and v; > 0 forall j = 1,2,...,n and let

Sn = Y_7_4 Xj with mean . and variance * > d*. Then,

n 3 2 2 2
Aot ¢ BB o 000N OSISIE g
n 0_4 J n 0'211
j=1 E|X; —al?
j=1
) 2
+ 67%} min (1,(%) )
where k = d

ol

S(jileLXjfa\?’)

Furthermore, le, Xo, ..., X, are identically distributed and v; > 0 for all j =

3

6r(ElXT=aP)}
1,2,...,n, then for n > (—;“-—) y

A(aﬂd) < g _i_e-%
2 NS

where

0.0020d°  31.0449dE|X; — al?

C, =
! Ein—a|3+ o}

In Chapter 3, we improve the constants in Corollary 1.8 and Corollary 1.9 to obtain

the following results.

Theorem 1.10. Let X3, X, ..., X, be independent lattice random variables with
parameter (a,d) such that E|X;|> < oo and 8 > 0 and let S, = Y7 | X; with

mean p and variance o* > d*. Then,

0.6607d ~— 0.3184d? _o2x2 1.5708 _«?
< ZE[Xj—a]?W——e_WjL T

Alad)
02K k3

n —

ot 4
Jj=1

d

3(ji:lE|X]-—a\3)

where k =

ol
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Furthermore, if X1, Xs, ..., X, are identically distributed and (3, > 0, then

Alad) < %
" T on

where

_ 178543dE|X, —af* | 4185858 )X, — af?

s P P

Theorem 1.11. Let X3, X, ..., X, be independent lattice random variables with
parameter (a,d) such that E|X;|* < oo and v; > 0 forall j = 1,2,...,n and let
Sn = Y74 Xj with mean p and variance a>> d?. Then,
n 2 2,2 : nek 2
Aled < 0-6607d Z E\ X A4 + —*——0'31f84d e 242 4 e 4 min (n(%))
n — 0_4 J

. 02K
J=1

d

3(ji1E|Xjfa\3)

Furthermore, Q?Xl, Xo, ..., X, are identically distributed and v; > 0 for all j =
3

where k =

ol

1,2,...,n, then forn > (W—X{(fﬁ‘)z,

C nv
Al Gy

where

17.8543dE| X, — af?
Cs = : .

01

Finally, we consider the local limit theorem for the general weighted sums of
Bernoulli random variables when all weights are mutually distinct positive in Chap-

ter 4. We generalize the condition (1.3) to

|jm_jl| 7é |kr_ks| (14)

for any jn, # ji in Im X, k, # ks in Im X}, and j # k and investigate the error of



11

the local limit theorem for these independent sums. The following theorems are

our results.

Theorem 1.12. Let X1, Xs,...,X,, be independent integer-valued random vari-
ables such that E|X;|*T™® < oo, where 0 < a < 1, forall j = 1,2,...,n and let

Sn = Y74 X;j with mean p and variance o > d°. If the condition (1.4) holds, then

1 _ (k=mw)?
e 202

sup [P(S, =k) —

kez o\ 2T

3—«a

0.0020 4.6171(3%) [ L)
= (X Exee)
j=1

- n 0'4
(z E|Xj|2+a)
j=1
0.3184 +2-2 8
e 2

5 25

0Ty n
where 7, = —1 A
3w (3 BIx )
=
Theorem 1.13. Let X1, Xs, .../, X, be independent integer-valued random vari-

ables such that F|X;> < oo forall j = 1,2,...,n and let S, = Y7, X; with

mean i and variance o* > d?. If the condition (1.4) holds, then

1 (o=m)2 0.6607 0.3184 22 8
sup |P(S, = k) — AL R E EIX:|?+ e T 4 —.
et ( ) o\ 2T ol = Xl 027y n

where 1, = 1

ol

3(§flE|Xj|3)



CHAPTER 1l
Local Limit Theorems for Lattice Random Variables

without Assuming Finite Third Moment

Let X be any integer-valued random variable. Then, X is called a lattice random
variable with parameter (a,d) where a and d > 0 are integers, if its values belong
to L(a,d) = {a+md | m € Z}. In addition, d is said to be maximal, if there are no
other numbers «’ and d’ > d such that P(X € L(d’,d’)) = 1, we call X a maximal
lattice random variable with parameter (a,d), if X is a lattice random variable
with parameter (a, d) and d'is maximal. In this chapter, we relax the third moment
condition to find the local limit theorems for sums of independent integer-valued
lattice random variables and also give explicit constants of the error bound.
Throughout this chapter, let X, X5. ..., X, be independent integer-valued lat-
tice random variables with parameter (a;d), mean p; and variance o2 such that

J
E|X;|*"* < oo, where 0 <\ar < 1, foralltj = 1,2, /n and let

Sn:in, ,u:iuj, and O'QZiO']Z.
j=1 j=1 j=1

We use the ideas of Siripraparat and Neammanee [9], Giuliano and Weber [21] and
Sunklodas [24] to obtain Theorem 2.1 and Theorem 2.2. These theorems are the
local limit theorems in which the limit function is estimated by normal density

function. We denote

d  _(natkd—p)?
e 202

A@D — qup | P(S,, = na + kd) —
" keIZ? ( ) oV 21
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The following theorems and corollaries are our main results of this chapter. Let
Bi=)_5
j=1

where ﬁj =2 Z PimPj(m+1) and Pim = P(Xj =a+ md)

m=—0oQ

Theorem 2.1. If 0% > d? and 3 > 0, then

3—a

@Cta)(1ta) 3—a

(2ta)(te) 1, ;02-a+2 n -
Aled) < 0.0020d n 4.6171(3«)d (Z E]Xj _ a]2+a)
j=1

n — 1+ 4
2

n g
(3 615,
=1

J

0.3184d% 2.2 1.5708 (25
4+ T e 2% + e 7%
o’r 7

d

35 (3 BIX; —aPr) 70
j=1
Furthermore, if X1, Xo, ..., X, /are identically distributed such that o* > d* and
[ > 0, then

where T =

A=t
T, A
where
oo 0002005 AGITI(E)d T (B — )
C(BIX o) g

0.6368(3%)d(E|X; — a|>*) 7% 15.5032(3%)(E| X, — a|***)7+=
+ ; + o .

g

Note that 5; = 0 if and only if P(X; = a + md)P(X; = a+ md + d) = 0 for all
m € Z. So, if B; = 0, then we can find d’ > d such that P(X; € L(a,d)) =1
which implies that d is not maximal. Hence, we can apply Theorem 2.1 when d is
maximal.

Let

U= min v
1<j<n
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where V= 2 Z pjmpj(m-l—j)-

m=—0Q0

Theorem 2.2. If 6® > d* and v; > 0 forall j = 1,2,...,n, then

2+a)(1+a) 3—a

0.0020d 5 L.6171(3%)d" 5 [ & N
A(a,d) < e + ( ) <ZE|X a|2+ )

n n 0'4
(ZM&—WM)
j=1

0.3184d% _o2.2 n . nt\’
+ ———€ 222 4+exp| ——min (1, [ —
o’r 4 2T

d
n PNIATRN

35 (3 BIX; — o) 7
i=1

Furthermore, if X1, Xo, ..., X, are-identically distributed such that o* > d? and

=1

where T =

L a % Tfa
v; >0forall j=1,2,...,n, then for'n > (QTF(“’)‘I)(E|)<(11al2+ )T ) }

nlopy L | -
i ==}
where
0.0020d 2 613 d 5 (E| X1 — af2t®) %"
2 = Tt 4
(E1X: - a|2+°‘) i o
| 0.6368(38)d(E|Xy < a19) 7
ot ’

We directly obtain Corollary 2.3 and Corollary 2.4 from Theorem 2.1 and Theo-

rem 2.2 in the case of o = 1, respectively.

