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Chapter I

INTRODUCTION

Context has been extensively proved to be useful for various kinds of sequence
modeling problems, such as Automatic Speech Recognition (ASR) (Gulati et al., 2020),
Text-to-Speech (TTS) (Weiss et al., 2021), Handwritten Text Recognition (HTR) (Tas-
sopoulou et al., 2021), Neural Machine Translation (NMT) (Wu et al., 2019), and Lan-
guage Modeling (Brown et al., 2020). In NMT, the same word can have different mean-
ings in different contexts. A NMT system must be aware of the context of an input word
to infer its correct meaning. Moreover, when producing an output translation, the model
must also be able to produce words that are coherent together. Modeling contexts are
usually done using contextual representations and context-aware inferencing algorithms
in order to properly model context in the input and output spaces. For ASR and HTR,
context awareness is used for making consistent predictions, reducing misspellings, and
handling ambiguous input samples (Qiu et al., 2020; Baek et al., 2019). Nevertheless,
encapsulating contexts usually comes with additional computational complexity, espe-

cially for temporal contexts, which are typically done in a sequential manner.

Incorporating contextual information into models can be done using recurrent
models and/or contextual hidden representations. Since strong dependencies between
letters within target sequences are usually found in sequence modeling, predictions made
by recurrent approaches such as autoregressive (AR), iterative, and beam search de-
coding are generally better than predictions that are independently produced (Higuchi
et al., 2021; Gu and Kong, 2020). However, recurrent models have to predict letters
sequentially since they use conditions of previous predictions in order to make the next
prediction. This sequential nature can be detrimental to the inference time because the
computation cannot be done in parallel. On the other hand, non-recurrent models can
produce context-dependent predictions based on contextualized hidden representations,
which are distilled from AR models (Gu et al., 2018; Li et al., 2019b) or trained by

context-dependent objective functions (Wang et al., 2019; Sun et al., 2019). Although



these methods do not directly control the predictions in the output layer, improvements
over context-independent decoding could still be observed while retaining parallel de-

coding capabilities.

Connectionist Temporal Classification (CTC) has been commonly used for train-
ing non-autoregressive (NAR) ASR and HTR models due to its effectiveness and effi-
ciency (Graves et al., 2006, 2008a). CTC estimates the probability for the alignment
between frame-level predictions and character-level ground truths without the need for
expensive frame-level labels. To make the computation feasible, CTC assumes indepen-
dence between the frame-level outputs. Such assumption limits the model especially for
ambiguous cases that require contextual information in order to resolve. Early works
typically use CTC with recurrent networks which helps alleviate this drawback. How-
ever, recent works use CTC with non-recurrent models instead of recurrent ones to
maximize throughput (Higuchi et al., 2020). Even though this combination worsens the
correctness of CTC’s predictions, the runtime improvement is often worth the trade-off
in latency-sensitive situations. Many works have tried to re-introduce context into these

models (Higuchi et al., 2021; Kriman et al., 2020; Chuang et al., 2021).

Teaching the model to predict future labels has led to improvements in the main
prediction of monolingual hybrid ASR systems (Jaitly et al., 2014; Zhang et al., 2015,
2016). In Code-Switching ASR, in which multiple languages are used in a single con-
versation, the dedicated language identification subtask is commonly trained with the
main ASR task in a multi-task manner (Li et al., 2019a; Luo et al., 2018; Zeng et al.,
2019; Shan et al., 2019). This is done because the lack of context severely deteriorates
the quality of the predictions as a spoken word can be spelled using alphabets of any
languages. We hypothesize that providing the required contextual information to the
model in these manner should also alleviate the misspelling issues in non-recurrent NAR,
CTC models without sacrificing speed. Nevertheless, predicting contexts in the CTC
framework is not straightforward since there is no explicit frame-level alignment for
computing the Cross-Entropy (CE) loss. Besides, outputs of the CTC model are mostly

blanks, providing little contextual information.



In this work, we introduce Contextualized CTC (CCTC) loss, a variant of context-
dependent objective functions, to incorporate contexts into non-recurrent and non-
autoregressive (NAR) ASR models. CCTC tries to increase dependencies between pre-
dictions by relaxing the conditional independence assumption of the regular CTC loss
in a way that preserves parallel decoding capability. Concretely, CCTC uses multi-task
learning to encourage the model to predict left and right letters as well as the middle
letter. This is done by adding secondary prediction heads to predict the surrounding
characters in a multi-task manner. The novelty of our approach lies on how we obtain
the labels for the surrounding characters. The target prediction for the surrounding
characters is obtained by the prediction from the previous iteration which replaces the
need for frame-based alignments from external models. To get the prediction target of
the context we also ignore blanks and consecutive duplicate letters. This helps provide
longer contextual information than predicting actual symbols of surrounding frames,

which has shown to be more effective in (Zhang et al., 2015).

Experiments on two sequence modeling, ASR and HTR, in two different languages
show that CCTC models generally outperform the baseline CTC models, especially
when no external language models are applied. CCTC can mitigate intra-word lan-
guage inconsistency for CS ASR and reduce misspellings for both ASR and HTR. A
larger context further improves the performance of the models. Further analysis using
character-level perplexities shows that during inference, CCTC models give a higher
priority to language-related information, in other words, contexts, than regular CTC

models.

1.1 Main contribution

The main contribution of this thesis can be summarized as follows:

o We introduce the novel CCTC loss for training NAR sequence models.
o We show the performances of CCTC on monolingual and code-switching ASR.

e We present the effectiveness of CCTC loss on HTR.



1.2

We investigate the dependencies within predictions of different models using

character-level perplexities.

We study the trade-off between prediction quality and training time for contexts

of different sizes.

Thesis overview

This thesis is organized as follows:

Chapter 2 describes the fundamental backgrounds of sequence modeling and algo-

rithms used for addressing the problem.

