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CHAPTER I

INTRODUCTION

1.1 Background and Statement of Problems 

Computer aided calculations have a major role in assisting geographical 

information systems, such as surveying underground water sources.  These include 

geological environmental modeling, and processing geographical information, and 

displaying the soil layers with three-dimensional graphics. Also, there are many types of 

tools to help create various types of geological models, for example, diagramming, 

organizing geological systems, displaying a model of soil layers and the cross section of a 

geological area, and estimating contour lines for the data in a given range of relations 

between soil layers. 

Creating a model of geographical information by using geometrical methods will 

display using typical computer graphics methods. Creating a model of underground water 

in 3D, or creating a model of a geological surface [1, 2, 3, 4] usually cannot display the 

complete relationships of the geological data accurately and appropriately, as there are no 

standard geological models, and creating or estimating the surface of each soil layer is 

independent, due to the lack of data for the internal structure. In addition, we cannot 

display the geological relations or connections between each soil layer. In some instances, 

analysis and calculation of partial data to create a sufficiently accurate display may not be 

possible. In addition, there are inaccuracies in the soil layer positions and inaccurate 

categorization of soil layers. 

Therefore, this research presents a 3D model for hydrological and geological 

information, which can display relations between various types of geographical 

information, for example, coordinates on a surface, coordinates under soil layers, and 

categories of soil layers. Also, it can display the internal structure of soil layers 

categorization and can calculate required geographical information, such as the position 

of soil layer, cross section of soil layer, contours, and geological maps accurately and 

consistent with the actual data. We utilize the Morse theory, which refers to the general 

sense of variant calculus, which explains every case of the relation between a point on a 

continuous real-number function and the general topology of a manifold. Here we replace 
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the manifold with a data set of a geographical surface. The calculation begins by 

specifying each location of a soil layer. In addition, creating the surface by estimating 

from the input depths of the layer to create the cross section of each soil layer at all 

critical positions obtained using the Morse theory [5, 6, 7], in order to create the extended 

Reeb graph for creating the surfaces and complete internal structure of the geographical 

data. Next, we compare the results from the model with the actual data, which will be 

within the limits that cover all the received depth data. This conceptual model can be 

displayed as a 3D model where we can retrieve the internal structure of soil layer to view, 

as well as display the cross section of the soil layer, and can be used to represent and store 

systematically geographical information for efficient retrieval or search.

1.2 Objectives 

To propose an enhancement of Reeb graph modeling for representing 3D 

geographical information model displaying internal structures appropriately for accurate 

data analysis, by processing cross sections to find the limit of the research area in the 

geological model accurately, as well as approximating the soil layer heights correctly, and 

categorizing soil layers correctly as well, to create proper relations between soil layers 

and drill holes. 

1.3 Scope of Study 

1. This research is to test the modeling system for hydrogeological information. 

The data for testing can be obtained with two methods: creating boreholes by 

randomizing the coordinates and depth (52 boreholes), and creating boreholes 

by using data from surveys water resource engineering (200 boreholes 

covering a provincial area). 

2. This research had to input data format which importing a file of numerical 

data, stored as an Excel file that data of depth and co-ordinate of each soil 

layer from exploration of water resource engineering. 

3. The presented modeling system has the following capabilities: display three-

dimensional imagery, the cross-secrional soil layers, categorizing soil layers 

with multipile vieweing angles, and display the relations of the soil layer with 

the borehole. 

2
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1.4 Research Procedure 

Procedure of research that consist of seven parts 

1. Review literature 

This research can explain related-theories. 

The Fundamental Mathematical Theories 

Surface Reconstruction Theories 

Reeb Graph Theories 

Morse Theories 

Previous research studies, articles, books, online information technology. 

2. Design an algorithm. 

3. Program development 

4. Model evaluation 

5. Implementation 

6. Analysis

7. Deliverables and conclusion 

1.5 Expected Benefits 

 Proposed Enhances Reeb Graph Model can represent geographic information 

from water resource engineering. The model can be applied for displaying the 

geographical data in the three dimensional images, and representing the relationship of 

internal structure and analyzing the geographical data. 

1.6 Thesis Structure 

This thesis has five chapters: Introduction, Theoretical background and related 

works, Enhanced Reeb Graph for Modeling Hydrogeological Information, 

Experimentation results and Conclusion and Future work. 

 The first chapter provides background and statement of problems, objectives, 

scope of study, research procedure, expected benefits, thesis structure and publications. 

Chapter 2 gives a brief description of Mathematical Fundamentals and Surface 

Constructions, Differentiable Manifold, Morse theory and explains how to represent 

objects with Reeb graph. In addition, discusses on previous works regarding 

representating three-dimensional model (3D) and Surface Reconstruction. In chapter 3 

explains improving the performance of Reeb graph to model hydrological and geological 

3
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information. Chapter 4 explains experimental results and Chapter 5 explains the results 

and possible paths for further development. 

1.7 Publications 

Some parts of this research had been published in the 2006 International 

Conference on Cyberworlds (CW2006), which was held on November 28-29, 2006, 

EPFL, Lausanne, Switzerland. The paper title is An Enhancement of Reeb Graph for 

Modeling Hydrogeological Information. The authors are Rungwit Laichuthai and Pizzanu 

Kanongchaiyos. In addition, in proceedings of 1st National Applied Statistics Conference 

(ASCONF2006), Bangkok, Thailand, August 10-11, 2006, pages 275-285. The paper title 

is Visualization of hydrogeological Information Using Reeb Graph. Moreover, Poster 

session presented at the 1st Thai-Japanese Student Exchange Meeting (TJSE), Osaka 

University, Osaka, Japan, November 2-3, 2006. The poster title is An Algorithm for 

Multi-layer Three Dimensional Object Modeling. 

4



CHAPTER II

THEORETICAL BACKGROUND AND RELATED WORKS 

This chapter explains the mathematical fundamentals. In addition, subject 

discusses on previous works regarding Reeb Graph Construction and Surface 

Reconstruction Model. 

2.1 Theoretical Background 

This section explains the mathematical fundamentals that compose the basis of 

three-dimensional model of surface reconstruction and Three Dimensional Model 

Creation with Reeb Graph. 

 2.1.1 Mathematical Fundamentals 

This section explains the mathematical fundamentals that compose the basis of 

this modeling system. First, the concept manifold is presented. Second, Morse theory is 

explained. This is a backbone about surface construction of this system. Then a Reeb 

graph is introduced. This graph is the topological concept that has structural information 

of an object. Finally, homotopy is mentioned. It is utilized to contour interpolation.

 2.1.1.1 Differentiable Manifold 

Let S  be a set. A chart is a bijection  from a subset U  to S  to an open subset 

of Banach space. A kC  atlas is a family of charts IiUA ii ,  such that 

1. IiUS i

2. Any two charts in A  are compatible in the sense that the overlap maps 

between members of A  are kC  diffeomorphisms : for two charts iiU ,  and 

jjU ,  with ji UU ,we form the overlap map : 

jiiijji UU1 . We require that jii UU  is open and that ji

be a kC  diffeomorphism. 
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Two kC  atlases 1A  and 2A  are equivalent if 21 AA  is a kC  atlas. A kC

differentiable structure D  on S  is an equivalence class on S . The union of the atlases 

in D , DAAAD  is the maximal atlases on D , and a chart DAU ,   is an 

admissible local chart. If A  is a kC  atlas on S , the union of all atlases equivalent to A  is 

called the kC  structure generated by A . A differentiable manifold M  is a pair DS ,

where S  is a set and D  is a kC  differentiable structure on S . A differentiable manifold 

M is an n-manifold when every chart has values in an n-dimensional vector space. Thus 

for every point Ma , there is an admissible local chart ,U  with nRa , where 

Mn dim  [8, 9]. 

