Site Selection for Feasibility Study of Pump-Storage Hydropower Project in The Philippines.

An Independent Study Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Energy Technology and Management Inter-Department of Energy Technology and Management GRADUATE SCHOOL Chulalongkorn University Academic Year 2021 Copyright of Chulalongkorn University

การคัดเลือกพื้นที่สำหรับการศึกษาความเป็นไปได้ของโครงการไฟฟ้าพลังน้ำประเภทสูบกลับใน ประเทศฟิลิปปินส์

สารนิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีและการจัดการพลังงาน (สหสาขาวิชา) สหสาขาวิชาเทคโนโลยีและการจัด การพลังงาน บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2564 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Independent Study Title	Site Selection for Feasibility Study of Pump-Storage
	Hydropower Project in The Philippines.
By	Miss Sornsawan Utthakrue
Field of Study	Energy Technology and Management
Thesis Advisor	Assistant Professor THITISAK BOONPRAMOTE, Ph.D.

Accepted by the GRADUATE SCHOOL, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master of Science

INDEPENDENT STUDY COMMITTEE

Chairman (Professor ORATHAI CHAVALPARIT, Ph.D.) Advisor (Assistant Professor THITISAK BOONPRAMOTE, Ph.D.) Examiner (Assistant Professor SAN SAMPATTAVANIJA, Ph.D.)

CHULALONGKORN UNIVERSITY

ศรสวรรก์ อุทธาเกรือ : การกัดเลือกพื้นที่สำหรับการศึกษาความเป็นไปได้ของโครงการไฟฟ้าพลังน้ำประเภทสูบกลับใน ประเทศฟิลิปปินส์. (Site Selection for Feasibility Study of Pump-Storage Hydropower Project in The Philippines.) อ.ที่ปรึกษาหลัก : ผศ. คร.ฐิติศักดิ์ บุญปราโมทย์

โครงการไฟฟ้าพลังน้ำแบบสูบกลับ เป็นเทคโนโลซีสำหรับการจัดเก็บพลังงานน้ำ ที่เป็นการออกแบบอ่างเก็บน้ำ 2 แห่งที่ ระดับความสูงแตกต่างกัน ทำให้สามารถสร้างกระแสไฟฟ้าได้ในขณะที่น้ำไหลจากที่หนึ่งไปยังอีกที่หนึ่งผ่านกังหัน ระบบการทำงานแบบนี้ นั้นคล้ายกับแบตเตอริ่ขนาดใหญ่ที่สามารถจัดเก็บได้ตลอดเวลา และผลิตพลังงานในช่วงเวลาที่ด้องการ

ฟิลิปปินส์เป็นประเทศที่มีระดับความสูงที่แตกต่างกันทั้งประเทศเนื่องจาก เป็นภูมิประเทศแบบเกาะ แต่ภัยธรรมชาติกีเกิดขึ้น บ่อยครั้งในทุกๆปีทำให้ขากต่อการสร้างโครงสร้างใด ๆ แต่ PSP เป็นอาคารขนาดใหญ่ที่มีความสามารถสร้างพลังงานจำนวนมากด้วย ด้นทุนที่ไม่มาก

งานวิจัยนี้จะเน้นที่ในขั้นตอนเบื้องด้นของการก้นหาพื้นที่ที่เหมาะสมสำหรับ โกรงการไฟฟ้าพลังน้ำแบบสูบกลับผ่าน การตรวจสอบสองเงื่อนไขที่สำคัญคือ ภูมิศาสตร์และธรณีวิทยา

มีพื้นที่การวิจัขสามแห่งที่คั้งอยู่ทั่วภูมิภาลเกาะ ลูซอน (L), วิษาขัส (V) และมินคาเนา (M) ผลลัพธ์แสดงเฉพาะส่วนบน อ่างเก็บน้ำที่มีน้ำธรรมษาติและหัวสูงมากกว่า 300 เมตร เพื่อวิเคราะห์โครงการ ผู้เขียนใช้แบบจำลองกระแสเงินสดส่วนลด (แบบจำลอง โดยมีระขะเวลาสัมปทาน 25 ปี ผลการวิจัขพบว่ามูลค่าปัจจุบันสุทธิ 1,467(L), 756 (V) และ 1,696 (M) ล้านคอลล่าสหรัฐ อัตราผลตอบแทนภาขในคือ 22.56% (L), 17,48% (V) และ 20.94% (M) และโครงการคืนทุนจะเมื่อมีอายุ 4 (L), 6 (V) และ 4 (M) ปี ส่งผลให้โครงการเป็นไปได้ทางเศรษฐกิจและการเงิน

สาขาวิชา	เทคโนโลยีและการจัคการพลังงาน (สห	ลายมือชื่อนิสิต
	สาขาวิชา)	
ปีการศึกษา	2564	ลาขมือชื่อ อ.ที่ปรึกษาหลัก

6380131920 : MAJOR ENERGY TECHNOLOGY AND MANAGEMENT
 KEYWORD: Hydropower, Pump-Storage Hydropower, Clean Energy, Geography, Geology, Feasibility, Initial Stage, Desk Study

Sornsawan Utthakrue : Site Selection for Feasibility Study of Pump-Storage Hydropower Project in The Philippines.. Advisor: Asst. Prof. THITISAK BOONPRAMOTE, Ph.D.

Pumped-storage hydropower projects (PSP) are a technology for hydroelectric energy storage. It is a design of two water reservoirs at different elevations that can create electricity as water flows from one to the other via a turbine. The PSP system is similar to a huge battery in that it can store and then release energy as needed.

The Philippines is a country with a wide range of elevations due to its island composition. Natural disasters occur frequently, making it challenging to establish any structure. But the PSP is a large building that is also capable of generating a great amount of energy at a significant cost. This research will focus on the preliminary stage of finding sites appropriate for PSP through a remote investigation of two critical conditions: geography and geology.

There are three research areas located throughout the region's islands: Luzon (L), Visayas (V), and Mindanao (M). The result shows only the upper reservoir with natural water and a head of more than 300 m. To analyze PSP, the author uses a Discount Cash Flow Model (DCF model) with a 25-year concession period. The results of this research shows that the net present value is 1,467(L), 756 (V), and 1,696 (M) million USD, the internal rate of return is 22.56% (L), 17.48% (V), and 20.94% (M), and the payback project will last 4 (L), 6 (V), and 4 (M) years. As a result, the project is economically and financially feasible.

CHULALONGKORN UNIVERSITY

Field of Study:	Energy Technology and	Student's Signature
Academic Year:	Management 2021	Advisor's Signature
rieudennie reur.	2021	ravisor s signature

ACKNOWLEDGEMENTS

This independent study was conducted effectively with the support of Mr. Braunshofer, the project manager, who provided significant advice and perspectives throughout the research process. This includes advising me on the most effective strategy for obtaining high-quality research for my project. I'm quite grateful for your support.

Additionally, I would like to express my gratitude to AFRY, Thailand for giving me an abundance of information and experience.

I appreciate my adviser, Prof. Thitisak Boonpramote (Ph.D.), for giving me guidance and recommending other research techniques.

I appreciate TPI Polene (Public) Co., Ltd. for providing scholarships to support students in completing full course requirements.

Finally, I would like to thank my family for their support during my studies. And it has fueled my desire to study throughout my life. Furthermore, to serve as a motivation for my continued self-improvement.

Sornsawan Utthakrue

TABLE OF CONTENTS

Page

	iii
ABSTRACT (THAI)	iii
	iv
ABSTRACT (ENGLISH)	iv
ACKNOWLEDGEMENTS	
TABLE OF CONTENTS.	vi
LIST OF ABBREVIATIONS	
CHAPTER 1	2
INTRODUCTION	2
1.1 Background	2
1.2 Objectives of the Study	5
1.3 Scope of Study	6
1.4 Methodology of Research	7
CHAPTER 2	8
LITURATURES REVIEW	8
2.1 The Significant of Hydropower	8
2.1.1 Hydropower Situation in The Global	8
2.1.2 Hydropower Situation in The Global Hydropower Situation in the Philippines	10
2.1.3 Power Sector and Hydropower Development in the Philippines	11
2.2 The Significant of Pump-Storage Hydropower	13
2.2.1 Type of Hydropower Electricity	14
2.2.2 Pump-Storage Hydropower Fundamentals	16
2.2.2.1 Energy Storage Capability	17
2.2.2.2 Pump-Storage Hydropower Plant Configurations	20
2.3 Theory of The Site Selection by Geography and Geology	21

2.3.1 Pum	p-Storage Hydropower and Geography	22
2.3.2 How	to Select a Potential PSP Site Based on Geography	22
2.3.2	2.1 Potential PSP Location Based on Geography	23
2.3.3 Opti	mization of Site Selection by Geology	23
	earch Design for Site Selection of PSP by Geography and ktop Study	
2.4 The Electr	ric Price for PSP in the Philippines	33
2.5 Tax of the	Philippines	35
	d Cash Flow Model (DCF Model)	
2.6.1 Cash	n flow	36
	1.1 Cash Inflow	
	1.2 Cash Outflow	
	counted Rate	
	Present Value (NPV)	
2.6.4 Inter	rnal Rate of Return (IRR)	41
2.6.5 Payb	back Period (PB)	42
	iteratures	
CHAPTER 3		48
METHODOLOC	GY AND RESULT	48
3.1 Site Select	tion Analysis	50
3.1.1 First	Map - Overlay Geography and Risk of Geo-Hazard	50
3.1.1.1	Case Study Area 1 – Luzon	50
3.1.1.2	Case Study Area 2 – Visayas	52
3.1.1.3	Case Study Area 3 – Mindanao	54
3.1.2 Seco	ond Map - Overlay Regional Geology, Rock Units	56
3.1.2.1	Case Study Area 1 – Luzon	56
3.1.2.2	Case Study Area 2 – Visayas	59
3.1.2.3	Case Study Area 3 – Mindanao	62
3.1.3 Estir	mate Energy Storage Capacity	64

3.1.3.1 Co	nclusion of Estimate Energy Storage Capacity	68
3.2 Cash Flow Estin	mation for Case Studies	71
3.2.1 Calculated	l Price of Electricity	71
3.2.1.1 Po	wer Generation Process (Revenues)	77
3.2.1.2 Pu	mping Process (Cost)	78
3.2.2 Cost Estin	nate	80
3.2.2.1 CA	APEX (Construction Cost Estimate)	81
3.2.2.2 OF	PEX (Costs during operation and maintenance)	84
3.2.3 Summary	Cash Flow Model	85
3.2.3.1 Ca	sh Inflow	87
3.2.3.2 Ca	sh Outflow	88
3.3 Feasibility Stud	y by Discount Cash Flow Model (DCF)	92
CHAPTER 4		98
CONCLUSION AND	RECOMMEDATION	98
REFERENCES		101
APPENDIX A		
QGIS TO VIEW WM	s	
VITA		111
	จุฬาลงกรณ์มหาวิทยาลัย	

viii

List of Tables

Table 1: The majority of electricity will be generated in October 2021	11
Table 2: Countries with the largest power pumped-storage hydro capacity in 2017.	13
Table 3: The comparison of PSP's energy density and upper reservoir's depth	22
Table 4: Electric price of LUZON grid on February 16, 2009.	34
Table 5: Components of direct and indirect construction costs.	38
Table 6: Components of costs during operation and maintenance	39
Table 7: Regional geology, rock units at Luzon Island.	57
Table 8: Regional geology, rock units at Visayas Island	60
Table 9: Regional geology, rock units at Mindanao Island.	62
Table 10: Different highs of the lower and upper reservoirs.	69
Table 11: The water density of each case study.	70
Table 12: The power of pump/turbines per unit.	70
Table 13: Assumptions of capacity for PSP.	71
Table 14: Electric price of LUZON, Visayas and Mindanao grid on February 16,	
2009	72
Table 15: The average electric price (PHP/kWh) scenario for the grids of Luzon,Visayas, and Mindanao, on February 16, 2009.	74
Table 16: The average electric price in USD/kWh for the grids of Luzon	74
Table 17: The average electric price in USD/kWh for the grids of Visayas	75
Table 18: The average electric price in USD/kWh for the grids of Mindanao	75
Table 19: Electric price with escalated price increases from 2009 to 2020.(USD/kWh)	76
Table 20: The annual energy generation value (GWh/year)	78
Table 21: Energy sales price of each case study. (USD/kWh/year)	78
Table 22: The pumping energy value (GWh/year).	80
Table 23: Pumping cost of each case study. (USD/kWh/year)	80
Table 24: CAPEX components including ;	81
Table 25: CAPEX components including ;	82

32
34
34
87
39
0
)1
95
96
97
98
98

List of Figures

Figure 1: Global LCOEs from newly commissioned, utility-scale renewable power generation technologies, 2010-2020. [1]
Figure 2: Electricity storage technology source capacity comparison. [2]
Figure 3: Map of the Philippines' Regional Geography
Figure 4: Low-carbon electricity generation by technology and shares in global electricity supply, 2020. (Source; Hydropower Special Market Report Analysis and forecast to 2030, IEA.)
Figure 5: The status of hydropower in the global. (Source : Hydropower Status Report Sector trends and insights, 2021, International Hydropower Association.)9
Figure 6: Age profile of installed hydropower capacity, 2020. Source; Hydropower Special Market Report Analysis and forecast to 203010
Figure 7: The blue line indicates the annual growth rate of the Philippines' population. , 2020.(Source; World Bank)
Figure 8: Ranking by installed hydropower capacity. Source; Hydropower Status Report, 2021 iha (International Hydropower Association)12

Figure 9: The graph represents the pumped-storage hydropower capacity in 2017. 14
<i>Figure 10: The location of the run-of-river and storage hydropower projects.</i> (Source: FEW)
Figure 11: The main component of hydroelectric power, storage system. (Source: Environment Canada)
Figure 12: Example 3D model of an PSP open system, which a reservoir is constructed above, as well as a tunnel connected to an underground power plant, and supplied water to the lower natural bay. [3]
Figure 13: Combining of generation and pumping modes with potential energy18
Figure 14: The illustrator of indicator h and Vu location
Figure 15: The illustrator of the three configurations
Figure 16: Highlighted promising regions for off-river pumped hydro in Mount Lofty and the Fleurieu Peninsula near the capital city, Adelaide. [5]
Figure 17: The red area marked the location of the "Ring of fire"25
Figure 18: The source of DEM data in Diva website
Figure 19: DEM (.tif) input to QGIS program
Figure 20: The source of seismic data in USGS website. (Source; Website; https://earthquake.usgs.gov/earthquakes/map/)27
Figure 21: Seismicity (.csv) input to QGIS program
Figure 22: The source of faults and volcanic data in HazardHunterPH website28
Figure 23: The source of geology rock unit data in OneGeology portal website29
Figure 24: The example of the magnitude of the earthquake map from November 11 to December 11, 2021. (Source: USGS)
<i>Figure 25: Distribution of active faults and trenches in the Philippines. (Source; PHIVOLCS).</i>
<i>Figure 26: Map of active and potential active volcanoes of the Philippines. (Source; PHIVOLCS).</i>
Figure 27: The flowchart of site selection process
Figure 28: The PSP project area under construction named Project Kühtai, Above figure: PSP site in winter season, Bottom figure: PSP site in summer season

Figure 29: An example of the underground power plant of the Kühtai PSP project, shown in 3D form, encompassing the main components of the power plant undergound construction
Figure 30: A flowchart of the whole research methodology
Figure 31: The flowchart of site selection process
Figure 32: The first map overlay data was used for two alternatives in the Luzon area
<i>Figure 33: The first map overlay data was used for two alternatives in the Visayas area.</i>
Figure 34: The first map overlay data was used for two alternatives in the Mindanao area
Figure 35: The second map overlay, regional geology data, was used for selected potential PSP in the Luzon area
Figure 36: The second map overlay, regional geology data, was used for selected potential PSP in the Visayas area
Figure 37: The second map overlay, regional geology data, was used for selected potential PSP in the Mindanao area
Figure 38: A satellite image of Luzon in a 2D terrain view at Luzon , along with a cross-section along an estimated tunnel line. The blue line represented the elevation of the terrain along the tunnel. Source: Google Earth
Figure 39: A satellite image of Luzon in a 3D terrain view at Luzon , along with a cross-section along an estimated tunnel line. The red line represented the elevation of the terrain along the tunnel. Source: Google Earth
Figure 40: A satellite image of Visayas in a 3D terrain view at Visayas , along with a cross-section along an estimated tunnel line. The red line represented the elevation of the terrain along the tunnel. Source: Google Earth
Figure 41: A satellite image of Visayas in a 3D terrain view at Visayas , along with a cross-section along an estimated tunnel line. The red line represented the elevation of the terrain along the tunnel. Source: Google Earth
Figure 42: Another potential location with cheaper excavation costs is the upper reservoir at Visayas , where is located in an open-pit mine at the same elevation. Source; Google Earth
Figure 43: A satellite image of Mindanao in a 2D terrain view at Mindanao , along with a cross-section along an estimated tunnel line. The red line represented the elevation of the terrain along the tunnel. Source: Google Earth

Figure 44: A satellite image of Mindanao in a 3D terrain view at Mindanao,	along
with a cross-section along an estimated tunnel line. The red line represented to	he
elevation of the terrain along the tunnel. Source: Google Earth	68
Figure 45: The figure of the indicator differential elevation of the upper and	lower
reservoir (h).	69
Figure 46: Cash Inflow and cash outflow flowchart	86
Figure 47: Spider diagram of net present value with varios indicators	99

CHULALONGKORN UNIVERSITY

LIST OF ABBREVIATIONS

DEM	Digital Elevation Model			
GIS	Geographic Information System			
GWh	Gigawatt hour			
GWh/a	Gigawatt hour per year			
HPP	Hydro Power Plant			
IDC	Interest During Construction			
IRR	Internal Rate of Return			
km	kilometre			
m 🛁	metre			
mg	magnitude			
M m3	million cubic metre			
M USD	million US Dollar			
MW	Megawatt			
MWh	Megawatt hours			
NPV	Net Present Value			
O&M	Operation and Maintenance			
PSP	Pump-storage hydropower project			
PHP	Philippine Peso			
TL	Transmission Line			
USD จุฬาลงก	US Dollar			
Chulalongkorn University				

CHAPTER 1

INTRODUCTION

1.1 Background

The hydroelectric power plant is a technology ability to produce high energy. On the other hand, this technology requires analysis in a variety of technical, environmental, and financial sectors, including hydraulics, civil construction, environmental and social, and so on. However, this research focuses on the preliminary stage before proceeding to the next step, which is a desk study analysis of feasible sites for a pump-storage hydropower project (PSP). When this stage is completed, the developer and owner of the project can continue to the next stage.

A pump-storage hydropower project is a type of hydropower electric plant in which the technology may provide a large amount of energy over a long period of time at a cheap cost. This technology has the potential to be a *"Bang-for-buck"* technology in the modern renewable energy market. As shown in Figure 1, hydropower has a lower levelized cost of energy (LCOE) than other energy sources (0.04 USD/kWh). PSP is a technology that began in the 1890s in Switzerland and Italy and has since spread worldwide, especially to high-tech countries like Germany, the United States, Japan, and China. And this technology is included in a type of storage plant, which is generally called battery storage plants technology. As shown in Figure 2, PSP is the most efficient technique for storing capacity electricity (batteries) as compared to other sources.

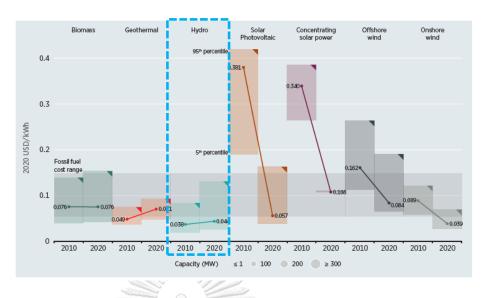
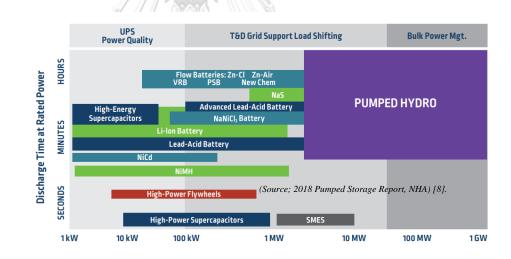



Figure 1: Global LCOEs from newly commissioned, utility-scale renewable power generation technologies, 2010-2020. [1]

Figure 2: Electricity storage technology source capacity comparison. [2]

The Philippines has a population of around 109.6 million people, which is expanding each year, according to a 2020 population study. As a result, high population growth has an effect on excessive energy consumption. On the other hand, hydroelectricity is a renewable energy source that also supplies a significant quantity of electricity to the Philippines. The geography of the Philippines also supports the PSP because of the morphology, which has several elevations that are suitable for the PSP. The purpose of this research is to study the possibility of a pumped-storage hydropower project (PSP) in the Philippines. The following are the key components of the Project:

- Geography; Topography and spatial data.
- Geology; Regional geological setting and hazards.
- Economics.

This research will aid in the development of the feasibility model by collecting and analyzing data in order to identify potential locations for the PSP project, which will be included in the model. This is the first step in determining a potential location. The study will divide the research area into three regional areas, as shown in Figure 3: Luzon, Visayas, and Mindanao. The high-potential area will be selected based on criteria developed from the preceding components. Economic management and finance are required for the feasibility analysis project, which is followed by the selection of the project site. The Discount Cash Flow Model (DCF) was developed based on the following assumptions: construction spending, project costs, project operations, the annual power sales price, and estimated annual power output. This preliminary research collects and analyzes data in order to identify potential areas for developing a PSP project that will be included in the financial model.

CHULALONGKORN UNIVERSITY

Figure 3: Map of the Philippines' Regional Geography

1.2 Objectives of the Study

The objective of this research is to identify a significant area that might serve as a reservoir for a PSP project and to develop a financial model for that location. To provide the importance of hydropower and accept the potential of hydropower projects;

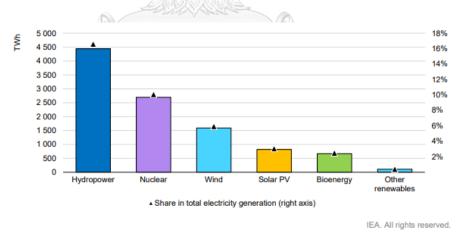
- a) To provide a preliminary model of a possible PSP site based on basic data from desk study in the initial stage of the feasibility project.
- b) Financial model-specific supporting data for investors.

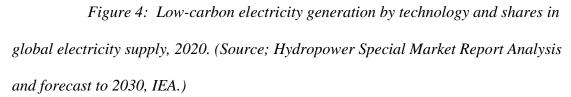
1.3 Scope of Study

- a) There are three case studies separated by island region, Luzon, Visayas, and Mindanao.
- b) The study area was divided into 2 sections: geography and regional geology.
- c) PSP design is an open system (1 or 2 reservoirs have to be connected to the natural water).
- d) The elevation between the upper and lower reservoirs is more than 300 m.
- e) The distance between the disaster-risk areas, such as seismicity and the PSP, exceeds 50–100 kilometers, a long distance from the epicenter of an earthquake with seismicity of > 7 magnitudes.
- f) The PSP was not discovered in the active fault and active volcano.
- g) The difference in elevation of the potential reservoir is used to calculate design capacity.
- h) Estimate revenue using a separate electric pricing model for each of the three case studies based on the location's potential.
- i) PSP cost estimates by three components.
 - a. Construction Cost Estimate (CAPEX);
 - b. Costs during operation and maintenance (OPEX).
 - c. And the final cost is Pumping Cost.
- j) The construction period is 5 years.
- k) The concession operating period is 25 years.
- 1) Exchange rate: PHP to USD The 4th quarter of 2021 was 50.67 PHP/USD.
- m) The discounted cash flow model for feasibility use 3 indicators;
 - a. Net Present Value: NPV
 - b. Internal Rate of Return: IRR
 - c. Payback Period: PB.

1.4 Methodology of Research

- a) Data collection from open sources.
- b) Separate three areas of the island and observe a mapping analysis of the case study to identify high-potential PSP sites.
- c) Feasibility study of PSP's potential by the discounted cash flow model: the DCF Model.
- d) Conclusions and recommendations


CHAPTER 2


LITURATURES REVIEW

2.1 The Significant of Hydropower

2.1.1 Hydropower Situation in The Global

Many people are interested in renewable energy to reduce carbon emissions this year, 2021. Hydropower is also a sort of renewable energy because it may create electricity from natural sources while emitting only a minimal amount of carbon throughout the process (Figure 4). As shown in Figure 5, a large country with advanced technology is currently in dark green, with additional hydropower projects in places such as China, Canada, the United States, and Russia.

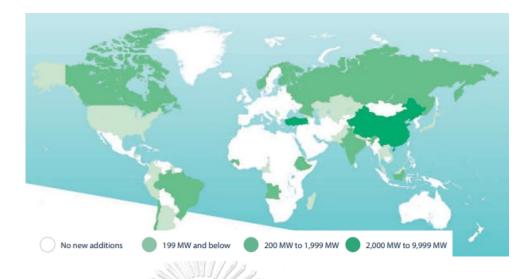
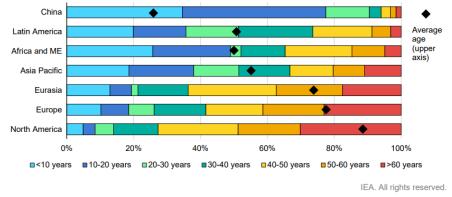



Figure 5: The status of hydropower in the global. (Source : Hydropower Status Report Sector trends and insights, 2021, International Hydropower Association.)

The advantage of this technology is the ability to control energy by predicting the volume of water. They have a huge volume of water on reserve to supply energy at all times. This technology is distinct from others in the field of renewable energy. Because the water is regulated by the building's structure, and hydropower has a long energy life. As illustrated in Figures 6, the hydropower placed in the locations indicated by black points within the group of areas provided has the longest life, exceeding 60 years, as indicated in red, and the areas with the longest life are North America and Europe. As is well known, both countries have a strong economy and are global leaders in a variety of technologies. In this way, hydropower, which was built a long time ago, can help keep the country's economy and finances strong.