Chapter 3 presents related works of using contexts for sequence modeling and

incorporating context dependencies for CTC models.

Chapter 4 introduces contextualized Connectionist Temporal Classification.
Chapter 5 provides experiments verifying the effectiveness of CCTC loss.
Chapter 6 discusses the characteristics of CCTC models.

Chapter 7 summarizes the thesis and provides open directions for future works.



Chapter II

BACKGROUND

This chapter presents the brief definition of sequence modeling, its applications,

and the existing algorithms being used to address the problems.

2.1 Sequence Modeling

The goal of sequence modeling is to create an algorithm that correctly produces
an output sequence from an input sequence, given that a sequence is a series of strictly
ordered objects. The relation between properties of inputs and outputs entirely depends
on the downstream applications, having no specific constraints for general cases. Besides,
their lengths can also be different, ranging from the shortest of one to any arbitrary
finite number. For example, sequence modeling can be used for statistical machine
translation and audio enhancement, of which both inputs and outputs share the same
modalities (text or audio). Sequence modeling can also be used to transform inputs into
outputs that have different modality such as transcribing spoken audio into transcription
(automatic speech recognition), recognizing letters from a sequence of handwritten image
pixels (handwritten text recognition), classifying a person’s action from a sequence of
video frames (action recognition), and many more. In this thesis, we will focus on two

applications: automatic speech recognition (ASR) and handwriting recognition (HTR).

Since properties of ASR and HTR have a lot in common, we can mathematically
define both problems as one. Formally, we have an input sequence of M dimensional
real-valued vectors, z = (z1,22,...,27) : 2; € RM and a desired output sequence,
v = (Y, Y5, - Y0) sy € A, where A is a set containing alphabets which in this thesis
are Thai and/or English alphabets. Let’s the dataset D contains all possible pairs of
input and desired output, (z,y*). The goal is to learn the mapping h : x — y that yields
the minimum errors between the predictions and the ground truths, E(y, y*), of data in

the test set, Diest C D. The mapping h is trained by minimizing an objective function



using supervision from the training set, Dy, C D : Dy N Dyest = 0.

2.2 Connectionist Temporal Classification

CTC (Graves et al., 2006) is an alignment-free objective function for sequence
modeling that the lengths of inputs, T', are less than or equal to the lengths of outputs,
U. The general mechanism of CTC loss is described as follows. Suppose we have an input
sequence x = (x1,x2,...,x7) : ¢, CTC loss maximizes the probability of predicting the
ground truth transcription, yv* = (y1,v5,...,y;) : vi € A. In addition, CTC framework
includes a special token of blank, €, in the alphabets set, A’ = A U {e}, to handle
noise, empty spaces, and consecutive duplicate characters in transcriptions. CTC model
outputs a path, 7 = (w1, m2,...,m1) : 7 € A’, which has the same length as the input
frames. Lastly, 7 is mapped to an inferred transcription, y = (y1,¥2, .., yK) : Yk €
A, using a mapping function B : A’ — A. By applying the function B, adjacent
duplicate alphabets are merged, and blank tokens are removed. Remark that, adjacent
duplicate alphabets are considered as the prediction of a single long pronunciation, which
occupies many consecutive frames. In the case of double letters such as ff in coffee, CTC

distinguishes this scenario from the previous by producing blank tokens in between.

CTC models are trained using the CTC loss, which is the negative log probability
of all valid paths for the ground truth. The idea is to strengthen the probability of
any path that can be mapped to the target sequence instead of relying on the ground
truth alignment. CTC assumes conditional independence between tokens within a path
to ease the calculation. Thus, the probability for a path, P(7|z), can be factorized as a
product of the probability in each position as shown in (2.1). We depict the calculation
of the CTC loss in (2.2).

Ply'lz)= Y Plla)= )  [[P(mle) (2.1)

TeB~1(y*) TeB-(y*) U

Lore = —log P(y*|x) (2.2)



2.3 Automatic Speech Recognition

Automatic Speech Recognition (ASR) is named after the frameworks that auto-
matically transcribe an acoustic signal of spoken audio into a textual representation.
Nowadays, mainstream ASR frameworks can be classified into two categories: tradi-

tional models and end-to-end models.

2.3.1 Traditional ASR

A traditional ASR framework comprises three separate modules: acoustic model
(AM), lexicon model, and language model (LM). For an overview, an AM recognizes
pronunciations from acoustic properties of an incoming audio. A lexicon model composes
pieces of recognized pronunciations into words. Lastly, a LM ranks the likelihoods of

word candidates based on co-occurrence probabilities.

For a sequence of acoustic features x and the target transcription y*, a traditional
ASR model try to maximize the posterior of generating a transcription given a corre-
sponding audio, P(y*|x). However, in the era of being introduced, discriminative models
still had limitations, hampering direct posterior approximation. A traditional ASR was
made possible using Bayes’s Rule which allows maximizing posterior through likelihood,

as shown in (2.3).

P(z|ly*)P(y")

P(y|z) = Plr)

(2.3)
~ Plaly")P(y")

An acoustic model’s likelihood, P(x|y*), is modeled using Hidden Markov Model

(HMM), of which the emission probabilities are estimated using Gaussian Mixture Model

(GMM). The prior, P(y*), is retrieved from a LM which usually is n-gram. The evi-

dence, P(x), is dropped as it is a constant for a given input z, making no distinction

for maximum likelihood estimation (MLE) training. Since the likelihood, P(x|y*), is

modeled by HMM which follows Markov chain properties, we can write (2.3) as the



total probability of happening x based on all possible HMM'’s states as shown in (2.4).