Corollary 2.3. If o > d? > 0 and E|X;|* < o forall j =1,2,...,n, then

0.0020d> 13.8513d — 0.3184d? _-2x2
+ ZE\X]- —al+ ———e 2"
L o o2k
3> LY, - aff =
i=1
1.5708 _«2s
e 2

KB "

A(avd) S

n
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d
3<jzn:1E|Xj—a]3>é.

Furthermore, if X1, Xo, ..., X, are identically distributed such that o* > d? and

where k =

£ > 0, then

Alad) < ©3
" T on

where

0.0020d*  31.04494F]X, —af*  418.5864F]X, — af?

Co —
PTEX —aP P B2

Corollary 2.4. If 0* > d? v; >0 and E|X;|*> <ocoforall j =1,2,...,n, then

0.0020d3 13/8513d 0.3184d% 2.2
Agla’d) S n + d ZE|XJ —CL|3—|—W6_W
Y E|X; —al =1
j=1
+ 6_%} min (1,(%) )
d
where k =

=
3

3( S E|X; — a]3)
j=1

Furthermore, if X1, Xo, ..., X, are identically distributed such that o* > d? and

[N

1
v; >0forall j =1,2,...,n, then for n > (M) ,

Aled) < G +e T
n

where

0.0020d3  31.0449dE|X; — af?

Cy =
! E|X1—a|3+ ot

We organize this chapter as follows. First, we give auxiliary results in Section
2.1. These results will be used to prove the main theorems in Section 2.2. Some

examples will be given in Section 2.3.
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2.1 Auxiliary results

Let ¢ x be the characteristic function of a random variable X. The characteristic
function is important in probability theory and statistics, especially in local limit
theorem. In the study of local limit theorems, it is required to estimate bounds for
modulus |1 x| of a characteristic function ¥x. The various bounds for |¢x| play a

key role in the investigation of the rate of convergence in the local limit theorem.

Lemma 2.5. [9] Let X be any integer-valued random variable. Then, fort € [0, ),
[x(t)f L7

where Bx =2 3" P(X = m)P(X = m 1),

In the following lemmas, we use an idea from ([24]) to give bounds of a charac-

teristic function.

Lemma 2.6. Let X be any integer-valued random variable with mean px and

«

variance o%. If E|X|*T < oo for some 0 <& < 1, then, for all |t| < (W) ,

(i) [¥x(t)] = 3 and

t
(1) there exists a function gx such that ¢ x(t) = exp {th— %a§t2+g if(((?) ds}

t
and Of }i’;((?ﬂ ds'< 9B| X |2Hajg|2re;

Proof. (i) Using the fact that for z € R, € = 1 + 2!7%|z|*© for some complex
number © such that |©] < 1 ([24], p.359), we get that

Ee™ = B(1+ 02" tX|*) = 1+ 2 E(0,|X|*)[t| (2.1)

where O is a complex random variable such that |©;] < 1. From this fact and the

inequality |z1 + 2| > |21] — |22| for complex numbers z; and z», we can see that

|EeitX| = }1 + 21_0‘E(@1|X|a)|t|a‘
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> 1 -2 E(|]|X|*) ¢
> 1217 B X[t~ (2.2)

> 1 - 2B|X]°|t[°.

1 .
Then, for all [t] < (s5%w) "> we have [¥x(t)] = [Ee"| > §.

(i1) Let t € R be such that [t| < (55%=) " Since

Yx(t) = B = Y~ " P(X =m),
we obtain
Yi(t) = Y ime"™P(X = m)=iBE(Xe"X)
which implies that
/ o ¢X<t) d it X
Uxlt) = EeitX the
— ; 2 t g 2 t 1 d E itX t
= | (iux — oxt) —lipx —oxt)+ -5 | - Be Ux(t)

_ ((iux —LtE ﬁ%)iﬁx(ﬂ

where
gx(t) = —(ipx — o'g(t)EeitX + iE(Xe”X)_
Hence,
=1 —oxt+
Dx(t) T @)
and then
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which implies that

Vx(t) = exp {th — —aXt2 / (5) } (2.3)

0

From the fact that for z € R, € = 1+ iz + 2— 2 — |z[*T*© for some complex number

© such that |0 < 1 ([24], p.359), we have that

11—«

. 2
Ee™X =1+ itEX +
1+«

E(Oy| X |1 |t e (2.4)

11—«

and  iB(Xe™) =iux — tEXA E(iO] X [*T)[t|* T (2.5)
where ©, is a complex random variable such that {©,] < 1. From (2.1) and (2.4),

we obtain that

oxt(Ee™™) = g%t + 2% %% E(0,| X |*)|t]' (2.6)

l-«

1+«

and  —iux(Ee™) = “ijx + it~ px E(iOy| XMt (2.7)

Adding (2.5) - (2.7) and theé fact that o% = EX?* — p%, we have

gx(t) = —iux Be™ + o%tEe™ +iB(Xe"X)

21 a
=110y px B(10a X[ TF) [H'T2 + 217X B(01] X |%) [t

-«

+2
1+«

B0, X 7 [t (2.8)

According to the Lyapunov’s inequality: (E|X|")r < (E|X|*)s where 0 < r < s,
we have that E|X| < (E|X|***)== and E|X|*® < (E|X[>*®)2a which imply
that

E|X|E|X|'" < BIX|*T.

We can use the same technique to show that

oxE|X|* < EX?E|X|* < BE|X|*™.
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From these facts and (2.8), we have

l—«

2 N (04 (03 — (64 (03
lgx ()] < T o EIXIE (O] [ X7 + 270k B (041Xl

21704
+ 14+«
21 «

~EIX|B(IX])| 7 4 270X B X Je ™

l—a

E([i@||X[*F )]

<

EX2+a tl-i—a
o BXP)l

21—a
E X2+a tl—l—a 21—aE X2+a tl-‘ra
2 p(x P+ 2 BX P

11—«

<

4 E(‘X’2+a)|tll+a

14+«
22—a
— (21a + )Elxl2+a‘t'l+a (29)

14+«
< 6E|X|Prot i (2.10)

where we use the fact that 2¢7%/4-2—— is decreasing on (0, 1] in the Last inequality.

Hence, we can conclude from (i) and (2.10) that for all |¢] < ( , we have

3E|X\a)

gx (1) 2+ajp 1 ¥
T/)X(t)‘ < 18ELX|>aly)

which implies that
t
0/

Lemma 2.7. Let X4, X, ..., X, be independent integer-valued random variables

and W,, = 3" X; with E(W,,) = w,, Var(W,,) = o2 and the characteristic function
7=1

18
ds < _E|X|2+a|t|2+a < 9E|X|2+a|t|2+a. D
24+«

9x(8)
Yx(s)

. Assume that E|X;|*** < oo forall j =1,2,...,n, where 0 < a < 1, and

e
let 1o = & (é) . Then,

1 n
33 \ 3 B[
j=1

< 12. 5606ZE\X 2| 2re ezt

7j=1

‘wu(t) - elt#w h U”
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for all |t] < 7.