Note: ME = Middle East.

Figure 6: Age profile of installed hydropower capacity, 2020. Source; Hydropower Special Market Report Analysis and forecast to 2030.

2.1.2 Hydropower Situation in The Global Hydropower Situation in the Philippines

As illustrated in Figure 7 of the "World Bank," the population of the Philippines continues to expand every year. This figure is also related to the amount of energy consumed in the country. The significance of energy in the Philippines is the country's geography. There are islands in the whole country, and they are prevented from purchasing energy from another country, so they must generate their own. Coal, geothermal energy, and hydropower are the primary sources of energy for them. Table 2-1 contains the weekly summary report for the period October 23–29, 2021. It explains that Mindanao is the region with the highest energy reserves, mainly coal and hydropower.

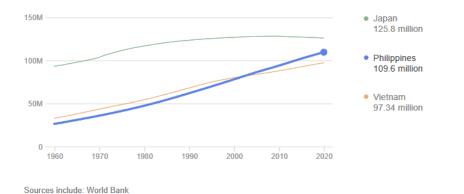


Figure 7: The blue line indicates the annual growth rate of the Philippines' population. , 2020.(Source; World Bank)

Table 1: The majority of electricity will be generated in October 2021.

	Luzon	Visayas	Mindanao	
Coal	64.43%	56.09%	67.10%	
Geothermal	5.23%	35.47%	3.61%	
Hydropower	10.33%	0.48%	26.64%	

2.1.3 Power Sector and Hydropower Development in the Philippines

The National Water Resources Board (NWRB), which is part of the Department of Environment and Natural Resources, is the national authority in charge of the water sector. The electricity transmission system in the Philippines is organized into three primary grids that serve the main islands of Luzon, Visayas, and Mindanao. The National Grid Corporation of the Philippines (NGCP) operates three grids on behalf of the state-owned National Transmission Corporation (TransCo). The Energy Regulatory Commission (ERC).

The Philippines' gross hydropower potential in 2020 is 47,459 GWh/year, whereas the technically possible potential is 20,334 GWh/year. 18184 Gwh/year is the commercially viable potential. Approximately 17% of the technically viable potential has been developed. In light pink, Figure 8, the Philippines is ranked 13th in the SEA (South East Asia) region, with a

total of 20 countries. That result pushed the government to set an ambitious mission of developing an installed renewable energy capacity of at least 20 GW by 2040.

Figure 8: Ranking by installed hydropower capacity. Source; Hydropower Status Report, 2021 iha (International Hydropower Association).

12

2.2 The Significant of Pump-Storage Hydropower

Pumped storage hydropower (PSH) currently accounts for more than 90% of the world's grid-scale energy storage applications, with 160 GW of installed capacity and 9,000 GWh of energy storage capacity. PSH is a mature and proven technology that can store energy in daily cycles to seasonal storage applications while also providing important grid functions to ensure power system dependability (Source; International Forum on Pumped Storage Hydropower, November 2020). The Table 2 will show the total capacity status of energy and pumped storage hydropower in each country of the world in 2017. According to this data, the country with the most capacity in this technology is Switzerland, as shown in the graph of Figure 9. (Source; https://en.wikipedia.org/wiki/Pumped-storage_hydropelectricity)

Country	Pumped storage	Total installed	Pumped storage	
	generating capacity	generating capacity	Total generating	
	(GW)	(GW)	Capacity	
China	32	1646	1.90%	
Japan	28.3	322.2	8.80%	
United States	22.6	1074	2.10%	
Spain	8	106.7	7.50%	
Italy	7.1	117	6.10%	
India 🧃 🕅	6.8	E 1 6 E 308.8	2.20%	
Germany	6.5	204.1	3.20%	
Switzerland	CALUNGI _{6.4} MU	19.6	32.60%	
France	5.8	129.3	4.50%	
Austria	4.7	25.2	18.70%	
South Korea	4.7	103	4.60%	
Portugal	3.5	19.6	17.80%	
Ukraine	3.1	56.9	5.40%	
South Africa	2.9	47.3	6.10%	
United Kingdom	2.8	94.6	3.00%	
Australia	2.6	67	3.90%	
Russia	2.2	263.5	0.80%	
Poland	1.7	37.3	4.60%	
Thailand	1.4	41	3.40%	
Belgium	1.2	21.2	5.70%	

Table 2: Countries with the largest power pumped-storage hydro capacity in 2017.

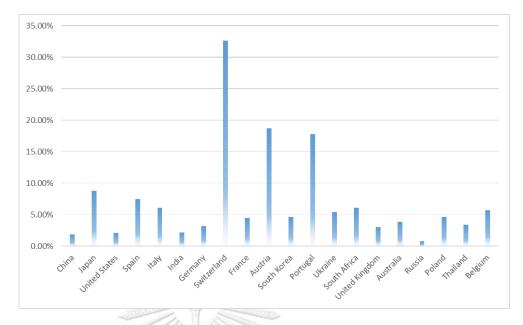


Figure 9: The graph represents the pumped-storage hydropower capacity in

2017.

2.2.1 Type of Hydropower Electricity

Hydroelectricity is a type of energy generating that makes use of a turbine's flow of energy through water (Figure 10). Conventional hydropower and pumped storage hydropower are the 2 main type:

ุเหาลงกรณมหาวัทยาลัย

- a) **Run-of-river**; Run-of-river systems, in which a turbine is pushed by the **GHULALONGKORN ONVERSITY** force of the river's current. To direct water flow to the hydro turbines, a weir in the water stream may be employed.
- b) Storage hydropower is water storage systems in which water accumulates in reservoirs created by constructing dams rivers and streams and is discharged to generate electricity using hydro turbines. (Figure 11).

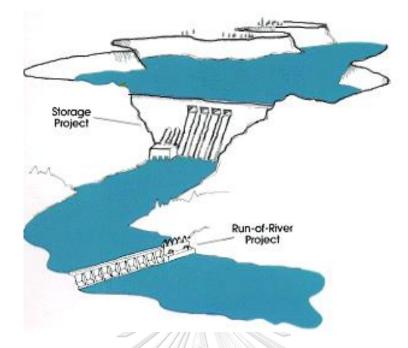
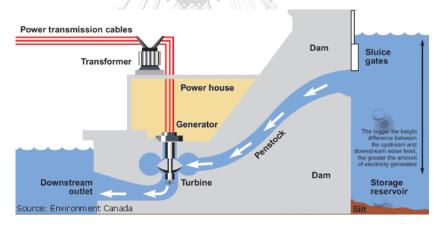



Figure 10: The location of the run-of-river and storage hydropower projects. (Source: FEW)

Figure 11: The main component of hydroelectric power, storage system. (Source: Environment Canada)

The pump storage hydropower project (PSP) is a hydro model that developed from the storage system. It generates an electrical system through load balancing and is utilized to store energy in this method. Water's gravitational potential energy is stored in two reservoirs. When power demand is high, water will discharge from the higher reservoir to the lower reservoir, flowing to the turbine to generate electricity, and water will be pumped back from a lower reservoir to a higher reservoir with a loss of 15–30% of energy when power demand is low. Due to the plant's losses from the pumping process. However, by selling more electricity at peak demand and at times when electricity costs are highest, the plant can be able to enhance its profits.

2.2.2 Pump-Storage Hydropower Fundamentals

Pump storage is a reservoir-related technology. The upper and lower reservoirs are saperate with various heights, and the lower reservoir may be a river or even the sea.

As shown in Figure 12, the structure is mainly composed of three components: (1) upper reservoir, (2) waterway or tunnel, (3) lower reservoir.

The open system and the closed system are the two types of functioning. The reservoir-connected *open system* is linked to the natural water, river, or seawater. In addition, it is a closed system in which neither reservoir is connected to the natural water source. Because it does not require a nearby reservoir, as would a normal hydroelectric power station, this approach is particularly appropriate for dry areas away from natural water supplies. PSP generates electricity by running a subsurface powerhouse, and water flows down the tunnel system due to gravity. When there isn't a high demand for energy, pump it back up to the upper reservoir.

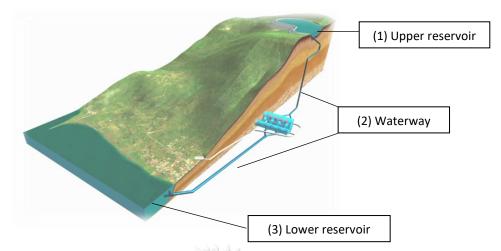


Figure 12: Example 3D model of an PSP open system, which a reservoir is constructed above, as well as a tunnel connected to an underground power plant, and supplied water to the lower natural bay. [3]

2.2.2.1 Energy Storage Capability

The main parameter in the feasibility process is energy capacity, the method of calculation will be based on Kyle Webb [4]. Consider an object's mass (m) and elevation (h) to calculate the amount of energy that can be stored as potential energy (h). The potential increase in energy is ; E = mgh

(g) is gravitational acceleration = 9.81 m/s^2

As illustrated in Figure 13, lifting the mass necessitates an input of work equal to (or greater than) the mass's energy increase thus, energy must be put into the mass to lift it. This energy is stored in the mass as potential energy.

Allowing the mass to fall to its original height allows us to capture the mass's potential energy. As the mass falls, potential energy is converted to kinetic energy. Kinetic energy can be used to drive machinery. Perhaps rotational energy is converted to electrical energy, which is then converted back to rotational energy.

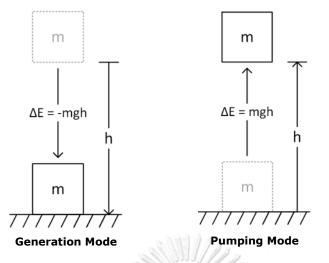


Figure 13: Combining of generation and pumping modes with potential

energy.

There is a need to indicate parameters separated by a **height** (**h**) that is related to the hydraulic head in the storage energy section. Assume that h is the upper reservoir's depth and Vu is its capacity to store a volume of water.

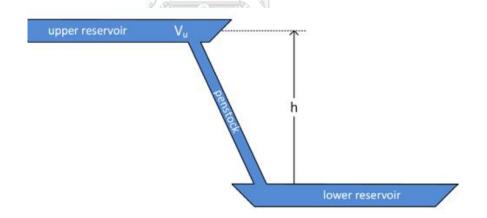


Figure 14: The illustrator of indicator h and Vu location.

Total stored energy (Et) is proportional to the volume of water in the upper reservoir, gravitational acceleration, and elevation height.

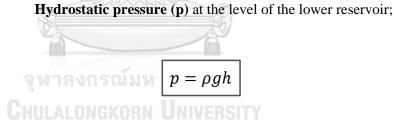
$$E_t = mgh = V_u \rho gh$$

where ρ is the density of water = 1000 kg/m3

Demonstrating that we do, in fact, have energy units

$$[E_t] = m^3 \frac{kg}{m^3} \frac{m}{s^2} m = \frac{kg \cdot m}{s^2} m = N \cdot m = J$$

The energy density (ev) is energy per unit volume of the stored water is;


$$e_v = \frac{E_t}{V_u} = \rho g h$$

Demonstrating that we do, in fact, have energy units

$$[e_v] = \frac{kg}{m^3} \frac{m}{s^2} m = \frac{kg \cdot m^2}{s^2} \frac{1}{m^3} = \frac{J}{m^3}$$

Although it can operate at high pressures, pumped-hydro energy storage (PHES)

has a low energy density, necessitating the use of large reservoirs.

Demonstrating that we do, in fact, have energy units

$$[p] = \frac{kg}{m^3} \frac{m}{s^2} m = \frac{kg \cdot m}{s^2} \frac{1}{m^2} = \frac{N}{m^2} = Pa$$

The **power** extracted from (delivered to) the water is the rate at which energy is

transferred to the turbine.

$$P = e_v Q = pQ = \rho ghQ$$

Where Q is the volumetric flow rate of the water (m3/s). In the case of PSP, they

must consider the diameter of the tunnel waterway. It is, however, outside the scope of this

study because it must be designed by a hydraulic engineer. Instead, in this formula, the author will use *Q* from the historical project to calculate power.

Demonstrating that we do, in fact, have energy units

$$[P] = \frac{J}{m^3} \frac{m^3}{s} = \frac{J}{s} = W$$

2.2.2.2 Pump-Storage Hydropower Plant Configurations

Potential energy storage in raised mass serves as the foundation for pumped-hydro energy storage (PHES), which is the energy utilized to pump water from a lower reservoir to an upper reservoir. Then the motors transform electrical energy into rotating mechanical energy. Pumps deliver energy to the water in the form of kinetic and potential energy. As water flows to the lower reservoir, the energy held in the upper reservoir's water is released. Potential energy is translated to kinetic energy, and falling water's kinetic energy spins a turbine, which turns a generator, which converts mechanical energy to electrical energy. There are three different types of generator/turbine and motor/pump configurations; they are as follows:

a. Quaternary set, This type consists of a pump powered by a motor and a generator powered by a turbine, with the pump and turbine completely decoupled. Prior to 1920, this configuration was the most common. It requires expensive equipment and infrastructure, but it can produce high efficiency because the pump and turbine are designed to optimize individual performance.

b. **Ternary set,** This type implements a pump turbine, as well as a motor and generator, all on a single shaft, with the pump and turbine rotating in the same direction. The turbine is rigidly coupled to the motor and generator, and the pump is clutch-coupled to the shaft. This was a popular design from the 1920s to the 1960s. Pump and turbine designs can now be individually

c. Binary set, A single reversible pump and turbine are connected to a single motor and generator. Because it is the least expensive configuration and requires the least amount of equipment, it is the most popular configuration for modern PHES. This type of set has a lower efficiency than ternary or quaternary sets. The study will assume that PSP implements this model to save CAPEX.

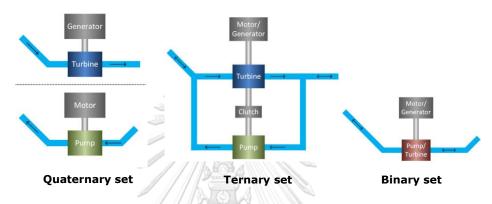


Figure 15: The illustrator of the three configurations.

2.3 Theory of The Site Selection by Geography and Geology

The main procedure is to map data using a GIS program in order to determine the potential of PSP through public data analysis. The data necessary ;

• Geographical research, in particular topography research, will be given highest priority in the further. Enter the alternative data for each case study to select the optimal location for the research.

• The objective of the geology research on this study is to select the prospective region

that is secure from the risks of an active fault, an active volcano, a landslide, and a water leak, even while defining a strong rock unit at the foundation.

2.3.1 Pump-Storage Hydropower and Geography

Topographic information is a type of geography information that serves as the foundation for structural design and is required to assess PSP's energy consumption. A PSP type can be built in areas where topographic features allow for the construction of higher and lower reservoirs, as well as where an acceptable head is available. The degree of freedom available for site selection is significant, and a high head location is instantly recognized. The criteria for selecting pumped and natural flow storage sites are nearly identical to those for selecting conventional hydroelectric sites. According to this theory, the Philippines is a good option for PSP because it has an estimated area of 300,000 square meters and it is consisted of islands with varying elevations in different areas, all of which are connected by natural water. That is the benefit for scope of reaseach design will consider in open system of PSP.

2.3.2 How to Select a Potential PSP Site Based on Geography

As shown by Kyle Webb [4] comparison calculation of energy density and upper reservoir depth, the project necessitates a high capacity (P), which must be factored into the energy density (ev), which is related to the difference in elevation of the upper reservoir's depth (h). The value of the upper reservoir's depth to energy density, which is the main parameter of energy capacity per one turbine unit, is represented in Table 3.

Table 3: The comparison of PSP's energy density and upper reservoir's depth.

	PHES	PHES	PHES
	h = 100 m	h = 500 m	h = 1000 m
Energy Density	0.273	1.36	2.73

From this result the author will use this result for research, assuming that the upper reservoir's depth for the case study needs to be at least 100 m. for a high potential location.

2.3.2.1 Potential PSP Location Based on Geography

This step will employ a digital elevation model (DEM) to calculate the head of water by analyzing the elevation of the mountain for the head of the upper reservoir [5]. Also, highlight the area with an elevation of more than 100 meters. GIS algorithms and the software used in QGIS are used to "highlight" the area of headwater with different color shades to generate the map, as the sample study shown in Figure 16. A low-resolution DEM will be used in this study. Because this is a country-wide analysis, it is SRTM resolution 30 m. from Diva [https://www.diva-gis.org/]. In the case of a small area, the method will revise the DEM to achieve high accuracy by revising it to a high resolution. This will be excluded from the study because it is beyond the scope of the investigation.

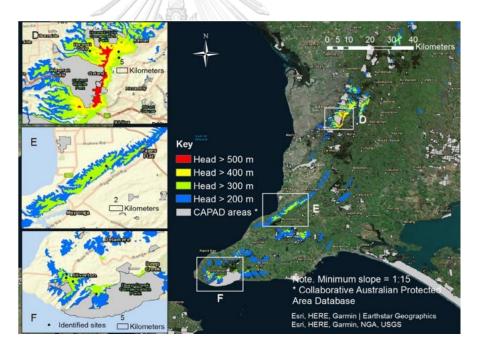


Figure 16: Highlighted promising regions for off-river pumped hydro in Mount Lofty and the Fleurieu Peninsula near the capital city, Adelaide. [5]

2.3.3 Optimization of Site Selection by Geology

Geological knowledge is essential even before investors selection or build a hydropower plant. Theoretically, underground work should pose little or no risk to the surrounding area. Geology is important because it demonstrates how the rock composition of a tunnel, power plant, or reservoir can cause water leakage or how a high-quality rock can serve as an effective construction foundation. Geotechnical engineers in general are required to study geological information prior to beginning work in order to reduce the risk of causing structural damage to the building. As a result, because the leaked water originates in areas of hard rock devoid of karst zones, this process should be considered in areas of hard rock devoid of karst zones are geological formations that can be found in carbonate, limestone, and dolomite rocks [https://www.engineeringarticles.org/factors-affecting-the-selection-of-a-particular-type-of-dam/]. This type of rock is not recommended for foundations, but it is suitable for quarry. Foundations perform better on igneous and hard metamorphic rocks such as granite, gneiss, quartzite, and so on than on sedimentary rocks such as shale, phyllite, slate, and schist.[6]

Operators must carry out a detailed geological investigation. Furthermore, the location should be safe of geohazards such as volcanic eruptions and earthquakes. That is one of the geotechnical issues in the Philippines, because the country is located on the "*Ring of Fire*" a subduction zone where disasters occur on a regular basis, as shown in the red area of Figure 17. As a result, the pupmed-storage scheme in the Philippines must be considered in the data history of seismicity records, as well as the sites of active faults and active volcanoes. However, if a firm invests in PSP, other processes such as borehole drilling and geophysical investigations may be required. This project's purpose is to conduct preliminary site assessments.

Figure 17: The red area marked the location of the "Ring of fire".

The best locations for PSP will be in geological structures that are stable and competent. As a result, the project should not be located in an earthquake, active fault, or active volcano risk area. This is the process that must be identified by an expert with experience. Because there is no exact number of kilometers between the PSP and the risk area, the author will use an estimate of 20 kilometers. The analysis procedure that will be used to combine all of the data is as follows research design.

2.3.4 Research Design for Site Selection of PSP by Geography and Geology Desktop Study

The author will use QGIS and Google-Earth programs for GIS data analysis, because they are free software.

a) Visit https://www.diva-gis.org/ to download a digital elevation model (DEM) as indicated in Figure 18, in tag image file format .tif, and natural reservoir file format .shp. Then import to QGIS, the file will present similar Figure 19.

DIVA-GIS free, simple & effective	:		
Download program	Documentation	Free Spatial Data	
Home			

Download data by country

Select and download free geographic (GIS) data for any country in the world

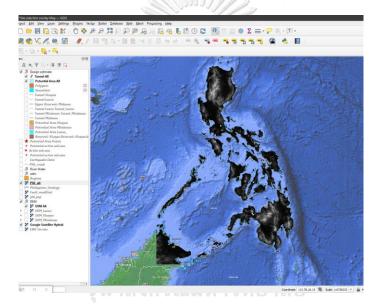


Figure 18: The source of DEM data in Diva website.

Figure 19: DEM (.tif) input to QGIS program.

b) Use the United States Geological Survey (USGS, Figure 20) to download seismicity data in a comma-separated values (.csv) format file. Collect the data coordinates of the earthquake. csv points with magnitude mag (Figure 21) over a 20-year period (2010 to 2021).

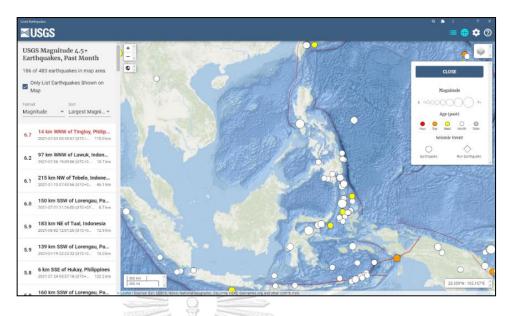


Figure 20: The source of seismic data in USGS website. (Source; Website;

https://earthquake.usgs.gov/earthquakes/map/)	N°

time	latitude	longitude	mag
2020-08-25T15:23:18.408Z	4.858	127.5537	4.2
2019-11-17T18:18:17.648Z	4.8592	127.4862	4.5
2005-09-11T19:44:19.200Z	4.86	126.641	4.6
2009-05-17T05:18:04.240Z	4.861	127.577	4.7
2010-04-29T08:48:13.630Z	4.862	126.202	4.3
2015-10-21T11:33:24.610Z	4.8623	126.1898	4.6
2005-11-14T12:39:55.420Z	4.863	123.389	4.6
2008-06-10T15:48:38.900Z	4.867	125.542	4
2014-02-16T12:00:23.940Z	4.8674	126.0434	4.9
2007-08-07T09:49:12.880Z	4.868	125.549	4.6
2002-04-20T17:59:16.210Z	4.868	123.755	4.9
2017-03-28T07:07:43.930Z	4.8682	126.8312	4.7
2006-10-29T15:10:05.440Z	4.869	124.953	4.2
2001-10-21T17:00:34.980Z	4.869	125.507	4.5
2019-10-18T13:18:43.257Z	4.8699	125.2621	4.8
2008-05-31T18:35:32.600Z	4.87	127.646	3.9
2006-04-02T03:20:48.520Z	4.87	127.343	4.1
2013-10-08T21:41:54.130Z	4.874	125.7499	4.3
2009-09-18T00:52:58.840Z	4.875	126.745	4.9

Figure 21: Seismicity (.csv) input to QGIS program.

c) Download the location of regional faults and active volcanoes in the image file

format (.tif) from the PHIVOLCS website (Figure 22). Collect fault line data by extracting .tif

files and georeferencing them for location in QGIS.

Website ; https://hazardhunter.georisk.gov.ph/map

***PHIVOLCS is Hazard Hunter PH that is a product of GeoRisk in the Philippines, a multi-agency initiative led by the Philippine Institute of Volcanology and Seismology.

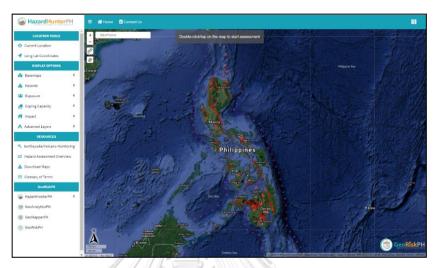


Figure 22: The source of faults and volcanic data in HazardHunterPH website.

d) Download the regional rock unit from OneGeology portal (Figure 23) in

shapefile shape format (.shp).

Website; http://portal.onegeology.org/OnegeologyGlobal/

*** OneGeology is providing geoscience data globally, It is a worldwide project

of the world's geological surveys, with the support of international organizations, regional organizations, and industrial sponsors, to realize this ambitious and interesting venture.

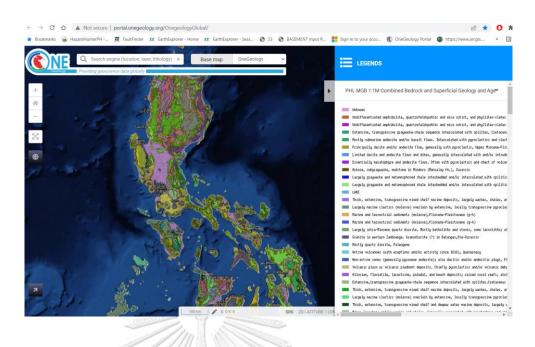


Figure 23: The source of geology rock unit data in OneGeology portal

e) Generate seismicity points (.csv) in the QGIS program with difference value

of magnitude, The sample earthquake map is represented in Figure 24.

website.

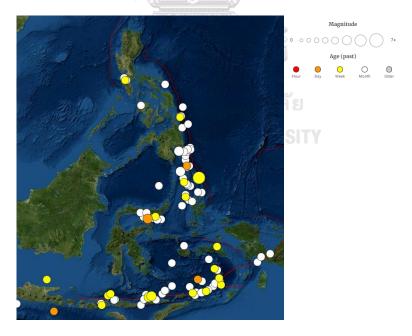
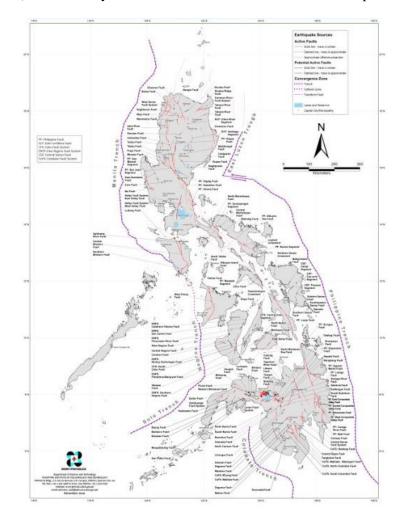
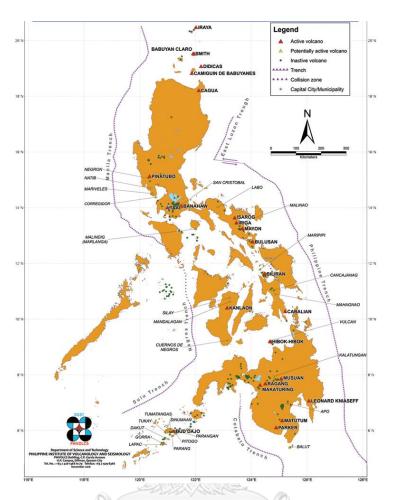




Figure 24: The example of the magnitude of the earthquake map from November 11 to December 11, 2021. (Source: USGS)

f) Start making a georeferenced raster for QGIS to use in order to display active faults as red lines as shown in Figures 25 and active volcano points in red triangles are shown in Figures 26, based on data from the Philippine Institute of Volcanology and Seismology (PHIVOLCS). Additionally, convert the .tif of the volcanic file data map to a .shp file (Points).