 2.1.1.2 Morse Theory

Let f  be a mapping from an n dimensional manifold M  to a set of real 

number R . If the point p  is a non-degenerate critical point of f , the function is 

approximated by quadratic form based on second order partial derivatives in the 

neighborhood of p  as follows: 

ii yx
fjiH

2

,

This matrix is called a Hessian matrix. If the Hessian matrix of the critical point p  is 

regular, the point is called non-degenerate. The index of f  at p  is the number of 

negative Eigen values of the Hessian matrix. A function f  is called a Morse function if 

the following two conditions are satisfied. 

1. None of its critical points is degenerate. 

2. The values of f  at one critical point differs from those of the other critical 

points.

Since the critical points of a Morse function are isolated, the number of critical points is 

finite as long as M  is compact. 

 Let M  be a compact differentiable manifold and f  be a Morse function from M

to R . If the critical points of f  are kppp ,...,, 21  and their indices are krrr ,...,, 21 ,

respectively. M  is homotopy equivalent to the finite CW  complex that is composed of 

6
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an 1r -dimensional cell, a 2r -dimensional cell,…,and a nr -dimensional cell. In other 

words, the following is satisfied. 

nrrr eeeM 21~

 Morse theory states that the homotopy type of an object is determined by the 

above formula. Users can therefore construct a desired surface attaching cells 

corresponding to the critical points of its Morse function. However, Morse theory cannot 

determine the topological structure of surface completely. For instance, the connectivity, 

the existence of knots, and the existence of links are not distinguished. These ambiguities 

are the limitation [7, 10]. 

 2.1.1.3 Reeb Graph 

 A Reeb graph is introduced in this section. A Reeb graph is proposed by G.Reeb 

and it represents the topological structure of an object. This graph is defined as follows 

[11, 12, 13, 14, 15]. 

 Let RMf :  be a function on a compact manifold M . The Reeb graph of f  is 

the quotient space of the graph of f  in RM  by the equivalence relation given below: 

where 21, XX  are in the same connected component of 1
1 Xff

2.1.1.3.1 Reeb Graph on Height Function

 Now a Reeb graph on height function is explained. A Reeb graph on height 

function has topological information of an object as follows. 

1. Its node corresponds to critical point of an object. 

2. Its edge corresponds with a connected component of an object. 

3. Its point of an edge corresponds with a contour on a cross-sectional plane. 

 For instance, the Reeb graph of a torus is presented in figure 2.1. Since a Reeb 

graph on height function has the topological information of an object, the graph can be 

utilized to a three-dimensional object construction. 

 However, the graph has no information about shape of an object. Consequently, 

we cannot construct three-dimensional objects by utilizing only Reeb graph. An example 

is shown in figure 2.1. There are two tori in the figure 2.2. One is regular torus and the 

212,2~1,1 ffff

7
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other is a distorted torus. They are different about their shape but they have the same 

Reeb graph in the figure 2.2 because they have the same topological structure. 

 Thus, in the modeling system that introduces a Reeb graph as the structure of an 

object, some geometrical information about must be attached to the topological graph 

later. 

Figure 2.1: A torus and its Reeb graph on a height function is presented. 

Figure 2.2: Two tori that differ about their shapes but have the same Reeb graph. 

2.1.1.3.2 Enhanced Reeb graph

 In this section, an enhanced Reeb graph is defined. This graph is an extension of 

an original Reeb graph on a height function that is previously explained. The enhanced 

Reeb graph is extended to hold both topological information and geometrical information 

of an object. Its node has the coordinates of a critical point. Its edge has information of 

8
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the shape about the connective components of an object. In addition, the graph has cross-

sectional information of object. 

 An enhanced Reeb graph R  consists of three sets below. 

1. Let N  be a finite set. Each element of is a point of N  the vector space 3R

and called the node of. R . N is called the node set of 3R .

2. Let I  be a closed set such that 1,0I . Let E  be a finite set. Each element of 

E  is a continuous mapping from I  to 3R  and is called the edge of R . E  is 

called the edge set of R .

An edge of R  must satisfy the following conditions. 

There exist such nodes in  and jn  that jiandnene ji 1,0 .

The z  value of te  increases or decreases monotonically for all 1,0t .

3. Let I  be such a closet set that 1,0I . Let C  be a finite set. Each element of 

C  is a continuous mapping from I  to 3R  and is called the contour of R .

A contour c  of R  must satisfy the following conditions. 

A contour c  is a closed curve. i.e. 10 cc  must be satisfied. 

A contour c  does not intersect itself. i.e. tcsc  must be satisfied for 

all s  and t .

A contour c  does not intersect any other contour of the graph R .

Contours of the graph R  are oriented in the same direction. 

 An enhanced Reeb graph consists of a tripple (N, E, C). The graph is considered 

as the Reeb graph that has geometrical information of an object. 

 For instance, the enhanced Reeb graph of the two tori in figure 2.2 is presented in 

figure 2.3. 

9
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Figure 2.3: Each torus has the different enhanced Reeb graph. 

 2.1.1.4 Homotopy 

 In this section, homotopy is explained. Homotopy is a topological concept about 

mappings. Homotopy is formulated below [16, 17]. 

 Let YXgf :,  be maps where X  and Y  are two topological spaces. Then f  is 

homotopic to g  if there exists a map YIXH :  such that xfxH 0,  and 

xgxH 1,  for all points Xx . Here RI 1,0 . This map H  is called a homotopy 

from f  to g  and is notated as gf ~ . If for some subsets A  of X

ItAaaftaH ,,

Then, f  is said to be homotopic to g  relative to A  and is written gf ~  rel A

10
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 For example, the transformation of homotopy is presented in figure 2.4. The upper 

contour is presented by the function f  and the lower by g

Figure 2.4: The upper contour is transformed to the lower contour by homotopy. 

2.1.2 Surface Constructions 

 This chapter explains the implementation of enhanced Reeb graph and homotopy. 

First, the implementation of enhanced Reeb graphs is explained. Next, the toroidal graph 

is introduced. Finally, the way is represented that homotopy is implemented. 

2.1.2.1 Implementation of Enhanced Reeb Graph 

This section of implementation of enhanced Reeb graph for 3D object consist of 

three portions: Adopted curves, Edge of enhanced Reeb graph and Contour of enhanced 

Reeb graph. 

2.1.2.1.1 Adopted Curves 

 This part explains the curves adopted by the system. Further studies about these 

curves are written in [7]. 

Bezier

An n-dimensional Bezier curve is defined as follows. 

i
n
k

n

k
ptBtf )()(

0
 ),10( 3Rpt i

where is called the Bernstein function and it is expressed by this formula. 

11
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where inin
k tt

k
n

tB )1()(

 This formulation is called the Bernstein form of a Bezier curve. The curve is 

specified by an ordered set named control points. The curve has convex hull properties 

and is invariant under affine maps. 

NURBS

A NURBS (Non Uniform Rational B-Spline) curve is defined by this formula. 

iki

n

i

iiki

n

i

wtN

pwtN
tf

)(

)(
)(

,
0

,
0

where is a weight associated with control points. And the function is a polynomial of 

degree call a B-Spline basis function. Is called knot vector.

12
11

1,111,
, nk

xx
tNtx

xx
tNxt

tN
iki

kiki

iki

kii
ki

otherwise
xtx

tN ii
i 0

1 1
0,

A NURBS curve has these features. It can represent a quadratic surface accurately. And it 

has a local approximation property. If a control point is moved or if a weight value 

associated with a control point is changed, the shape of surface changes only in its 

neighborhood.