Proof. From Lyapunov’s inequality, we have
(BIXi|")* < (BIX[H)ms

which implies that

()" = () = ()
< <
iE|Xj|2+a N E|Xl|2+a - E|Xl|a

Jj=1

foralll =1,2,...,n. This provides that

(it =)
32451 Z E|X |2+a N 3E’Xl‘a

Jj=

foralll=1,2,...,n. From this fact and Lemma 2.6, we have that for all |¢| < 7,

Y, (t).= exp {w“»t T Z G,( } (2.11)

t
where G;(t) = %_((s)) ds and |G;(t)] < 9E|X |2t |t e,
0

From (2.11) and the inequality |e* — 1| </|z|el?! for a complex number z, we get
that for all |t| < 7,

I t——a 24 Gj(t .
. w w Zl ( ) . 6ZHWt_%UI21't2

u(t) = et =

. 1
b t— 50‘2]452 —

ei=1

R0 ’
= le -1

< Gj(t)|e

=1

’ —70“t2+} Z G, t)}

n

a‘,t2+z G;(
<2 _[Gi)e o
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n 1 n
<OS B P xexp { = Jatt 93 B Pl
j=1

J=1

L 1 9
< 9D B P e x exp{ ~ 5Ot g }

7j=1 2 37
< 9zn:E|X‘|2+a|t|2+°‘ X expi — 10‘2t2 + 9
I ’ 27" 33
< 12.5606 ZE\Xj,2+a‘t,2+aef%agtz. -
j=1
Lemma 2.8. Let X1, Xs,..., X, be independent integer-valued random variables

and W,, = Y X with the characteristic function ,. Then, for |t| < mand n > 2,
=1

2
o))

where v, = min v; and v; =2/ Y P(X; = m)P(X; = m + j).

1<j<n X
Proof. Let v; be the characteristic function of X;. Siripraparat and Neammanee
([9], p.6) showed that

t

o)) < - ST Y PR —m P0G Dsin® (- )5 ).

m=—o0 [=—o0
From this fact and the fact that
n . 2
t t
E sin? (‘7—) > Emin (1, (n_) )
= 2 4 2w

for [t| < mand n > 2 ([25], p.399), we have

o0

sf[exp<‘2 > P(X;=m)P(X; = m+j)sin’ (%»

7=1 m=—0o0



2.2  Proof of main results

2.2.1 Proof of Theorem 2.1

22

Proof. First, we will prove the theorem in“the case of @ = 0 and d = 1. Let

Y1,Ys, ..., Y, be independent integer-valued random variables and let

with E(W,,) = p,, Var(W,) =02 > 1 and the characteristic function 1),.. Suppose

that 8, .= > 5, > 0 where 5, = 2
=1

J

j=1,2,...,nand let 7y = L<1
Deu Y2

o2 > 1, we have that

1 1 e
o= "=\ <
3o 21E|yj|2+a
]:

3=
3o
=

1

S
=Since

J

> Bl
j=1

S OPLY, = m)P(Y, = m + 1) > 0 for all

m=—00

ZlEIYjI2+O‘ 2 ZlE(Yj)2 >
= j:

From this fact and the fact that P(W,, = k) = &= [ e~ (t) dt ([26], p.511), we

have

1 _ (k—py)?

2(7“2 ’

_(k—p)?
2

20
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= L‘ / e_iktqﬁw(t) dt — / eit(“w—k)—%aﬁt? dt‘
27
|t|<T0 |t|<7-0
+ i‘ / eit(,uw—k)—%gth g4 \/ﬁe_w‘
2 -
[t|<To
—|—i‘ / efiktwy(t) dt‘
27T w
To<[t|[<m
R (2.12)

where

Am g [eBugy =] cbioie
™

|t|<7’0 |t|<T0
1 77/ CQ AN /o _k=p)?
B = — A NP deo e
m g,
[t|<To
1 —ikt
and C:= — e b(t) dt.
27_[_ W
To<[t|<m

From Lemma 2.7, we have

1 , ,
Al = 5 / Jo= ! () =e™am 27 d
™

)t|<T0
]_ 3 1. 242
- Y . t o zt,uw—go,rt dt
7.0 osithme e
|t‘<7’0
70
12.5606
< ZE|}9|2+“/|t|2+ae—5"3t2 dt.
[ J
24a
We let 7 = 7,2 . Thus, 75 < 7y since 1y < 1. This implies that

k) 70

70
/Itlzme‘%”?ﬁ dt = /t”"e—%”?ﬂ dt + /t““e—%”?tz dt.
0

0 70
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a2 [e]3
From the fact that 3“2 is decreasing on (0, 1], we have that

70 70

/t2+a f—o”t dt < /t2+o¢ dt

0 0
(2+0)(3+a)
To
3+«
1

IN

3+a

2
3 2+7o¢+6 ( Z E’Y‘2+a>

Jj=

0.0005

3ta

(z Eww)

j=1

(24a)(l1—a)

To bound ft”% 297 dt, weisé Ahe facts that 3~ = — = T

70

is decreasing on (0, 1] to obtain that

70

70
3 b5
R
70

T0

1

———2fo)(=w)
2

IA

(2+a)2(1—a)
7o

24a)(l—a " T2 2
= (o) (2
i1 w
1.1548(3=)

Hence,

12.5606 1,22 1,22
Al < EY;|*t / ez dt / e dt
4] < IS gy ([ et dy [

j=1 0 7
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3—a

0.0020 4.6171(3 o) T
< ( - m t o (ZE|Y| ) . (2.13)
5 pm e

i=1

By the fact that

/ eit(,uw—k)—fath dt = /eit(,uw—k)—%cr,?tQ dt — / e it(pw—k)— U”t2 dt

[t|<7o [t|>70
1 zt(,u —k) ﬁ 1 it(pa—k) 2
= — dt — — e o z dt
g, g,
R |t|ZUu'7'O
\ 27 M 1 it(pw—k) 2
= [ 20 v —— e oy 2 dt’
O-W O’l‘['
|ﬂ20'n7—0
we have
_ Gz )2
B = i e’ it (fy _k)_*o'utz dt — 1 e 202
27 o 2T
‘t|<7‘0
1 (k) ) 42
- e ot
210,
|t|20'w7—0
and hence,
1 2
Bl< -~ T dt
2no,
WZUHTO
[o@)
1 42
— e 2 dt
oy,
awT0
[oe)
1 2
< — te” = dt
TOFTo
OwT0
0 3184 wQT(%
T, (2.14)

2
0wTo
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By Lemma 2.5, we have

1 —i
|C|:‘§ / ekt (t) dt

To<[t|<m

1
e O

To<|t|<m

1 s
= — L()] dt
= ATt
70
y
s

70

[ e gy
T
TO,

IN

IN

[e.e]