Figure 25: Distribution of active faults and trenches in the Philippines. (Source; PHIVOLCS).

Figure 26: Map of active and potential active volcanoes of the Philippines. (Source; PHIVOLCS).

g) Overlay all data input to the first map to see if there is a potential area for PSP, given two alternative locations for one case study. PSP's potential is using the parameters listed below;

- Elevation difference from color shade of altitude is completely different, with

the lowest being 150 m and the highest being > 700 m.

- The PSP is linked to a natural reservoir.
- The PSP was not found in the fault line.
- 20 kilometers away from seismicity >7 magnitude and volcanic eruption.
- h) Create the second map, which is a regional geology rock unit. (Source; ONE

Geology) Then enter 2 as an alternative area. The areas are acceptable if they contain granite,

volcanic, or sedimentary rock. If limestone or dolomite is discovered, the alternative area is not acceptable.

i) Compare two alternative areas and select one for each case study to determine the difference in headwater between the upper and lower reservoirs by generating a section along the waterway in the Google Earth program.

All processes will be carried out in accordance with the flowchart depicted in Figure 27.

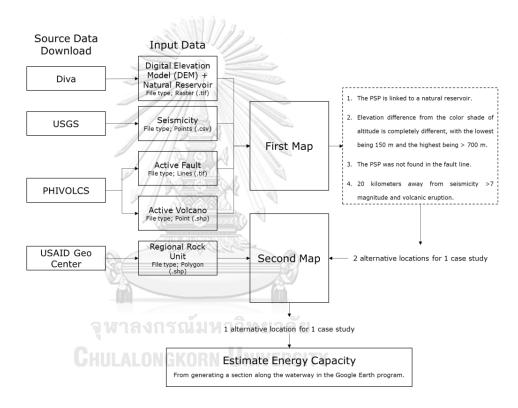


Figure 27: The flowchart of site selection process.

2.4 The Electric Price for PSP in the Philippines

The current electricity price in the Philippines is based on the approval given by the Energy Regulatory Commission (ERC) on the FIT-All rate petition of RE fund administrator National Transmission Corporation (TransCo) to account for adjustments in calendar year 2020. The FIT-All increase will be reflected in the bills by January. The regulatory body qualified that compared to TransCo's FIT-All application price of 0.2278 PHP/kwh, the approved subsidy charge is lower by 0.1295 PHP/kwh. But it was a misleading statement because, on consumers' electric bills, the overall impact will still be an uptick from the prevailing FIT-All charge. (PHP is Philippine Peso and FIT is Feed in tariff) The formula for calculating the "FIT-All" rate is as follows:

FIT All Rate (PHP/kWh) = [FIT Differental (FD) + Working Capital Allowance (WCA)+Administration Allowance(AA)+Disbusrsement Allowance(DA)] / Forecast National Sales (FNS)

However, the FIT-All theory cannot be applied to pump-storage hydropower because this technology is dependent on electric prices with 24-hour timing, generating power for consumers during peak and non-peak hours. So, for the author's research, the data available providing the total price per renewable energy sector, including the whole country rate per day in FIT-All, cannot be calculated by the number of hours required by the PSP.

The only source of electric prices that can be calculated for PSP is the data of ERC provisionally approved rates on February 16, 2009. Table 4, for example, show price data for different times of the year in Luzon.

LUZON GRID (in PHP/kWh)					
PERIOD	(JANUAR	(JANUARY - JUNE)		(JULY - DECEMBER)	
	Monday - Saturday	Sunday/ Holiday	Monday - Saturday	Sunday/ Holiday	
1:00 AM	2.3426	2.5022	2.3426	2.3426	
2:00 AM	2.3426	2.3426	2.3426	2.3426	
3:00 AM	2.3426	2.3426	2.3426	2.3426	
4:00 AM	2.3426	2.3426	2.3426	1.8649	
5:00 AM	2.3426	2.3426	2.3426	1.8649	
6:00 AM	2.3426	2.3426	2.3426	1.8649	
7:00 AM	2.3426	2.3426	2.3426	1.8649	
8:00 AM	2.6256	2.3426	2.5022	2.3426	
9:00 AM	5.779	2.3426	2.6256	2.3426	
10:00 AM	6.5283	2.5022	5.9872	2.5022	
11:00 AM	6.5283	2.5022	6.5283	2.5022	
12:00 PM	6.5283	2.5022	5.9872	2.5022	
1:00 PM	6.5283	2.5022	5.9872	2.5022	
2:00 PM	6.5283	2.5022	6.5283	2.5022	
3:00 PM	6.5283	2.5022	5.9872	2.5022	
4:00 PM	6.5283	2.5022	5.779	2.5022	
5:00 PM	5.9872	2.5022	5.5481	2.5022	
6:00 PM	5.9872	2.5022	5.9872	2.6256	
7:00 PM	6.5283	5.779	6.5283	5.5481	
8:00 PM	6.5283	5.779	5.9872	5.5481	
9:00 PM	5.9872	3.2594	5.779	2.6256	
10:00 PM	3.2594	2.6256	2.6256	2.5022	
11:00 PM	2.6256	2.5022	2.5022	2.3426	
12:00 AM	2.5022	2.3426	2.3426	2.3426	

Table 4: Electric price of LUZON grid on February 16, 2009.

Following Table 4, we can assume peak and non-peak hours to estimate revenue and consumption prices for pumping. Example, Peak hours are assumed to be 9:00 a.m. to 10:00 p.m. and the average electric sale price is 4.501 PHP/kWh, with non-peak hours ranging from 10:00 p.m. to 9:00 a.m. and the average cost of electricity is 2.416 PHP/kWh. Then, using this result, compute revenue and cost.

Because the global price of electricity is USD/kWh, we must also consider the exchange rate when calculating.

2.5 Tax of the Philippines

For both domestic and resident foreign corporations, the corporate income tax rate is 30% on net taxable income. Dividends from domestic corporations, interest on Philippine currency bank deposits, and trust fund yield are all tax-free. It is critical to understand that foreign corporations, whether resident or nonresident, are only taxed on income earned in the Philippines. [7]

Developers of Renewable Energy facilities, including hybrid and cogeneration systems that use both RE and conventional energy, for both power and non-power purposes, may be eligible for the following incentives if certified by the DOE under the Renewable Energy Act of 2008. Developers of Renewable Energy facilities, including hybrid and cogeneration systems that use both RE and conventional energy, for both power and non-power purposes, may be eligible for the following incentives if certified by the DOE under the Renewable Energy Act of 2008.

a) Income tax holiday for 7 years.

b) Duty-free importation of RE machinery, equipment and materials including control and communication equipment.

c) Special realty tax rates on equipment and machinery not exceeding 1.5% of their original cost less accumulated normal depreciation or net book value.

d) Net operational loss not previously deducted from gross income during the first
 3 years of commercial operation shall be carried over as a deduction from gross income for the
 next 7 consecutive taxable years immediately following the year of such loss.

e) Corporate tax rate of 10% on its net taxable income after 7 years.

f) Accelerated depreciation of plant, machinery and equipment may be applied ifthe project fails to receive an ITH before full operation.

g) 0% Value-Added Tax rate on the sale of fuel or power generated from RE sources. Zero rated VAT on purchases of local supply of goods, properties and services needed by RE developers in the development, construction and installation of its plant facility as well as the exploration and development of RE resources and its conversion into power.

h) Tax exemption on carbon credits.

i) Cash incentive of Renewable Energy developers for Missionary Electrification. A cash generation-based incentive per kilowatt hour equivalent to 50% of the universal charge for the power needed to service missionary areas chargeable against the universal charge for missionary electrification.

j) Tax credit on domestic capital equipment and services.

k) Exemption from universal charge.

I) Option to pay transmission and wheeling fees per kilowatt-hour at the same rate as all other electricity transmitted through the grid.Option to pay transmission and wheeling fees per kilowatt-hour at the same rate as all other electricity transmitted through the grid. *** This step is not included in this study because it is the preliminary stage.

2.6 Discounted Cash Flow Model (DCF Model)

ิจุหาลงกรณมหาวทยาลย

By analyzing and evaluating financial and investment returns, we can determine the value of a project. The following factors and principles are commonly used to evaluate investment suitability.

2.6.1 Cash flow

2.6.1.1 Cash Inflow

The revenue generated by the operation pattern must be calculated using the daily electricity price projection. That is, the prices must be assessed (day-ahead pricing) for each day of this time period, and the daily operation pattern must be defined. The revenue will be calculated by the annual generation hours (hrs/year), the annual energy generation (GWh/year) for the result of energy sales (M USD), and the formula as shown in the following step;

a) Formula for annual generation hours;

Annual generation hours (hrs/year) = Generation hour per day x 365 x Availability Rate

- b) Calculate annual energy generation per year using the parameters of personal consumption, capacity, and annual generation hours.
 - The assumption of own-consumption (M USD) is the additional cost incurred after the PSP plant uses its own energy during the operating phase, accounting for approximately 1.5 percent of revenues and pumping costs.

Annual energy generation = Annual generation hours x Capacity x (1- own-consumption)/1000

c) The final process is the annual price of revenue energy or energy sales (M USD). This is calculated using annual energy generation and peak hour of electric price. The formula is;

Energy sales = Annual energy generation x electric price on peak hour (M USD) (GWh/year) (USD/kWh)

2.6.1.2 Cash Outflow CRN UNVERSITY

In the preliminary stage, we can calculate three types of cash outflows: construction Cost Estimate (CAPEX), costs during operation and maintenance (OPEX), and pumping costs.

a) CAPEX (Construction Cost Estimate)

CAPEX is the cost of construction, which necessitates a variety of cost estimation methodologies. The majority of the construction costs were estimated from the ground up, with the resources required for various activities identified and costed using current prices, supplemented by obtaining cost estimates from suppliers and subcontractors for various items where possible. This included the supply and installation of electro-mechanical equipment, with these major costss also being compared to historical data and current industry rates [3]. The cost estimate includes both direct and indirect construction costs and includes the following major sections and components in Table 5.

Type of CAPEX	Group of Work	Description		
Direct Cost	Civil Works	Site Development		
		Upper Pond		
		Pressure tunnel		
		Tailrace Tunnel		
	_///	Intake Lower Reservoir		
		Power Cavern		
		Contingencies		
	Hydromechanical Works	HM in Gate chamber		
		Penstock and steel liner		
		Gates and trash rack lower intake		
	Allecce Some A	Contingency HM		
	Electromechanical Works	Generating equipment E&M		
	8	Switchyard		
		Transmission line (TL)		
	- A	Contingency EM		
Indirect Cost	Client Administration (5% of to	otal direct costs)		
	Engineering, Site Supervision (5% of total direct costs)			
	Detailed Design (3% of total direct costs)			
	Land Acquisition and EIA Cost			
	Project Development Cost			
	Insurance (2% of total direct costs)			
	Other Business Expenses (2% of total direct costs)			
	Interest during Construction (II	DC) (17.52% of total direct costs)		

Table 5: Components of direct and indirect construction costs.

b) **OPEX** (Costs during operation and maintenance)

Operation and Maintenance (O&M) costs comprise the total annual

expenditure incurred during the operation of the project. O&M costs are split into:

• Fixed O&M costs: Fixed operating expenses related to the type and

size of the plant only, but not related to the output.

• Variable O&M costs: Expenses depend on the output of the plant.

In comparison to fixed O&M costs, variable O&M costs for hydropower plants are relatively low. Cost components for regular operation and maintenance, overhauls, staff, management and administration, and insurance and fees are typically included in O&M costs, as shown in Table 6.

Type of OPEX	Description	
Cost Item	Cost of O&M (without overhauls)	
	Staff Cost	
	Administration and Management	
	Insurances and Fees	
Cost for overhauls	Major overhaul (every 6 years) = 1.3% of CAPEX for	
(Maintenance)	Generating E&M Equipment	
	Minor overhaul (every 12 years) = 3.7% of CAPEX for E&M	
	Equipment	
CHULALON	gkorn University	

Table 6: Components of costs during operation and maintenance

c) Pumping cost

The other cost is pumping cost is the PSP consumer energy for storage water to upper reservoir. The pumping cost will be calculated by the pumping hours (hrs/year), the annual energy consumer (GWh/year) for the result of pumping cost (M USD), and the formula as shown in the following step[3];

I. Formula for annual pumping hours;

Annual pumping hours (hrs/year) = Pumping hour per day x 365 x Availability Rate

II. Calculate annual energy pumping per year using the parameters of personal consumption, capacity, and annual pumping hours.

The assumption of own-consumption (M USD) is the additional cost incurred after the PSP plant uses its own energy during the operating phase, accounting for approximately 1.5 percent of revenues and pumping costs.

Annual energy pumping = Annual pumping hours x Capacity x (1- own-consumption)/1000

III. The final process is the annual price of consumer energy or pumping costs (M USD). This is calculated using annual energy pumping and nonpeak hour electricity prices. The formula is;

> Pumping costs = Annual energy pumping x electric price on non-peak hour (M USD) (GWh/year) (USD/kWh)

2.6.2 Discounted Rate

Money's value depreciates over time because it can be invested to create value, and there is an opportunity cost if it is not invested. As a result, the discount rate is a tool used to determine the present value of money until the value of money continues to fall. This is an important part of the valuation process because it considers the present value. The following are the most common discount rate calculations. The Weighted Average Cost of Capital (WACC) is used to calculate the discount rate based on the cost structure of borrowing, equity costs, and tax rates. Following the previous project [3], the researchers will apply **WACC 9 %**.

2.6.3 Net Present Value (NPV)

Net Present Value (NPV) is used to determine whether or not to make a profit. This method calculates the difference between the target of the projected profit and the rate of return, and the necessary step can be computed using the following equation.

$$NPV = \sum_{t=0}^{n} \frac{(B_t - C_t)}{(1+r)^t}$$

Where;

Bt : The benefit of the project in year (t)

Ct : The cost of the project in year (t)

r : Discount Rate

n: Concession year of the project

 $t \ : \ Calculated \ year$

By considering investments from the results of NPV as follows:

NPV > 0: Able to invest the return on investment is greater.

NPV = 0: Just enough breakeven, should consider other factors besides money.

NPV < 0: Should be avoided The return on investment is less.

2.6.4 Internal Rate of Return (IRR)

Internal Rate of Return (IRR); is the computation of the return rate on a project's investment. This rate of return is the rate at which the net present value equals zero or the return equals the initial investment. The following equation can be used to calculate it;

$$\sum_{t=0}^{n} \frac{(B_t - C_t)}{(1 + IRR)^t} = 0$$

CHUALONGKORN UNIVERSITY Where;

IRR : Internal Rate of Return

- Bt : The benefit of the project in year (t)
- Ct : The cost of the project in year (t)
- r : Discount Rate
- n : Concession year of the project
- t : Calculated year

By considering investments from the results of IRR as follows:

IRR > r : Investment in that project should be made.

IRR < r : investment in that project should be rejected.

2.6.5 Payback Period (PB)

The payback period (PB) of an investment is the amount of time it takes for the investment to break even, or the period of time during which the net return on investment equals the amount of money invested in the project. Due to the fact that this method does not consider the time value of money, PB can be calculated as follows:

For the first way, calculate payback period by using the following formula:

In this case, if the cash flows are uneven, we can use the second formula to calculate the payback period:

Payback Period = Full Years Until Recovery + (Uncovered Cost at the Beginning of the Recovery Year / Cash Flow During the Recovery Year)

2.7 Related Literatures

Hydroelectric power plants are a sustainable source of renewable energy. And energy demand in Southeast Asia is expected to grow more than 60% of energy demand and in ASEAN it will be the world's fourth-largest energy consumer by 2030, according to Chamorro & McNulty (2018). Especially in countries with economic growth above 5%, sooner or later has higher annual electricity demand than available energy. Urbanization and supply chain shifts, there will be an increase in energy consumption over the next 20 years, which hydropower plants are expected to play a key role in this development.

According to the "ASEAN Connectivity Master Plan 2025," Gnanasagaran (2018), the hydropower investment potential in the ASEAN region is projected at \$ 90 billion (ASEAN 2016). Myanmar's potential is estimated to be 108 GW, whereas Lao PDR's is estimated to be 18 GW (without the main Mekong River project).

Despite significant investment costs and hazards (Ansar et al., 2014), hydropower power has historically produced the lowest cost of power when compared to other IRENA technologies (2017). Future investors are predicted to continue interested in hydroelectric electricity. The hydroelectric power plant project, on the other hand, provides additional problems in addition to increased development and operation expenses, as well as technical hurdles. For example, remote places require hydrological, geological, and topographic conditions, including earthquake-prone zones. There are also social and environmental considerations to consider (Ansar et al, 2014). It is a significant factor before beginning any hydroelectric project.

Many people are controversial and unacceptable in investing in large-scale hydroelectric projects. Because it is the world's largest hydroelectric power facility. It can also control the energy amount at all times to make it more efficient in the required time to create big quantities of electricity. Hydropower plants are therefore still required and needed up to now.

The demand for backup power is growing popular in transport and many industries, and this PSP project is one of the largest backup power projects, also known as Hydropower Pump Storage.

The hydroelectric plant project PSP-type Kühtai shows Figure 28 in Switzerland with a capacity of about 31 million cubic meters. The system is approx. 25 km from Kühtai's back Stubai valley, 68 km2 of the catchment area, and 260 GWh/year of generation of electricity from Inflow. It is a project involving two power stations from two previous reservoirs. The second power plant's extra retention capacity enhances flexibility and improves overall system performance. The bigger the volume of water available, the longer it can create energy.

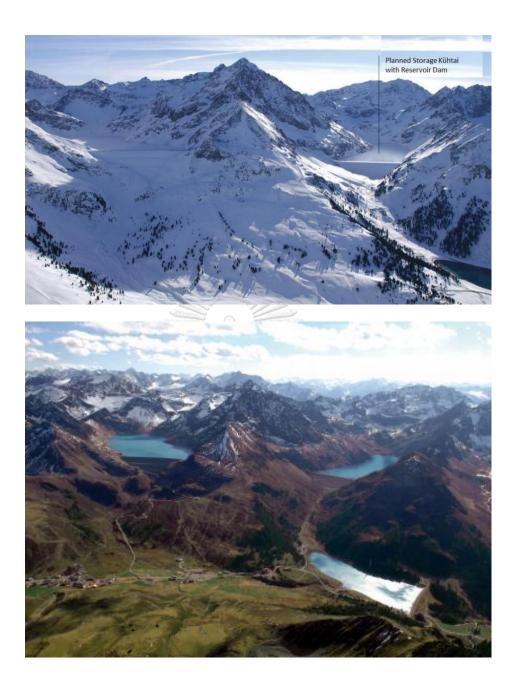


Figure 28: The PSP project area under construction named Project Kühtai, Above figure: PSP site in winter season, Bottom figure: PSP site in summer season.

The PSP project "Kühtai" is not only capable of storing water for pump circulation. However, retaining water in the rear valley permits 260 kWh of energy to be produced only from the natural flow of water. PSP's underground structures, as shown in Figure 29, include power converters (green color), waterway tunnels (blue color), turbines and motors (red color), and so on.

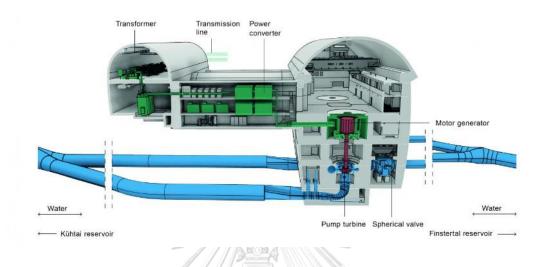


Figure 29: An example of the underground power plant of the Kühtai PSP project, shown in 3D form, encompassing the main components of the power plant undergound construction.

Another challenge of pumped storage plants is that they can operate with seawater, though there are additional challenges when compared to fresh water, such as saltwater corrosion and barnacle growth. The 240 MW Rance tidal power station in France, which was inaugurated in 1966, can partially function as a pumped-storage station. When high tides occur during non-peak hours, the turbines can be used to pump more seawater into the reservoir than the high tide would have brought in naturally. It is the world's only large-scale power plant of its type. In 1999, Okinawa's 30 MW Yanbaru project was the first demonstration of seawater pumped storage. It was later decommissioned. A 300 MW seawater-based Lanai Pumped Storage Project for Lanai, Hawaii, has been considered, and seawater-based projects have been proposed in Ireland. A pair of proposed projects in northern Chile's Atacama Desert would use 600 MW of photovoltaic solar (Skies of Tarapacá) and 300 MW of pumped storage (Mirror of Tarapacá) to raise seawater 600 meters up a coastal cliff.

The most significant stage in the establishment of a PSP is site selection through preliminary area screening and appraisal of suitability based on fundamental criteria, engineering design, and budgets. Because it necessitates working with enormous volumes of spatial data while adhering to many rules and limitations, this procedure is challenging and complex. There is an enormous amount of data and some factors for PSHP site selection that make decision-making much more difficult. It is probable that the traditional method will leave out some places that are inaccessible or unvisitable.

CHAPTER 3

METHODOLOGY AND RESULT

The general process of work is to follow to the flowchart as a Figure 30. The methodology focuses on site selection by mapping the collected data and analysis of the potential site to PSP capacity separately for three case scenarios that follow the Island region. Then, using the data of each scenario analysis of the feasibility of PSP by estimating energy and revenue before using the discounted cash flow model (DCF).

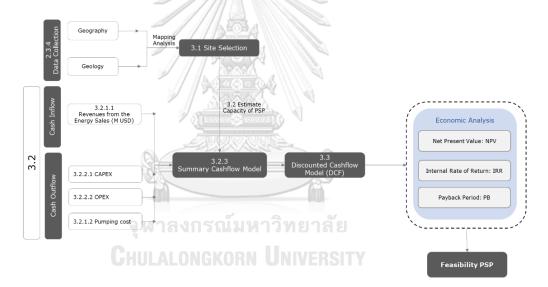


Figure 30: A flowchart of the whole research methodology.

The research will be saperate to 2 parts of "*Site selection*" by geography with parameter of topography. And obtimization the area by including geology with pareameter of seismicity, fault, volcanic, and rock unit as step in Figure 31. Determine mapping of each parameter and select the potential site by GIS program.

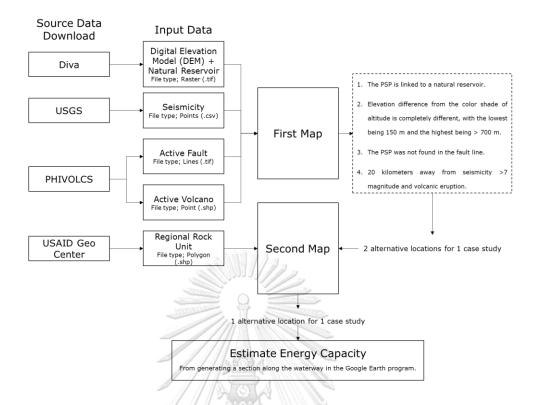


Figure 31: The flowchart of site selection process.

After collecting the data as shown in Figure 31, the data must be put into the WGS 1984 coordinate system (Lat/Lon) to overlay all the data before generating the first and second maps. The details of this step are provided in 2.3.4.

CHULALONGKORN UNIVERSITY

3.1 Site Selection Analysis

3.1.1 First Map - Overlay Geography and Risk of Geo-Hazard

3.1.1.1 Case Study Area 1 – Luzon

This region is in the Philippines' north, where there is a large number of the country's population, and natural reservoirs are indicated by a dark blue polygon. Alternative site selections are shown as black rectangular A and B. As shown in Figure 32;

Alternative-A is located in a natural body of water known as the "Cagayan River." The estimated minimum elevation is 2 m., the maximum elevation is around 550 m., which is represented in green. The distance from alternative-A to the active volcano "Cagua" is about 70 km.

Alternative-B is located in a natural body of water known as "Laguna de Bay." The estimated minimum elevation is 2 m., the maximum elevation is around 700 m., and it is about 20 km away from the active volcano named "Banahaw" and around 30 km away from the active volcano named "Taal."

Both alternatives contain a solid red line indicating an active fault in the surrounding area. There is simply a dashed red line indicating the approximate position of the fault. The largest red points show seismicity of more than 7 mg., and both of the alternatives are not shown in this area.

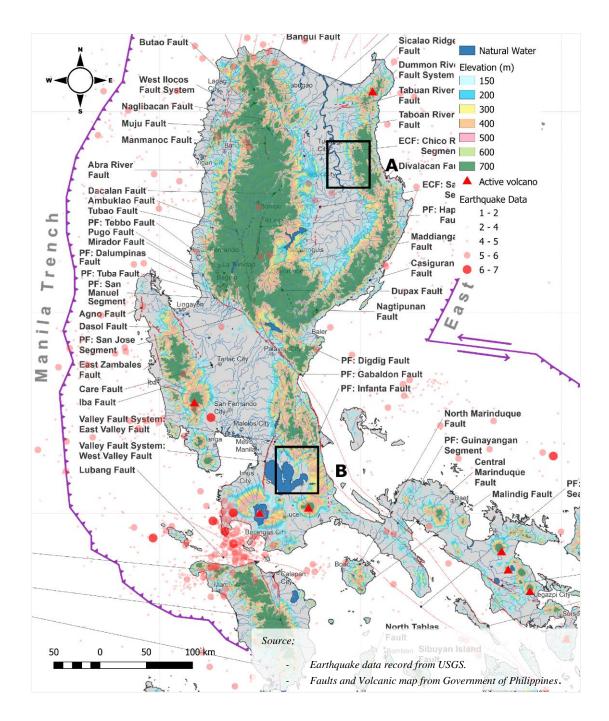


Figure 32: The first map overlay data was used for two alternatives in the Luzon area.