 NURBS is adopted by a standard data exchange format called IGES (Initial 

Graphic Exchanged Specification) and is extensively utilized in a great number of CAD 

systems. 

Cardinal Spline 

A Cardinal spline curve is defined by this formula. 

2

1

1
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where ip  is a control point. 

 The Cardinal spline curve represents the curved segment i  between ip  and 1ip

that passes through both ip  and 1ip . In addition, the segment i  at 1t  joins with 

positional and tangent continuity to segment 1i  at 0t . This curve can express the 

everywhere 1C  continuous curve that passes through the control points. This feature is of 

use for this system. This curve is discussed further in the technical report [18]. 

Catmull-Rom Spline 

A catmull-Rom spline curve is defined as follows. 

211 ,,, iiii pppp  are given control points. 

2

1
211

i

i

i

i

iiii

d
d
p
p

wwwwtCR

where id  and 1id are

iiiii ppappad 111

1211 1 iiiii ppbppbd

And 11 ,, iii www  and 2iw  are 

0001
0100
1233
1122

123

2

1
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w

i

i

i

i

 A Catmull-Rom Spline curve is an extention of a Cardinal Spline curve. This 

curve expresses the curved segment i  between the control points ip  and 1ip  that passes 

through ip  and 1ip . In addition, this curve has the same features as the Cardinal Spline. 

The difference between a Cardinal Spline and a Catmull-Rom Spline is the degree of 

winding as presented in figure 2.5. Further discussion is in [19, 20] 
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 Cardinal spline Catmull-Rom spline 

Figure 2.5: The difference between a Cardinal Spline and a Catmull-Rom Spline is 

displayed.

2.1.2.1.2 Edge of Enhanced Reeb Graph 

 In this part, the implementation of edges is explained. Reviewing thr definition of 

an edge e , e  is a function like this. Let be I  a closed set 1,0I . e  is a function e :
3RI  and its z  value increase or decrease monotonically. 

 Cardinal Spline curves, Catmull-Rom Splinr curves or line segments in the 

implementation represent an edge. To satisfy the conditions above, z  value of control 

point must increase or decrease monotonously. If an edge does not satisfy this, this 

system considers the edge as an invalid edge. However, this condition is not a sufficient 

condition because a Cardinal Spline curves or a Catmull-Rom spline curves do not 

change monotonously if its control points are an ordered set about its z  values. 

2.1.2.1.3 Contour of Enhanced Reeb Graph 

 In this part, the implementation of contours is explained. A contour is defined as 

follows. Let I  be a closed set 1,0I . A contour c  is a function 3RI  and is a closed 

curve.

 To satisfy this condition, the implementation is as follows. First, the type of a 

contour is determined. This system supports these types. 

Polygon: gives the shape of a polygon that connects the given vertices.

Circle: gives the shape of a circle based on the coordinates of the center and 

the radius.

Bezier: gives the shape of a Bezier curve determined by the given control 

points.
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NURBS: gives the shape of a NURBS curve determined by the given control 

points.

Cardinal Spline: gives the shape of a Cardinal Spline curve determined by the 

given control points.

Catmull-Rom Spline: gives the shape of a Catmull-Rom Spline curve 

determined by the given control points.

 The next step is to give the contour parameters. The method of determining 

parameters depends on the type of contour. The method of determining parameters is 

divided into the three types; a polygon, a circle and a spline curve. 

Polygon: If a contour is polygonal, the parimeter is utilized as the parameter. 

The parameter is proportional to the perimeter. 

Circle: If a contour is a circle, determining parameters is very simple. Let 

),,( zyx ccc  be the given coordinate of the center of the circle and r  be the 

given radius. The parameter is the same as with a cylindrical coordinate 

system. 

Spline curve: If a contour is a spline curve, determining parameters is not easy. 

Though the arc length should be utilized as the parameter, it is difficult to 

calculate the length. Then linear line segments in figure 2.6 approximate each 

spline curve. Instead of the arc length, the approximated perimeter is utilized 

as the parameter. 

Figure 2.6: A spline curve is approximated by a polygon to determine the parameter. 

2.1.2.2 Toroidal Graph 

 How we can construct the natural surface when triangular patches are created 

between two contours? The problem is discussed in the section. To solve the problem, 
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first the original toroidal graph is introduced. This graph is proposed by Fuchs st al [21]. 

Next, the continuous toroidal graph is explained [17]. 

2.1.2.2.1 Discrete Toroidal Graph 

 Consider that there are two contours. One contour is called the upper contour and 

the other is called the lower contour. Assume the following conditions. 

The contours are approximated by linear line segment. 

The upper contour is defined by distinct points 110 ...,,, nuuu .

The lower contour is defined by distinct points 110 ...,,, mlll .

The loops of the contours are oriented in the same direction. 

 When triangular patches are created, the triangulation method must satisfy the 

following conditions [22]. 

1. If two nodes of the same contour are to be defined as the vertices of the same 

triangle, they must neighbor each other on the contour line. 

2. No more than two vertices of any triangle may be recruited from the same 

contour line. 

 Fuchs et al. proposed the graph that supports these two conditions. It is the 

toroidal graph on a two-dimensional torus. 

 In a toroidal graph, vertices correspond to the set of all possible spans between the 

points of the upper contour and the points of the lower contour. The arcs correspond to 

the set of all the possible triangles. 

 In figure 2.7, an example of a discrete toroidal graph is presented. Moreover, in 

figure 2.8, the patch determined by the toroidal graph is represented. 
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Figure 2.7: A discrete toroidal graph is presented. The upper contour has six vertices and 

the lower contour has five vertices. 

Figure 2.8: Triangular patches are determined by the above discrete toroidal graph. 

2.1.2.2.2 Continuous Toroidal Graph 

 In an enhanced Reeb Graph, a contour is defined as a parametric closed curve. It is 

desired that a toroidal graph can deal with a parametric curve. Shinagawa & Kunii 

proposed a continuous toroidal graph [17]. In this section, the continuous version of a 

discrete toroidal graph is introduced. 
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 Let gf ,  be contours of an enhanced Reeb Graph. In a continuous toroidal graph, 

the horizontal and vertical distances between the two vertices represent the differnces of 

the parameter values between the two vertices. 

Figure 2.9: A continuous toroidal graph is presented. 

 The acceptable path of the continuous graph is represented as a monotonously 

increasing multi-valued function. The path is representing as the concatenation of these 

functions.

10,: 1210122 niii uuuIuu

10,: 1210122 niii lllIll

221221212120 ,,10 iiiiiiiin ullu

The representation is the generalization of a monotonously increasing function. 

 The discrete toroidal graph is the special case of this continuous graph. The 

discrete toroidal graph is the concatenation of that of iuu  and ill .

2.1.2.2.3 Distance Function 

 In order to create natural surfaces, the path of the toroidal graph should be shorter. 

Some measure is necessary to create patches. In addition, the correspondence between 

contours should be determined. 

 The two distance functions of the toroidal graph are defined here. These functions 

are also utilized when the correspondence between contours are determined. 
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Euclidean Distance Function 

A Euclidean distance function is the function that returns the Euclidean distance 

between the two vertices. This function can be utilized on the two toroidal graphs. 

222, zzyyxxE vuuuvuvud

Parametrical Distance Function 

A parametric distance function is the function that returns the difference of the 

parametrical value between the two vertices. This function is defined on the continuous 

toroidal graph. 

tsvud P ,

where the parametrical values of u  and v  are s  and t , respectively. 