IA

Tg/fw

7 /L Tr2ei i n2
/ 7o QBW

1.5708 - ag8x
< e

< =l (2.15)
7—06%'
From (2.12) - (2.15), we have
1 gy (o = )?
(W, = k) - ——
o,V 2T
0.0020 L A6ITI(3 N
<— . (ZE!Y\2+)
(S empe)
=
0. 3184 —o2:3  1.5708 _ 35
4 e (2.16)
O-U To TO/BW
In general, let Xy, X, ..., X, be independent lattice random variables with param-

eter (a,d). Forj=1,2,...,n,letY; = J =% and W, =Y, + Yo +---+Y,. Observe

that ¥1,Y5,...,Y, are independent integer-valued random variables and

o =" 00 =, P(Y; =m)=P(X; =a+dm), (2.17)



27

E|X; — a|**t d
’iin’, To=T= —. (218

1 n 24«
33 ( S E|X; — a|2+a>

=1

B =

From (2.16) - (2.18), we have

P(W, =k Lty
n — . e 20”2 ‘
‘ ( ) o,V 2T
3—a
) (Lta 4.6171(3%)d" “( 3 EX~—a2+a>
) 0upng et (38)d 2 (L BX —a
- n HTQ + 0'4
(£ 1, - ape)
j=1
0.3184d* _-2-2  1.5708 %
—e 242 + e w2
o2T 75
From this fact and the fact that
d (o ¥k =)> 1 <k*“§’>

2

20

P(S, =na+ kd) —

e
oV 2T

we have the conclusion of the theorem:.

Furthermore, if X1, Xs, .. 1.X;, are identical, then

p=nu, o=0o\/n, ZE|Xj —al*™™ =nE|X, — al*™ and B = np

j=1
which imply that
d _ (na+kd—2nu1)2
sup |P(S,, = na + kd) — ———e¢ noy
keIZ) ( ) o1V 2nm
0.00204 =5 46171(35)d 52 (B|X, — af2te) 5
" (EIX - ) T otn’¥
0.3184 d(E|X; — al*t®)z+a —o2pFia
J OSSN, —apyE (o 2
oinie 2(3a)(E| Xy — afte) e

— 2t+a 2+« - 2 %
| L5708(32 5)(E|X, - a***)7w ox ( &Pzt ) (2.19)

dﬁlnéii 3%7T2(E|X1 — a|2+a)2%a
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Since 12125 = 2(221‘;) + 2(;‘:&) > e and e < 1 for a real number z > 0, we obtain
that
0.3184(3)d(E| X, — af**)ts _onss
o €xXp
aQnéia 2(3%)(E|X1 _ a|2+a>2%a
_ 0.3184(30)d(E| X, — a2tz (2(33)(E|X, — al?+) e
g%néig U%TL?J%&
0 6368 E|X, —al*t® Tia
( ) (4 |1+(11 a" ) (220)
oin=2
and
1.5708(3%)(E|X; —al2te)=a . —d?Byn7re
14+a X
dBin7+a 3aq2(E|X, — a|2te)za
_ L5T08(3%)(E|X7 ~ a#yas (33a2(E|X, — af?t)74e
B dﬁméii d25177/2+%
15.5032 E\ X, ~ AV
< (32)(E) % iy (2.21)
d*Bin
From (2.19) - (2.21), we have
d il (na+kd—;u1)2 C
sup |P(S,, = na+kd) — e ey < 1;
keZ o1V 2nm nz
where
O 0.0020d T 4 6171(38)d  FE (B|X, — )5
L (BIX) - are) of
0.6368 d(E|X{ — a|*T®)z+a 15.5032 Bl X, — al?>T®)7+a
L DEISAIELY, —oP ) | 500G — P
ot d? B3

2.2.2 Proof of Theorem 2.2

Proof. By the same reason of Theorem 2.1, it suffices to prove the theorem in

casea = 0and d = 1. Let 1,Y5,...,Y, be independent integer-valued random
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variables with the characteristic functions 1, and let
Wo=Y1+Yo 4+ +Y,

with E(W,,) = p,, Var(W,) = o2 > 1 and the characteristic function 1,.. Suppose
thatv, =2 Y P, =m)P(Y;=m+j)>0forall j =1,2...,n. From (2.12)

m=—00

- (2.14), we have

P(W, =k) —

e 20

1 _ (k*HEV)Z ’

o\ 2T

3—a

0.0020 46171(3%) [ AN
4 (X Emee)
j=1

S 14«
( EIY; |2+a>
7j=1

o ol
0.3184 o7
e7 7/ /HC). (2.22)

037'0

where C' = £ [ e ™, (t)/dt. By Lemma 2.8 and the fact that min(1,z) <
To<|t|<m
min(1,y) if z <y, we obtain that

IA IA
[ = [ =
@ (@]
¥ g
o) o)
VR VR
| |
ERCE
E. =
= =
VRN VRN
\.)—‘ \.)—‘
VRN VRN
s
5"3 Y2
N—— R,
[\
N——
N——
~__ N—
o <
~

T 4
2
< exp ( - nZW min (1, (?) > (2.23)
T



where v, 1= mm vy,. From (2.22) and (2.23),
<j<n
1 7(’€—H§/)2
‘P(Wn — k) — e % ’
o\ 2T
0.0020 4.6171(3 Z R

7—’_ 0-4
(zmmwﬂ '
=1

Hence, we can use this fact and (2.17) -

Furthermore, if X7, Xs, ...,

N7 0.3184
(ZEW) » 222

(2.18) to obtain the conclusion.

then
i X <na+§d~2nu1>2
:Zlellz) P(S,, =na+ kd)— me A
0.0020d "> LBITL(3E)d" T2 (B X, — of?0)%5°
C(BX - al““)Tn% oin’%®
| 03184(3 2)d(E|X, + af>t9)7a —o2nta
ot FEE = <2<3i><ﬁw)(1—-aw+a>2ix>

1+
n2tod

e ( - ™ (1’ (27r(3é)(E|Xj Z a|2+a)2ia)2>>'

24a

1 - 1a 1+a
From (2.20) and n > < (3 a)(E|X; afT) e ) , we obtain that

_ (natkd—npp)? C’Q o
sup |P(S,, = na + kd) — e 2oy ’ < — te 1
keZ 2nm ns
where
C0.0020d % 46171(38)d 2 (B|X, — o)’
2<mx—ﬂwfﬂ of
| 0.6368(3 DA(E| X, — a|*t*)za

ot

X, are‘identical and v; > O forall j = 1,2,...,n

?
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)
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2.3 Examples

In the following examples, we apply Theorem 2.1 and Theorem 2.2 with integer-
valued lattice random variables without finite third moment but the (2+a)-moment

exists for some « € (0,1).

Example 2.9. For j =1,2,...,n, let

9 28
P(X;=0)=P(X;=2) = 20 and P(X; = 2F) = 52 for integer k > 2

and assume that Xy, X, ..., X,, are independent. Note that Xy, Xs,..., X, are

maximal lattice random variables with parameter (0,2) and forall j = 1,2,...,n,

9  2Br1///41
CRETRE PP s v

d
9 28 1 41520 2459
2 2:
7 g_l— Mﬂ( )

g 5 £=9F 1 \30 900
k=2
387
Bj = 2[P(X; = 0)P(X; = 2} £ (X, = 2)P(X; = 4)] = -
18 28 —
E’Xj|3:€+321:oo
K2

k=
9 28 1

_ 924af 7 - _

=2 (20> + ( 5 > <22(1—0‘) — 21—‘)‘)

Let
1800  _ (eok—a1m)?