3.1.1.2 Case Study Area 2 – Visayas

The Visayas is located in the middle of the Philippines country. From Figure 33, the density of geohazards like volcanic eruptions and seismic activity in the eastern area. So the author will select 2 alternatives following the black rectangular A and B, located on different islands that are far away from any geohazard.

Because the PSP concept requires different elevations for the upper and lower reservoirs, as illustrated in Figure 33, the majority of Visayas is flat land (gray color represents an area less than 150 m), but the steep area is marked in green. As a result, there are only a few areas that represent both gray and green without any geohazards (volcanic eruption, red triangular/fault, red lines/and seismicity, red points). So, the author will choose the potential of PSP at the center part of this region, as shown in Figure 33.

Alternative-A: The estimated minimum elevation is 2 m, the maximum elevation is around 1700 m, and the distance from the active volcano "Kanlaon" is about 20 km. Alternative-B is an estimated minimum elevation of 1 m., the maximum elevation is around 840 m., and it is not close to an active volcano.

Both alternatives contain a solid red line indicating an active fault in the surrounding area. There is simply a dashed red line indicating the approximate position of the fault. The largest red points show seismicity of more than 7 mg., and both of the A & B alternatives are not located around this risk area.

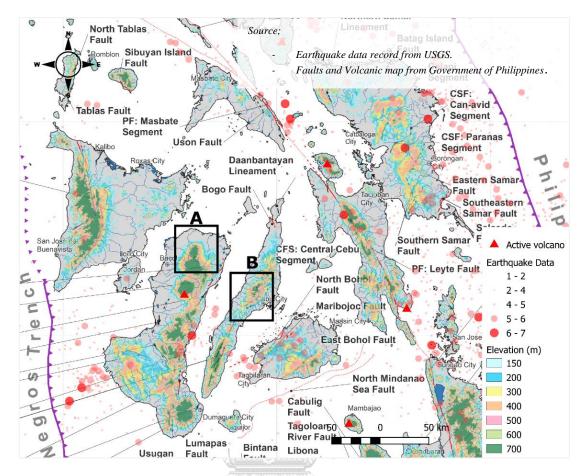
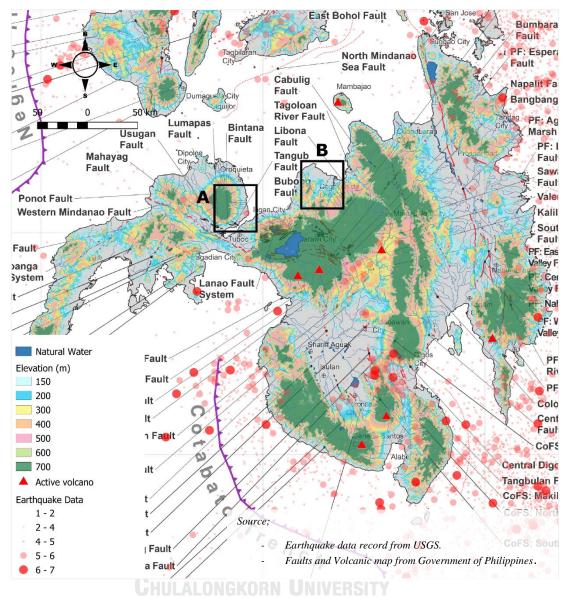


Figure 33: The first map overlay data was used for two alternatives in the Visayas area.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

3.1.1.3 Case Study Area 3 – Mindanao


This region located in the south of the country, and surrounding by tectocic. As the Figure 34 show density of seismicity at east and south-east of the Island. Alternative site selections are shown as black rectangular A and B as shown in Figure 34;

Alternative-A was estimated minimum elevation is 0 m., the maximum elevation is around 1700 m., and the distance from the active volcano " Makaturing " is about 70 km. and active volcano "Ragang" is about 80 km.

Alternative-B was estimated minimum elevation is 0 m., the maximum elevation is around 900 m., and the distance from the active volcano " Makaturing " is about 70 km. and active volcano " Ragang" is about 60 km.

Both alternatives contain a solid red line indicating an active fault in the surrounding area. There is simply a dash red line indicating the approximate position of the fault. The largest red points indicate a seismicity of more than 7 mg., and both alternatives are not located in this risk area.

จุฬาลงกรณ์มหาวิทยาลัย

Figure 34: The first map overlay data was used for two alternatives in the Mindanao area.

This stage is the final stage for initial site selection for PSP. The author will use only regional geology as the principal in chapter 2.3.3.

3.1.2.1 Case Study Area 1 – Luzon

From the data comparison in Figure 35, the author will select **Alternative-B** for potential PSP of Luzon. Because;

a) The first map (Left side) ; Alternative – A has a lower supply of water less than Alternative – B. And Alternate – B is close to Laguna De Bay, which is a big lake in the northern part of the country.

b) Alternative – A, has a different elevation less than Alternative
 – B. The difference in elevation between the maximum and the minimum is;

even the majority of the rocks are metamorphic rock and sedimentary, the site related to the natural river is still distant from the potential of the upper reservoir (green color in the left map).

Luzon Alternative A			
Rock Unit	Description Largely graywacke and metamorphosed shale interbedded and/or intercalated with spiritic, basic and intermediate flows, and/or pyroclastic, Undifferentiated.		
KPg1			
N1	Thick, extensive, transgressive mixed shelf marine deposits, largely wackes, shales, and reef limestone. Underlain by con- glomerate and/or associated with paralic coal measures in places, Upper Miocene-Pliocene		
N3+Q1	Marine and terrestrial sediments (molasse).		
NI	Largely intra-Miocene quartz diorite. Mostly batholiths and stocks, some laccoliths; also sills, dikes, and other minor bodies. Include granodiorite and diorite porphyry facies and late Miocene dacite, Neogene.		
R	Alluvium, fluviatile, lacustrine, paludal, and beach deposits; raised coral reefs, atolls, and beach rock, Recent.		
SN1	Largely marine classics (molasse) overlain by extensive, locally transgressive pyroclastic (chiefly tuff, tuffites) and tuffaceous sedimentary rocks, Upper Miocene-Pliocene.		
SN2	Thick, extensive, transgressive mixed shelf marine deposits, largely wackes, shales, and reef limestone. Underlain by con- glomerate and/or associated with paralic coal measures in places, Oligocene-Miocene.		
UV	Metamorphosed submarine flows, largely spilites and basalts, some keratophyres and andesites, Undifferentiated.		
Luzon Alternative B	(Jeans Dennes)		
Lake	LAKE		
QVP	Volcanic plain or volcanic piedmont deposits. Chiefly pyroclastic and/or volcanic debris at foot of volcanoes, Pliocene- Quaternary		
R	Alluvium, fluviatile, lacustrine, paludal, and beach deposits; raised coral reefs, atolls, and beach rock, Recent.		

Table 7: Regional geology, rock units at Luzon Island.

CHULALONGKORN UNIVERSITY

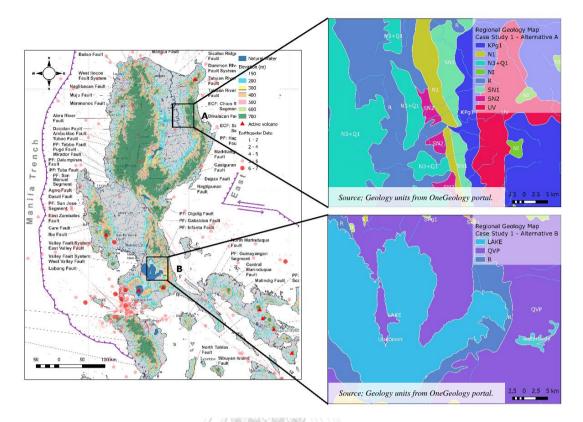


Figure 35: The second map overlay, regional geology data, was used for

selected potential PSP in the Luzon area.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn Universit c)

From the data comparison in Figure 36, the author will select **Alternative-B** for potential PSP of Visayas. Because;

a) The first map (The left side) shows that Alternative – A has a smaller supply of water than Alternative – B. And Alternate - B close to "Malubog Lake", which is close open pit mining and could develop into an upper reservoir in the future.

b) Alternative – A, has a different elevation less than Alternative – B. The difference in elevation between the maximum and the minimum is;

Alternative - A = 550 - 2 = 548 m.
 Alternative - B = 840 - 2 = 838 m.

Table 8 indicates that there are limestone rocks in rock units

"IN1" and "N1," even though the majority of the rocks are volcanic and sedimentary. However, the location associated with the natural river is still far from the upper reservoir's potential (green color in the left map). Nevertheless, Alternative-B only contains one unit "SN2" to the south of this location.

Rock Unit	Description
IN1	Thick, extensive, transgressive mixed shelf marine deposits,
	largely wackes, shales, and reef limestone. Underlain by
	conglomerate and/or associated with paralic coal measures in
	places, Upper Miocene-Pliocene.
N1	Thick, extensive, transgressive mixed shelf marine deposits,
	largely wackes, shales, and reef limestone. Underlain by con-
	glomerate and/or associated with paralic coal measures in places,
	Upper Miocene-Pliocene
N3	Marine and terrestrial sediments (molasse),
	Pliocene-Pleistocene (g-h).
QV	Non-active cones (generally pyroxene andesite); also dacitic
	and/or andesitic plugs, Pliocene-Quaternary
QVP	Volcanic plain or volcanic piedmont deposits. Chiefly
	pyroclastic and/or volcanic debris at foot of volcanoes, Pliocene-
	Quaternary
R 🚽	Alluvium, fluviatile, lacustrine, paludal, and beach deposits;
	raised coral reefs, atolls, and beach rock, Recent.
SN1	Largely marine clastics (molasse) overlain by extensive,
1	locally transgressive pyroclastic (chiefly tuff, tuffites) and
1	tuffaceous sedimentary rocks, Upper Miocene-Pliocene.
	ADGLA
Visayas Alternative B	
IK	Extensive, transgressive graywacke-shale sequence intercalated
	with spilites, Cretaceous.
N1	Thick, extensive, transgressive mixed shelf marine deposits,
	largely wackes, shales, and reef limestone. Underlain by con-
6	glomerate and/or associated with paralic coal measures in places,
	Upper Miocene-Pliocene.
N2	"
N3	Marine and terrestrial sediments (molasse), Pliocene-Pleistocene
110	(g-h).
N3+Q1	Marine and terrestrial sediments (molasse).
NI	Largely intra-Miocene quartz diorite. Mostly batholiths and
CHILLAI	stocks, some laccoliths; also sills, dikes, and other minor bodies.
	Include granodiorite and diorite porphyry facies and late Miocene
	dacite, Neogene.
Pgl	Mostly quartz diorite, Paleogene.
R	Alluvium, fluviatile, lacustrine, paludal, and beach deposits;
ĸ	raised coral reefs, atolls, and beach rock, Recent.
SK	Extensive, transgressive graywacke-shale sequence intercalated
511	with spilites. Cretaceous.
SN1	Largely marine clastics (molasse) overlain by extensive, lo-cally
DI 11	transgressive pyroclastic (chiefly tuff, tuffites) and tuffaceous
	sedimentary rocks, Upper Miocene-Pliocene.
SN2	Thick, extensive, transgressive mixed shelf marine deposits,
N. 1	largely wackes, shales, and reef limestone. Underlain by con-
	glomerate and/or associated with paralic coal measures in places,
	Oligocene-Miocene.

Table 8: Regional geology, rock units at Visayas Island.

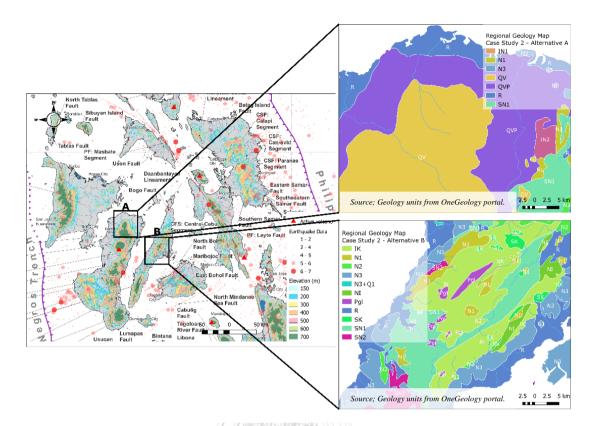


Figure 36: The second map overlay, regional geology data, was used for

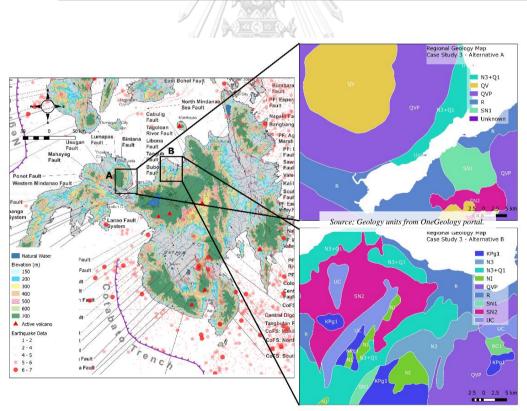
3.1.2.3 Case Study Area 3 – Mindanao

From the data comparison in Figure 37, the author will select **Alternative-A** for potential PSP of Mindanao. Because;

a) The first map (on the left) indicates that Alternative – A has a supply of contaminated sea water from "Panguli Bay." In spite of Alternative-proximity B's to "Macajalar Bay," which has a higher concentration of seawater.

b) Alternative – B, has a different elevation less than Alternative – B. The difference in elevation between the maximum and the minimum is;

Alternative – A = 1,700 – 0 = 1,700 m.
 Alternative – B = 900 – 0 = 900 m.


c) Table 9 shows that the rock units of the first two alternatives

are suitable for PSP construction, so the author will apply just the criteria from the first map.

Mindanao Alternative A	A
Rock Unit	Description
N3+Q1	Marine and terrestrial sediments (molasse).
QV HULAL	Non-active cones (generally pyroxene andesite); also dacitic and/or andesitic plugs, Pliocene-Quaternary
QVP	Volcanic plain or volcanic piedmont deposits. Chiefly pyroclastic and/or volcanic debris at foot of volcanoes, Pliocene- Quaternary
R	Alluvium, fluviatile, lacustrine, paludal, and beach deposits; raised coral reefs, atolls, and beach rock, Recent.
SN1	Largely marine clastics (molasse) overlain by extensive, locally transgressive pyroclastic (chiefly tuff, tuffites) and tuffaceous sedimentary rocks, Upper Miocene-Pliocene.
Unknown	Marine and terrestrial sediments (molasse).

Table 9: Regional geology, rock units at Mindanao Island.

Mindanao Alternative	B
KPg1	Largely graywacke and metamorphosed shale interbedded and/or intercalated with spilitic, basic and intermediate flows, and/or pyroclastic, Undifferentiated.
N3	Marine and terrestrial sediments (molasse), Pliocene-Pleistocene (g h)
N3+Q1	Marine and terrestrial sediments (molasse).
NI	Largely intra-Miocene quartz diorite. Mostly batholiths and stocks, some laccoliths; also sills, dikes, and other minor bodies. Include granodiorite and diorite porphyry facies and late Miocene dacite, Neogene.
QVP	Volcanic plain or volcanic piedmont deposits. Chiefly pyroclastic and/or volcanic debris at foot of volcanoes, Pliocene- Quaternary
R	Alluvium, fluviatile, lacustrine, paludal, and beach deposits; raised coral reefs, atolls, and beachrock, Recent.
SN1	Largely marine clastics (molasse) overlain by extensive, locally transgressive pyroclastic (chiefly tuff, tuffites) and tuffaceous sedimentary rocks, Upper Miocene-Pliocene.
SN2	Thick, extensive, transgressive mixed shelf marine deposits, largely wackes, shales, and reef limestone. Underlain by con-glomerate and/or associated with paralic coal measures in places, Oligocene- Miocene.
UC	Undifferentiated ultramafic and mafic plutonic rocks. Predominantly peridotite associated with late gabbro and/or diabase dikes, Cretaceous-Paleogene.

Source; Geology units from OneGeology portal.

Figure 37: The second map overlay, regional geology data, was used

for selected potential PSP in the Mindanao area.

3.1.3 Estimate Energy Storage Capacity

This stage does not have research criteria because it is outside of the scope of the project, and the engineering designer must compute the slope. But the author will calculate energy capacity by using the differential between the upper and lower reservoirs. Then a random waterway, and will cut cross-sections at the highest and lowest points in "Google Earth" for the reader to visualize. The estimate reservoir of PSP is shown in all of the below figure, the blue polygon is upper reservoir, the blue line is random waterway, and all case studies are connected natural water at lower reservoir.

Figure 38: A satellite image of Luzon in a 2D terrain view at Luzon, along with a cross-section along an estimated tunnel line. The blue line represented the elevation of the terrain along the tunnel. Source: Google Earth.



Figure 39: A satellite image of Luzon in a 3D terrain view at **Luzon**, along with a cross-section along an estimated tunnel line. The red line represented the elevation of the terrain along the tunnel. Source: Google Earth.

Figure 40: A satellite image of Visayas in a 3D terrain view at **Visayas**, along with a cross-section along an estimated tunnel line. The red line represented the elevation of the terrain along the tunnel. Source: Google Earth.

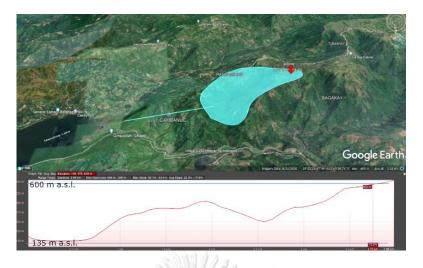


Figure 41: A satellite image of Visayas in a 3D terrain view at Visayas, along with a cross-section along an estimated tunnel line. The red line represented the elevation of the terrain along the tunnel. Source: Google Earth.

The special feature of this location is its approach to an open-pit mine that has the potential to expand to the upper reservoir, as seen in Figure 42, assuming no operations occur in the future. The advantageous usage of this technology can result in significant cost savings associated with the excavation phase of the construction process.

This technology is already in use in the development of gold mines in Australia. The building of the Kidston Pumped Storage Hydro Project at the Kidston Clean Energy Hub in Queensland will create over 500 direct jobs and will support remote and regional businesses and communities during these difficult economic times.

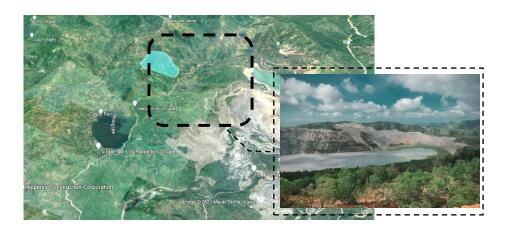


Figure 42: Another potential location with cheaper excavation costs is the upper reservoir at **Visayas**, where is located in an open-pit mine at the same elevation. Source; Google Earth.

Figure 43: A satellite image of Mindanao in a 2D terrain view at **Mindanao**, along with a cross-section along an estimated tunnel line. The red line represented the elevation of the terrain along the tunnel. Source: Google Earth.

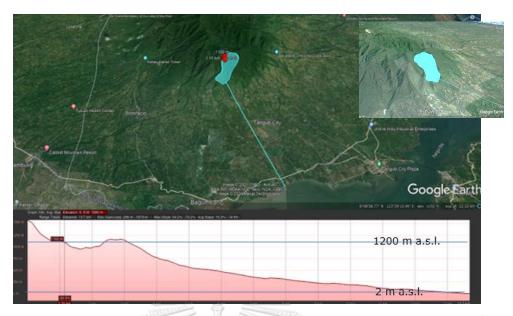


Figure 44: A satellite image of Mindanao in a 3D terrain view at **Mindanao**, along with a cross-section along an estimated tunnel line. The red line represented the elevation of the terrain along the tunnel. Source: Google Earth.

3.1.3.1 Conclusion of Estimate Energy Storage Capacity

In the storage energy section, Figure 45, it is necessary to indicate parameters separated by a height (h) that corresponds to the hydraulic head. Assume that h is indicator differential elevation of the upper and lower reservoir, and Vu is its capacity to store water.

The summary of h of all case will be provided in Table 10, and this number will be used to determine the energy density in the next step.

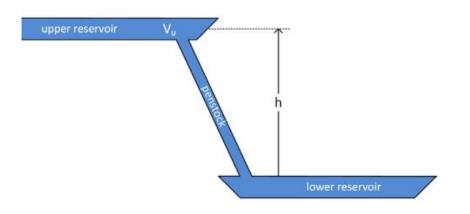


Figure 45: The figure of the indicator differential elevation of the upper

and lower reservoir (h).

Table 10: Different highs of the lower and upper reservoirs.

Case Study Area	Lower Reservoir	Upper Reservoir	h
	m.	m.	m.
1. Luzon	2	490	488
2. Visayas	135	600	465
3. Mindanao	2	1100	1098

The energy density (ev) is energy per unit volume of the stored water

CHULALO $e_v = \frac{E_t}{V_u} = \rho g h$

Where ρ *is the density of water* = 1000 kg/m3

g is gravitational acceleration = 9.81 m/s2

Sample calculated in case study 1;

 $e_v = 1000 \ (kg/m3) \ x \ 9.81 \ (m/s2) * 488 = 4,787,280 \ J/m3$

is;

The summary of energy density of all case will be provided in Table

11, and this number will be used to determine the power in the next step.

Table 11: The water density of each case study.

Case Study Area	The energy density
	J/m3
1. Luzon	4,787,280.00
2. Visayas	4,561,650.00
3. Mindanao	10,771,380.00
	A

The rate at which energy is transferred to the turbine (from the pump)

is the **power** (*P*) extracted from (delivered to) the water is;

$$P = e_v Q = pQ = \rho g h Q$$

Where Q from the historical project [9] is 49.1 m3/s.

Sample calculated in case study 1;

$$P = 4,787,280 \text{ (J/m3)} \text{ x } 49.1 \text{ x } 100,000 = \underline{235} \text{ MW}$$

After all calculations are complete, the result of this research in terms

of power pump/turbines per unit is shown in Table 12.

Table 12: The power of pump/turbines per unit.	
rable 12. The power of pump/tarbines per unit.	

	down to an integer.
MW	MW
235	200
224	220
529	500
	235 224

***Visayas will round numbers up and down to a smaller integer than other areas due to the area's lower elevation

and smalless reservoir.

3.2 Cash Flow Estimation for Case Studies

The PSP is feasibility because it utilizes a discounted cash flow model (DCF) to generate electricity through simulated sales, a scenario in which electricity is generated during peak and non-peak hours.

Three research areas have been established for the region's islands: Luzon (L), Visayas (V), and Mindanao (M). According to the elevation of each PSP's reservoir as determined in Chapter 3.1, with the assumption of a unit turbine and pump design, will apply to this step. For economic and financial considerations, the project feasibility can be assumed to be an expected capacity size, as shown in Table 13. The author will design the three scenarios by reducing power from Table 13 by hundreds of digits, with the exception of Visayas, which will be reduced by tens of digits because this area has the lowest area reservoir and is more difficult to discover prospective area than other regions.

Table	13:	Assumptions	of	capacity	for	PSP.
			2	<u>EN NOR</u>	XX	322

	Pump/Turbines	Pump/turbines per u	unit	Installed capacity
	Unit		MW	(MW)
1. Luzon	จุฬาลงกรณ์ม	เหาวิทยาลัย	200	800
2. Visayas	CHULALONGK ³	RN UNIVERSIT	220	660
3. Mindanao	5		500	2500

3.2.1 Calculated Price of Electricity

Associated with PSP theory Calculated prices must take into account the consumer's daily schedule, including peak and off-peak hours. Electricity prices for PSP can only be calculated using data from the ERC's provisionally approved rates on February 16, 2009. Table 14 is the price data for various times of the year, segmented by region.

Table 14: Electric price of LUZON	, Visayas and Mindanao	grid on February 16,

2009.