2.1.2.2.4 Closest Pair Vertex 

 Here a closest pair vertex is defined. This is not a distance function but the 

concept is based on the functions. This concepts is utilized when contours are interpolated 

by some homotopy function. Let d  be a distance between ),( ji lu . A vertex on a toroidal 

graph ),( ji lu  is called a closest pair vertex if the vertex satisfies the following two 

conditions.

kikji ludlud ,min,

jkkji ludlud ,min,

Then the closest vertex pair is searched. The closest pair vertex is the closest vertex pair 

whose distance is the shortest of the all. In the continuous graph, proper points are 

sampled and the closest vertex pair is defined. 

2.1.2.3 Surface Construction 

 The surface creation takes four steps. First, correspondence between the two 

contours is determined. Then homotopy of the two contours is determined. Next sliding 

homotopy is created by the edge of an enhanced Reeb graph and the homotopy. Finally, 

triangular patches are made between the interpolated contours and a curved surface is 

created.
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2.1.2.3.1 Correspondence between Contours 

 The correspondence between contours is determined. Let be gf ,  contours of an 

enhanced Reeb graph. The correspondence takes the next steps. 

1. Proper points of a continuous contour f  are sampled. The sampled points 

are determined at regular intervals in this implementation. 

2. Assume that f  is on a plane 0dczbyax . The contour f  is rotated 

and on a plane ez . The rectangles that enclose the contour f  is searched. x

and y  is the lengths of the rectangle. A mapped contour is defined according to 

the following formula. Let ss ,  be a point of a mapped contour. Let 

sIs
xX max  and sIs

yY max .

y
yY

x
xX s

s
s

s

3. Let be mf  and mg  contours obtained by f  and g  being mapped to the xy -

plane. The correspondence between the two contour mf  and mg  is determined. 

Let the most closet pair vertex LU ,  on the Euclidean distance function. The 

parameter of each contour is redefined. If the value of the parameter is greater 

than U  then the value is changed to Uu . Otherwise, the value is changed to 1.0 

- u  + U . The same procedure is done to the lower contour. The correspondence 

between the two contours f  and g  is determined by the correspondence between 

the mapped contours. 

Figure 2.10: A contour on 0dczbyax  is transformed to the contour on a plane 

parallel to the xy -plane 
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Figure 2.11: The rectangle that encloses the contour is searched and mapped to a unit 

square.

Figure 2.12: The correspondence between the mapped contours is determined. 

Figure 2.13: The correspondence between the contours is determined. 
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2.1.2.3.2 Contour Interpolation by Homotopy 

 After the correspondence between the upper contour and the lower contour is 

determined, the contours between them are interpolated by utilizing homotopy. There are 

a lot of homotopy functions and this system supports three primitive functions; linear, 

parabolic and quadrant. And two peculiar functions; Cardinal Spline and Catmull-Rom 

spline.

 These homotopies is mentioned in detail below. Let be the upper contour )(sf

and the lower contour )(sg .

Linear: )()()1(),( stgsfttsLinear

Linear homotopy is also called straight-line homotopy. This is the most 

primitive homotopy and interpolated contours linearly. 

Parabola: )()()1(),( 22 sgtsfttsParabola

Parabolic homotopy creates parabolic surfaces. 

Quadrant: )()11()(1),( 22 sgtsfttsQuadrant

A quadrant means a quarter of a circle. This homotopy is mainly used between 

a critical point of an 0e  or 2e  cell and a contour. If this homotopy is used in 

this situation, the shape of a created object is like a ball. 

Cardinal Spline: 

Cardinal Spline homotopy creates Cardinal Spline surfaces. As this curve is 

mentioned previously, this curve can express an everywhere 1c  continuous 

curve that passes through the control points. The facts enable this homotopy to 

create 1c  continuous surfaces that include given contour completely. The 

defect in this homotopy is that at least four contours are necessary to create a 

Cardinal Spline surface. If there are less than four contours, this system creates 

virtual contours by utilizing existing contours. 

Catmull-Rom Spline: 

Catmull-Rom Spline homotopy creates Catmull-Rom Spline surfaces. The 

feature of this homotopy is similar to the Cardinal Spline homotopy. This 
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homotopy can create surface that do not wind more than the Cardinal Spline 

homotopy. 

2.1.2.3.3 Contour Interpolate by Sliding Homotopy 

 In the previous part, the contour interpolation based on homotopy is explained. 

But an enhanced Reeb graph has both the shape of connective components as the edge 

and the cross-sectional information as a contour. It is useless to interpolate contours by 

utilizing normal homotopy. 

 Some problems are presented below when an enhance Reeb is interpreted to 

construct an object. 

When a user gives the system an edge and some contours, the problem occurs 

that the points where the given edge passes through the given contours. In 

other word, the problem is whether a user can give the points arbitrarily or the 

system determines the points automatically. 

If two contour and two different edges are given, the problem occurs that the 

difference of the reconstructed shapes when the different edges are given to 

the contours. This case is presented in figure 2.14. 

If the two contours and an edge, the problem occurs that the difference of the 

reconstructed shapes when the edge passes through the contours at different 

point. This case is presented in figure 2.15. 

Figure 2.14: The different edges are given to the same pair of contours. 
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Figure 2.15: The edges that have the same shape passes through the same pair of 

contours at the different points. 

Sliding homotopy can solve these problems above. With sliding homotopy, a user 

can give the system an enhanced Reeb graph arbitrarily. The graph is interpreted properly 

to create three-dimensional objects. Assume that two contours and an edge that pass 

through the contours are given. Assume one contour is represented as )(sf  and the order 

as )(sg . Some new functions are introduced and the sliding homotopy is defined. 

Edge Vector An edge vector of an edge is defined as follows. Let e  be an edge of a 

enhanced Reeb graph. The edge is a function 3RI . An edge vector )(tev  is a function 
3RI  where 

)0()()( etetev

An edge vector has 1c  continuity if the edge is represented by a Cardinal Spline curve or 

a Catmull-Rom Spline curve. 

Homotopy Vector A homotopy vector is defined as follows. Let H  be homotopy from 

f to g . Assume that N  corresponding points on the ),( tsH  and )0,(sH  are selected. 

Homotopy vector )(thv  is a function 3RI  where 

1

0
)}0,(),({1)(

N

i
ii sHtsH

N
thv

A homotopy vector is 1c  continuous if homotopy is represented by cardinal Spline 

homotopy or Catmull-Rom Spline homotopy. 
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Figure 2.16: An edge vector is presented. 

Figure 2.17: A homotopy vector is presented. 

Sliding Vector A sliding vector is defined as follows. Let )(tev  be an edge vector and 

)(thv  be a homotopy vector. Let )(tk  be a function RI  that satisfy these condition. 

,0)1()0( kk  1)(0 tk

A sliding vector )(tsv  is a function 3RI  where  

)}()(){()( thvtevtktsv

A sliding vector is 1c  continuous and satisfies 0)1()0( svsv . This is important for 

sliding homotopy. 

)(tk  is a weight function. There are many functions for the weight )(tk  but )(tk  is 

desirable to satisfy 0)1()0( kk . In the current implementation, 
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)2cos1(
2
1)( ttk

is selected. 

Sliding Homotopy Sliding homotopy ),( tsSH  is the semantics of an enhanced Reeb 

graph to reconstruct an object. Let ),( tsH  be some homotopy and )(tsv  be a sliding 

vector. The sliding homotopy is formulated as follows. 

)(),(),( tsvtsHtsSH

)()0,()0,( sfsHsSH  and )()1,()1,( sgsHsSH  are satisfied because a sliding 

vector )(tsv  satisfied the condition 0)1()0( svsv . This homotopy can create 1c

continuous surfaces if H  and sv  are 1c  continuous. 

Figure 2.18: Sliding homotopy is presented. First, the top contour and the bottom contour 

are giving. Then contours are interpolated by homotopy. Next sliding vector is calculated. 

And contours are shifted by the sliding vector. 