2k e 24590
kez 2459nm




By Theorem 2.1, we have

A A a A o
n 2 n2+a n2+a

where A;’s are constants which depend on a and are given by

a2 —a+2

32

L0 0020(2 ) . 4.6171(3%)(2 V(B X, [2) 3"
1 @ Y
<E|X1|2+a) =N o}
0.6368(3= ) (E|X; ]2+")2+a
A2 2 )
g1
_ ot
2(35)(BIX 2z
0.7854 (3= ) (E|X; ]2+a)2+a
Ay = )
P
4
and A = —; 2 —
(3)m2(BIX) 2 o) ze
These are some examples of A;’s.
o Al A2 A3 A4 A5
0.1 | 815329.3725 | 307070472+ 7.8702-10=-1231905.0017 | 1.1294 - 10~
0.2 | 3830.6039 131[7570~1.4.2748 - 10~° 917.8183 6.1349 - 1077
0.3 | 709.0199 22.0903 1.5207 - 1074 153.8809 2.1824-107°
0.4 | 3329755 9.2986 8.5826 - 10+ 64.7743 1.2317-107*
0.5| 2305188 5.6875 2.2941-107° 39.6191 3.2924 - 1074
0.6 | 198.0421 4.2260 4.1553 1073 29.4383 5.9634 - 1074
0.7 | 199.3648 3.5533 5.8776 - 107° 24.7522 8.4351-107*
0.8 | 237.4348 3.3064 6.7879-107° 23.0327 9.4716 - 10~*
0.9 | 384.3726 3.5196 5.9908 - 10~° 24.5172 8.5976 - 10~*

Observe that Theorem 2.2 cannot be applied to Example 2.9, since

m=—0o0
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Example 2.10. Let X1, Xs, ..., X,, be independent random variables defined by

7 1 1
PX.=0)=~-— ——  _ P(X.=27)==and P(X,; = (27)F) = (24) %k
forinteger k > 2. We see that X1, Xs, ..., X,, are common lattice random variables

with parameter (0, 2) and

g, 1
Hi= g T 64 — 452
2
2 _J 1 .
%77 &Y 442 24 Hi
2j)2+a 1
E|X ‘2+a -, ( .]) -+ : 7
8 (25)2=2> — (25)1~
and E|X;P =774 1=
=2

These imply that

w

Q
AV
4>|§

n X 22+a 21+2a 54
n EJX, 12 < @,
6 z:: i —( 8 +48(21a—1))”

Moreover, we have that v; =2 > P(X; = 2m)P(X,; = 2m + 2j) and then

m=—0oQ

U] = i(% — m> + i(%) < wj forall j > 2. Hence,

o min o= LT 1 LIy 30
Tigizn 74 (2)6 —(2)3) 4\26) 1792

2 _2k—w)?
e 202

0¢]

Let

A2 — qup | P(S,, = 2k) —
" keIZ) ( ) o\ 2T

By Theorem 2.2, we have

APP < T 4 22

+ B;exp ( — Bwﬁ) + exp ( — B5n2%x)

2+3
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where B;’s are constants which depend on « and are given by

By = 0.0020(2 75 (67%),
1 a?—a+2 92+a Q1 +2a 377&
B, = 10706.8184(3<)(2
2 (3=)2 >( 8 +48(21—a—1)) ’
) 22+a 21+2a +a
By = 30.5664(3%
’ ( )< 3 +48(21—a—1)> |
1
B4 = 2
2 24a 142a 24
06(3) (5% + iy
and Bs = X

2 24 142 m
4m2(3a) (2 —r 48(31—0‘1)>

Observe that Example 2.10 cannot be applied by Theorem 2.1, since 3; = 0 for
j>2 O



CHAPTER 1ll
Local Limit Theorems for Lattice Random Variables with Finite

Third Moment

In chapter 2, we obtain the local limit theorems for sums of independent integer-
valued lattice random variables without assuming finite third moment. However,
we directly obtain the results in case of finite third moment which are Corollary 2.3
and Corollary 2.4. The main results of this chapter is the improvement of constants
in Corollary 2.3 and Corollary 2.4
Throughout this chapter, let X, X5, ..., X, be independent integer-valued lat-
2

tice random variables with”parameter (a,d), mean p; and variance 0§ such that
E|X;]? <o forall j =1,2,...,nand let
Sn:ZXj u:Zuj, and 0'2220']2-.
j=1 =1

Recall that

d _ (na+kd2—u)2

(& 20
oV 2

ALY — gup
keZ

B=>5;
j=1

and v = min v;
1<j<n

P(S, =mna+ kd)

)

are defined in Chapter 2 where

B;=2 ) Dimbitmt),

m=—0oQ

v; =2 Z PimDPj(m+j)>

m=—0oQ
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and  pjm = P(X; = a+md).

The following statements are our main results.
Theorem 3.1. If 0% > d? and 3 > 0, then

. d — 3184d?% 22 1.5708 _ 2
06657 ZE;Xj—aPJr—O e 2 e

Aled) <
- 02K kG

n

o
Jj=1

where k = ——4 T
3( ZlE|Xj—a,‘3)3
F=
Furthermore, if X1, Xo, ..., X, are identically distributed such that o* > d? and

£ > 0, then

where

o LTSMBAE X — ol 18158581, — aff
T o &5
Theorem 3.2. If 0? > d* and.w; > 0 for all j = 1,2,.".,n, then

. 0.6607d - 0.3184d% Lo _no i (1.(2e)’
Aled) < T ;E|Xj —a|3+—02ﬁ e 22 e 4 (1))
d .
3( 3 BIX;—a?)®
Jj=1

Furthermore, if X1, X,,..., X, are identically distributed such that o* > d* and

3

where k =

1 2
v; >0forall j =1,2,...,n, then forn > <M) )

Al < G -
n
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where

17.8543dE| X, — af?
Cs = : .

04

This chapter is organized as follows. First, we give the auxiliary result in Section
3.1 which will be used to prove the main theorems in Section 3.2. Finally, we give

some examples in Section 3.3.

3.1  Auxiliary Result

Let ¢1,19, ..., %, and 1 be the characteristic functions of X, Xs,..., X, and S,

respectively. In Lemma 2.7, we gave the bound of 7 as follows:

<12.5606 Y BIXPltPem2

j=1

for all |t| < ko and kg = ——+—" In the following lemma, we improve the
3( 3 pe)”
1=

constant of this result.
Lemma 3.3.

242

< 10378 BIX[P[tfe2

’ww—%wkw
j=1

for all |t| < k.