		LUZON GRID (in PHP/kWh)		
PERIOD	(JANUA	RY - JUNE)	(JULY - DI	ECEMBER)
	Monday - Saturday	Sunday/ Holiday	Monday - Saturday	Sunday/ Holiday
1:00 AM	2.3426	2.5022	2.3426	2.3426
2:00 AM	2.3426	2.3426	2.3426	2.3426
3:00 AM	2.3426	2.3426	2.3426	2.3426
4:00 AM	2.3426	2.3426	2.3426	1.8649
5:00 AM	2.3426	2.3426	2.3426	1.8649
6:00 AM	2.3426	2.3426	2.3426	1.8649
7:00 AM	2.3426	2.3426	2.3426	1.8649
8:00 AM	2.6256	2.3426	2.5022	2.3426
9:00 AM	5.779	2.3426	2.6256	2.3426
10:00 AM	6.5283	2.5022	5.9872	2.5022
11:00 AM	6.5283	2.5022	6.5283	2.5022
12:00 PM	6.5283	2.5022	5.9872	2.5022
1:00 PM	6.5283	2.5022	5.9872	2.5022
2:00 PM	6.5283	2.5022	6.5283	2.5022
3:00 PM	6.5283	2.5022	5.9872	2.5022
4:00 PM	6.5283	2.5022	5.779	2.5022
5:00 PM	5.9872	2.5022	5.5481	2.5022
6:00 PM	5.9872	2.5022	5.9872	2.6256
7:00 PM	6.5283	5.779	6.5283	5.5481
8:00 PM	6.5283	5.779	5.9872	5.5481
9:00 PM	5.9872	3.2594	5.779	2.6256
10:00 PM	3.2594	2.6256	2.6256	2.5022
11:00 PM	2.6256	2.5022	2.5022	2.3426
12:00 AM	2.5022	2.3426	2.3426	2.3426
PERIOD		/ISAYAS GRID (in PHP/kWh) - DECEMBER)		
	Monday - Saturday	Sunday/Holiday		
1:00 AM	2.6158	2.6158		
2:00 AM	2.2181	2.2181		
3:00 AM	2.2181	2.2181		
4:00 AM	2.2181	2.2181		
5:00 AM	2.2181	2.2181		
6:00 AM	2.2181	2.2181		
7:00 AM	2.2181	2.2181		
8:00 AM	2.934	2.2181		

9:00 AM				
	3.4157	2.2181		
10:00 AM	3.6322	2.6158		
11:00 AM	3.6322	2.934		
12:00 PM	3.6322	2.934		
1:00 PM	3.6322	2.934		
2:00 PM	3.6322	3.0516		
3:00 PM	3.6322	2.934		
4:00 PM	3.6322	2.934		
5:00 PM	3.5332	2.934		
6:00 PM	6.4755	3.6322		
7:00 PM	6.4755	6.4755		
8:00 PM	6.4755	6.4755		
9:00 PM	6.4755	3.6322		
10:00 PM	3.6322	3.5332		
11:00 PM	3.0516	3.0516		
12:00 AM	2.934	2.6158		
		DANAO GRID n PHP/kWh)		
PERIOD	(JANUAR	Y - JUNE)	(JULY - DE	ECEMBER)
	Monday - Saturday	Sunday/ Holiday	Monday - Saturday	Sunday/ Holiday
1:00 AM	2.8514	2.8514	2.0306	2.0306
2:00 AM	2.7198	2.8514	2.0306	2.0306
3:00 AM	2.7198	2.7198	2.0306	2.0306
	2.7198	2.7198	2.0306	2.0306
4:00 AM				
4:00 AM 5:00 AM	2.8514	2.7198	2.0306	2.0306
5:00 AM	2.8514	(6)	2.0306	2.0306 2.0306
5:00 AM 6:00 AM	2.8514 2.7198	2.7198	2.0306	2.0306
5:00 AM 6:00 AM 7:00 AM	2.8514 2.7198 2.7198	2.7198 2.7198	2.0306 2.0306	2.0306 2.0306
5:00 AM 6:00 AM 7:00 AM 8:00 AM	2.8514 2.7198 2.7198 2.8514	2.7198 2.7198 2.7198	2.0306	2.0306 2.0306 2.0306
5:00 AM 6:00 AM 7:00 AM	2.8514 2.7198 2.7198	2.7198 2.7198	2.0306 2.0306 2.0306	2.0306 2.0306
5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM	2.8514 2.7198 2.7198 2.8514 2.9466 2.9643	2.7198 2.7198 2.7198 2.7198 2.7198 2.8514	2.0306 2.0306 2.0306 2.0306 2.8514 2.9466	2.0306 2.0306 2.0306 2.0306 2.0306
5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM	2.8514 2.7198 2.7198 2.8514 2.9466 2.9643	2.7198 2.7198 2.7198 2.7198 2.7198 2.8514	2.0306 2.0306 2.0306 2.0306 2.8514 2.9466	2.0306 2.0306 2.0306 2.0306
5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM	2.8514 2.7198 2.7198 2.8514 2.9466 2.9643 2.9643	2.7198 2.7198 2.7198 2.7198 2.7198 2.8514 2.8514	2.0306 2.0306 2.0306 2.8514 2.9466 2.9466	2.0306 2.0306 2.0306 2.0306 2.0306 2.0306 2.7198
5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM	2.8514 2.7198 2.7198 2.8514 2.9466 2.9643 2.9643 2.9643	2.7198 2.7198 2.7198 2.7198 2.8514 2.8514 2.8514 2.8514 2.8514	2.0306 2.0306 2.0306 2.8514 2.9466 2.9466 2.9466 2.9466	2.0306 2.0306 2.0306 2.0306 2.0306 2.7198 2.7198 2.7198
5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM	2.8514 2.7198 2.7198 2.8514 2.9466 2.9643 2.9643 2.9643 2.9643 2.9643	2.7198 2.7198 2.7198 2.7198 2.7198 2.8514 2.8514 2.8514 2.8514 2.8514 2.8514 2.9466	2.0306 2.0306 2.0306 2.8514 2.9466 2.9466 2.9466 2.9466 2.9466	2.0306 2.0306 2.0306 2.0306 2.0306 2.7198 2.7198 2.7198 2.7198 2.7198
5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM	2.8514 2.7198 2.7198 2.8514 2.9466 2.9643 2.9643 2.9643 2.9643 2.9643 2.9643 2.9643 2.9643	2.7198 2.7198 2.7198 2.7198 2.7198 2.8514 2.8514 2.8514 2.8514 2.8514 2.8514 2.8514 2.9466 3.292	2.0306 2.0306 2.0306 2.8514 2.9466 2.9466 2.9466 2.9466 2.9466 2.9466	2.0306 2.0306 2.0306 2.0306 2.0306 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198
5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 2:00 PM 3:00 PM 4:00 PM	2.8514 2.7198 2.7198 2.8514 2.9466 2.9643 2.9643 2.9643 2.9643 2.9643 2.9643 2.9643 2.9643 3.292	2.7198 2.7198 2.7198 2.7198 2.8514 2.8514 2.8514 2.8514 2.8514 2.9466 3.292 3.292	2.0306 2.0306 2.0306 2.8514 2.9466 2.9466 2.9466 2.9466 2.9466 2.9466 2.9466 3.292	2.0306 2.0306 2.0306 2.0306 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198
5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 11:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM	2.8514 2.7198 2.7198 2.8514 2.9466 2.9643 2.9643 2.9643 2.9643 2.9643 2.9643 2.9643 2.9643 3.292 3.292	2.7198 2.7198 2.7198 2.7198 2.7198 2.8514 2.8514 2.8514 2.8514 2.8514 2.9466 3.292 3.292 3.292	2.0306 2.0306 2.0306 2.8514 2.9466 2.9466 2.9466 2.9466 2.9466 2.9466 3.292 3.292	2.0306 2.0306 2.0306 2.0306 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198
5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 11:00 AM 12:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM	2.8514 2.7198 2.7198 2.8514 2.9466 2.9643 2.9643 2.9643 2.9643 2.9643 2.9643 2.9643 3.292 3.292 3.292	2.7198 2.7198 2.7198 2.7198 2.8514 2.8514 2.8514 2.8514 2.8514 2.8514 2.9466 3.292 3.292 3.292 3.292 3.292	2.0306 2.0306 2.0306 2.8514 2.9466 2.9466 2.9466 2.9466 2.9466 3.292 3.292 3.292	2.0306 2.0306 2.0306 2.0306 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198
5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 11:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM	2.8514 2.7198 2.7198 2.8514 2.9466 2.9643 2.9643 2.9643 2.9643 2.9643 2.9643 2.9643 3.292 3.292 3.292 3.292	2.7198 2.7198 2.7198 2.7198 2.8514 2.8514 2.8514 2.8514 2.8514 2.9466 3.292 3.292 3.292 3.292 3.292 3.292	2.0306 2.0306 2.0306 2.8514 2.9466 2.9466 2.9466 2.9466 2.9466 2.9466 3.292 3.292 3.292 3.292	2.0306 2.0306 2.0306 2.0306 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7292
5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 11:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM	2.8514 2.7198 2.7198 2.8514 2.9466 2.9643 2.9643 2.9643 2.9643 2.9643 2.9643 2.9643 3.292 3.292 3.292 3.292 3.292 3.292	2.7198 2.7198 2.7198 2.7198 2.7198 2.8514 2.8514 2.8514 2.8514 2.8514 2.9466 3.292 3.292 3.292 3.292 3.292 3.292 3.292	2.0306 2.0306 2.0306 2.8514 2.9466 2.9466 2.9466 2.9466 2.9466 2.9466 3.292 3.292 3.292 3.292 3.292	2.0306 2.0306 2.0306 2.0306 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.8514 3.292 3.292 3.292
5:00 AM 6:00 AM 7:00 AM 7:00 AM 9:00 AM 10:00 AM 10:00 AM 10:00 AM 10:00 PM 1:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 8:00 PM 9:00 PM	2.8514 2.7198 2.7198 2.8514 2.9466 2.9643 2.9643 2.9643 2.9643 2.9643 2.9643 2.9643 3.292 3.292 3.292 3.292 3.292 3.292	2.7198 2.7198 2.7198 2.7198 2.8514 2.8514 2.8514 2.8514 2.8514 2.9466 3.292 3.292 3.292 3.292 3.292 3.292 3.292 3.292 3.292 3.292	2.0306 2.0306 2.0306 2.8514 2.9466 2.9466 2.9466 2.9466 2.9466 3.292 3.292 3.292 3.292 3.292 3.292 3.292	2.0306 2.0306 2.0306 2.0306 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.8514 3.292 3.292 3.292 2.9643
5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 11:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM	2.8514 2.7198 2.7198 2.8514 2.9466 2.9643 2.9643 2.9643 2.9643 2.9643 2.9643 2.9643 3.292 3.292 3.292 3.292 3.292 3.292	2.7198 2.7198 2.7198 2.7198 2.7198 2.8514 2.8514 2.8514 2.8514 2.8514 2.9466 3.292 3.292 3.292 3.292 3.292 3.292 3.292	2.0306 2.0306 2.0306 2.8514 2.9466 2.9466 2.9466 2.9466 2.9466 2.9466 3.292 3.292 3.292 3.292 3.292	2.0306 2.0306 2.0306 2.0306 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.7198 2.8514 3.292 3.292 3.292

Source of data; https://www.psalm.gov.ph/home/ercrates

Then, using this data record (Table 14), we can calculate the price of electricity using the steps outlined below.

a) The author will collect the average price of peak and non-peak hours in each area, subdivided into two scenarios: Monday-Saturday and Sunday/Holiday. The peak hour is assumed to be between 9:00 a.m. and 10:00 p.m. (13 hours) and off-peak hours between 10:00 p.m. and 9:00 a.m. (11 hours) as shown in the Table 15.

Table 15: The ave*rage* electric price (PHP/kWh) scenario for the grids of Luzon, Visayas, and Mindanao, on February 16, 2009.

		Non Peak hour (10.00 pm9.00 am.)	Peak hour (9.00 am10.00 pm.)
Luzon	Monday - Saturday	2.562	5.970
	Sunday/Holiday	2.270	3.032
Visayas	Monday - Saturday	2.569	4.499
	Sunday/Holiday	2.366	3.617
Mindanao	Monday - Saturday	2.494	3.098
	Sunday/Holiday	2.430	2.971

b) Use this exchange rate, PHP to USD by rate in the fourth quarter of 2021, which is 50.67 PHP/USD to each area, then average price for non peak and peak hour. The result will present in Table 16 to Table 18.

Table 16: The average electric price in USD/kWh for the grids of Luzon.

	Non Peak hour (10.00 pm9.00 am.)	Peak hour (9.00 am10.00 pm.)
Monday - Saturday	0.0506	0.1178
Sunday/Holiday	0.0448	0.0598
Average Price	0.0477	0.0888

Table 17: The average	electric pr	rice in '	USD/kWh	for the	grids of	Visavas.

	Non Peak hour (10.00 pm9.00 am.)	Peak hour (9.00 am10.00 pm.)
Monday - Saturday	0.05070	0.08880
Sunday/Holiday	0.04670	0.07138
Average Price	0.04870	0.0801

Table 18: The average electric price in USD/kWh for the grids of Mindanao.

	Non Peak hour (10.00 pm9.00 am.)	Peak hour (9.00 am10.00 pm.)
Monday - Saturday	0.04923	0.06117
Sunday/Holiday	0.04797	0.05863
Average Price	0.04860	0.0599

c) Then, forecast average prices from 2009 to 2020, and use this rate for each area

by inputting the inflation rate, and apply from this inflation equation.

$$Inflation Rate = \frac{CPI_{Current Year} - CPI_{Last Year}}{CPI_{Last Year}} \times 100$$

Where; CPI is Consumer Price Index

To this equation for inflating the cost in the current situation.

CPI current year = [(Inflation Rate/100)*CPI last year]+ CPI last year

Sample; In 2009, the non-peak hour price in Luzon was 0.0468, and the inflation

rate in 2010 was 3.790 percent.

CPI 2010 = [(3.790%/100)*0.0468]+ 0.0468 = 0.04770 USD/kWh

Then, in Table 19, a summary forecast from 2009 to 2020 is presented, with the yellow color indicating the price in 2009 and the green color highlighting the price for applying to the calculated price in the generation and pumping process.

Inflation Rates2.640%LuzonNon Peak Tariff0.0478Peak Tariff0.0891VisayasNon Peak Tariff0.0489VisayasNon Peak Tariff0.0489Peak Tariff0.04890.0489MindanaoNon Peak Tariff0.0488												
	J	2.480% 5	5.210%	2.850%	1.250%	0.670%	3.600%	2.580%	3.030%	4.720%	3.790%	4.220%
		0.0478 (0.0478	0.0478	0.0478	0.0478	0.0478	0.0478	0.0477	0.0477	0.0477	0.0477
		0.0891	0.0891	0680.0	0.0890	0.0890	0.0890	0.0890	0.0889	0.0889	0.0889	0.0888
	0	0.0488 (0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0488	0.0487	0.0487	0.0487
		0.0803 0	0.0803	0.0803	0.0802	0.0802	0.0802	0.0802	0.0802	0.0802	0.0801	0.0801
		0.0487 (0.0487	0.0487	0.0487	0.0487	0.0487	0.0487	0.0487	0.0486	0.0486	0.0486
Peak Tariff 0.0601		0.0601 (0.0601	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0599	0.0599	0.0599
RSI	ล้ย	Ð			6							

Table 19: Electric price with escalated price increases from 2009 to 2020. (USD/kWh)

3.2.1.1 Power Generation Process (Revenues)

The revenue generated by the operation method must be calculated using the projected daily electricity price. That is, the prices for each day of this time period must be assessed (day-ahead pricing), and the daily operation pattern must be defined. The revenue will be calculated using the annual generation hours (hrs/year), annual energy generation (GWh/year), and the formula shown in the following step;

a) Calculate the annual generation hours for each of the three case studies. Apply between 9 a:m. and 10:00 p.m. It is 13 hours per day, and it generates all year (365 days) with a 98% availability assumption.

Annual generation hours (hrs/year) = Generation hour per day x 365 x Availability Rate

Annual generation hours case study 1 = 13 * 365 * 98%

= <u>4650.1</u> hrs/year.

b) Calculate annual energy generation per year using the parameters of personal consumption, capacity, and annual generation hours.

The assumption of own-consumption (M USD) is the

additional cost incurred after the PSP plant uses its own energy during the operating phase,

accounting for approximately 1.5 percent of revenues and pumping costs.

Annual energy generation = Annual generation hours x Capacity x (1- own-consumption)/1000

Example of case study 1;

Annual energy generation = 4650.1*800*(1-1.5%)/1000

= <u>3664.3</u> GWh/year

The annual energy generation value of each case study will be

presented in Table 20.

Table 20: The annual	energy	generation	value	(GWh/year).

	Luzon	Visayas	Mindanao
Installed Capacity	800	660	2500
Annual energy generation	3664.279	3023.030	<u>11450.871</u>

c) Energy sales (M USD) = Annual energy generation (GWh/year) * tariff of peak hour (USD/kWh) The final process is the annual price of revenue energy or energy sales (M USD). This is calculated using annual energy generation and peak hour of electric price. The formula is;

Energy sales $=$ An	nual energy generation x e	lectric price on peak hour
(M USD)	(GWh/year)	(USD/kWh)

Example of case study 1;

Energy sales (M USD) = 3664.3 * 0.0891

= <u>326.6</u> M USD

The revenue forecast for the first case study is 326.6 million US dollars.

The conclusion of revenue for 3 case is presented in Table 21.

Table 21: Energy sales price of each case study. (USD/kWh/year)

	Luzon	Visayas	Mindanao
Installed Capacity	800	660	2500
Energy sales (M USD)	326.6	242.9	688.0

3.2.1.2 Pumping Process (Cost)

The other cost is pumping cost is the PSP consumer energy for storage water to upper reservoir. The pumping cost will be calculated by the pumping hours (hrs/year),

the annual energy consumer (GWh/year) for the result of pumping cost (M USD), and the formula as shown in the following step;

a) Calculate the annual pumping hours for each of the three case studies. Apply between 10:00 p.m. to 9:00 a.m. It operates 11 hours per day, 365 days a year, with a 98 percent availability assumption. The annual pumping hours formula is as follows;

Annual pumping hours (hrs/year) = Pumping hour per day x 365 x Availability Rate

Annual pumping hours = 11 * 365 * 98% = 3934.7 hrs/year.

b) Calculate annual energy pumping per year using the parameters of personal consumption, capacity, and annual pumping hours.

• The assumption of own-consumption (M USD) is the additional cost incurred after the PSP plant uses its own energy during the operating phase, accounting for approximately 1.5 percent of revenues and pumping costs.

Annual energy pumping = Annual pumping hours x Capacity x (1- own-consumption)/1000

Example of case study 1;

Annual energy pumping = 3934.7*800*(1-1.5%)/1000

= <u>3195.0</u> GWh/year

The annual energy pumping value of each case study will be presented

in Table 22.

T 11 00 T		•	1	
Table 77.	ho numi	MAG ANAP	αu $u_0 u_0 $	(- M/h/Magn)
1 auto 22.1	ine dum	JILLE CHEL	ev value v	(GWh/year).

	Luzon	Visayas	Mindanao
Installed Capacity	800	660	2500
Annual energy pumping	3194.976	2635.856	9984.301

c) The final process is the annual price of consumer energy or pumping costs (M USD). This is calculated using annual energy pumping and non-peak hour electricity prices. The formula is;

 Pumping costs = Annual energy pumping x electric price on non-peak hour

 (M USD)
 (GWh/year)
 (USD/kWh)

Example of case study 1;

Pumping cost (M USD) = 3195 * 0.0478

The conclusion of pumping cost is presented in Table 23.

Table 23: Pumping cost of each case study. (USD/kWh/year)

จุหาลงกร	Luzon	Visayas	Mindanao
Installed Capacity	800	660	2500
Pumping Costs (M USD)	152.850	128.788	486.802

3.2.2 Cost Estimate

Construction necessitates a variety of methodologies for cost estimation. The majority of construction costs were estimated from first principles, with the resources required for various activities identified and costed using current prices, supplemented by obtaining cost estimates for various items from suppliers and subcontractors. This

included the supply and installation of the electro-mechanical equipment, with these major costs also being evaluated against historical data and current industry rates.

CAPEX and OPEX are the cost estimation principles. The computation assumes starting with Case Study 1 (Luzon) and applying the value to Case Study 2 (Visayas) by decreasing by 17% of Luzon and Case Study 3 (Mindanao) by increasing by 60% of Luzon. This approximate design for a similar design is currently under construction. It consists of an upper reservoir, a waterway, and various other infrastructure components. A cost estimate will apply from the Belisama project to Case Study 1.

3.2.2.1 CAPEX (Construction Cost Estimate)

The construction requires various methodologies for the preparation of the cost estimate. The majority of the construction costs were estimated from first principles, where the resources required for various activities were identified and cost using current prices, augmented by requesting cost estimates from suppliers and subcontractors for various items where possible. This included the supply and installation of the electro-mechanical equipment, where these major costs were also evaluated against historical data and current rates being experienced in the industry. The cost estimate for CAPEX is for both direct and indirect construction costs and allows for the following main sections and components in Table 25. And the CAPEX's results of 3 cases are provided in Table 26.

The author will increase and decrease the ratio for CAPEX by the value of the area of the upper reservoir divided by the length of the waterway from Luzon to Visayas and Mindanao by calculating the following in Table 24. And the CAPEX of Luzon will use the same value as the previous project [3].

Table 24: CAPEX components including ;

	Α	L	A / L	X%
	(Area, km2)	(Length, km)		
Luzon	0.38	2,000.00	190	
Visayas	0.40	1,800.00	222	-17%
Mindanao	3.50	11,500.00	304	-60%

*** For example; X% of Visayas = ((A/L of Visayas - A/L of Luzon)/ A/L of Luzon)*100

Table 25: CAPEX components including ;

Type of CAPEX	Group of Work	Description
Direct Cost	Civil Works	Site Development
		Upper Pond
		Pressure tunnel
	St 11/22	Tailrace Tunnel
	00000	Intake Lower Reservoir
		Power Cavern
		Contingencies
	Hydromechanical Works	HM in Gate chamber
		Penstock and steel liner
		Gates and trash rack lower intake
		Contingency HM
	Electromechanical Works	Generating equipment E&M
		Switchyard
		Transmission line (TL)
	O CONSCIENCE	Contingency EM
Indirect Cost	Client Administration (5% of total	direct costs)
	Engineering, Site Supervision (5%	of total direct costs)
	Detailed Design (3% of total direct	costs)
, and the second se	Land Acquisition and EIA Cost	61 2
	Project Development Cost	RSITY
	Insurance (2% of total direct costs)	
	Other Business Expenses (2% of to	tal direct costs)
	Interest during Construction (IDC)	(17.52% of total direct costs)

Table 26: CAPEX result of 3 case;

Cost Estimate	Luzon	Visayas (-17% of Luzon)	Mindanao (+60% of Luzon)
Direct Cost	[USD]	[USD]	[USD]
Civil Works			
Site Development	52,732,276	43,767,789	84,371,642
Upper Pond	132,981,625	110,374,749	212,770,600
Pressure tunnel	26,425,775	21,933,393	42,281,240
Tailrace Tunnel	98,573,250	81,815,798	157,717,200

Total Project Costs (including IDC)	966,950,117	815,699,864	105469770
Total Project Costs (without IDC)	851,920,225	720,225,053	870,649,87
Indirect Costs (including IDC)	241,645,656	200,565,894	386,633,04
Indirect Costs (without IDC)	126,615,763	105,091,083	202,585,22
Total Indirect Costs	656,563,313	558,078,816	558,078,81
Electromechanical Works	151,480,800	125,729,064	242,369,28
Hydromechanical Works	40,493,913	33,609,947	64,790,26
Civil Works	464,588,600	385,608,538	743,341,70
Total Direct Costs	121 202	005 000	= / 2 2 * *
	[USD]	[USD]	[USI
Total Project Costs	898,208,968	758,644,710	944,711,80
Total Indirect Costs	241,645,656	200,565,894	386,633,04
Construction	<u> </u>	าลัย	
Interest during	115,029,892	95,474,811	184,047,82
Other Business Expenses	13,131,266	10,898,951	21,010,02
Insurance	13,131,266	10,898,951	21,010,02
Cost Project Development Cost	10,000,000	8,300,000	16,000,00
Land Acquisition and EIA	5,000,000	4,150,000	8,000,00
Site Supervision Detailed Design	19,696,899	16,348,426	31,515,03
Engineering,	32,828,166	27,247,377	52,525,00
Client Administration	32,828,166	27,247,377	52,525,0
Indirect Cost	[USD]	[USD]	[USI
Total Direct Costs	656,563,313	558,078,816	558,078,8
Total Electromechanical Works	151,480,800	125,729,064	242,369,28
Contingency EM	11,220,800	9,313,264	17,953,28
Transmission line (TL)	2,500,000	2,075,000	4,000,00
Switchyard		-	4 000 0
Generating equipment	137,760,000	114,340,800	220,416,00
Electromechanical Works		114 240 000	000 41 5 5
Works	.,	· · · · · · · ·	
Total Hydromechanical	40,493,913	33,609,947	64,790,26
intake Contingency HM	2,999,549	2,489,626	4,799,27
Gates and trash rack lower	3,744,363	3,107,822	5,990,98
Penstock and steel liner	30,000,000	24,900,000	48,000,00
HM in Gate chamber	3,750,000	3,112,500	6,000,00
Hydromechanical Works			
Total Civil Works	404,388,000	383,008,338	/45,541,70
Total Civil Works	68,741,149 464,588,600	57,055,154 385,608,538	109,985,83
Power Cavern Contingencies	73,173,575	60,734,067	117,077,72

3.2.2.2 OPEX (Costs during operation and maintenance)

Operation and Maintenance (O&M) costs comprise the total annual expenditure incurred during the operation of the project. O&M costs are split into:

• Fixed O&M costs: Fixed operating expenses related to the type and size of the plant only, but not related to the output.

• Variable O&M costs: Expenses depend on the output of the plant.

For hydropower plants, the variable O&M costs are rather small compared to fixed O&M costs. O&M costs typically include cost components for regular operation and maintenance, overhauls, staff, management and administration, and insurance and fees. The cost estimate for OPEX's main sections and components is in Table 27. And the OPEX's results of 3 cases are provided in Table 28.