P(y*lx) = > P(x|s)P(sly*) P(y*)
B (2.4)
=Y ([T P(@slse) P(selse-1)]P(s|y*) P(y*)
s t
where s is a sequence of HMM states, representing the conditions for the probability of
each pronunciation in each specific time. The states depend on the pronunciation units
of the ground truth transcription from the lexicon model and the acoustic properties of

the input audio.

One of the limitations of traditional ASR is that, at the training time, the align-
ment, has to be known. The alignment is the mapping between the timing of transcrip-
tion and the timing of acoustic signal. In other words, an alignment specifies specific
time in the acoustic signal that has the pronunciation of the corresponding word in the
transcription. Since the likelihood, P(x¢|s;), is modeled individually for each time t, we
must know the exact ground truth at time ¢ to enable MLE training. This limitation is
addressed by using expectation maximization (EM). EM comprises two steps, estimating
the alignment based on the current model parameters and optimizing model parameters
using MLE regarding the estimated alignment. EM switches back and forth between its

two steps for many iterations until the model converges.

In summary, a traditional ASR model infers a transcription for a given audio based

on the probability that is estimated by GMM-HMM and LM models.

y = argmax; »  P(x[s)P(s[§)P(3) (2.5)
S
where g is transcription candidates. For interested readers, more details can be found
in the tutorial of (Rabiner, 1989).
2.3.2 End-to-End ASR

End-to-End ASR models directly produce characters from input audio without
using intermediate pronunciation representations as in traditional ASR systems. The

end-to-end approaches have been made possible using powerful deep neural networks.



The burdens on linguistic experts have been reduced because pronunciation units are
no longer required. Moreover, an end-to-end model can be trained without the need for

alignments, eliminating the complex training strategy of EM.

The exact equation for posterior computation depends on the architecture designs,
of which three choices are in the mainstream, including CTC models (Graves and Jaitly,
2014), RNN transducers (RNN-T) (Graves, 2012), and sequence-to-sequence (Seq2Seq)
models (Bahdanau et al., 2014). In this thesis, we will focus on CTC-based models since

it is the only approach that allows non-autoregressive predicting.

CTC-based models are trained with CTC loss as presented in 2.2. The input
sequence, x, can be either raw-valued audios or hand-crafted features. The output
transcription, y, can be phonemes, characters, or subwords (Zenkel et al., 2017). For
decoding, CTC models find the sequence with the highest total probability using argmax

decoding or prefix searching with LM as follows.
Y= argmangAM(B_l(@))\x)PLM(g)) (2.6)

where Pajs denotes the probability estimated by an AM, Prjs indicates the probability
modeled by a LM.

2.3.3 Language Modeling

LM provides the probabilities for the next tokens appearing after the previous
tokens. These statistics can indirectly represent the grammatical and/or semantics
properties of the tokens, which commonly are characters or words. LMs used in ASR

usually are n-gram and neural language models.

N-gram language model is simply a counting of co-occurrence probabilities that
tell how likely that the next unit will happen right after the previous N—1 units. N-gram

provides probabilities for units in a finite set of vocabulary, V, as shown below:

P(yu|yu717yu727 -"7yu—N—l) | Yu €V (27)
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We primarily use n-gram models since they are simple, efficient and provide good per-

formance.

Neural language models provide the co-occurrence probabilities as same as N-gram
models. The difference is that the probability is now predicted by a recurrent neural
network (RNN) instead of direct counting. Theoretically, RNN is capable of modeling
infinite lengths of previous words as in (2.8). Nonetheless, there are numerical stability

issues when dealing with very long dependencies.

P(YulYu—1,Yu-2, - 91) | yu €V (2.8)

Neural language models are commonly superior to n-gram models, but they require more

memory and computational resources both in training and inference phases.

2.4 Handwritten Text Recognition

Handwritten Text Recognition (HTR) has the goal of identifying the sequence of
alphabets in the images of handwritten scripts. There are two subcategories for HTR,
offline and online. Specifically, an online HTR transcribes a sequence of pen stroke
positions into text. An offline HTR directly recognizes text from a raw image, having
no supervision of pen stroke. A sequence of pen stroke position helps the model to
learn meaningful relation between pixels in the input image. The lack of pen stroke
supervision for offline HTR enforces the model to learn relationship between raw pixels
itself. Therefore, offline HTR, which is the focus of this thesis, is considered as a harder
problem. As the handwriting letters are sequentially written letter by letter, it is obvious
that online HTR is a sequence modeling problem. As for offline HTR, the lesser obvious,
a sequence of text has to be generated from a sequence of features extracted from a 2-

dimensional image.

The approaches for HTR have a lot in common to ASR. The HMM-based models
are used at the very first (Margner and El Abed, 2007; Dreuw et al., 2009), followed by
end-to-end CTC models (Graves et al., 2008a,b). The main differences between HTR

and ASR are the feature extraction due to the distinct between images and audios. This
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distinction affects the design choices of the models.

2.5 Deep Neural Network

This section provides a very brief introduction to neural network (NN) with the
goal of making readers understand our work. We will present the basic of three NN
variants: Fully-connected neural network (FNN), Recurrent Neural Networks (RNN),
and Convolutional Neural Network (CNN). We advise readers who are interested in the

topic of NN finding more details in (Goodfellow et al., 2016).

2.5.1 Generic properties

NN originally have been proposed as a mathematical model of neurons in the
nervous system. We represents neuron k in the network using a mathematical operation
F with weights W}, and biases b;. Neuron k will operate on a given input vector, x, and
return a scalar number, yi = F(x; Wi, bx), as an output. Outputs of every neurons are
concatenated altogether into a single output vector, Y = [y1,y2, ..., yx|. The operation

F is simply defined as follows.
F(z; Wy, b)) = 0(Wyrx + by) (2.9)

where 6 is an activation function. The weight, W}, and the bias ,bg, reflect a character-

istics of the neuron k.