2.1.2.4 Branch Handling 

In the systems that construct surfaces by utilizing a series of cross-sectional 

information, branch handling is a big problem. If the contour at a critical point is not 

given, the contour is estimated by some means. 

There is a simple method proposed by Christiansen HN and Sederberg TW but 

this method fails if the shape of contours is complex [22]. There is another method 

proposed by A.B.Ekoule et.al. This method deals with branches by creating a virtual 
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contour at a critical point but created surface is not 1c  continuous. Komatsu et.al 

proposed the shrinking boundary that the based on the diffusion equation. This method 

can create 1c continuous surfaces naturally but cannot be applied to all cases of branch 

handling.

It is not easy 1c continuous surfaces if they have some branches in this system. As 

is mentioned previously, 1c continuous surfaces can be using Cardinal spline homotopy or 

Catmull-Rom spline homotopy but four contours are necessary to create smooth surfaces 

by utilizing these homotopies. There are not enough contours to create smooth surfaces in 

the neighborhood of critical points as is represented in the figure 2.22. 

Moreover, the following condition is necessary at the critical point. 

0
y
f

x
f

The tangent vector at the critical point must be parallel to the xy -plane.

In this section, some assistant idea is explained to create 1c  continuous surfaces in 

the neighborhood of critical points. 

2.1.2.4.1 Guiding Curve 

A guiding curve is one of homotopy function that can interpolate contours along 

the points that the curve passes through. A guiding curve is defined as follows [23]. 

Figure 2.19: Contours are transformed by an attached guiding curve. 

tsFssweighttsfssweighttsH iii ,,,,1,

where weight is a weight function like this. 
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otherwise

asss
a

sas

ssas
a

ass

ssweight uii
u

ui

ili
l

li

i

0

,

This function satisfies 

1,1,0 iii ssweightssweight

This curve is attached to the contours at any point. Several guiding curves can be 

attached to one contour. 

If some proper function is selected as a guiding curve, the contour at the critical 

point whose tangent vector can be parallel to the xy -plane. In this system, this is achieved 

by the quadrant guiding curve pc  that is defined below. 

,2/10 tfor

xqzq

yqyq

xqxq

q

ctct

ctct

ctct

tc

2/12021

2/12110211

2/12110211

22
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and ,12/1 tfor

xqzq

yqyq

yqyq

q

ctct

ctct

ctct

tc

1122/122

122112/12211

122112/12211

22

22

Merge Case: When the two contour 0f  and 1f  are merged, the guiding curve is attached 

to the points of the points the contours and the critical point. pc (0) is the point of the 

contour 0f  and pc  (1) is the point of the contour 1f . pc (1/2) is the critical point. Then 

the interpolated contour created by the guiding curve is given new parameters. Then the 

new parameters are given by tracing the two contours. 
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Figure 2.20: The new parameters are given to the merged contour. 

Divide Case: When the contour f  is divided, the guiding curve is attached to the two 

points of the contour and the critical point. pc (0) and pc (1) is the point of the contour f .

pc (1/2) is the critical point. Then the interpolated contour created by the guiding curve is 

given new parameters. First the arc length of the interpolated contour is calculated. Then 

the new parameters are given by tracing the contour. 

Figure 2.21: The new parameters are given to the divided contours. 

2.1.2.4.2 Continuity near Critical Point 

1c  continuous surfaces can not be created by utilizing the guiding curve 

homotopy. A guiding curve can curve can create surface whose tangent vector of a saddle 

point is parallel to xy -plane. However, it dose not confirm the continuity near the critical 

points.

Let us consider the case represented in the figure 2.22. Two upper contours 1f  and 

2f  are given. In addition, one lower contour g  is given. First, a guiding curve is attached 

to the upper contours and a new contour that includes the critical point is interpolated. 

This case is expressed in the figure 2.23. 
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Figure 2.22: This is an example of a merge case. Two upper contours and one lower 

contour are given. 

Figure 2.23: The contour f  at the critical point is tnterpolated by the guiding curve 

homotopy. 

Then the surface between 1f  and f , between 2f  and f and, between f  and g

are created by utilizing Cardinal spline homotopy or Catmull-Rom spline homotopy, 

respectively. The created surface will not be continuous in the neighborhood of the 

critical points because there is no positive proof of the 1c  continuity. 

In order to create smooth surfaces, some special procedure is done to the surfaces. 

This procedure is not implemented yet. One method is that more than one enhanced Reeb 

graph is utilizing in creating objects. Even if a point is a critical point for one function, 

that is not a critical point for another. An object is constructed by homotopy in the several 

directions.
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2.2 Related Works 

This related work can categorize in two sections, which is surface reconstruction

that created for hydrogeological information and three-dimensional model creation with 

Reeb graph. 

2.2.1 Surface Reconstruction 

Surface reconstruction can categorize in five sections: parametric surface 

reconstructions, volumetric surface reconstructions, delaunay-based surface 

reconstructions, Incremental Surface Reconstructions and Interactive Surface 

Reconstructions.

2.2.1.1 Parametric Surface Reconstructions [4] 

Figure 2.24: Parametric Surface Reconstructions 

There are many surface reconstruction techniques such as B-Spline function and 

NURBS. Although, these methods can easily interpolate the suface value, they are not 

suitable for compolex topology surfaces are shown figure 2.24. 

2.2.1.2 Volumetric Surface Reconstructions [3] 

Figure 2.25: Volumetric Surface Reconstructions 
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Volumetric surface reconstruction can render internal object information. These 

method store information as 3D array, which each element is called voxel. Direct 

rendeing volumetric data results in low resolution of the object surface. Thus, it is not 

suitable for application, which require high-resolution surface. The volumetric surface 

uses great amount of memory to store data. The rendering time is also slow. The 3D voxel 

can be converted to polygonal mesh using Marching cube algorithm. By rendering the 

volumetric surface with polygon, the object surface becomes smoother are shown in 

figure 2.25. 

2.2.1.3 Delaunay-Based Surface Reconstructions [2] 

Figure 2.26: Delaunay-Based Surface Reconstructions

Delauney triangulation is the method to construct the surface by using surface 

vertices. It can be used with complex surfaces. However, it needs a great amount of 

memory and takes long computational time. In addition, Delauney triangulation is not 

sutiable for surface with high varying surface slopness are shown figure 2.26. 

2.2.1.4 Incremental Surface Reconstructions [1] 

Figure 2.27: Incremental Surface Reconstructions
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Incremental surface reconstruction constructs the surface by incrementally place a 

vertex to the surface. The new vertices are then join together to form triangle mesh. This 

technique is suitable for input surface with low number of vertex. Thus, it is not 

appropriate for large area surface are shown figure 2.27. 

2.2.1.5 Interactive Surface Reconstructions [24] 

Figure 2.28: Interactive Surface Reconstructions

Interactive surface reconstruction downsamplings the input data to lower 

resolution. It also pre-computed some information that will be used later in interactive 

rendering. This technique depends heavily on graphic hardware capability. The result 

image may appear blocky due to low-resolution data are shown figure 2.28. 

2.2.2 Three-Dimensional Model creation with Reeb Graph 

This section creation three-dimensional model with Reeb graph can categorize in 

six portions. 

2.2.2.1 Constructing a Reeb Graph Automatically from Cross Sections 

This research builds Reeb graph [15] from the cross sections of the model. It is 

used in the compolex medical imaging, such as Cochlea images and Smicircular Canals 

images. The Reeb graph can be computed automatically. The algorithm analyzes the 

model topology, such as holes and components of the model, to construct the objtect’s 

contour shapes. The contours are then used to build Reeb graph. 
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(a) (b) (c)

Figure 2.29: Cross-sectional, Contour and Reeb graph

(a) (b)

Figure 2.30: Show contour of Cochlea

2.2.2.2 Homotopy Modeling Based on Enhanced Reeb Graph 

Enhanced Reeb Graph [16], ERG, adds the height function to the original Reeb 

graph model. The height function is used to represent the internal structure of the object. 