Proof. From (2.2), (2.3) and (2.9), we know that for0 < a < land j =1,2,...,n,
|Be™ ] > 1 = 2! B|X;|°[¢|”

and there exists a function g; such that

Y;(t) = exp {wjt — —o?t? +/ gj'<8) ds} (3.1)
0



1
1 «@
for |t| < (W) and

2—a

a2
rgj<t>rg(zl L

So, we have

| Ee™] > 11— E|X]Jt|

and

|g;(8)] < 28117t

From these facts, we obtain that forall [t| <

3E|X;[”
it X ; 2
/() 8| 3
and then
t ( ) L
g;\s 3012 31413
ds<3/EX,- 512 ds = B X|°|t]°.
145 X, Plsf ds = BIX Pl
0 0
From Lyapunov’s inequality, we have that forall [ =1,2,... n,

BIXi| SU(E|XiP)s

and then we can show that

(=) = () <0
n_ < v 13 < :
E\Xj]3 E‘Xl| E‘Xl’
=1

=

J

From this fact, (3.1), (3.2) and the inequality |e* — 1| < |z|el?! for a complex number

>E|X’2+a‘t’1+a.
14+«

38
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z, we have that for ¢t < kg,

2 S

. 2t2

, L 5
ep{ }—exp{zut—§at}‘
= exp{iut—%aQtQ} ds}—l‘
NEFNO 95, () H
d
<2 / o) 0,5

n 1 n
< SO BIXPIP x xp) 7 5o + 30 ELX Pl
j=1

'wt) —efmmaet

[|os(s)

exp {
j=1

X exp { 02752

j=1

< iE|X»|3|t|3 X exp = 102152 + 1

= 2 27

< 10378 VB X PltPe 7. ]
7=1

3.2 Proof of Main Results

3.2.1 Proof of Theorem 3.1

Proof. Let Y1, Y5, ..., Y, beindependent integer-valued random variables and let
Wo=Y1+Ys+---4+Y,

with E(W,,) = p.,, Var(W,) = 02 > 1 and 9, be the characteristic function of W,,.
Suppose that 8, =2 > P, =m)P(Y;=m+1)>0forall j =1,2,...,n

m=—00

From (2.12) and (2.14) - (2.15), we have

1 (ku)Q
e ‘<A+B+C (3.3)

where

A < o / W}u o 'Lt/,L 7—0, t2| dt

|t|<f€0



0.3184 —o?xp
ez

B <

Uuzfio
1.5708 _rgsw
< 2

™

S €
Ro 6 w ’
1

3(3 BIXP)

C

Ry = )

W=

and (3, = zn:/b’yj.
j=1

By Lemma 3.3, we obtain that

Ko
1.0378 & :
A S § :E|Y}ld/|t|36—§a?t2 dt
J=1 0

Vs
L0378 <- NS
< ” ;E|Yj| (5—4)
0.6607 «—
<57 RLEmP
W ]:1

From (3.3) and (3.4), these provide that

e 20\?

T _Gep)®
‘P(Wn = k) |

O N 2T

<

e e =
2
Oy Ro HO/BW

0.6607 w— 0.3184 -o22 - 1.5708 _r3s.
T DB 14 :
=1

O-H'

LetY; = X]'d_a and W, = Y1+ Yy +---4+Y,. Observe that Y7, Y5, ..

independent integer-valued random variables and

40

(3.4)

(3.5

., Y, are
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From (3.6) and (3.7), we have

1 lemew)?

e 20'“,
oV 2T

d _ (mz+k:dfu)2
e 202

P(S, =na+ kd) —

oV 21

and then we have the conclusion of the theorem by applying this fact with (3.5).

Furthermore, if X1, X, ..., X, are identical, then

j=1
which imply that
d =9 (na+kd—nu1)2
sup | P(S,, = na + kd) — e gy l
keg ( ) oV 2nmw
0.6607dE| X1 — al*.~ 0.9552d(E| X, — af*)s —o?ns
< 1 + 3 exp p
on ain’ 18(E| X1 —al?)s
4.T124(E| X, — af*)s L d?Bin3
N (£ L al’)s bl Pins . (3.8)
dﬁlnE 97T2(E’X1 o a\3)§

Since e™* < % for a real numberz > 0, we obtain that

0.9552d( B X, —al®)3 “o2ns
exXp )
18( 3

o2ns ElXi —al?)
_ 0:9552d(E|X —aP)} (18(E|X, — af)}
- J%ng a%n%
17.1936dE| X, — a|?
_ 1% — (3.9)
om
and
AT124(E|X) — af?)5 ~d?pin’
exp
B’ Im2(E|X, — af3)5
_ ATIA(EX, —af)s (97%(B|X, — af)}
N dﬁmg d261n%
418. E|X, —al?
_ 4185858, — df . (3.10)

- d?2n
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From (3.8) - (3.10), we have

d _ (na+kd72nu1)2 05
sup |P(S,, = na + kd) — e g < —
kGIZ) ( ) o1V 2nm n
where
17.8543dE| X, —al> 418.5858F| X, — al?
0 0 ! B, —al! .
of d3 B3

3.2.2 Proof of Theorem 3.2

Proof. By the same trace of Theorem 3.1, we can only provide to the case of
integer-valued random variables. Let Yi; Y. ..., Y, be independent integer-valued

random variables with the characteristic functions #,. and let
Wi =M+ Yo -+ ¥

with E(W,,) = p.,, Var(W,,) = o > 1-and v, be the characteristic function of W,,.
Suppose that v, =2 Y P(Y; =m)P(¥Y; =m+j) >0foral j =1,2...,n.

m=—00

From (2.12), (2.14) and (2.23)-we-have

1 _ Gemp)?
e 2 |<A+B+C

where

1 . 1 2,2
A< — L (t) — et 3ot g,
<5r [ - emeie

|t|<l'io
02,2
B< ().31846 : 0’
02Ky
2
C < e 1 min (1(270) )’
1
Ro = n 10
3(2 EIXP)®
j=1
and v, = min v,.

1<j<n
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From this fact and (3.4), we have

1 _%
‘P (Wn=k) — e
O-H' 27T
: i 3184 o2 now i (1, (750 )
<2 EWP 003258 e (002)) . @)
w =1 w0

Hence, we can conclude from (3.6), (3.7) and (3.11) that

1 _ (emi)?
‘P<Wn == k) - [ 20
Un' 27T
0.6607d o 031842 22w (1 (ne)
< o ;E|Xj—a| g W e (1(2)).

Furthermore, if X1, Xs,..., X, are identical and v; > 0 forall 7 =1,2,...,n, then

e 277,(7%

P(S, =na+ kd)—

sup

d _(na—‘»kd—nul)z
keZ ‘

o 2nm
0.6607dE|X; — a*  0.9552d(E] Xy & af*)3 —o2n3
< + Xp 8

ofn ains E|X) —al?)3

+exp | — — min {1, — .
1 Gre{ FIX ) — aff)

1
From this fact and (3.9), we obtain that for n > (M) ,

d _ (natkd_nu)? Cs Y
sup | P(S,, = na + kd) — e noy ‘S——FB_T
keIZ) ( ) o1V 22nm n
where
17.8543dE| X, — al?
Cs = X~ []

01
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3.3 Examples

The following examples are to apply Theorem 3.1 and Theorem 3.2 and show
that the error bounds are smaller than those in Corollary 2.3 and Corollary 2.4,

respectively.

Example 3.4. Let X;’s be independent random variables defined by P(X; = 0) =
P(X; =3) = P(X; = 6) = +. We see that X,’s are lattice random variables with

common parameter (0, 3) and
1y =3, o; =6, BIX;|?=81and 8, =

Denote
3 _ 3(k—n)?