We use the name layer to indicate a group of neurons that take the same inputs.
As depicted in Figure 2.1, the first layer of NN takes raw input vectors, x, and produces
hidden representation vectors, which are used as inputs for the second layer. The hidden
vector is passed through H — 1 layers until it becomes the final outputs, y = F(z). If

there are many layers, a NN will be called as a Deep Neural Network (DNN) instead.

Activation Function

Activation layers are usually placed in between of two consecutive NN layers.
Though the choice of an activation function can be any, people usually opt for non-

linearity functions as they enable complex function approximation for NN models. From



12

the equation of NN (2.9), we can interpret NN as a stack of matrix multiplications. Since
the chain of matrix multiplications can be transformed into a single linear transforma-
tion matrix, NN can only approximate linear functions if the activation functions are
also linear. Non-linearity activation functions, that are placed between matrix multi-
plication operations, will disallow NN from being represented by a single linear trans-
formation matrix. Subsequently, a combination between linear transformation (matrix
multiplication) and non-linearity transformation (activation function) should allow a
NN to approximate any complex function (Goodfellow et al., 2016). In this work, two

non-linearity functions involve: ReLLU and Softmax.

Rectified Linear Unit (ReLU) is a gate that disallows negative values, where the
formal definition is shown in (2.10). Comparing to alternative non-linearity functions,
ReLU provides speed and stability, which ease the training of large scale deep neural
network models.

ReLU(z) = max(0, z) (2.10)

Softmax does element-wise exponential normalization for an output vector, turn-
ing its elements into a probability distribution. Concrete definition is shown in (2.11).

Softmax(x) = ARITd (2.11)

B Zk exp ()

where exp(z) represents e”.

Training

A NN model is trained to minimize the target loss function, £(y, y*), that estimates
the errors between predictions, ¥, and the references, y*. By the word training, we simply
refer to the process of calibrating the model’s parameters such that the calibrated model
yields the lower errors than the un-calibrated one. An algorithm used for calibration has

the name of optimizer, of which one of the most popular variant is stochastic gradient

descent (SGD).
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X =[x, %2 ) Xn] Y = [y1,y2 0, k]

Figure 2.1: Deep Neural Network.

Concretely, SGD computes the gradient of the differentiable loss functions with re-
spect to a particular weight at the input 2. Then, the weights are adjusted by magnitude-
scaled gradients in the direction that will produce the lower loss value, as shown in (2.12)
and (2.13).

W W —r x VwL(F(x; W, b),y") (2.12)

b« b—1rx VyL(F(x;W,b),y") (2.13)

where r is the learning rate, a hyperparameter that controls the learning speed. The
optimization procedure is recurrently applied until the gradient diminishes or the model

converges to the possibly minimum loss value.

There are a lot of optimizers out there such as SGD with momentum (Sutskever
et al., 2013), Adadelta (Zeiler, 2012), and Adam (Kingma and Ba, 2014). The main
differences between those are the calibrated learning rate, the calibrated gradient mag-

nitude. We encourage interesting readers to find more in (Goodfellow et al., 2016).

2.5.2 Fully-connected Neural Networks

Fully-connected Neural Networks (FNN) is the term used to call the variant of a
NN such that all neurons in the same layer connect to all inputs. This architecture is
the original NN and is depicted in 2.1. The name was given later when there are many

variations of NN.
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Figure 2.2: Recurrent Neural Networks

2.5.3 Recurrent Neural Networks

Recurrent Neural Network (RNN) is a variant of NN that allows temporal de-
pendencies between consecutive inputs (Elman, 1990). In the previous section, DNN
considers only the input of each timestep for making a prediction. RNN accumulates
information of every timestep in the previous and propagates them to the last layer of

the next step, as shown in (2.14).
hy = 0(W;xy + b; + Wyhi—1 + bp,) (2.14)

where W; is the weights for an input, W}, is the weights for the previous hidden state,
b; is a bias for an input, by is a bias for previous hidden state, theta is an activation
function. The outputted hidden state, h;, can be directly used as a final output or an

input to consecutive NN layers.

The state propagation allows the model to consider both the previous contexts and
the current input in order to produce the prediction. Theoretically, RNN can model
infinitely long dependencies. However, in practical, numerical stability hinders long
dependencies modeling of RNN. Moreover, state propagating limits RNN from going
parallel as it cannot make such a prediction without knowing what is the previous,

resulting in a longer training time than other variants.
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Figure 2.3: Convolutional Neural Networks

2.5.4 Convolutional Neural Networks

Convolutional Neural Network (CNN) (Lecun et al., 1998) has been proposed to be
a translation-invariant spatial contexts extractor. CNN used the concept of convolution,
which is element-wise multiplications between filters and inputs in each area, as shown
in Fig 2.3. The convolution operation is used to capture signals in local areas of an

input.

Unlike RNN, convolution does not require previous predictions. Thus, the out-
puts of each timestep can be determined in parallel. However, even though long-term
dependencies between inputs can be learned implicitly using the large receptive fields
provided by a deep stack of CNN layers, the explicit conditioning between outputs of a

sequence could not possibly happen without external tools.

2.6 Performance Evaluation

Performance evaluation methods are specific to the tasks. In this dissertation, we

use three different metrics: Character Error Rate, Word Error Rate, and Perplexity.

2.6.1 Levenshtein based Error Rate

The performance of ASR and HTR systems are usually be evaluated using Charac-
ter Error Rate (CER) and Word Error Rate (WER). Both metrics are defined similarly
as Levenshtein distances between hypotheses and ground truths divided by the length of

the ground truths. The metrics can be interpreted as the number of operations needed
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to transform hypotheses to ground truths. A concrete definition is defined in (2.15).

Lev_I—I—D—I—S
R R

error rate = (2.15)

where Lev is Levenshtein distance, and R is the length of ground truths. The number of
insertion, deletion, and substitution operations are written as I, D, and S, respectively.