Type of OPEX	Description
Cost Item	Cost of O&M (without overhauls)
25	Staff Cost
	Administration and Management
0	Insurances and Fees
Cost for overhauls	Major overhaul (every 6 years) = 1.3% of CAPEX for
(Maintenance)	Generating E&M Equipment
	Minor overhaul (every 12 years) = 3.7% of CAPEX for E&M
	Equipment

Table 27: OPEX components including ;

Table 28: OPEX Result ;

		Luzon	Visayas	Mindanao
Installed Capacity	MW	800	660	2500
Overall Project Cost (financial cost excluded)	USD	690,000,000	572,700,000	1,104,000,000
CAPEX for E&M Equipment	USD	137,760,000	114,340,800	220,416,000
Cost of O&M (without overhauls)				
Spare parts for E&M and HM equipment	USD/year	2,640,000	2,178,000	8,250,000
Maintenance and repair of civil structures	USD/year	250,000	207,500	400,000

Total	USD/year	2,890,000	2,385,500	8,650,000
Cost for overhauls				
Minor overhaul (every 6 years)	USD	1790880	1486430.4	2865408
Major overhaul (every 12 years) Staff Cost	USD	5097120	4230609.6	8155392
O&M Personal at site	USD/year	2,237,580	2,237,580	2,237,580
Other office costs at site	USD/year	200,000	166,000	320,000
Total	USD/year	2,437,580	2,403,580	2,557,580
Administration and Management)		
Staff costs	USD/year	1,179,240	1,179,240	1,179,240
Other office expenses	USD/year	200,000	166,000	320,000
Total	USD/year	1,379,240	1,345,240	1,499,240
d				
Insurances and Fees		IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		
Insurance premium 🥖	USD/year	1,725,000	1,431,750	2,760,000
Total	USD/year	1,725,000	1,431,750	2,760,000
	1 8000	Le III a		
Cost Item	Recorderon	V Ores		
Cost of O&M (without overhauls)	USD/year	2,890,000	2,385,500	8,650,000
Staff Cost	USD/year	2,437,580	2,403,580	2,557,580
Administration and Management	USD/year	1,379,240	1,345,240	1,499,240
Insurances and Fees	USD/year	1,725,000	1,431,750	2,760,000
Total JW	ลงกรณ์มห	8,431,820	7,566,070	15,466,820

Chulalongkorn University

3.2.3 Summary Cash Flow Model

This process will use inflation to forecast the value of electricity prices for 25 years after construction is complete. The cash inflow will use only energy sales, and the cash outflow will be CAPEX, OPEX, and pumping costs as in the flowchart of Figure 46.

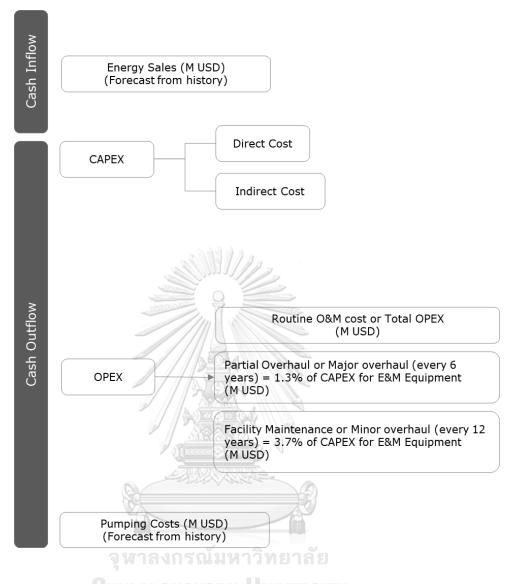


Figure 46: Cash Inflow and cash outflow flowchart.

Table 29 shows the inflation rate to apply to the average inflation history in the last 12 years (2009-2020). (*Source; Worlddata*)

Table 29: Inflation rates for consumer Goods in the Philippines.

Year	Inflation rates
2020	2.64%
2019	2.48%
2018	5.21%
2017	2.85%
2016	1.25%
2015	0.67%
2014	3.60%
2013	2.58%
2012	3.03%
2011	4.72%
2010	3.79%
2009	4.22%
Average	<u>3.09%</u>

าหาลงกรณ์มหาวิทยาลัย

3.2.3.1 Cash Inflow Corn University

This method is based on data from Chapter 3.2.1.1, which was determined by generation energy and peak hour, and calculated with a 3.09% inflation forecast for the next 25 years (Table 29). The result of cash inflow will be represented in Table 30 to Table 32 (Green Column).

3.2.3.2 Cash Outflow

This procedure is based on data from Chapter 3.2.1.2, which was determined by energy pumping and non-peak tariffs, with 3.09 % inflation expected over the next 25 years, including CAPEX and OPEX from Chapter 3.2.2. The results of of cash outflow will be represented in Table 30 to Table 32 (Orange Column).

Faregy Price inflation ratik Total consumed inflation ratik From integrity Price integrity Coressi of inflation ratik Price integrity Cosis Cosis 1 GWbyen USDrWh USDrWh USDrWh MUSDI Cosis Cosis 2 3664279 0.089 0.093 347.051 3194.976 0.048 0.051 157.422 8.432 3 3664279 0.089 0.101 380.256 3194.976 0.048 0.051 157.462 8.432 3 3664279 0.089 0.101 380.256 3194.976 0.048 0.053 157.462 8.432 4 3664279 0.089 0.111 416.574 3194.976 0.048 0.053 157.402 8.432 6 3664279 0.089 0.111 416.574 3194.976 0.048 0.053 157.402 8.432 1 3664279 0.089 0.111 416.574 3194.976 0.048 0.0663 217.516 8.432 <th>Year</th> <th></th> <th>Cash</th> <th>Cash Inflow</th> <th></th> <th></th> <th></th> <th>Cash Outflow</th> <th>flow</th> <th></th> <th></th>	Year		Cash	Cash Inflow				Cash Outflow	flow		
	I	Energy	Price Fix Rate	Forecast of price with inflation rate	Total Generation Revenues	Energy consumed	Price Fix Rate	Forecast of price with inflation rate	Pumping Costs	Total O&M Costs (OPEX)	Total Cost
3664.279 0.089 0.092 33.6448 3194.976 0.048 0.049 157.573 3664.279 0.089 0.093 3194.976 0.048 0.051 162.442 3664.279 0.089 0.1014 $38.57.74$ 3194.976 0.048 0.055 17791 3664.279 0.089 0.1014 380.226 3194.976 0.048 0.057 183.470 3664.279 0.089 0.101 380.256 3194.976 0.048 0.057 183.470 3664.279 0.089 0.110 429.446 3194.976 0.048 0.057 183.470 3664.279 0.089 0.111 427.16 3194.976 0.048 0.057 183.470 3664.279 0.089 0.112 442.716 3194.976 0.048 0.067 217.62 3664.279 0.089 0.125 455.96 3194.976 0.048 0.067 217.22 3664.279 0.089 0.125 455.96 3194.976 0.048 0.067 217.22 3664.279 0.089 0.125 455.96 3194.976 0.048 0.077 213.623 3664.279 0.089 0.144 515.473 3194.976 0.048 0.076 217.26 3664.279 0.089 0.145 531.4976 0.048 0.076 217.26 3664.279 0.089 0.146 0.148 0.076 217.26 3664.279 0.089 0.146 0		GWh/year	USD/kWh	USD/kWh	[M USD]	GWh/year	USD/kWh	USD/kWh	[M USD]	[M USD]	[M USD]
3664.279 0.089 0.095 347.051 3194.976 0.048 0.051 162.442 3664.279 0.089 0.101 38.820 3194.976 0.048 0.055 177.971 3664.279 0.089 0.101 38.0226 3194.976 0.048 0.056 177.971 3664.279 0.089 0.101 38.0226 3194.976 0.048 0.056 177.971 3664.279 0.089 0.110 404.088 3194.976 0.048 0.053 189.139 3664.279 0.089 0.117 404.088 3194.976 0.048 0.053 189.139 3664.279 0.089 0.117 429.406 3194.976 0.048 0.061 194.984 3664.279 0.089 0.117 429.406 3194.976 0.048 0.067 213.623 3664.279 0.089 0.123 442.116 3194.976 0.048 0.067 213.623 3664.279 0.089 0.123 442.116 3194.976 0.048 0.067 213.623 3664.279 0.089 0.123 445.03 3194.976 0.048 0.076 213.623 3664.279 0.089 0.136 531.447 214.976 0.048 0.076 212.626 3664.279 0.089 0.136 514.976 0.048 0.076 212.626 3664.279 0.089 0.136 514.976 0.048 0.076 212.268 3664.279 </td <td>1</td> <td>3664.279</td> <td>0.089</td> <td>0.092</td> <td>336.648</td> <td>3194.976</td> <td>0.048</td> <td>0.049</td> <td>157.573</td> <td>8.432</td> <td>166.00</td>	1	3664.279	0.089	0.092	336.648	3194.976	0.048	0.049	157.573	8.432	166.00
3664.279 0.089 0.098 357.774 3194.976 0.048 0.052 167.462 3664.279 0.089 0.101 36.830 3194.976 0.048 0.057 177.971 3664.279 0.089 0.107 39.9375 3194.976 0.048 0.057 187.347 3664.279 0.089 0.110 49.3085 3194.976 0.048 0.057 189.139 3664.279 0.089 0.117 429.446 3194.976 0.048 0.063 201.099 3664.279 0.089 0.117 429.446 3194.976 0.048 0.067 207.200 3664.279 0.089 0.121 442.716 3194.976 0.048 0.067 217.209 3664.279 0.089 0.123 445.636 3194.976 0.048 0.067 213.623 3664.279 0.089 0.123 445.636 3194.976 0.048 0.076 213.623 3664.279 0.089 0.132 445.636 3194.976 0.048 0.071 277.29 3664.279 0.089 0.132 445.037 3194.976 0.048 0.076 213.623 3664.279 0.089 0.141 515.475 3194.976 0.048 0.076 213.643 3664.279 0.089 0.145 515.475 3194.976 0.048 0.076 213.64 3664.279 0.089 0.145 514.976 0.048 0.078 247.64 <t< td=""><td>17</td><td>3664.279</td><td>0.089</td><td>0.095</td><td>347.051</td><td>3194.976</td><td>0.048</td><td>0.051</td><td>162.442</td><td>8.432</td><td>170.87</td></t<>	17	3664.279	0.089	0.095	347.051	3194.976	0.048	0.051	162.442	8.432	170.87
3664279 0.089 0.101 $36.8.830$ 3194.976 0.048 0.054 172.636 3664279 0.089 0.104 380.226 3194.976 0.048 0.057 183.470 3664279 0.089 0.110 404.088 0.114 415.744 3194.976 0.048 0.059 189.139 3664279 0.089 0.114 415.744 3194.976 0.048 0.065 207.220 3664279 0.089 0.117 412.716 3194.976 0.048 0.067 213.623 3664279 0.089 0.121 442.716 3194.976 0.048 0.067 213.623 3664279 0.089 0.125 470.498 3194.976 0.048 0.067 213.623 3664279 0.089 0.125 470.498 3194.976 0.048 0.067 213.623 3664279 0.089 0.123 541.976 0.048 0.073 237.029 3664279 0.089 0.126 51.475 3194.976 0.048 0.076 213.263 3664279 0.089 0.141 51.475 3194.976 0.048 0.076 241.276 3664279 0.089 0.144 51.477 3194.976 0.048 0.076 241.276 3664279 0.089 0.146 51.477 3194.976 0.048 0.083 243.709 3664279 0.089 0.169 0.148 0.069 237.249 3664279 <	e	3664.279	0.089	0.098	357.774	3194.976	0.048	0.052	167.462	8.432	175.89
3664.279 0.089 0.104 380.226 3194.976 0.048 0.056 177.971 3664.279 0.089 0.107 391.975 0.048 0.057 183.470 3664.279 0.089 0.114 416.574 3194.976 0.048 0.061 194.984 3664.279 0.089 0.114 416.574 3194.976 0.048 0.063 189.139 3664.279 0.089 0.121 429.46 3194.976 0.048 0.063 210.009 3664.279 0.089 0.121 429.46 3194.976 0.048 0.067 213.623 3664.279 0.089 0.128 456.396 3194.976 0.048 0.067 213.623 3664.279 0.089 0.128 485.037 3194.976 0.048 0.076 213.623 3664.279 0.089 0.132 485.037 3194.976 0.048 0.076 213.623 3664.279 0.089 0.132 51.475 3194.976 0.048 0.076 241.246 3664.279 0.089 0.156 51.475 3194.976 0.048 0.076 241.246 3664.279 0.089 0.156 51.475 3194.976 0.048 0.076 241.246 3664.279 0.089 0.156 51.475 3194.976 0.048 0.076 241.246 3664.279 0.089 0.156 51.475 3194.976 0.048 0.078 241.246 <	4	3664.279	0.089	0.101	368.830	3194.976	0.048	0.054	172.636	8.432	181.07
3664.279 0.089 0.107 391.975 3194.976 0.048 0.057 183.470 3664.279 0.089 0.110 404.088 3194.976 0.048 0.059 189.139 3664.279 0.089 0.117 416.574 3194.976 0.048 0.061 194.984 3664.279 0.089 0.117 429.446 3194.976 0.048 0.063 201.009 3664.279 0.089 0.121 442.716 3194.976 0.048 0.067 213.623 3664.279 0.089 0.132 456.396 3194.976 0.048 0.071 277.029 3664.279 0.089 0.132 485.037 3194.976 0.048 0.071 277.029 3664.279 0.089 0.132 485.037 3194.976 0.048 0.071 277.029 3664.279 0.089 0.141 515.475 3194.976 0.048 0.076 241.716 3664.279 0.089 0.146 515.475 3194.976 0.048 0.076 241.716 3664.279 0.089 0.146 515.475 3194.976 0.048 0.076 241.716 3664.279 0.089 0.150 547.824 3194.976 0.048 0.076 241.716 3664.279 0.089 0.169 577.824 3194.976 0.048 0.076 243.04 3664.279 0.089 0.169 0.189 0.169 0.048 0.089 264	S	3664.279	0.089	0.104	380.226	3194.976	0.048	0.056	177.971	8.432	186.40
3664.279 0.089 0.110 404.088 3194.976 0.048 0.059 189.139 3664.279 0.089 0.114 16.574 3194.976 0.048 0.061 194.984 3664.279 0.089 0.117 429.446 3194.976 0.048 0.065 201.009 3664.279 0.089 0.125 445.396 3194.976 0.048 0.067 213.623 3664.279 0.089 0.128 445.037 3194.976 0.048 0.071 227.029 3664.279 0.089 0.136 500.024 3194.976 0.048 0.071 227.029 3664.279 0.089 0.136 500.024 3194.976 0.048 0.071 227.029 3664.279 0.089 0.141 515.475 3194.976 0.048 0.076 248.731 3664.279 0.089 0.141 515.475 3194.976 0.048 0.076 248.731 3664.279 0.089 0.145 531.403 3194.976 0.048 0.076 248.731 3664.279 0.089 0.154 531.403 3194.976 0.048 0.076 248.731 3664.279 0.089 0.164 0.164 0.078 248.731 248.731 3664.279 0.089 0.156 531.403 3194.976 0.048 0.078 248.731 3664.279 0.089 0.166 0.148 0.089 256.417 364.276 3664.279	9	3664.279	0.089	0.107	391.975	3194.976	0.048	0.057	183.470	10.223	193.69
3664.279 0.089 0.114 416.574 3194.976 0.048 0.061 194.984 3664.279 0.089 0.117 429.446 3194.976 0.048 0.065 207.020 3664.279 0.089 0.121 442.716 3194.976 0.048 0.067 213.623 3664.279 0.089 0.125 456.396 3194.976 0.048 0.067 213.623 3664.279 0.089 0.125 456.396 3194.976 0.048 0.067 213.623 3664.279 0.089 0.132 485.037 3194.976 0.048 0.071 227.029 3664.279 0.089 0.132 485.037 3194.976 0.048 0.071 227.029 3664.279 0.089 0.141 515.477 3194.976 0.048 0.073 248.731 3664.279 0.089 0.141 515.477 3194.976 0.048 0.073 248.731 3664.279 0.089 0.141 515.477 3194.976 0.048 0.073 248.731 3664.279 0.089 0.156 547.84 3194.976 0.048 0.078 248.731 3664.279 0.089 0.169 547.84 3194.976 0.048 0.093 264.37 3664.279 0.089 0.169 517.876 3194.976 0.048 0.093 287.306 3664.279 0.089 0.169 0.186 0.048 0.098 297.6407 <t< td=""><td>-</td><td>3664.279</td><td>0.089</td><td>0.110</td><td>404.088</td><td>3194.976</td><td>0.048</td><td>0.059</td><td>189.139</td><td>8.432</td><td>197.57</td></t<>	-	3664.279	0.089	0.110	404.088	3194.976	0.048	0.059	189.139	8.432	197.57
3664.279 0.089 0.117 429.446 $3194,976$ 0.048 0.063 201.00 3664.279 0.089 0.121 442.716 $3194,976$ 0.048 0.065 207.220 3664.279 0.089 0.128 470.498 $3194,976$ 0.048 0.067 213.623 3664.279 0.089 0.128 470.498 $3194,976$ 0.048 0.067 220.224 3664.279 0.089 0.132 485.637 $3194,976$ 0.048 0.071 227.029 3664.279 0.089 0.141 \mathbf{rs} 500.024 $3194,976$ 0.048 0.076 241.776 3664.279 0.089 0.141 \mathbf{rs} 515.475 $3194,976$ 0.048 0.076 247.276 3664.279 0.089 0.144 \mathbf{rs} 531.403 $3194,976$ 0.048 0.076 241.776 3664.279 0.089 0.145 531.403 $3194,976$ 0.048 0.076 241.776 3664.279 0.089 0.154 54.751 $3194,976$ 0.048 0.086 275.68 3664.279 0.089 0.164 0.048 0.086 275.68 264.340 3664.279 0.089 0.164 0.048 0.086 275.68 3664.279 0.089 0.164 0.048 0.086 287.340 3664.279 0.089 0.169 $2194,976$ 0.048 0.086 289.610 3664.279 0.089 0.0	~	3664.279	0.089	0.114	416.574	3194.976	0.048	0.061	194.984	8.432	203.42
3664.279 0.089 0.121 442.716 3194.976 0.048 0.065 207.220 3664.279 0.089 0.125 456.396 3194.976 0.048 0.067 213.623 3664.279 0.089 0.128 470.498 3194.976 0.048 0.071 227.029 3664.279 0.089 0.132 485.037 3194.976 0.048 0.071 227.029 3664.279 0.089 0.136 500.024 3194.976 0.048 0.076 240.270 3664.279 0.089 0.141 651.475 3194.976 0.048 0.076 241.276 3664.279 0.089 0.141 551.475 3194.976 0.048 0.076 241.276 3664.279 0.089 0.145 554.731 3194.976 0.048 0.076 243.740 3664.279 0.089 0.150 547.824 3194.976 0.048 0.083 264.340 3664.279 0.089 0.164 600.192 3194.976 0.048 0.083 264.340 3664.279 0.089 0.164 600.192 3194.976 0.048 0.093 286.430 3664.279 0.089 0.164 60.192 3194.976 0.048 0.093 286.430 3664.279 0.089 0.169 618.738 3194.976 0.048 0.093 286.430 3664.279 0.089 0.169 617.886 3194.976 0.048 0.093 <td< td=""><td>6</td><td>3664.279</td><td>0.089</td><td>0.117</td><td>429.446</td><td>3194.976</td><td>0.048</td><td>0.063</td><td>201.009</td><td>8.432</td><td>209.44</td></td<>	6	3664.279	0.089	0.117	429.446	3194.976	0.048	0.063	201.009	8.432	209.44
3664.279 0.089 0.125 456.396 3194.976 0.048 0.067 213.623 3664.279 0.089 0.128 470.498 3194.976 0.048 0.071 227.029 3664.279 0.089 0.135 \mathbf{x} 485.037 3194.976 0.048 0.071 227.029 3664.279 0.089 0.136 \mathbf{x} 50.024 3194.976 0.048 0.071 227.029 3664.279 0.089 0.141 \mathbf{x} 515.475 3194.976 0.048 0.076 248.731 3664.279 0.089 0.141 \mathbf{x} 531.403 3194.976 0.048 0.076 248.731 3664.279 0.089 0.150 547.824 3194.976 0.048 0.076 248.731 3664.279 0.089 0.150 547.824 3194.976 0.048 0.083 248.731 3664.279 0.089 0.150 547.824 3194.976 0.048 0.083 248.731 3664.279 0.089 0.159 582.202 3194.976 0.048 0.083 289.929 3664.279 0.089 0.164 60.192 3194.976 0.048 0.093 289.569 3664.279 0.089 0.174 637.887 3194.976 0.048 0.093 289.569 3664.279 0.089 0.174 637.887 3194.976 0.048 0.096 307.784 3664.279 0.089 0.189 0.188 </td <td>10</td> <td>3664.279</td> <td>0.089</td> <td>0.121</td> <td>442.716</td> <td>3194.976</td> <td>0.048</td> <td>0.065</td> <td>207.220</td> <td>8.432</td> <td>215.65</td>	10	3664.279	0.089	0.121	442.716	3194.976	0.048	0.065	207.220	8.432	215.65
3664.279 0.089 0.128 470.498 3194.976 0.048 0.069 220.224 3664.279 0.089 0.132 485.037 3194.976 0.048 0.071 227.029 3664.279 0.089 0.141 \mathbf{r} 515.475 3194.976 0.048 0.073 234.044 3664.279 0.089 0.141 \mathbf{r} 515.475 3194.976 0.048 0.076 248.731 3664.279 0.089 0.145 531.403 3194.976 0.048 0.076 248.731 3664.279 0.089 0.150 547.824 3194.976 0.048 0.076 248.731 3664.279 0.089 0.150 547.824 3194.976 0.048 0.08 256.417 3664.279 0.089 0.159 547.824 3194.976 0.048 0.08 275.68 3664.279 0.089 0.159 554.751 3194.976 0.048 0.08 275.68 3664.279 0.089 0.169 618.738 3194.976 0.048 0.093 289.59 3664.279 0.089 0.174 637.857 3194.976 0.048 0.093 297.508 3664.279 0.089 0.174 637.857 3194.976 0.048 0.093 277.508 3664.279 0.089 0.174 637.857 3194.976 0.048 0.093 277.508 3664.279 0.089 0.179 677.866 3194.976 0.048	11	3664.279	0.089	0.125	456.396	3194.976	0.048	0.067	213.623	8.432	222.05
3664.279 0.089 0.132 485.037 3194.976 0.048 0.071 227.029 3664.279 0.089 0.136 500.024 3194.976 0.048 0.073 234.044 3664.279 0.089 0.141 \mathbf{e} 515.475 3194.976 0.048 0.076 241.276 3664.279 0.089 0.145 531.403 3194.976 0.048 0.076 248.731 3664.279 0.089 0.154 54.751 3194.976 0.048 0.076 248.731 3664.279 0.089 0.154 564.751 3194.976 0.048 0.083 264.340 3664.279 0.089 0.154 582.202 3194.976 0.048 0.083 256.317 3664.279 0.089 0.164 600.192 3194.976 0.048 0.083 226.302 3664.279 0.089 0.164 637.857 3194.976 0.048 0.091 289.610 3664.279 0.089 0.174 637.857 3194.976 0.048 0.093 298.559 3664.279 0.089 0.174 657.567 3194.976 0.048 0.093 298.559 3664.279 0.089 0.174 657.867 3194.976 0.048 0.093 298.559 3664.279 0.089 0.186 0.186 3194.976 0.048 0.093 307.784 3664.279 0.089 0.186 0.186 0.048 0.099 317.29	12	3664.279	0.089	0.128	470.498	3194.976	0.048	0.069	220.224	13.529	233.75
3664.279 0.089 0.136 50 500.024 3194.976 0.048 0.073 234.044 3664.279 0.089 0.141 \mathbf{r} 515.475 3194.976 0.048 0.076 241.276 3664.279 0.089 0.145 \mathbf{s} 531.403 3194.976 0.048 0.076 241.71 3664.279 0.089 0.159 547.824 3194.976 0.048 0.082 256.417 3664.279 0.089 0.154 564.751 3194.976 0.048 0.083 256.417 3664.279 0.089 0.159 582.202 3194.976 0.048 0.083 264.340 3664.279 0.089 0.159 582.202 3194.976 0.048 0.083 272.508 3664.279 0.089 0.164 600.192 3194.976 0.048 0.082 272.508 3664.279 0.089 0.164 618.738 3194.976 0.048 0.091 280.929 3664.279 0.089 0.169 618.738 3194.976 0.048 0.091 289.610 3664.279 0.089 0.174 637.857 3194.976 0.048 0.091 289.610 3664.279 0.089 0.174 618.738 3194.976 0.048 0.091 289.610 3664.279 0.089 0.174 0.178 0.048 0.093 297.59 3664.279 0.089 0.186 3194.976 0.048 0.099 </td <td>13</td> <td>3664.279</td> <td>0.089</td> <td>0.132</td> <td>485.037</td> <td>3194.976</td> <td>0.048</td> <td>0.071</td> <td>227.029</td> <td>8.432</td> <td>235.46</td>	13	3664.279	0.089	0.132	485.037	3194.976	0.048	0.071	227.029	8.432	235.46
3664.279 0.089 0.141 ∞ 515.475 3194.976 0.048 0.076 241.276 3664.279 0.089 0.145 531.403 3194.976 0.048 0.078 248.731 3664.279 0.089 0.150 547.824 3194.976 0.048 0.080 256.417 3664.279 0.089 0.150 547.824 3194.976 0.048 0.080 256.417 3664.279 0.089 0.159 582.202 3194.976 0.048 0.085 254.340 3664.279 0.089 0.164 600.192 3194.976 0.048 0.085 280.229 3664.279 0.089 0.164 600.192 3194.976 0.048 0.088 280.229 3664.279 0.089 0.164 657.867 3194.976 0.048 0.091 289.610 3664.279 0.089 0.174 637.857 3194.976 0.048 0.091 289.610 3664.279 0.089 0.174 637.857 3194.976 0.048 0.091 289.610 3664.279 0.089 0.179 657.567 3194.976 0.048 0.093 297.598 3664.279 0.089 0.189 0.186 3194.976 0.048 0.099 317.24 3664.279 0.089 0.191 698.833 3194.976 0.048 0.099 317.294 3664.279 0.089 0.191 698.833 3194.976 0.048 0.99	14	3664.279	0.089	0.136	500.024	3194.976	0.048	0.073	234.044	8.432	242.48
3664.279 0.089 0.145 531.403 3194.976 0.048 0.078 248.731 3664.279 0.089 0.150 547.824 3194.976 0.048 0.080 256.417 3664.279 0.089 0.154 564.751 3194.976 0.048 0.083 264.340 3664.279 0.089 0.154 582.202 3194.976 0.048 0.083 264.340 3664.279 0.089 0.164 600.192 3194.976 0.048 0.088 280.929 3664.279 0.089 0.164 600.192 3194.976 0.048 0.091 289.610 3664.279 0.089 0.169 618.738 3194.976 0.048 0.091 289.610 3664.279 0.089 0.174 637.857 3194.976 0.048 0.091 289.610 3664.279 0.089 0.174 637.857 3194.976 0.048 0.091 289.610 3664.279 0.089 0.179 657.567 3194.976 0.048 0.091 287.59 3664.279 0.089 0.185 677.867 3194.976 0.048 0.096 307.784 3664.279 0.089 0.187 698.833 3194.976 0.048 0.099 317.294 3664.279 0.089 0.191 698.833 3194.976 0.048 0.099 317.294 3664.279 0.089 0.191 698.833 3194.976 0.048 0.099 <td< td=""><td>15</td><td>3664.279</td><td>0.089</td><td>0.141</td><td>515.475</td><td>3194.976</td><td>0.048</td><td>0.076</td><td>241.276</td><td>8.432</td><td>249.71</td></td<>	15	3664.279	0.089	0.141	515.475	3194.976	0.048	0.076	241.276	8.432	249.71
3664.279 0.089 0.150 547.824 3194.976 0.048 0.080 256.417 3664.279 0.089 0.154 564.751 3194.976 0.048 0.083 264.340 3664.279 0.089 0.159 582.202 3194.976 0.048 0.085 272.508 3664.279 0.089 0.164 600.192 3194.976 0.048 0.082 280.929 3664.279 0.089 0.164 600.192 3194.976 0.048 0.091 289.610 3664.279 0.089 0.164 637.857 3194.976 0.048 0.091 289.610 3664.279 0.089 0.174 637.857 3194.976 0.048 0.091 289.610 3664.279 0.089 0.174 657.567 3194.976 0.048 0.092 298.559 3664.279 0.089 0.185 677.867 3194.976 0.048 0.096 307.784 3664.279 0.089 0.185 677.867 3194.976 0.048 0.096 317.294 3664.279 0.089 0.191 698.833 3194.976 0.048 0.092 317.294 3664.279 0.089 0.191 698.833 3194.976 0.048 0.102 317.294	16	3664.279	0.089	0.145	531.403	3194.976	0.048	0.078	248.731	8.432	257.16
3664.279 0.089 0.154 564.751 3194.976 0.048 0.083 264.340 3664.279 0.089 0.159 582.202 3194.976 0.048 0.085 275.68 3664.279 0.089 0.164 600.192 3194.976 0.048 0.082 280.929 3664.279 0.089 0.164 600.192 3194.976 0.048 0.091 289.610 3664.279 0.089 0.174 637.857 3194.976 0.048 0.091 289.610 3664.279 0.089 0.174 637.857 3194.976 0.048 0.091 289.610 3664.279 0.089 0.174 657.567 3194.976 0.048 0.093 298.559 3664.279 0.089 0.179 657.867 3194.976 0.048 0.096 307.784 3664.279 0.089 0.185 677.886 3194.976 0.048 0.096 317.294 3664.279 0.089 0.191 698.833 3194.976 0.048 0.109 317.294	17	3664.279	0.089	0.150	547.824	3194.976	0.048	0.080	256.417	8.432	264.85
3664.279 0.089 0.159 582.202 3194.976 0.048 0.085 272.508 3664.279 0.089 0.164 600.192 3194.976 0.048 0.088 280.929 3664.279 0.089 0.169 618.738 3194.976 0.048 0.091 289.610 3664.279 0.089 0.174 637.857 3194.976 0.048 0.093 298.559 3664.279 0.089 0.179 657.567 3194.976 0.048 0.095 307.784 3664.279 0.089 0.185 677.886 3194.976 0.048 0.096 317.294 3664.279 0.089 0.191 698.833 3194.976 0.048 0.099 317.294 3664.279 0.089 0.191 698.833 3194.976 0.048 0.099 317.294	18	3664.279	0.089	0.154	564.751	3194.976	0.048	0.083	264.340	10.223	274.56
3664.279 0.089 0.164 600.192 3194.976 0.048 0.088 280.929 3664.279 0.089 0.169 618.738 3194.976 0.048 0.091 289.610 3664.279 0.089 0.174 637.857 3194.976 0.048 0.093 28559 3664.279 0.089 0.179 657.567 3194.976 0.048 0.096 307.784 3664.279 0.089 0.185 677.886 3194.976 0.048 0.096 317.294 3664.279 0.089 0.191 698.833 3194.976 0.048 0.099 317.294 3664.279 0.089 0.191 698.833 3194.976 0.048 0.099 317.294	19	3664.279	0.089	0.159	582.202	3194.976	0.048	0.085	272.508	8.432	280.94
3664.279 0.089 0.169 618.738 3194.976 0.048 0.091 289.610 3664.279 0.089 0.174 637.857 3194.976 0.048 0.093 298.559 3664.279 0.089 0.179 657.567 3194.976 0.048 0.096 307.784 3664.279 0.089 0.185 677.886 3194.976 0.048 0.099 317.294 3664.279 0.089 0.191 698.833 3194.976 0.048 0.099 317.294	20	3664.279	0.089	0.164	600.192	3194.976	0.048	0.088	280.929	8.432	8.60
3664.279 0.089 0.174 637.857 3194.976 0.048 0.093 298.559 3664.279 0.089 0.179 657.567 3194.976 0.048 0.096 307.784 3664.279 0.089 0.185 677.886 3194.976 0.048 0.096 317.294 3664.279 0.089 0.185 677.886 3194.976 0.048 0.099 317.294 3664.279 0.089 0.191 698.833 3194.976 0.048 0.102 327.099	21	3664.279	0.089	0.169	618.738	3194.976	0.048	0.091	289.610	8.432	298.04
3664.279 0.089 0.179 657.567 3194.976 0.048 0.096 307.784 3664.279 0.089 0.185 677.886 3194.976 0.048 0.099 317.294 3664.279 0.089 0.191 698.833 3194.976 0.048 0.099 317.294	22	3664.279	0.089	0.174	637.857	3194.976	0.048	0.093	298.559	8.432	306.99
3664.279 0.089 0.185 677.886 3194.976 0.048 0.099 317.294 3664.279 0.089 0.191 698.833 3194.976 0.048 0.102 327.099	23	3664.279	0.089	0.179	657.567	3194.976	0.048	0.096	307.784	8.432	316.22
3664.279 0.089 0.191 698.833 3194.976 0.048 0.102 327.099	24	3664.279	0.089	0.185	677.886	3194.976	0.048	0.099	317.294	13.529	330.82
	25	3664.279	0.089	0.191	698.833	3194.976	0.048	0.102	327.099	8.432	335.53