ERG has both geometrical datas and topological datas of the object. This research has 

presented a way to modelling an object with ERG. It also explain how to compute the 

Homotopy, the function which maps the object contours with Reeb graph, of the object. 

Figure 2.31: Cross-sectional model and Reeb graph 
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2.2.2.3 Extended Reeb Graphs for Surface Understanding and 

Description 

This research uses Entended Reeb Graphs [25] for representing surfaces. It is 

using the topology coding techniques. This method can solve the degenerating non-simple 

critical points problems. It has control levels to automatically constructing the ERG for 

non-continuouse surfaces. This method can represent the surfaces correctly. 

(a) (b)

Figure 2.32: Bi-Torus (a) cross-sectional and contour (b) Reeb graph

Figure 2.33: Show the critical region of Manifold M, which is from the differential 

manifold. This region is constructed using Delauney triangulation from height function. 

2.2.2.4 Loops in Reeb Graphs of 2-Manifolds

This research constructs Reeb graph [8] by joining the two-conneted components 

of level sets. The algorithm uses the Morse function to do the computation. Ths method 

can handle 2-Manifold toplogical objects. The asymptotic complexity is nnO log , when 

n is the number of edges. 

2.2.2.5 Topological Modeling of Illuminated Surfaces Using Reeb Graph 

In this research, the Topological modeling [11] is used for illuminating surfaces. It 

encodes object in the form of Reeb graph by using object topology information. First, the 

critical points are identified using Morse Theorem. Then, the algorithm does the cross 
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section to obtain the contours of the object. The contours are sent to the Reeb graph using 

height function. This method proves that the height function is nearly the same as 

topological transformation. 

(a) (b) (c)

Figure 2.34: Structure Reeb graph of heart model

2.2.2.6 3D-Object Reconstruction System Using Cross-Sectional Data 

This research studies 3D object representation [13]. The representation includes 

the internal object structure. The system builds from this research can render many types 

of objects specified by the user need. However, the storage structure is quite complicated.  

Some part of the surface may not be rendered. It uses Level sets and Fast-Marching 

method to render the model. The performance is quite good and can use with Reeb graph 

with branching. 
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CHAPTER III

ENHANCED REEB GRAPH FOR MODELING 
HYDROGEOLOGICAL INFORMATION 

In this section, a modeling technique using Enhancing the Reeb graph for 

representing surface of Hydrogeology Information is described. In addition, this 

technique is comprised with three main portions: the enhanced Reeb graph, which 

improves on the original Reeb graph for representations that are more complex in section 

3.1. The contour set in section 3.2. Finally, the surface reconstructions, creating the plane 

surface between sets of contours with the Reeb graph, with the manifold sets represented 

with geographical surfaces are shown in section 3.3. 

3.1. Enhanced Reeb graph 

The definition of enhanced Reeb Graph will be considered at the same height on 

the hydrogeological surface. We specify a function RMMMMf n,...,,,: 321  as a real-number 

function on the set of manifolds nMMMM ,...,,, 321 , which transmits values to the Reeb 

graph of the set of manifolds nMMMM ,...,,, 321  that depend on function f  defined as the 

spatial quotient of xRMMMM n,...,,, 321  which have equivalence relations, as in section 

2.1.1.3 and showing the representation with Reeb graph in Figure 3.1. 

Figure 3.1: Nodes and connecting lines of extended Reeb graph with its sets of contours
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3.2. Set of contours 

The set S  of contours is obtained from the cross sections of each layer of the 

hydrogeological surface. A contour c  at any given height is a set of points on a surface 

layer.

Creating a more detailed surface is achievable by interpolation of the contour 

between two object layers, which can be achieved in 2 methods: in the vertical axis and 

the horizontal axis. Approximation in vertical and horizontal axes can be used to calculate 

the approximate contours on both the outside and the inside of the surface .For

approximating values in contour ranges calculated from the inside of the surface we 

consider at the same height, i.e., calculating by the horizontal. After the correspondence 

between the upper contour and the lower contour is determined, the contour between 

them will be interpolated. Approximating the contour from calculating from the outside 

of the surface results in an extra contour between each layer of the hydrogeological 

surface in Figure 3.2. In this research, Natural Cubic Spline method used to interpolate 

the corresponding contours is described as following. 

Figure 3.2: Cross section and contours of each soil layer 

Suppose that n
kkk yx 0, are 1n  corresponding contour points, where 

bxxxa n...10 .The n  cubic polynomial xSk  with coefficients ,,, 2,1,0, kkk SSS  and 

3,kS  has to satisfy the properties: 

3
3,

2
2,1,0, kkkkkkkk xxSxxSxxSSxS

for 1, kk xxx  and nk ,...,1,0
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- The spline passes through each data point. 

kk yxS  for nk ,...,1,0

- The spline forms a continuous function over. 

111 kkkk xSxS  for nk ,...,1,0

- The spline forms a smooth function. 

1
'

11
'

kkkk xSxS  for nk ,...,1,0

-The second derivative is continuous. 

1
''

11
''

kkkk xSxS  for nk ,...,1,0

The natural cubic spline has zero second derivatives on one or both of its boundaries. 

3.3. Surface reconstrction 

Each surface reconstruction in a layer will be assembled a surface between 

corresponding the contours obtained in Section 3.2 with the Enhanced Reeb graph 

obtained in Section 3.1. Three adjacent points on the set of contours of hydrogeological 

surface are formed as a triangular-shape mesh. When triangular patches are created, if two 

points of the same contour are to be defined as the vertices of the same triangle, they must 

neighbor each other on the contour’s perimeter. Therefore, no more than two vertices of 

any triangle may be recruited from the same contour. The surface can be simply 

constructed when all points are covered with meshes. Additionally, to make smooth the 

surface, normal vector of each point has to be averaged with normal vectors of the other 

points around it. 
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CHAPTER IV

EXPERIMENTAL RESULTS 

 This section shows the experimental results of the proposed to enhanced Reeb 

graph for modeling hydrogeological information. The number of boreholes for tested 

model is 52 boreholes. The three-dimensional model is also provided. 

4.1 Tool Development 

These sections consist of four portions: requirement, Analysis and Design, 

Implement and Testing. 

4.1.1 Requirement 

 The system is Intel Pentium M Processor 1.73 GHz with 1 GB of memory, using a 

RADEON X600 with 256 MB of memory or higher. In addition, this program to use in 

this research developed by Microsoft Visual C++ and Open GL, which run on window 

XP.

Table 4.1: Format of collecting soil layers information 

 Input information format is importing a file of numerical data, stored as an Excel 

File, which Data of depth and co-ordinate of each soil layer from exploration of water 

resource engineering as a Table 4.1. 
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Figure 4.1: Surface reconstruction of hydrogeological information from 52 sample drill 

holes

Figure 4.2: Cross section of each soil layer and categorization of soil layer  

Result format is able to show three dimensional model as a figure 4.1 and cross 

section of each soil layer and categorization of soil layer as a figure 4.2. 
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4.1.2 Analysis and Design 

Figure 4.3: Flowchart of Process for 3D Modeling Hydrogeological Information 
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4.1.3 Implement 

Developing a tool to create a model involves developing a method of importing a 

file of numerical data, stored as an Excel File, and displaying the model will be in 3D, 

which can display the cross section of soil layer split by categories, as well as categorize 

each soil layer, and indicate the position of each layer. The testing program will be 

developed in C++ and OpenGL to work on Windows XP. 