The operations are calculated at the character level for CER and word level for WER.

2.6.2 Perplexity

Perplexity (PP) measures the uncertainty of a probability distribution. In other
words, it tells the performance of predicting observed samples, z, for a given probability

distribution, p, as defined in (2.16).
PP(p) = Hp(x)—p(m) — 9= 2, p(@)logy p(z) _ 9H(p) (2.16)

Perplexity is one of the metrics used to measure the effectiveness of a LM. A high-quality

LM should predict the next letters well and hence has a low perplexity.

2.7 Significance Testing

Significance testing measures the likeliness of having the observations under the
believed system (null hypothesis). The low likeliness implies that the observations may
not follow the null hypothesis and are sampled from another system instead. We would
like to measure whether the believed system can precisely explain the observations.
In practice, the null hypothesis will be rejected if the likelihood of the observations
under the null hypothesis is less than the predefined significance level thresholds («),
which commonly are 0.05, 0.01, or 0.001. In other words, the difference between the
underlying system of the observations and the current believed system is statistically
significant if the probability of having at least as extreme as the observations under the

null hypothesis is more than the significant level.

In this thesis, we use significant testing to measure the difference between the
performances of two models, m; and my. We would like to find out whether the perfor-

mances of m; and mg significantly differ from one another.
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2.7.1 Matched-Pair Test

The matched-pair test is a significant testing tool that measures the difference
between paired data, widely used for ASR (Gillick and Cox, 1989). Given an utterance,
the predicted transcriptions of two different ASR are paired. The statistic is calculated
on differences of every pair in the test set. Suppose that there are N utterances in the
test set, 0;'. is the prediction for utterance ¢ made by system j, and eé. be the number of
errors on oé, 1<i<N,1<j<2 Wedefine 7% = eil — eé as the difference of errors for
the utterance ¢, and jiz = Zf\i 1 Zi/ N as the estimated average error difference between
two systems. The estimated variance of Z; is 6% = Zf\; (Zi — fiz)®. The test
statistic for significance comparison is defined as:

il
(6/v/n)

Matched-pair test evaluates the null hypothesis of 1z = 0 under the assumption that

W= (2.17)

N is large enough. If the extremeness of W under unit normal distribution is less than
the significant level, 2P(Jw| > [W|; N(0,1)) < «, the difference is statistical significant.

In this work, we use word-level Levenshtein distance between the prediction, oé-,
and its ground truths as an error, eé-. The algorithm also has a formal name of Matched

Pairs Sentence-Segment Word Error (MAPSSWE).!

"https://github.com/usnistgov/SCTK


https://github.com/usnistgov/SCTK

Chapter III

RELATED WORKS

This chapter presents how traditional ASR and HTR models handle contexts, how
they adopt CTC, and how they deal with the shortcomings of context independent train-
ing. We firstly provide the evidence of using contexts for ASR and HTR in Section 3.1
and Section 3.2. Then, we present the attempts to incorporate context into CTC in

Section 3.3.

3.1 Context for ASR

Context modeling has always been an important component in the ASR model.
Traditional HMM-based ASR models comprise three components: an acoustic model
(AM), a lexicon model, and a language model (LM), which model context on different
levels. The AM is typically based on context-dependent (CD) units, which model several
acoustic units together. On the other hand, the lexicon and LM focus on the word and
grammatical structure of the sentence, disambiguating homophones and imperfections

in the pronunciations (Jurafsky and Martin, 2009).

For models based on deep learning, CTC has been proposed for training end-
to-end models. These typically model letters instead of CD units. However, context
dependencies are modeled implicitly using recurrent hidden states (Graves et al., 2006).
Transducers (Graves et al., 2013) and Sequence-to-Sequence models (Chorowski et al.,
2015), which have been introduced later, explicitly model context by making predictions
sequentially based on previous outputs. However, sequential prediction can become
a computational bottleneck as the model size increases. Additional language model
rescoring or beam search can be further introduced to reinforce context modeling with

the cost of additional computation.

Recently, end-to-end ASR models have become enormous and require extensive

computation resources (Amodei et al., 2016). The community interests have increasingly
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shifted towards models with non-recurrent and NAR, in which no further sequential
decoding and post-processing are applied. Though non-recurrent CTC models have low
decoding latency, they also suffer from performance degradation. Potential remedies
include using rescoring or iterative decoding where successive refinements are performed

on the previous outputs (Higuchi et al., 2020, 2021; Chan et al., 2020).

3.2 Context for HTR

HTR frameworks heavily rely on contexts as they have to extract a sequence of
dependent characters from an image. One of the early approaches is the HMM-based
framework, which is analogous to lexicon-free ASR models (Hu et al., 1996; Bengio et al.,

1995).

The combination of CTC and RNN was firstly adopted as an alternative to the
existing HMM frameworks (Graves et al., 2008a,b; Dreuw et al., 2009). As CTC lacks
dependencies, it was used with context rich models such as RNN and multi-dimensional
RNN (Voigtlaender et al., 2016; Graves and Schmidhuber, 2009; Puigcerver, 2017; Car-
bune et al., 2020). Recently, non-recurrent models have shown promising results while
reducing the computation latency. This introduces a wave of research based on non-
recurrent models as they have no computation bottlenecks (Yousef et al., 2020; Coquenet

et al., 2020; Sharma and Jayagopi, 2020).