Table 30: The result of cash inflow and cash outflow estimation in Case Study 1, Luzon.

89

Ical		Cash	Cash Inflow				Cash Outflow	tflow		
I	Energy	Price Fix Rate	Forecast of price with inflation rate	Total Generation Revenues	Energy consumed	Price Fix Rate	Forecast of price with inflation rate	Pumping Costs	Total O&M Costs (OPEX)	Total Cost
	GWh/year	USD/kW h	USD/kWh	[M USD]	GWh/year	USD/kW h	USD/kWh	[M USD]	[M USD]	[M USD]
1	3023.030	0.080	0.083	250.418	2635.856	0.049	0.050	132.767	7.566	140.33
2	3023.030	0.080	0.085	258.156	2635.856	0.049	0.052	136.870	7.566	144.44
e	3023.030	0.080	0.088	266.133	2635.856	0.049	0.054	141.099	7.566	148.67
4	3023.030	0.080	160.0	274.356	2635.856	0.049	0.055	145.459	7.566	153.03
w	3023.030	0.080	0.094	282.834	2635.856	0.049	0.057	149.954	7.566	157.52
9	3023.030	0.080	0.096	291.573	2635.856	0.049	0.059	154.587	9.053	163.64
7	3023.030	0.080	0.099	300.583	2635.856	0.049	090.0	159.364	7.566	166.93
8	3023.030	0.080	0.103	309.871	2635.856	0.049	0.062	164.288	7.566	171.85
6	3023.030	0.080	0.106	319.446	2635.856	0.049	0.064	169.365	7.566	176.93
10	3023.030	0.080	0.109	329.317	2635.856	0.049	0.066	174.598	7.566	182.16
11	3023.030	0.080	0.112	339.493	2635.856	0.049	0.068	179.993	7.566	187.56
12	3023.030	0.080	0.116	349.983	2635.856	0.049	0.070	185.555	11.797	197.35
13	3023.030	0.080	0.119	360.797	2635.856	0.049	0.073	191.289	7.566	198.85
14	3023.030	0.080	0.123	371.946	2635.856	0.049	0.075	197.200	7.566	204.77
15	3023.030	0.080	0.127	383.439	2635.856	0.049	0.077	203.293	7.566	210.86
16	3023.030	0.080	0.131	395.288	2635.856	0.049	0.080	209.575	7.566	217.14
17	3023.030	0.080	0.135	407.502	2635.856	0.049	0.082	216.051	7.566	223.62
18	3023.030	0.080	0.139	420.094	2635.856	0.049	0.084	222.727	9.053	231.78
19	3023.030	0.080	0.143	433.075	2635.856	0.049	0.087	229.609	7.566	237.18
20	3023.030	0.080	0.148	446.457	2635.856	0.049	060.0	236.704	7.566	244.27
21	3023.030	0.080	0.152	460.252	2635.856	0.049	0.093	244.018	7.566	251.58
22	3023.030	0.080	0.157	474.474	2635.856	0.049	0.095	251.558	7.566	259.12
23	3023.030	0.080	0.162	489.135	2635.856	0.049	0.098	259.331	7.566	266.90
24	3023.030	0.080	0.167	504.249	2635.856	0.049	0.101	267.345	11.797	279.14
25	3023.030	0.080	0.172	519.831	2635.856	0.049	0.105	275.606	7.566	283 17

Table 32	Table 32: The result of cash inflow and cash outfl	cash inflow	and cash ou	itflow	estimation ir	ow estimation in Case Study 3, Mindanao.	3, Mindanao.				
Year		Cash	Inflow					Cash Outflow	tflow		
1	Energy	Price Fix Rate	Forecast of price with inflation rate	fe	Total Generation Revenues	Energy consumed	Price Fix Rate	Forecast of price with inflation rate	Pumping Costs	Total O&M Costs (OPEX)	Total Cost
	GWh/year	USD/kW h	USD/kWh	_	[M USD]	GWh/year	USD/kW h	USD/kWh	[M USD]	[M USD]	[M NSD]
1	11450.871	0.060	0.062		709.250	9984.301	0.049	0.050	501.844	15.467	517.31
7	11450.871	0.060	0.064	ຈ	731.166	9984.301	0.049	0.052	517.351	15.467	532.82
3	11450.871	0.060	0.066	V	753.759	9984.301	0.049	0.053	533.337	15.467	548.80
4	11450.871	0.060	0.068	าส	777.050	9984.301	0.049	0.055	549.817	15.467	565.28
S	11450.871	0.060	0.070	13	801.061	9984.301	0.049	0.057	566.806	15.467	582.27
9	11450.871	0.060	0.072	ก	825.814	9984.301	0.049	0.059	584.321	18.332	602.65
7	11450.871	0.060	0.074	ទ័	851.332	9984.301	0.049	0.060	602.376	15.467	617.84
×	11450.871	0.060	0.077	นั้ม	877.638	9984.301	0.049	0.062	620.990	15.467	636.46
6	11450.871	0.060	0.079	11	904.757	9984.301	0.049	0.064	640.178	15.467	655.65
10	11450.871	0.060	0.081	า	932.714	9984.301	0.049	0.066	659.960	15.467	675.43
11	11450.871	0.060	0.084	ີ່ງ	961.535	9984.301	0.049	0.068	680.353	15.467	695.82
12	11450.871	0.060	0.087	n	991.246	9984.301	0.049	0.070	701.375	23.622	725.00
13	11450.871	0.060	0.089	٤J٢	1021.876	9984.301	0.049	0.072	723.048	15.467	738.51
14	11450.871	0.060	0.092	เล	1053.452	9984.301	0.049	0.075	745.390	15.467	760.86
15	11450.871	0.060	0.095	່ຢ	1086.003	9984.301	0.049	0.077	768.423	15.467	783.89
16	11450.871	0.060	0.098		1119.561	9984.301	0.049	0.079	792.167	15.467	807.63
17	11450.871	0.060	0.101		1154.155	9984.301	0.049	0.082	816.645	15.467	832.11
18	11450.871	0.060	0.104		1189.819	9984.301	0.049	0.084	841.879	18.332	860.21
19	11450.871	0.060	0.107		1226.584	9984.301	0.049	0.087	867.893	15.467	883.36
20	11450.871	0.060	0.110		1264.486	9984.301	0.049	0.090	894.711	15.467	910.18
21	11450.871	0.060	0.114		1303.558	9984.301	0.049	0.092	922.358	15.467	937.82
22	11450.871	0.060	0.117		1343.838	9984.301	0.049	0.095	950.859	15.467	966.33
23	11450.871	0.060	0.121		1385.363	9984.301	0.049	0.098	980.240	15.467	995.71
24	11450.871	0.060	0.125		1428.170	9984.301	0.049	0.101	1010.530	23.622	1034.15
25	11450.871	0.060	0.129		1472.301	9984.301	0.049	0.104	1041.755	15.467	1057.22

3.3 Feasibility Study by Discount Cash Flow Model (DCF)

The resullt of revenue and cost will apply to estimate the economic value by "Discounted Cash Flow Model" (DCF Model). The value to input the DCF is;

a) Revenue from Electric Sales Production

This value is calculated using the annual price, which varies each year. Refer to the table below (Green color column);

Revenue of Case study 1; Table 30

Revenue of Case study 2; Table 31

Revenue of Case study 3; Table 32

b) Construction Cost Estimate without interest during construction (CAPEX without IDC)

CAPEX without IDC of Case study 1; Luzon is 851.92 M USD.

CAPEX without IDC of Case study 2; Visayas is 720.225 M USD.

CAPEX without IDC of Case study 3; Mindanao is 870.650 M USD.

c) Costs during operation and maintenance (OPEX)

OPEX of Case study 1; Luzon is 8.432 M USD.

- Cost for overhauls (Maintenance)
 - Major overhaul = 1.3% of CAPEX without IDC= 10.223 M USD.
 - Minor overhaul = 3.7% of CAPEX without IDC= 13.529 M USD.

OPEX of Case study 2; Visayas is 7.566 M USD.

- Cost for overhauls (Maintenance)
 - Major overhaul = 1.3% of CAPEX without IDC= 9.053 M USD.
 - Minor overhaul = 3.7% of CAPEX without IDC= 11.797 M USD.

OPEX of Case study 3; Mindanao is 15.467 M USD.

- Cost for overhauls (Maintenance)
 - Major overhaul = 1.3% of CAPEX without IDC= 18.332 M USD.
 - Minor overhaul = 3.7% of CAPEX without IDC= 23.622 M USD.

d) Pumping Cost

This value is calculated using the annual price, which varies each year.

Pumping cost of Case study 1; Table 30

Pumping cost of Case study 2; Table 31

Pumping cost of Case study 3; Table 32

*** Cash outflow = OPEX + Pumping cost

e) Weighted Average Cost of Capital (WACC)

The Weighted Average Cost of Capital (WACC) is used to calculate the discount rate based on the cost structure of borrowing, equity costs, and tax rates. Following the previous project [9], this research will apply WACC 9 % same to discount rate.

f) Discount Factor

For the economic analysis a discount rate(r) of 9% is considered in the free project cash flow.

The discount factor (%) =
$$\frac{1}{(1+r)^{t}}$$

g) Discount Factor Concession and Depreciation Period

Concession and depreciation pineriod is 25 years.

h) Depreciation

Depreciation per year will use CAPEX without interest during construction

divide 25 years.

i) Gross Income

Gross Income = Cash Inflow – (Cash Outflow+ Depreciation)

j) Taxes

Annual tax from years 8 to 25 = 10% of gross income, following the information

in 2.5.1 and 2.5.5.

k) Net Income After Tax

Net Income After Tax = Gross Income – Tax

l) After Tax Cash Flow

After Tax Cash Flow = Depreciation per year + Net Income After Tax

m) Cash Flow Discounted

Cash Flow Discounted= After Tax Cash Flow * Discount Factor

All of the above values will be applied to the table, and the DCF model will be calculated using Excel. Summarize the three cases in the table from 33 to 35.

		0			ò	Q	Q	ò	0	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	ò	Q	ò	Q	Q	ò	ò	Q	Q
	PB	Y2			0.00	0.0	0.00	0.0	0.7	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0
		Y1			1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Cash Flow Cumulated	[M USD]	-851.92	-681.28	-505.10	-323.22	-135.46	58.37	256.65	463.17	658.42	859.83	1067.59	1281.91	1498.39	1726.41	1961.62	2204.21	2454.44	2712.52	2977.10	3251.64	3787.49	4079.52	4380.71	4691.34	5007.10	5337.48
		Cash Flow Discounted	[M USD]	-851.92	170.64	161.63	153.09	144.99	137.31	128.87	123.14	106.81	101.08	95.66	90.53	83.89	81.07	76.72	72.60	68.70	65.00	61.14	58.20	104.22	52.11	49.30	46.65	43.51	41.76
		Discount Factor		100%	100%	92%	84%	77%	71%	65%	60%	55%	50%	46%	42%	39%	36%	33%	30%	27%	25%	23%	21%	19%	18%	16%	15%	14%	13%
M USD years		After Tax Cash Flow	[M USD]	-851.92	170.64	176.18	181.88	187.76	193.82	198.28	206.52	195.25	201.41	207.77	214.31	216.48	228.03	235.20	242.60	250.22	258.09	264.58	274.54	535.84	292.03	301.19	310.62	315.76	330.38
1,467 22.56% 4		Net Income After Tax	[M USD]	-851.92	136.57	142.10	147.80	153.68	159.75	164.21	172.44	161.17	167.34	173.69	180.24	182.40	193.95	201.12	208.52	216.15	224.01	230.50	240.47	501.77	257.96	267.11	276.55	281.69	296.30
NPV IRR Payback Period		Taxes	[M USD]			E E					2 2 2	17.91	18.59	19.30	20.03	20.27	21.55	22.35	23.17	24.02	24.89	25.61	26.72	55.75	28.66	29.68	30.73	31.30	32.92
Payba		Gross Income	[M] USD]	6	136.57	142.10	147.80	153.68	159.75	164.21	172.44	179.08	185.93	192.99	200.26	202.67	215.50	223.47	231.69	240.16	248.90	256.11	267.19	557.52	286.62	296.79	307.27	312.99	329.23
M USD years vears		Depreciation	[M USD]	ิเล	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08
851.92 9.0% 25 25	10%	Cash Outflow	[M USD]	851.92	166.005	170.874	175.893	181.068	186.402	193.693	197.571	203.415	209.440	215.651	222.055	233.753	235.460	242.476	249.708	257.163	264.849	274.563	280.940	8.596	298.041	306.990	316.216	330.823	335.531
Total Costs (without IDC): Discount Rate: Concession Period: Depreciation Period:	Taxes (year 8-25):	Cash Inflow	[M USD]		336.65	347.05	357.77	368.83	380.23	391.98	404.09	416.57	429.45	442.72	456.40	470.50	485.04	500.02	515.48	531.40	547.82	564.75	582.20	600.19	618.74	637.86	657.57	677.89	698.83
Total (Discou Concer Deprec	Taxes	Year		0	1	2	ε	4	S	9	L	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Table 33: The DCF model of Case Study 1: Luzon.

95

Tools (without IDC): 720.23 90% USD NPV 756 78 USD casis on Period: 25 sestion Period: 20% sears years Payback Period 6 sears years cs sion Period: 25 sestion Period: 25 years years Payback Period 6 years s (years 8.25): 0.05 years Payback Period 6 years years s (years 8.25): 0.05 0.010 Dipecciation Income After Tax Dipecciation N USD) UMD) Dip MUSD) MUSD) MUSD) Mort SD N USD) USD) MUSD) MUSD) MUSD) Mort SD Yabback N USD) USD) MUSD) MUSD) MUSD) Mort SD Yabback N USD) USD) MUSD) MUSD) MOSD Yabback Yabback N USD MUSD MUSD MUSD Yabback Yabback Yabback S28.16 144436 34.08 Y3.03 Yabback Yabback		Cash Flow Cumulated	[M USD]	-720.23	-496.42	-378.95	-257.62	-132.31	-4.38	129.28	256.90	388.57	524.42	664.56	805.34	954.50	1108.37	1267.10	1430.83	1599.74	1772.63	1952.35	2137.72	2328.93	2526.15	2729.58	2935.58	3151.98
ut IDC: 720.23 9.0% USD NPV 756 7.8% USD $(1:$ 25 years years Payback Period 6 years $(10\%$ Depreciation Income After Tax Cash Flow $(10\%$ Durflow Outflow Durflow Durflow After Tax $(10\%$ Durflow Durflow Durflow MusDI MusDI $(10\%$ Durflow Durflow Durflow Durflow After Tax $(10\%$ Durflow Durflow Durflow Dufflow Dufflow Dufflow $(10\%$ Dufflow Dufflow Dufflow Dufflow Dufflow Dufflow $(10\%$ MUSDI UNSDI UNSDI DUSDI DUSDI DUSDI		Cash Flow Discounted	[M USD]	-720.23 110.08	104.33	98.87	93.69	88.78	83.15	79.69	69.81	66.08	62.55	59.20	54.56	53.03	50.19	47.50	44.95	42.54	39.95	38.10	36.05	34.12	32.28	30.55	28.38	27.35
ut IDC): 720.23 M USD NPV 756 M 9.0% 2.5 years Payback Period 6 ye 0.10% 2.5 years Payback Period 6 ye 0.10% 10% Depreciation Income 6 ye 10% 0.01% Depreciation Income 6 ye 10% Cash Depreciation Income After Tax 6 10% Dufflow Cash Depreciation Income 750.13 750.13 11.0 UISDI USDI INUSDI IMUSDI IMUSDI 750.13 11.1 114.436 34.08 750.14 33.33		Discount Factor		100%	92%	84%	77%	71%	65%	60%	55%	50%	46%	42%	39%	36%	33%	30%	27%	25%	23%	21%	19%	18%	16%	15%	14%	13%
ut IDC): 720.23 9.0% WSD NPV I7. 9.0% 9.0% years Payback Period I7. 9.0% 10% years Payback Period I7. 10% 25 years Payback Period I7. 10% Cash Depreciation Gross Income After T 10% Cash Depreciation Gross Income After T 110% Uurllow Cash Depreciation Income 76.01 110% Uurllow Cash MUSD] INUSD] INUSD 76.01 111 Itel 144.436 34.08 79.64 93.25 99.25 113 144.436 34.08 113.08 101.7 76.01 76.01 113 144.436 34.08 113.36 113.31 119.7 113 144.07 144.43 103.94 102.9 93.55 113 113.31 103.94 103.9 93.56 1197	M USD years	After Tax Cash Flow	[M USD]	-720.23	113.72	117.47	121.33	125.31	127.93	133.65	127.62	131.67	135.84	140.15	140.78	149.16	153.87	158.73	163.74	168.90	172.89	179.72	185.38	191.21	197.22	203.42	206.00	216.40
ut IDC: 720.23 M USD 9.0% 9.0% 9.0% ad: 25 years Payback ad: 25 years Payback ad: 25 years Payback 10% Depreciation Income Income 10% Cash Depreciation Income 10% Dutflow Dutflow Payback 10% Cash Depreciation Income 10% Depreciation Income Income 113 148.665 34.08 75.01 87.25 257 140.333 34.08 75.01 87.25 257 144.436 34.08 91.24 557 144.436 34.08 91.24 557 166.930 34.08 91.24 557 144.436 34.08 103.94 257.520 34.08 103.94 108.44 255.520 34.08	756 17.48% 6	Net Income After Tax	[M USD]	-720.23	79.64	83.39	87.25	91.24	93.86	99.58	93.55	97.59	101.77	106.07	106.70	115.08	119.79	124.65	129.66	134.83	138.81	145.64	151.30	157.13	163.15	169.34	171.93	182.32
ut IDC): 720.23 M USD 9.0% 4: 25 years 4: 25 years 6: 25 years 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%	NPV IRR k Period	Taxes	[M USD]	1	1					2 22 22 22 22 22 22 22 22 22 22 22 22 2	10.39	10.84	11.31	11.79^{-1}	11.86	12.79	13.31	13.85	14.41	14.98	15.42	16.18	16.81	17.46	18.13	18.82	19.10	20.26
ut IDC): 720.23 1 9.0% 9.0% 9.0% 720.23 1 i: 25 0 0.10% 10% 10% 10% 10% 10% 10% 10% 10% 10%	Paybac	Gross Income	[M USD]	76.01	79.64	83.39	87.25	91.24	93.86	99.58	103.94	108.44	113.08	117.86	118.55	127.87	133.10	138.50	144.07	149.81	154.24	161.82	168.11	174.59	181.27	188.16	191.03	202.58
ut IDC): 1: 1: 1: 1: 1: 1: 1: 1: 1: 1	M USD years years	Depreciation	[M USD]		34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08	34.08
tal Costs (without IDC): secount Rate: nncession Period: preciation Period: xes (year 8-25): xes (year 8-25): To Cash Inflow ar Cash Inflow MUSD] MUSD] MUSD] MUSD] MUSD] MUSD] MUSD] MUSD] 250.425 339.49 339.45 366.13 339.45 339.49 339.44 339.44 339.45 360.80 339.45 360.80 339.44 339.44 339.49 339.45 360.80 339.44 349.45 360.80 339.45 360.80 339.44 360.80 339.45 360.80 339.44 360.80 339.44 360.80 339.45 360.80 339.44 360.80 330.44 360.444 360.444 360.4440,4440,4440,4440,4440,4440,4440,44	720.23 9.0% 25 10%	Cash Outflow	[M USD]	720.23	144.436	148.665	153.025	157.520	163.640	166.930	171.854	176.931	182.164	187.559	197.352	198.855	204.766	210.859	217.141	223.617	231.779	237.175	244.270	251.584	259.124	266.897	279.141	283.172
tal C	Costs (without IDC): nt Rate: sion Period: iation Period: year 8-25):	Cash Inflow	[M USD]	750.47	258.16	266.13	274.36	282.83	291.57	300.58	309.87	319.45	329.32	339.49	349.98	360.80	371.95	383.44	395.29	407.50	420.09	433.07	446.46	460.25	474.47	489.14	504.25	519.83
	Total C Discou Conces Deprec Taxes (Year		0	- 0	ю	4	5	9	7	×	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Y2

Y

PB

Table 34: The DCF model of Case Study 2: Visayas.