The working of the conceptual model-testing tool begins by specifying the 

position of the reference axis of soil layer, before calculating the cross section of each soil 

layer, to create a Reeb graph to construct a surface in complete internal structure of 

geographical information, and then it compares the model result with the actual data. 

4.1.3.1 Indicating the position of each soil layer

 The coordinates of soil layers will be imported as a numerical file. This 

file is stored as an Excel File consisting of x, y, z coordinate positions, and 

indicates the depths of soil layers in each category, with reference depth unit as 

meters (m).

Figure 4.4: Soil layer position model 

After calculating and processing the each coordinate of soil layer and the 

depth of soil layers in each category, we display the result as a 3D geographical 

data model, with each category of soil layer indicated with different colors, as in 

Figure 4.3. 

43



58

4.1.3.2 Creating the surface plane of soil layers

We create the surface plane of each soil layer by estimating the value in the 

range from the coordinates of soil layer, and the depth of each category of soil 

layer obtained in the first step. The research creates the surface plane of 

geographical data with Delaunay Triangulation. This method is used to create the 

surface plane of hydrological and geological information for further smoothness 

and detail to the surface plane of the geological data.

Calculating and creating the surface plane of geological data with the Delaunay 

Triangulation method will be considered according to the surface plane of each 

type of soil layer. 

Figure 4.5: Geographical surface model according to the category of soil layer 

In creating the surface plane with Delaunay Triangulation, we create the 

surface according to each category of soil layer, in other words, we create the 

surface plane for each layer in order of soil layer category. Creating the first 

layer’s surface plane, we first take the reference axes coordinate data to calculate 

and create the surface, namely the x, y, z coordinates of the soil layer in 3D. Next 

we find the first coordinate points, which is obtained from receiving the first set of 

data from the file as x, y, z, coordinate data. We then take first position to find two 

next closest coordinates to create a triangle by connecting the three positions with 

lines. Next, we take the two coordinates we have found to find the next closest 
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coordinates with the aforementioned steps, with those coordinates not having been 

used to create earlier triangles, to use in creating more triangles, expanding until 

no more can be created. 

In creating the surface planes of the subsequent layers, the method is the 

same as creating the first layer, except for the depth of each category of soil layer, 

where the position changes according to the height of the soil layer, i.e., the z-

axis. The z value changes according to the height of soil layer category in each 

layer, as in Figure 4.4. 

4.1.3.3 Calculation the cross section of each soil layer

We define the manifold M  here by representing it with a smoothed 

geological surface plane .This surface plane will be continuous. The height 

function of a given x, y, z coordinate returns a z value, which represents the height 

of soil layer, while the contour at height h of soil layer is the set of points on the 

surface plane; when entered in the height formula it returns a value of h  as in 

Figure 4.5. 

Figure 4.6: Cross section of soil layers in each category 

4.1.3.4 Creating the Reeb graph

We create the Reeb Graph from the contours of Section 4.1.3.3. We 

specify the node of the graph as the center of each contour, and the edges as lines 

connecting each node according to height order. 
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Figure 4.7: Surface reconstruction by creating the Reeb graph 

4.1.3.5 Creating the surface and complete internal structure of 

geographical information

From the enhanced Reeb graph obtained in Section 4.1.3.4 and the 

contours obtained in Section 4.1.3.3, we create the surface of each soil layer. 

Creating the surface and complete internal structure begins with matching 

appropriate nodes between contours on adjacent layers. After that, we 

approximate contours in the area between contours to make a more detailed 

surface plane. We then connected the points on adjacent contours to create into 

triangles as in Figure 4.7. 

Figure 4.8: Model of the surface and internal structure of geographical 

information 
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4.1.4 Result Testing 

This research evaluated the data calculated from the model with the actual data by 

comparing depth at the same planar coordinate. We conduct a comparision between the 

survey data set containg 52, 104 and 203 drill holes and the depth calculated, after 

randomly removing two, five and ten drill holes at a time from from the original data set 

consequently.Then we approximate the depth at those coordinates using the proposed 

model, and compare the obtained depth. We repeat the process until the size of sample is 

over 30 percent of the original boreholes. 

4.1.4.1 Using the Z-test to test statistical hypotheses for our research problem 

Research Problem: We randomly delete 5 percents of boreholes from the data set and 

recalculate them by the proposed interpolation model. We repeat this process until the 

subject’s size is over than 30 percents of each original data set as shown in Table 4.2, 4.3 

and 4.4. The research question for this experiment is “Does the depths of each 

interpolated boreholes significantly different from the depths of the original boreholes at 

the same coordinate?” We will use the six-step process to test statistical hypotheses for 

this research problem. 

1. With every recalculated mean depth 1  and mean depth 2  at each soil layer and 

standard deviation S1 and S2  consequently shown in Table 4.2, 4.3 and 4.4., we 

state null hypothesis and alternative hypothesis 

211211

2100210

:0:
:00:

HH
HassumtiondifH

2. Set the alpha level: 05.0

3. Calculate the value of the proper statistic:  

Since this problem involves comparing a single group's mean with the population 

mean and the standard deviation for the population is known, the proper statistical 

test to use is the Z-test.  

2
2
21

2
1

021

// nSnS

dXX
Z

47



62

The Z values are shown in the Table 4.2, 4.3 and 4.4 

4. State the rule for rejecting the null hypothesis:

We need to find the value of Z  that will only be exceeded 5% of the time since 

we have set our alpha level at 0.05. Since the scoreZ 05.0  is normally distributed 

(or has the Z  distribution), The associated scoreZ 975.0  would be 1.96. 

Our rejection rule then would be: Reject 0H  if. 96.1Z

5. Decision: Reject 1H , 96.1Z , two-tailed.

Our decision rule said reject 1H  if the Z  value is not greater than 1.96. From the 

Table 4.2, 4.3 and 4.4, every of our Z  values exept the Z for borehole no.5 in 

Table 4.3 and borehole no.5 in Table 4.4 is greater than 1.96 so we reject 1H  of 

every pair of depths except the borhole no.5 in Table 4.3 and borehole no.5 in 

Table 4.4. 

6. Statement of results: The results of testing state that the 90 % of differences 

between the real data and the data generated by the enhanced Reeb model show no 

significant differences with statistical testZ . Therefore we conclude that the 3D 

geographical information model displays internal structures appropriately for 

accurate data analysis, by processing cross sections to find the limit of the 

research area in the geological model accurately, as well as approximating the soil 

layer heights correctly, and categorizing soil layers correctly as well, to create 

proper relations between soil layers and drill holes.
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Table 4.2: Result of compare from example one with Z-test 

49
49



64
Table 4.3: Result of compare from example two with Z-test 
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Table 4.4: Result of compare from example three with Z-test 
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Table 4.5: Conclusion of compare from example one, two and three with Z-test 
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4.1.4.2 Confidence intervals of difference between the interpolated depths and the 

original depth using 30 percent sample size 

Consider a normally distributed population. To estimate the interpolation's 

variance by our proposed model, we take a three sample of size 52,104 and 203 boreholes 

and calculate the sample's variance. The random sample of boreholes has different depth 

shown in the Table 4.6-4.11. 

Calculate a 95% confidence interval for the difference's mean weight. 