3.3 Context-dependent CTC

Incorporating context dependencies into CTC models has been mostly based on
using subword modeling such as Byte-Pair Encoding (Zenkel et al., 2017), WordPiece
(Synnaeve et al., 2019), and context-dependent output units (Chorowski et al., 2019),
which are the composition of several letters. A natural extension to contextualized CTC
is to use these subwords as the alphabet. The transcriptions are pre-tokenized based
on available output units and used as ground truths for training CTC models. More-
over, different letter segmentations, such as different letter-grams (Tassopoulou et al.,

2021) or different WordPiece sizes (Sanabria and Metze, 2018), can be used together
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to train a single CTC model simultaneously via multi-task learning, capturing different
scales of context. Unlike our work, the distinct prediction heads have no relationship be-
tween them because they are trained by dedicated CTC losses on different pre-tokenized

targets.

CTC has also been extended to handle modeling inter-dependencies between out-
put letters. Gram CTC (Liu et al., 2017) introduces a modification of the CTC loss that
can aggregate the different possible segmentations of the output tokens on-the-fly. Re-
current transducer (Graves, 2012) autoregressively wraps posteriors of a CTC encoder
with a language model and trains both modules together. Imputer (Chan et al., 2020)
iteratively predicts missing letters in previous outputs. The Imputer model is trained
using a modified CTC that is suitable for partial transcriptions, which mimics incom-
plete predictions. However, this line of work explicitly model inter-dependencies and is
very distinct from our work that implicitly encourages context dependencies for CTC.
Closest works to ours are (Zhang et al., 2015, 2016) that predicted future ground truths

for recurrent hybrid ASR models.

3.4 Summary

The review of related works presented in this chapter aims to illustrate the de-
velopments in the usage of context dependencies in ASR and HTR. As described in
Sec.3.3, we observed limitations of preserving the NAR decoding scheme that does not
allows direct context conditioning. As we found that existing works have attempted
to address the problems using hidden representation in order to inducing context con-
ditioning for the independent predictions, we strongly believe that the contextualized

objective function can improve the performance of ASR and HTR NAR models.



Chapter IV

CONTEXTUALIZED CONNECTIONIST TEMPORAL
CLASSIFICATION

This chapter introduces Contextualized Connectionist Temporal Classification

(CCTC), the novel approach for training NAR sequence modeling.

4.1 Motivation

The motivation of CCTC is to mitigate the misspelling problems that occurred
from the CTC assumption of conditional independence without increasing the inference
time. As we would like to preserve the inference speed, CCTC has to induce context

conditions in the models solely in the training phase.

The obstacle of incorporating contextual information into CTC models comes from
the characteristics of CTC preferring blanks over the actual alphabet for the predictions.
This hindrance arises from the conditional independence assumption that encourages the
model to isolate its predictions. CTC models mostly produce blank tokens, m; = €, and
only predict the actual alphabets, m; € A, when they are extremely confident. Thereby,
actual alphabets in paths have low dependencies as alphabets are surrounded by non-

informative blanks, making context conditioning without external tools difficult.

With the successes of predicting contexts in hybrid ASR systems, we hypothesize
that providing the required contextual information to the model in this manner should
also alleviate the misspelling issues in CTC models without sacrificing speed. Therefore,
we propose to use context prediction subtask for NAR CTC models together with the
original main task CTC in a multitask-learning. We then proposed the novel label
obtaining algorithm that addresses sparseness of alphabet tokens within the predictions,

hence allowing context dependencies without requiring external alignments.
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Figure 4.1: The CCTC architecture used in this work. The baseline models are modified
by adding 2K extra prediction heads. The models are now aware of contexts as it learns
to predict left, middle, and right characters simultaneously.

4.2 CCTC training loss

CCTC loss softens the strength of independent predictions by implicitly intro-
ducing context conditioning to NAR models without the need of sequential processing.
CCTC allows the model to predict the output as well as estimate the contexts for its own
predictions. The context estimation raises the awareness of surroundings, which helps
mitigate the interference between consecutive outputs and improves the coherency of
the predicted sequence. The contexts are predicted simultaneously with the actual pre-
diction in a multi-task manner since we do not want the model to wait for the previous

outputs as in sequential decoding.

The overview of our framework is depicted in Figure 4.1. A CCTC model has
three groups of prediction heads: middle, left context, and right context. Given an
input z;, the output from the middle head () is the main output found in a typical

CTC model. The left (I;) and right (r;) characters, predicted by context heads, are the
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likeliest contexts for the middle letter. We gather outputs from the middle head to form
a single sequence for CTC training. The context heads are separately optimized for each

input frame using context loss.

The context loss is the negative log probability for the context labels, which is
the cross-entropy (CE) loss for the frame-level context references. We denote I} and r}
as labels for left and right context heads, respectively. The context loss, Lo, can be

defined as shown in (4.1).

Lor ==Y alogP(lf) + Blog P(r}) (4.1)
t

where o and [ are weights for the left and right contexts. In addition to contextualizing
adjacent letters, the context size can actually be further increased to any arbitrary size.
For the context size of K € Z, the CCTC®) model predicts K consecutive letters to
the left and K consecutive letters to the right. We introduce the superscript (k) for [},
ry, a, and f to indicate that l: *) and 7“: *®) are k™ left and right labels for the input

x, respectively. The a®) and 8% are weights for l: *) and 7’: *) We can construct the

general form of the context loss as follows:

T K
Lor == a®log P(1;") + %) log P(r; ™) (4.2)
t k

Finally, the CCTC loss is the summation of the CTC loss and the normalized

context loss as shown in (4.3).

Lot
Locre = Loro + N (4.3)
For inference, only the middle head is kept. Thus, models trained with CCTC
have the same runtime as the base model, which is especially important for low latency
applications. CCTC can also be incorporated into any model structure and decoding

scheme without any additional changes since CCTC only affects the training stage. This

is the main advantage of CCTC over other methods that also try to incorporate context.
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4.3 Acquiring context labels

The CTC algorithm is alignment-free which means that there are no explicit frame-
level ground truths for the context heads. Therefore, the frame-level labels for the
context losses are obtained from the paths that are predicted by the middle head. In
other words, the first context heads should try to predict the adjacent outputs generated
from the middle head for the current frame. However, the model may learn little to no
context information from learning to predict blank tokens. Thus, we opt to train the
context heads with dense character supervision from the prediction, y = B(w), instead.