4an

A0S = qup | P(8) =3k) — e
" keIZ) ‘ ) 2y 3nm

Applying Theorem 3.1, we obtain’ that

4.4594 ff 2.06656_0‘017%% ! 15.2?216_0.002%%'

2
n 7,3 ns

A(0,3) S

n

Notice that this bound is smallerthan the bound from Corollary 2.3 which is given

by

o 934970 2,065 ooimad ., 15.229216_0,0024,1;

A03)

n
n ns3 ns

Example 3.5. Let X;’s be independent random variables defined by P(X; = 0) =
2and P(X; = 3j) = 3. We see that X;’s are lattice random variables with common

parameter (0, 3) and
ni =3, o5 = 2% E|IXPP = 95" and v; = ¢

which imply that

nn+1) 5 nnm+1)2n+1) 3 (n+1)
=g, 0 = 5 dZE|X| .
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Then,
on3 Int -
= < o® and - < ;E|Xj‘3 < 9n*. (3.12)
From (3.12) and Theorem 3.2, we have
A;o,za) < 40.1340 n 8-94116—0.0085n% I 6—0.004071%‘ (3.13)

n? ng
If we use Corollary 2.4, we have the bound as follows:

A0 o BHLA665  0.0241

n —

8.9411 _ yos5t —0.0040n3
- ) —e +e
n n n3

)

which is larger than the bound in (3.13). O



CHAPTER IV
Local Limit Theorems for General Weighted Sums of Bernoulli

Random Variables

Recall that De Moivre and Laplace [13] gave the first local limit theorem for Bino-
mial random variable which is sums of X;’s being Bernoulli random variables with
parameter p, i.e, P(X; =1) =1 —=P(X; =0)=pforall j =1,2,...,n. From the
past until today, there are many works which-investicate the local limit theorem for
a generality of Bernoulli sums sueh-as our results in Chapter 2 and Chapter 3 which
show the local limit theorem for sums of independent lattice random variables

taking values in {a + md : m €Z} for.integers a and d > 1 in the case that

Y P(X; = a+md)P(X;= a+ (m+1)d) >0 (@.1)
or

Y P(XJ= a+md)P(Xy;=a+{m+ j)d) > 0 4.2)
forall j = 1,2,...,n. The weighted sums of Bernoulli random variables are other

general forms of Bernoulli sums and they are defined by

Sn :a1X1 +a2X2+---—|—aan

where X;’s are Bernoulli random variables and a;’s are any integers. On the other
hand, the weighted sums of Bernoulli random variables are sums of random vari-
ables X;’s satisfying P(X; = a;) =1 — P(X; = 0) > 0 for some integers a;. Recall
that Giuliano and Weber [21] gave the error bound of the local limit theorem for the

weighted sums of Bernoulli random variables when all weights are distinct positive



ar

integer, i.e., S, = Y X; where each X satisfies P(X; = a;) =1—-P(X; =0) = p,
j=1

‘]7
for some positive integer a; and
a; 7& Q; (43)

forany ¢,5 =1,2,...,n such that i # j. The following inequality is their result:

1 _ (k=2 C
2 <

sup | P(S, = k) — e 7| < - (4.4)
keZ oV 2T S s
j=1
for some an unknown constant €.
In this chapter, let X, Xy, ..., X,, be independent integer-valued random vari-

ables with mean y; and variance 67 /such that E|X;|*"* < oo, where 0 < a < 1,

forall j =1,2,...,n and let

Sn=2_ %5 /) [TU=Q s« "= o]
j=1 =1

j=1

We generalize the condition (4.3) tothe foltowing condition
|.]m = jl‘ 7é |kr — ks| (45)

for any j,, # ji in Im X, k, # ks in Im X}, and j # k and give the local limit

theorem for this general weighted sums in the following theorems.

Theorem 4.1. If 02 > 1 and the condition (4.5) holds, then

1 N2
sup |P(S, = k) — e 27
keZ ovV2w
0.0020 L4 6171 N
< —_ (ZE!X )
(£ pxee)
j=1
0.3184 022 8
e 2 + —

027, n
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1

where 1, = —.
1 7 24a
3@ ( ZIE|X]-|2+O‘)
=

Theorem 4.2. If * > 1, the condlition (4.5) holds and E|X;|? < oo for all j =
1,2,...,n, then

1 _ (k=w)?
e 202

0 6607 0 3184 ﬁ 8

OTl

sup |P(S,, = k) —
keg ( ) o\ 2w

S

7=1

where 1, = %

3( 5 pxr)’

4.1 Auxiliary Result

We also use the characteristic function methods in order to prove Theorem 4.1
and Theorem 4.2. Bounding the characteristic function is the main concept for this
method. Giuliano and Weber [21] investigated S, which is a sum of independent
random variables X; defined by P(X; =a;) =1 — P(X,; = 0) = p;. They showed
that if the condition (4.3) holds, then

/|w Wdl < ————
Z%(l 20

for some constant C, where zZ is the characteristic function of S,,. In this work, we
use the idea of Giuliano and Weber in order to obtain our result in the case that

Xj’s are any integer-valued random variables.

Theorem 4.3. Let v be the characteristic function of S,. If the condition (4.5)

holds, then
/ W) at < >

Proof. Let Im X; = {j,, | m € Z} and P(X; = jm) = pjm. For c € (0, 1], let

E. = {t €0, : ‘z": f: ipjmpjl cos ((]m —jl)t)’ > cn}.

j=1 m=1 (=1



49

Since |1 (t)| < 1 for any real number ¢, we obtain that

L/W@M”=/Wﬁﬂ¢+ [ e

[0,7]\E.

< \E,) + / [v(t)] dt, (4.6)

[0,7]\E¢

where X is the Lebesgue measure on R. Since

n

(Gim = 302)]
j=1 m=1 =1
forall t € E,., we have that
ME,) = / )
Ec
) 2
< —Jt)| dA
E. = S0
" 2
< —j)t)| dt. (4.7)
e A

Note that

‘ Z Z ijmpjl cos ((jm — 7))

j=1 m=1 =1

2

n

— Z ) Z Zp]mp]l cos ((jm — Ji1)t)
j=1 m=1 =1

T Z ‘ Z Z Z ijmpjlpkrpks 08 ((Jm — J1)t) cos ((k, — k;s)t)‘

j#k m=1[=1 r=1 s=1

:

and

™

/ cos(at) cos(bt) dt = {

0

sin ((b+a)t)  sin((b—a)t)]"
2(b+a) - 2(b—a) L -



for any integer numbers a, b such that |a| # |b|. Then, we obtain

2

dt

/ ‘ i Z Zp]mpﬂ cos ((jm — Jo)t)

j=1 m=1 [=1

< Z/ ‘ Z ijmpﬂ cos ((jm — Ji)t)

m=1 [=1

<> [ 1S

jlomlll

:Z/ldt
i=17

2

dt

dt

From this fact and (4.7), we have

T
F) = .
A C)_czn

50

(4.8)

Let ¢1,vs, ..., 1, be the characteristic functions of X, Xs,..., X, respectively.