96

Γ		Y2			0.00	0.00	0.00	0.00	0.29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	РВ	Y1			1	1	1	1						0						0			0	0	0			0	0
L		Cash Flow Cumulated	[M USD]	-870.65	-678.71	-480.36	-275.41	-63.64	155.15	378.31	611.80	832.34	1060.03	1295.07	1537.70	1780.80	2039.31	2306.13	2581.51	2865.73	3159.05	3459.18	3771.56	4093.92	4426.57	4769.81	5123.98	5482.08	5859.14
		Cash Flow Discounted	[M USD]	-870.65	191.94	181.97	172.51	163.52	154.99	145.04	139.22	120.65	114.27	108.22	102.49	94.21	91.91	87.03	82.41	78.03	73.88	69.35	66.22	62.70	59.35	56.19	53.19	49.34	47.66
		Discount Factor		100%	100%	92%	84%	77%	71%	65%	60%	55%	50%	46%	42%	39%	36%	33%	30%	27%	25%	23%	21%	19%	18%	16%	15%	14%	13%
M USD years		After Tax Cash Flow	[M USD]	-870.65	191.94	198.35	204.96	211.77	218.79	223.16	233.49	220.55	227.68	235.04	242.63	243.11	258.51	266.82	275.39	284.22	293.32	300.13	312.38	322.36	332.64	343.24	354.17	358.10	377.05
1,696 20.94% 4		Net Income After Tax	[M USD]	-870.65	157.11	163.52	170.13	176.94	183.96	188.34	198.66	185.72	192.86	200.22	207.80	208.28	223.68	231.99	240.56	249.39	258.50	265.30	277.56	287.53	297.82	308.42	319.35	323.27	342.23
NPV IRR ^{eriod}		Taxes	[M USD]	1	and							20.64	21.43	22.25	23.09	23.14	24.85	25.78	26.73	27.71	28.72	29.48	30.84	31.95	33.09	34.27	35.48	35.92	38.03
NP [,] IRR Payback Period		Gross Income	[M USD]		157.11	163.52	170.13	176.94	183.96	188.34	198.66	206.36	214.29	222.46	230.89	231.42	248.54	257.77	267.29	277.10	287.22	294.78	308.40	319.48	330.91	342.69	354.83	359.19	380.25
M USD years years		Depreciation	[M USD]	۲£	34.83	34.83	34.83	34.83	34.83	34.83	34.83	34.83	34.83	34.83	34.83	34.83	34.83	34.83	34.83	34.83	34.83	34.83	34.83	34.83	34.83	34.83	34.83	34.83	34.83
870.65 9.0% 25 25	10%	Cash Outflow	[M USD]	870.65	517.311	532.818	548.804	565.284	582.273	602.653	617.843	636.457	655.645	675.427	695.819	724.998	738.515	760.857	783.890	807.634	832.112	860.211	883.360	910.178	937.825	966.325	995.707	1034.152	1057.222
Total Costs (without IDC): Discount Rate: Concession Period: Depreciation Period:	laxes (year 8-25):	Cash Inflow	[M USD]		709.25	731.17	753.76	777.05	801.06	825.81	851.33	877.64	904.76	932.71	961.53	991.25	1021.88	1053.45	1086.00	1119.56	1154.16	1189.82	1226.58	1264.49	1303.56	1343.84	1385.36	1428.17	1472.30
Total Discol Conce Depre	laxes	Year		0	1	7	б	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Table 35: The DCF model of Case Study 3: Mindanao.

CHAPTER 4

CONCLUSION AND RECOMMEDATION

This investigation, as noted by the author in the introduction, is the preliminary stage in establishing the viable placement of PSP. The pump storage hydropower project is a large construction that supports the long-run energy. And it can supply-demand of a career in the country. However, hydropower project feasibility requires further information, such as slope design, hydraulics, power electric scenarios, civil design, environment, and so on. But this study works only 2 sectors; Geography and Geology to select the potential area. Then using DCF to summarize the feasibility as shown in Table 37.

Table 36: Summarize the total cost (without IDC) for DCF model of 3 Cases.

() min	Luzon	Visayas	Mindanao
Total Costs (without IDC)	851.92	720.23	870.65
[M USD]	10	~	

งหาลงกรณ์มหาวิทยาลัย

Case Study	NPV	IRR	PB
Luzon	1,467	22.56%	4
Visayas	756	17.48%	6
Mindanao	1,696	20.94%	4

Table 37: Summarize the DCF model of 3 Cases.

Mindanao, in particular, The location has the ability to produce a large amount of energy while also delivering advantages. This region does not have the same amount of energy consumption as Luzon. As a result, if we need to create this PSP in the future, other considerations such as infrastructure planning and city density will need to be extensively investigated. And additional research on the cost of purifying seawater for the purpose of producing electricity is necessary.

The economic and financial research analyst for three PSPs is based on the Belisama PSP [9] which includes all parameters as well as a fully simulated energy and revenue model using 2018 data. The results may vary in the future, depending on the market share price of LCOE. And base on DCF by apply discount factor, WACC, and inflation in next 25 years.

The project's economic analysis increases sensitivity analysis to determine the robustness of the project's economics by adjusting the primary input parameters and determining the impact on the project's economic key indicators. The variables under consideration include the influence on the cost side (CAPEX, O&M, and pumping costs) and the revenue side (energy generation), including depreciation and inflation.

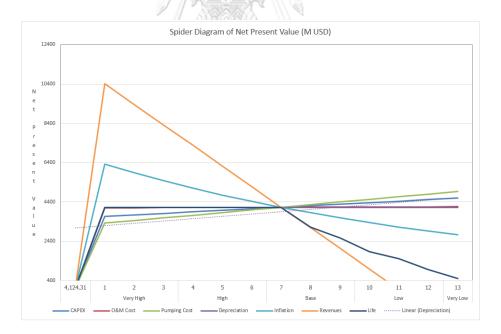


Figure 47: Spider diagram of net present value with varios indicators.

The author's contribution to this work is to give options for "Water Management" in developed countries. Numerous benefits from this research could have a positive impact on the environment, promoting clean energy and preserving the country's energy stability.

100

The final suggestion is that not only this research can produce the best PSP, but there are several dimensions that require deep learning prior to beginning the project, such as topography survey with high resolution (centimeter), investigation geology, electro-mechanical and hydro-mechanical equipment, civil design, risk assessment, and simulation of operational aspects. In the site inspection, the investor and consultant might use high-resolution resolution data to select new areas with the highest PSP potential.

The operation process will be less expensive due to "Hybrid" technology; at this time, pump-storage hydropower projects can use another technology to assist generated electricity in the pumping stage, such as solar and wind technology. This is the future energy-saving technology in combination.

REFERENCES

- [1] Japan International Cooperation Agency, "Conventional Hydropower and Pumped Storage Hydropower, March 2011," *Guideline and Manual for Hydropower Development Vol. 1*
- [2] National Hydropower Association, "2018 Pumped Storage Report (202)," 2018.
- [3] Robert Braunshofer, "800 MW Belisama Pump-Storage Project. Addendum to the Feasibility Study," 2018.
- Ph.D. Kyle Webb, *Energy Storage Fundamentals and Pumped-Hydro Energy Storage*, College of Engineering ed.: College of Engineering, Oregon State.
 [Online]. Available: <u>https://web.engr.oregonstate.edu/~webbky/ESE471.htm</u>.
- [5] Matthew Stocks Bin Lu*, Andrew Blakers, Kirsten Anderson, "Geographic information system algorithms to locate prospective sites for pumped hydro energy storage," *ELSEVIER*, p. 13, 2018.
- [6] Gaurav Srivastava. Engineering Geology
- [7] KPMG ASIA PACIFIC TAX CENTRE, "Asean Tax Guide," 2013.

APPENDIX A

QGIS TO VIEW WMS

To add a WMS layer from the menu, choose Layer > Add Layer > Add WMS/WMTS Layer. Alternatively, click on the **Wanage Layers Toolbar**. In the Add Layer(s) from a WM(T)S Server pop-up box click the New button, and then in the Create a new WMS connection pop-up add a name for your service, such as OneGeology shapefile exemplar (fcgi) using MapServer 6 and the service URL (with no parameters) as below and then click 'OK'.

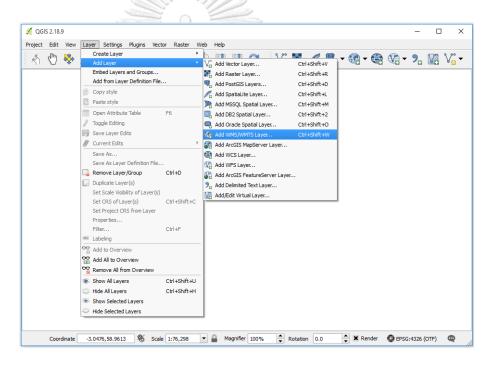


Figure 1 - QGIS menu option for adding a WMS.

We recommend using no parameters (above), so that you get the latest version of the WMS service. If you are testing your own system and you want to test a particular version you can add that version as a parameter; such as:

OneGeology sha	pefile exempla	ar (fcgi) using Ma	apServer 6				
Connect	New	Edit	Delete		Load	Save	Add default server
ID	I 🕺 Create a	new WMS con	nection	•		? ×	
	Connectio	on details					
	Name	OneGeology	shapefile exemplar (fcg	i) using MapServer 6			
	URL	http://ogc.bg	gs.ac.uk/fcgi-bin/exemp	lars/BGS_Bedrock_and	d_Superficial_Geo	ology/wms?	
-Image enco	Authent	tication Conf	figurations				
	If the se	ervice requires b	asic authentication, en	ter a user name and o	ptional password		
	User na	me					_
Options	Passwo	rd					
Tile size							
Feature limit							
WGS 84	Referer						
Use conte	DPI-Mode	all				-	
	Version						
	Ignore	GetMap/GetTile	URI reported in capab	lities			-
er name	Ignore	GetFeatureInfo	URI reported in capab	ilities			
	Ignore	axis orientation	(WMS 1.3/WMTS)				e Help
ady	Invert	axis orientation					

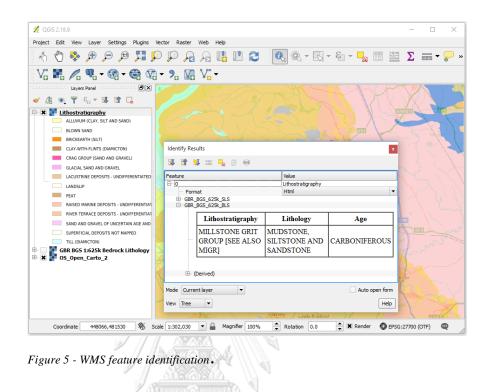
Figure 2 - Adding a new WMS Service.

As with most other clients at this stage all you've done is add the WMS service to the list of available WMS services. To add a layer you need to select the WMS service from the **Add Layer(s) from a WM(T)S Server** popup box, and click 'Connect'. This will show you a list of the layers being served from the WMS service.

If you are behind a firewall, you may also need to add information about your proxy server. This is done through the **Settings > Options** menu in the **Network** section.

Click on the layer you want and click 'Add', this will add that layer in the background, but keep the pop-up window to allow you to add another layer. Press **Ctrl** and click again on a selected layer to deselect it.

Connect	New	Edit	ng MapServ	Delete		Load		Save	Add de	fault serve
				Delete		2000		ouve	Hud uc	induit der ve
ID	A Name		Title		Abstract					
⊡0 	BGS_EN_Be	edrock	BGS bedroo	ck and	The 1:625k DiGMap data cove GBR BGS 1:625k scale Bedroo	ering the wh	pie of the l	United King	jdom is ava	iable in thi.
± 1	GBR BGS 6	625k	GBR BGS 1	1.625k	GBR BGS 1:625k scale Bedroo GBR BGS 1:625k scale Bedroo	k Lithostrati	ranhy (inc	luding Lith	ogenic unit	e)
± 5					GBR BGS 1:625k scale Bedroc		and proy (in it	iooning Litti	ogenicunit	2)
±	GBR_BGS_6	625k	GBR BGS 1	:625k	GBR BGS 1:625k scale Superf	cial Deposits	Litholoav			
÷ 9	GBR_BGS_6	625k	GBR BGS 1		GBR BGS 1:625k scale Superf			igraphy (in	ncluding Lith	nomorphog.
- 11	default		default							
PNG	-									
PNG										
PNG Coordina Tile size		tem (8 av				10				
PNG Coordina Tile size Feature lin	PNG8 JPEC te Reference Syst	tem (8 av				10		Change		
PNG Coordina Tile size Feature lir OSGB 193	PNG8 JPEC	tem (8 av				10		Change		


Figure 3 - Selecting layers.

Note, if you select several layers (using **Ctrl** or **Shift** keys) and then click Add, QGIS will show those selected WMS layers as a single 'derived' layer in the GIS. In this example we have joined the bedrock lithostratigraphy and the superficial lithostratigraphy geology layers to create a single layer which we name 'Lithostratigraphy'. Note you can rename any WMS layer to one that suits your needs, change the layer CRS, and change the layer image encoding (the default is png).

Connect	New	using MapServer 6 Edit Delete	•	Load	Save	Add default server
D	A Name	Title	Abstract			
∃0 ⊕-1		BGS bedrock and GBR BGS 1:625k	The 1:625k DiGMap data co GBR BGS 1:625k scale Bedr		the United King	dom is available in thi
± 3	GBR BGS 625k	GBR BGS 1:625k	GBR BGS 1:625k scale Bedr	ock Lithostratigraph	y (including Lithe	ogenic units)
<u>⊕</u> 5			GBR BGS 1:625k scale Bedr			
⊞…7 ∓ 9	GBR_BGS_625k GBR_BGS_625k	GBR BGS 1:625k GBR BGS 1:625k				dudina Lithomorphoa
11	default	default		er neier beposits eren	sarangrapity (it	closing cratomorphog.
• PNG O	ling PNG8 () JPEG ()	TIFF OSVG				
	-					
Coordinate R	PNG8 O JPEG O					
Coordinate R	PNG8 O JPEG O			10		
Coordinate R Tile size Feature limit fo	PNG8 JPEG (10	Change	

Figure 4 - Creating derived layers.

If the selected layer is set to be query able in the WMS service, you may use the identify tool to retrieve information on any feature in the map.

You may right click on any layer in the layer list and go to Properties to get the metadata for that layer and the

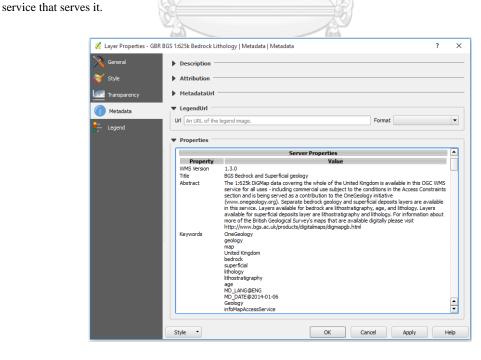


Figure 6 - Layer properties metadata.

1. Using QGIS to access simple feature WFS

To add a WFS layer you need to go through a similar process as you do to add a WMS layer, that is, you must first add the WFS service by clicking on the **Manage Layers Toolbar**, then connect to the service, then select the layer you want to add. Even if the WFS service URL is the same as a WMS connection you already have listed you will need to add the WFS service URL.

🜠 Add WFS Layer from a Server	?	×
Server connections		
OneGeology shapefile exemplar (fcgi) using MapServer 6		
Connect New Edit Delete Load	Save	
Filt 🕺 Modify WFS connection	?	×
TI Connection details		
Name OneGeology shapefile exemplar (fcgi) using MapServer 6		
URL ac.uk/fcgi-bin/exemplars/BGS_Bedrock_and_Superficial_Get	ology/w	ms?
Authentication Configurations		_
If the service requires basic authentication, enter a user name and optional passwo	rd	
User name		
Password		
Version Auto-detect		•
Max. number of features		
☐ Ignore axis orientation (WFS 1.1/WFS 2.0)		
Invert axis orientation		
OK Cancel	He	٩Þ

Figure 7 - Adding a new WFS service.

When you add a WFS layer you can choose to request all the features of that layer, or you may choose to request only those features that overlap the current extent, depending on whether the option **Only request features overlapping the view extent** is enabled. This will allow you to download and add to your map only the features relevant to your area of interest. However, if you change your extent by panning or zooming the map, new features will be fetched for your new view extent.

Ø OGIS 2.18.9		- 🗆 X
	Plugins Vector Raster Web Help	
		∑
V: 🖬 🖊 🗣 - 🛞 -	😫 🌿 - 🧏 🕼 V [°] .	
X market		
The Lodge	🕺 Add WFS Layer from a Server 🧧 🗙	Granby
	Server connections OneGeology shapefile exemplar (frgs) using MapServer 6	Standy
	Connect New Edit Delete Load Save	
$\gamma = 1$	Fiter: on Farm	
	Title Abbract Amme Abbract Composition GRB BG5:16558: Bedrock Lithbology mscs88; BG5:555; GSB BG5:16528; scale Bedrock CBB BG5:16258; Bedrock Age CBB BG5:16528; Scale Bedrock CBB BG5:16528; Scale	
	Use title for layer name Keep dialog open Only request features overlapping the view extent	
Smite	Coordinate reference system EPSG:27700 Change	
• {	Add Build guery Close Help The Old Coach	
Streemfields	Fairfield House	
Getting n Coordinate 471747,336559	🗞 Scale 1:18,877 🔻 🔒 Magnifier 100% 🔷 Rotation 0.0 🔶 🕱 Render 🚳 EPSG:	27700 (OTF) 🔍

Figure 7 - Adding a new WFS service.

Below we have zoomed to the full extent of the WFS layer, therefore all features for that layer have been returned. Individual feature attributes can be inspected by using the **Identify** tool or by opening the **Attribute Table**.

	ficeeeee 2 papara 0		
💋 QGIS 2.18.14			- 🗆 X
Project Edit View Layer Settings Plugins	Vector Raster Web Help		
1 🖑 🌺 🗩 🗩 🥦 🎵	🔁 🗉 🛃 🔍 🗛 🔍	🔍 🔍 - 🔀 - 🗞 -	• 🎝 📰 🚨 \Sigma 🛲 • »
Vî 📕 🖊 🥵 • 🚱 • 🖨 🔇	a - 🤊 🕅 🖓 -		
cocco Layers Panel cocco 🗗 🗙			
💉 🏨 💽 Ţ 🗞 🔻 »			
B GBR BGS 1:625k GBR BGS 1:625k GBR BGS 1:625k			
		-	
Identify Results	x		,
14 tř 14 = 💊 🛛 👄		TW	
Feature	Value	1. 1. 1. 1. 1. 1.	5.57 M
GBR BGS 1:625k Bedrock Lithology	CHALK		
		10 000	
			S A S A S A S A S A S A S A S A S A S A
Mode Current layer 🔻	Auto open form		
View Tree	Help		
Coordinate -12.31,61.35	🛞 Scale 1:3,835,787 💌 🔒 Magnifier	100% 🔶 Rotation 0.0 🌲	🗶 Render 💿 EPSG:4326 🔍

Figure 8 - Identifying WFS features.

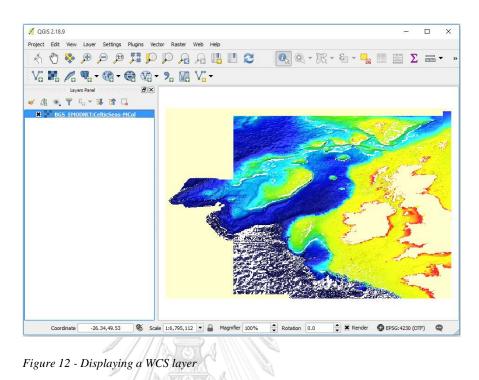
When we view a WFS service, it should be noted that we actually download a representation of the data itself, not an image. We can therefore save a copy of that data for re-use elsewhere. Simple right click on the layer and go to Save As. Exporting formats include ESRI Shapefile and GeoJSON. Exported data can be limited to selected features or to features in the current map extent.

💋 QGIS 2.18.14					- 0	×
Project Edit View Layer	Carrow and	· · · · · · · · · · · · ·		? ×	1	
i 🖑 🕐 🐥 🔎	🕺 Save vect	tor layer as		1 ^	📰 🚟 Σ 🖷	
°\?° ₽	Format	ESRI Shapefile		•		
	File name			Browse		
ع <u>ال</u> و T د. + .						
K GBR BGS 1:625k	CRS	Selected CRS (EPSG:4326, WGS	84)	•	. 4	
🖲 📄 📑 GBR BGS 1:625k	·	·				
	Encoding		System			
		ly selected features				
	Select	fields to export and their exp	ort options			
		red file to map			5 m	
	Symbology	export	No symbology	•	-	
	Scale		1:50000	×		
	▼ Geom					
	Geometry		Automatic	→		
		: multi-type de z-dimension			ASS TAS	.
						3.1
	Ex	tent (current: layer)				- States
	▼ Layer				Contraction of the second	
	RESIZE	NO		•		
	SHPT			· · ·		
Coordinate	Custo	m Options			ler 🔘 EPSG:4326	•
			ОК	Cancel Help		
		(// N. A			J	
	1	/ ACCORT				
Figure 9 - Expo	rting W	FS layer.	S - 111 - 3			
0 1	0	1 - Children Children				
	~	Mecces 3000	221.0			
		ETIONICIA	DIS-			
2. Using QGIS to view W	CS	- TURNOW	and the			
No. 1	1		¥2/			
le la	24					
	6		ND 4C 1			
Adding a WCS layer is again a sir	nilar pro	ocess than addin	g a WMS layer:			

- Add the WCS service by clicking on the **Manage Layers Toolbar**
- Connect to the service

Select the layer you want to add •

Connect				
	New Edit Delete		L	pad Save
ID 🛆	Name	Title	Abstract	
0	🚀 Create a new WCS connection		? >	 bservation and D. bservation and D. bservation and D.
3 4	Connection details			bservation and D. bservation and D.
5	Name EMODnet Bathymetry	bservation and D.		
	URL http://ogcdev.bgs.ac.uk/cgi-bin/BGS_EMO			
		obnec_baarymea y/ows:		
	Authentication Configurations			
	If the service requires basic authentication, enter	a user name and optional	password	
	User name			
	Password			
Time				
	Version			Change
Coordinate Reference				changern
	Ignore GetCoverage URI reported in capabilities			
Coordinate Reference	Ignore GetCoverage URI reported in capabilities Ignore axis orientation			
	Ignore GetCoverage URI reported in capabilities Ignore axis orientation			


Figure 10 - Creating a connection to a WCS service.

Only one layer can be selected at a time. After selecting it, and choosing your favourite format, click 'Add'. Repeat this process if you want to add more layers and then click 'Close'.

EMODnet Bathyr	netry			•
Connect	New Edit Delete		Loa	d Save
ID .	Name	Title	Abstract	
	Create a new WCS connection Connection details Name EMODnet Bathymetry URL http://ogcdev.bgs.ac.uk/cgi-bin/BGS_f Authentication Configurations If the service requires basic authentication, en User name Password		? ×	beervation and D beervation and D beervation and D bservation and D bservation and D bservation and D
Time Coordinate Refere Format GTiff Cache Prefer ne	Ignore GetCoverage URI reported in capabiliti Ignore axis orientation	ies		Change

Figure 11 - Adding a WCS layer

Your layer(s) should now be displaying on the map.

WCS layers can be exported as rasters. To do so, right click on the layer and go to **Save As**. You can choose to crop the exported raster by specifying an extent or getting the current map extent.

🕺 Save raster la	Layer Settings Plugins Ve	ctor Raster Web Help	? ×		
					ο 📰 Σ 🚟
Output mode Format GTiff	Raw data O Rendered image			-	
			Create VRT		A
Save as			Browse		and a start of the
CRS Selected O	RS (EPSG:4326, WGS 84)		-		a ser
X Add saved file					-4-
Extent (cur			P		
	North 63.6979			2	1
West -26.114		East -0.4895	62830000001		1 (1985) - 🗩
	South 46.6145	69669999995		1 All Carl	
	Layer extent	Map view extent			
					State of N
	(current: laver)			200	
Resolution					A CONTRACTOR
 Resolution Horizontal 		ertical 0.00416667	Layer resolution		
 Horizontal 	0.00416667 Ve				1 12
	0.00416667 Ve	ertical 0.00416667	Layer resolution		Y JES
 Horizontal 	0.00416667 W				
Horizontal Columns	0.00416667 W			J.	

Figure 13 - Exporting a WCS layer

VITA

NAME	Sornsawan Utthakrue
DATE OF BIRTH	15 September 1990
PLACE OF BIRTH	Thailand
INSTITUTIONS ATTENDED	BSc degree from Geoscience, Science Faculty of Mahidol University (MU), 2013.
HOME ADDRESS	450, Kaow Ngoen Thong Rd, Chimpli, Talingchan, Bangkok 10170
PUBLICATION	"Site selection for feasibility study of pump- storage hydropower project in the Philippines.", The 4th Environment and Natural Resources International Conference (ENRIC 2021).
AWARD RECEIVED	Full scholarships for study in Energy Technology Management of Chulalongkorn University, by TPI Polene (Public) Co., Ltd.
ų W I	

CHULALONGKORN UNIVERSIT