Concretely, the contexts I, (k) (k)

and ;" are the k'""-nearest characters to the left and right
of 7 that are not a blank token or a consecutive duplicate. The labels can be retrieved
by conducting a naive search on a path. However, a naive search is computationally
expensive as it has the time complexity of O(T) for every position ¢, which results in
the total of O(T?). Alternatively, we propose to obtain the labels using an efficient

algorithm that operates in ©(KT).

To reduce the time complexity in the label obtaining procedure, we propose to
search on a dense path, h = (hy, ha,...,hr) : L < T, instead of the usual CTC path,
w. A dense path, h, is an intermediate result of applying B, in which all consecutive
duplicates are already merged but blanks are not yet removed. In order to search on a
dense path, we have to know where the surroundings of 7; are in h. To do so, we store
the relation between a path, 7, and a dense path, h, in an index list, p = (p1, p2, ..., p7) :
pe € [1,L],pr < pr + 1. An index p; indicates that a letter hy, is derived from a path
token m;. As we know that h,, is the representative of m;, we can directly conduct
a naive search on h using the predetermined start position of p;. Since a dense path
has no consecutive duplicates and only two categories of characters exist: the blank
and the actual alphabet, we can obtain k' non-blank characters within 2K operations,
regardless of the input length. In total, we can obtain the labels for an input length
T within a tight bound of ©(KT). We summarize the algorithm in Algorithm 1 and

demonstrate this process with an example in Figure 4.2.
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Algorithm 1 Acquiring labels for context losses

Given: 7 - CTC path, K - context size
Result: [* - left context labels, r* - right context label
T < Length(n)

h < H(n) > H merges consecutive duplicates.
p < Indexing(h, m) > p; indicates that hy, is derived from .
t+1
while ¢t < T do
I} « LeftSearch(h, p;, K) b= W@ rE)
r; < RightSearch(h, p;, K) >y = (r:(l),r:@), ...,r:(K))
t+t+1
end while

4.4 Model Initialization

Since the labels for context heads are obtained from the main head predictions
on-the-fly, optimizing CCTC loss for random networks may cause training difficulties
due to noisy labels. Nevertheless, results from our preliminary experiments suggested
that CCTC works well with both random and pretrained networks. In our experiments,
we used pretrained weights as the initialization because they take less training time.
This also highlights the use case where one might choose to further improve an existing

CTC-trained model by incorporating additional CCTC training afterwards.

4.5 Context loss weights

In higher order CCTC losses, tuning the loss weights by grid search becomes
impractical. In order to reduce the search space of context loss weights, we propose to
derive the high order weights through closed-form formulas, based on the weight of the
15t-order context losses, o). We simply set a(!) = 1 in most of our experiments as
we found this value performs well in general. For maximum gains, one can obtain the
better weight a(!) through grid searching within the range of 0.5 to 2.5.1 As for weights
of high order context losses, a®) : k > 1, we have tried several heuristic approaches and

found three effective methods.

The first approach equally assigns a!) as weights for every context loss order,

Via®) = o) The second approach sets the highest order context loss weight to one,

!This range is effective for the NeMo implementation of CTC loss, which is not normalized by the
number of letters as in the default setting of PyTorch.
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Figure 4.2: Label generation procedure for the CCTC context losses. Given a path from
the output of the middle head’s softmax, the labels for the left and right heads can be
found by searching on a dense path h. For frame index t, the first target to the left and
right are f and e. The second targets are o and e, respectively. The correspondences
between 7 and y are color coded. A letter, y;, is derived from the token, ¢, with the

same background color.

o) := 1. Then, we exponentially decrease weights as the order of the context loss
shrinks, Vya®) = oK) /2K=k_ For the third approach, we set the initial 15*-order context
loss weight as the target total weight, w := a(!). Then, we find the exponential sum of
weights that will achieve this w. In other words, >, o) ~ w o Vea®) = oF) 2Kk,

This is to keep the total strength of the context loss to be the same as the one found

using grid search on just the 15%-order context.



Chapter V

EXPERIMENTS

In this chapter, we provide the experiment results for validating the effectiveness
of CCTC loss on three sequence modeling problems, including monolingual ASR, CS
ASR, and HTR. We present the details for monolingual ASR and CS ASR experiments
in Section 5.1 and Section 5.2, respectively. The models used in both experiments are
nearly identical. The only difference is the number of output units. As for HTR, we
used two different frameworks for English and Thai, of which their details are presented

in Section 5.3 and Section 5.4, respectively.

5.1 Monolingual ASR

This section presents the effectiveness of CCTC loss for monolingual ASR using
an in-house ASR framework on the public English dataset, LibriSpeech. Monolingual
ASR is a special case of ASR such that the audio is spoken using a single language and

can be transcribed using a single set of alphabets.

5.1.1 Dataset

We opted for a widely used LibriSpeech corpus (Panayotov et al., 2015), which
comprises reading speech from English audio books. We used the train-clean-100 subset
for small-scale experiments and the total 960 hours for large-scale comparisons. The
evaluations were conducted on dev-clean and test-clean sets. The audios had a 16kHz
sampling rate and 16-bit depth. We filtered out utterances that are longer than 16.7

seconds, and applied no data augmentation techniques.

5.1.2 Experimental setups

We adopted a fully-convolutional NAR ASR model, Wav2Letter+ (Kuchaiev et al.,
2018), a modified version of Wav2Letter (Collobert et al., 2016; Liptchinsky et al., 2017),

as our base model. The model comprises 17 1D-convolutional layers and two fully-
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connected layers at the end. We added context prediction heads right after the last

layer of the base model, as shown in Figure 4.1.