From the fact that

|¢] Zzp]mp]lsnl ( m_]l)%>

m=1 [=1

(191, p.6), we have that for ¢ € [0,7] ~ E.,
([ () =Y In(le; (1))
= —g + % i Zp]mp]z <COS - jzﬁ)

j=1m=11




So,

and then

()] dt < / U5

[0,7]\E. [0,7]\E.

(1—c)n

<e 2 \0,7]

_(1—c)n
= Te 2

From (4.6), (4.8) and (4.9), we get that

i % ~(d—0o)n
/lvj;(t)[ dy < C—Qh——l-ﬂe T .

From the fact that e™® < % for all positive real number x, we obtain that for ¢ =

/W |dt<— 47r_87r
n

n
4.2 Proof of Main Results
4.2.1 Proof of Theorem 4.1
Proof. From (2.12) - (2.14), we have that
1 (k—u
P(S,=k) — 22 | <A+B+C
( U\/%e + B+

where

A< o [ ) - e i

[t|<Ta

0.3184  +2-2
B < € 2 and
07Ty

1
=3,

[]

(4.10)



1 K
c< [ poa

and

3—a

002 46171 3 >
< 0.0020 (ZE|X |z+a)

= 1+«

n 2
(ZEmmw)
j=1

By Theorem 4.3, we have that

- (e

0

C= s
n

From (4.10) - (4.12), we obtain the theorem.

4.2.2 Proof of Theorem 4.2
Proof. From (4.10) and (4.12) in"the case of a = 1, we have that

1 —12 8
e( : <A+B+—
oV 2T

)P(sn S

where

2t2

1 Lo
A< o / [ (t) — 37| dt and
‘t|<7’1

0.3184 _-2f
< e "z .

From (3.4), we know that

A<

0.6607 —
4

j=1

From (4.13) and (4.14), we have the conclusion.

52

(4.11)

(4.12)

(4.13)

(4.14)
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4.3 Examples

We specify an unknown constant in (4.4) in Example 4.4.

Example 4.4. Let X1, X, ..., X, be Bernoulli random variables defined by

forall j = 1,2,...,n and let ay, ao, ..., a, be distinct positive integers. Then, we

define

Spn = a1 Xy + e Xo -+ an X,

with mean p and variance o2. So, we obtain that

n

= Zajpj, o? = Za?pj(l ~'p;) and ZE|anj|3 = Za?pj.
J=1 Jj=1

=1 j=1
Let
~ 1 (k—m)?
A,, = supfP(S,, = k) — e 202
k;eIZ) ( ) o\ 2T

By Theorem 4.2, we obtain that

1
0.6607 0.9552 [ — . 0.055502 8
A, < ol a?pj "z a1 (§ :a?pj> €xp <— ﬁ) + o

i)
j=1
Furthermore, in the case that X;’s are i.id,, i.e, p1 = ps = --- = p,, = p, we have
that
0.6607 Z a?
A =
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Example 4.5 is appropriate for Theorem 4.1. It cannot be applied by (4.4).

Example 4.5. Let X, X5, ..., X, be independent random variables defined by

1 1
4 1
__oj+1 _
P(Xj—2j —1)—mand
, 1
P(X; =22 - 1)) = —————

foreach j =1,2,...,n. Then,

E|IXGE=(1 6 252> 1%,
Wi = 2 and

0T =6(2)557

which imply that u = 2n, %= 12(2") = 7n ~ 12 and

Note that X1, Xs, ..., X, satisfy the condition (4.5) since 2(2% — 1) < 2=+ — 1 for

all natural number x. By Theorem 4.1, we have

0.0012 ~ 358.6023  4.4501 -ooz 8
- e +

A, < — + o — 25
2% 2% 0%

3 |

Note that 2% > z and 2% > 25 > 400z for all integer x > 125. These provide that

for n > 125,

0.0012  0.8966 0.0112 &  8.9090
< - +

n S —_ =

. O

n n n n n

Remark 4.6. (i) From Example 4.5, we have > E|X;|*> > 6(4") and ¢* <
=1
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12(2™). Then,
1 < 51
;ZE|Xj| > BYR
j=1

So, we should not apply Theorem 4.2 with Example 4.5, since A,, does not

converge to 0.

Observe that any random variables X; in Example 4.4 satisfy the follow-
ing equations: i P(X; = m)P(X; = m+1) = 0and i P(X; =
m)P(X; =m +mj:)_o; 0. This instance cannot be applied byn;:i‘heorems
in Chapter 2 and Chapter 3, since it does not satisfy the conditions (4.1) and

(4.2).



Appendices

Sunklodas and et al. ([24]) refer that the following equations are well-known ex-
pansions of the function €™ for any real number x without proof. So, we give the

proof of these expansions as follows.

1. For any real number z and « € (0, 1], there exists a complex number ©; which

|©1] < 1 such that
e’ =1+27°%z|*0;.

Proof. Recalling the Taylor’s expansion of the function e,

r

eix _

1 [(@Z')k} /] ((z’m)"‘)! /01(1 = w)e™ du, (A1)

=]
k=0
for r € N. Hence,

. 1 -
e’ =1+ w:'/ (I =u)e™ du
0
1 .
=1+ 2 g|* {z’?g_lm_ax/ (F'—u)e™ du}
0

= 1921% 291

where ©; = 297 1|z x fol(l — u)e™® du. We need to show that |0 < 1. If

|z| < 2, then

1
O] < 207 gt 1 —u)e™™| du
| 0

_ ('Z_')H /01(1 ) du

1
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If |z| > 2, then

|@1| — 2a—1|x|1—a

1
/ (1 —u)e™ du
0

(1 —cosz) + i(x —sinx)

_ Qa_1|£L‘|1_a -
T

= 20|71 /2 — 2cosx — 2z sinx + 22

< 20774 4 2]a] + 22
= 2" 2|77 (J2] + 2)
o
o 21—a‘x|a 'x|1+u

1 2¢

S 21—a2a == 21+a

—1. []

2. For any real number x and o/ € (0,1}, there exists.a complex number ©, which
|O2| < 1 such that
1-a

~ 2
€ = | =t |y|'T*Q,.
lL+a

Proof. From (A.1), we obtain that

1
e’ =14 iz + (zx)Q/ (1 —u)?e™™ du
0

21 I+a (1+ o)z . 2 _iuz
_1+2$+1+ || [—W/Ov(l—u>6 du

l—«

2
=1+iz+ ——|z|""*0,
I+«

where ©, = ﬁ%[@ (1 — u)?e™® du. We remain to show that |0y < 1. If
|z| < 3, then
10y] < (14 a) (%) /|1—u2“’“$|du
1
T
—(1+a)(2! (1-
aea ) fa-or
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If || > 3, then

1+
10| =

_ 1+a

21—o¢|l.|o¢—1

1
/ (1= u)?e™ du
0

(28inz — 2x) +i(2 — 2cosx — x?)

o 21—a|m|o¢~l
1+ a
21 al |2+oz

1+«

— 21 a| |2+oz

1+«
21—a'1‘|a

<1+ag
- 2 3
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27

VAN
— Wl

IN

3

L /e 4 (4r% — 8) cosx — 8rsina + 8

Ve Ax? - 8|l

1+4+ &
a2

- 1+4+ -
9 27
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