The sample's different depth mean weight is as the Table 4.6-4.11 with standard 

deviation as the Table 4.6-4.11. The t distribution tells us that, for  degree of freedom, 

the probability that t > 1.96 is 0.975. Also, the probability that t < -1.96 is 0.975. Using 

the formula for t with t = ± 1.96 at 95% confidence interval for the populations mean may 

be found by making µ the subject of the equation. We random sample of boreholes has 

different depth shown in the Table 4.6-4.11. 

n
S

td
n

S
td d

d
d

975.0975.0

That is the difference between the interpolated depth from our model and the original 

survey depth as the Table 4.6-4.11 with 95 % confidence. 
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Table 4.6: Difference between the interpolated depth from our model and the 

original survey depth from example one with each soil layer 
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Table 4.7: Difference between the interpolated depth from our model and the 

original survey depth from example one with all soil layer 
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Table 4.8: Difference between the interpolated depth from our model and the 

original survey depth from example two with each soil layer 
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Table 4.9: Difference between the interpolated depth from our model and the 

original survey depth from example two with all soil layer 
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Table 4.10: Difference between the interpolated depth from our model and the 

original survey depth from example three with each soil layer 
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Table 4.11: Difference between the interpolated depth from our model and the 

original survey depth from example three with all soil layer 
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Table 4.12: Difference between the interpolated depth from our model and the original 
survey depth from example one, two and three 

4.1.4.3 Soil LayerVolume Comparision 

In the test, we will compare the volume of each soil layer from the image 

created by the program, with the initially created data to show if there is any difference 

between the soil volume estimated by the program and the actual volume. 

Figure 4.9: Soil layer model in example 1 from all four sides 
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Figure 4.10: Soil layer model after computation with small number of boreholes in 

example 1

Figure 4.11: Soil layer model after computation with large number of boreholes in 

example 1
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Figure 4.12: Soil layer model in example 2 from all four sides

Figure 4.13: Soil layer model after computation with small number of boreholes in 

example 2
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Figure 4.14: Soil layer model after computation with large number of boreholes in 

example 2

In example 1 from figure 4.9-4.11, the estimated volume differs from the actual 

model from the imported data. The actual volume of the actual data in figure 4.9 is

2990720 3m , 1858561 3m and 2990720 3m . However, the volume estimated from small 

amount of boreholes in figure 4.10 is 3201710 3m , 1423441 3m and 3215855
3m respectively. Moreover, the volume estimated from large amount of boreholes in 

figure 4.11 is 3146455 3m , 1541584 3m and 3151958 3m  respectively. 

 In example 2 from figure 4.12-4.14, the estimated volume differs from the actual 

model from the imported data. The actual volume of the actual data in figure 4.12 is

5727577 3m  and 2112422 3m . However, the volume estimated from small amount of 

boreholes in figure 4.13 is 5696091 3m and 2143909 3m respectively. Moreover, the 

volume estimated from large amount of boreholes in figure 4.14 is 5702192 3m  and 

2137809 3m  respectively. 
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From example, one, two the difference of the estimated volume from the actual 

data is dependent on the number of boreholes. If there are enough boreholes, it will 

make the estimation of various positions on the soil layer more accurate, resulting in a 

better estimate especially for complex arragement of layers. The accurate of the 

estimation depends on the number of boreholes, and the interpolation function. 

4.2 Sample Results 

From figure 4.15 shows creating a model of the soil layer with delaunay 

triangulation. From figure 4.16 shows creating a model of the soil layers that we can 

see the internal structure from many angles. From figure 4.17 shows retrieval of 

internal structure visible from 360 degrees. From figure 4.18 shows retrieval of the 

internal structure, which can be viewed as a top-view of the geological surface, or as a 

countour of each layer. From figure 4.19 shows retrieval of the internal structure, this 

can be viewed as a side-view of the geological surface. From figure, 4.20 shows 

splitting parts of the geological surface by the depth of the layers, which we can 

specify, the level of splitting. From figure 4.21 shows the bulding the Reb graph of the 

geological surface. 

Figure 4.15: Mesh layers of soil layers 
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Figure 4.16: Internal structure of soil layers

Figure 4.17: Another view of internal structure of soil layers
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Figure 4.18: Cross-sectional top view of soil layers 

Figure 4.19: Cross-sectional side view of soil layers
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Figure 4.20: Subdivision of soil layer shown with 20 layers

Figure 4.21: Reeb graph for subdivision with 20 layers 
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4.3 Discussion 

Results from testing the z hypothesis show that 90% of the borehole depth 

estimates are not significantly different from the actual data, with 95% confidence, in 

all three examples. This shows that the linear approximation can be used with such 

data. The only data with significant differences is layer 3 in table 4.3 and layer 7 in 

table 4.4. It should be noted that this is an area where the layers are not organized as 

usual, but with a small layer in between, as in figure 4.22. The results show that the 

inaccuracy in estimation results from a different arrangement of soil layers than in 

other areas. However, from table 4.3 and table 4.4 one sees that the average difference 

in testing is not significant different from the actual data. Considering the data of each 

borehole, it shows that estimating the soil layers with the enhanced Reeb graph model 

provides estimates close the actual data on average. 

Figure 4.22: Different arrangement of soil layers 

From finding the average difference between the estimates ad the actual data with 

statistical estimation in tables 4.6-4.11. We reach the conclusion that the difference of 

the data is near zero for almost every pair, following the hypothesis tested with the z 

test. Some pairs of boreholes have a negative bottom and top confidence, which may 
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results from the soil layer between the usual layers in figure 4.22, which may 

conclude that the inaccuracy in linear estimation may be insufficient data. 

Time capacity 

Procedure of creating delaunay triangulation can use speed of evaluate surface 

reconstruction of hydrogeological information is O (n log n).

The Delaunay Triangulation of a set P of n points in the plane can be computed in 

nnO log  time, using nO  space. 

nT  = Time spent on point location + Time to create the expected number of 

triangles

nT  = nnO log  + nO

nT  = nnnO log

nT  = nnO log

Define amount of many boreholes that create properly relations between the joins 

in soil layers and boreholes. 

Limitation of this research 

The estimation used with the reeb graph in this resetch uses linear estimation. 

Although it produces good results with the sample data, some cases may require high 

degree estimation functions, on a case-by-case basis. The enhanced Reeb graph model 

we have presented can be used with other estimations other than linear functions. Also, 

the accuracy with the presented model depends on the amount of input data, because 

the model depends on the relations between soil layers in each borehole for estimation. 

This makes the estimation for any position depend on all other positions. 
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CHAPTER V

CONCLUSION AND FUTURE WORK 

This section concludes the thesis and provides some discussion on the 

experimental results. Future works are also suggested. 

5.1 Conclusion 

 An enhanced Reeb graph proposed in this thesis is an extension of a Reeb graph 

on a height function. This system utilizes the graph as the skeleton of an object because 

an enhanced Reeb graph has both topological and geometrical information. The Reeb 

editor defines this graph easily. Homotopy is the very powerful means to create surfaces 

from the cross-sectional planes. Surfaces can be constructed from information of both the 

enhanced Reeb graphs and homotopy. 

This research presents a 3D model of multi-layer geographical information, which 

properly displays the internal structure of the data, for use in effective analysis of 

hydrological and geological information, and a method to approximate the height of the 

soil layer as well as properly categorize the soil layers, to create proper relations between 

soil layers and drill holes. 

From the experiment, we find that the accuracty of the enchanced Reeb graph in 

estimating position and volume of soil layers depends on the number of boreholes and the 

imterpolation function, in other words, it Requires specifying the number of boreholes 

and the function that actually coresponds to the complexity of the soil layers of the input 

data, which requires water resource engineering knowledge. 

5.2 Future Work 

The presented model can be improved in the creation of multi-layer surfaces to 

improve the detail and realism, by other methods of interpolation such as Non Uniform 

Rational B-Spline (NURBS), Catmull-Rom Spline homotopy which can construct natural 

surfaces or using the brightness of light to create the surface, or using subdivision surfaces 

for more detail. Moreover, the model can be improved in the surface reconstruction with 

many data. 
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