The default settings of Wav2Letter+! were used with some exceptions. The Adam
optimizer (Kingma and Ba, 2015) was used instead of the original SGD optimizer. The
Layer-wise Adaptive Rate Control (You et al., 2017) and weight decay were not used
as we found them hurting the performance. We replaced the polynomial decay with an
exponential decay with a rate of 0.98. We trained the models with only the CTC loss
for 300 epochs. Afterwards, the context losses were included, and the training resumed
for an additional of 100 epochs. We set the starting learning rate to le — 3 for the first

300 epochs and then decreased it to le — 4 for the rest.

As for LibriSpeech 960 hours, we used the implementation of QuartzNet-5x5 (Kri-
man et al., 2020) from NeMo toolkit (Kuchaiev et al., 2019). We trained the base model
for 300 epochs from scratch using the default configuration®. Afterwards, we added the
extra heads and context losses and resumed the training for a total of 600 epochs. The

training was done using 8 GPUs with a batch size of 32 per GPU.

LM rescoring was also applied to investigate more realistic setups. We used the
official released LibriSpeech 3-gram word-level language model. A beam width of 64 was
used as a the default. The LM weights and insertion penalties of each model were tuned
on the validation set using grid search from 0.0 to 2.0 and 0.0 to 5.0, respectively. The

step size was 0.1 for both hyperparameters.

5.1.3 Results

CCTC models consistently outperform the baseline CTC in the scenario where LM
rescoring was unavailable as illustrated in Table 5.1. We found CCTC model with the
context size of 2 provided the best results with the relative improvement over the baseline

by 3.8% and 3.3% on dev and test sets, respectively. We also provided results from the

! https://github.com/NVIDIA/OpenSeq2Seq
*https://ngc.nvidia.com/catalog/models/nvidia:nemospeechmodels
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dev-clean test-clean

Model

argmax beam  3-gram | argmax beam = 3-gram
CTC (Pratap et al., 2019) - - - - - 18.97
CTC (our run) 22.06 2195 15.00 | 21.97 21.87  15.11
ccrc® 21.27%  21.23*  15.02 | 21.32* 21.20* 15.06
ccTo® 21.22* 21.14* 15.09 | 21.24* 21.14* 15.29
cecre®) 21.36*  21.20* 15.17 | 21.37% 21.30* 15.31*

Table 5.1: The WER (%) results for the LibriSpeech 100 hours setting. The x sym-
bol indicates a significant difference at p < 0.05 compared to the baseline CTC using
MAPSSWE two-tailed test.

dev-clean test-clean
Model
argmax beam 3-gram | argmax beam 3-gram
CTC (Kriman et al., 2020) - - - 5.37 - -
CTC (our run) 6.17 5.70 4.03 6.43 5.94 4.29
ccrce® 6.07 5.57 3.98 | 6.16 5.76  4.27

Table 5.2: The WER (%) results for the LibriSpeech 960 hours setting. The top row
refers to the published results, while the second row refers to our run using the provided
code.

Wav2Letter++ (Pratap et al., 2019) model taken from the Wav2Letter tutorial® which
was trained on the same subset as a strong baseline. On the other hand, the baseline
CTC is slightly superior to the CCTC(? model in the development set when the 3-gram
language model was applied during beam search. Since additional context information
is included in the decoding via the 3-gram language model, the benefits of CCTC can
become smaller in this setting. However, the CCTC®) model still outperforms the

baseline on the test set.

Similar results can also be found for the larger 960-hour setup as depicted in
Table 5.2. Overall, the CCTC® model is consistently superior to the baseline by around
4.2% and 3.0% relative using argmax and beam search decoding, respectively. If LM
rescoring is applied, CTC and CCTC models are more comparable with each other. We

will discuss more about this discrepancy in Section 6.2.

Shttps://github.com/facebookresearch/wav2letter/tree/recipes—conv-glu-paper/
tutorials/1-librispeech_clean
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train | dev-th dev-cs | test-th test-cs
duration 150 Hr | 22Hr 1Hr | 24 Hr 7 Hr
#TH utterances 2M 28K - 33K -
#TH-CS utterances 8K - 1K - 8K
#TH letters ™ 1M 47K 1M 3M
#EN letters 84K - 12K - 72K
#TH words 2M .3M 13K .SM 82k
#EN words 14K - 2K - 13K
#TH vocabulary 36K 12K 2K 12K 4K
#EN vocabulary 3K - 1K - 3K

Table 5.3: Statistics of the dataset used for CS ASR experiments.

5.2 Code-Switching ASR

This section compares CTC and CCTC performances for CS ASR on an in-house
Thai-English CS dataset. CS ASR is a task of transcribing language-mixed spoken au-
dios. The input signal audio for CS ASR contains more than one language within a
single sentence. Although no restricted rules for language switching are applied, CS ut-
terances regularly contain two languages. The main language is used as a core grammar

for a sentence, in which borrow words or borrow phrases of a side language appear.

One of the critical challenges for CS ASR is that the models need to handle
transcribing ambiguity arising from overlapping pronunciation representations of distinct
alphabets from many different supported languages. The regular character-based NAR
models usually fail as they do not have dependencies between predicted letters in order

to make consistent predictions across the sets of alphabet.

5.2.1 Dataset

For CS ASR experiments, we used 200 hours of manually transcribed Thai speech
crawled from public Thai podcast YouTube channels. The recordings in the dataset were
preprocessed to 16kHz and 16-bit depth. Utterances that are longer than 16.7 seconds
were dropped. The training subset of Thai YouTube contains both monolingual Thai
(TH) and CS Thai-English utterances. CS sentences were found in 4.4% of the training
set. As for validation and testing sets, monolingual and CS utterances were separated

into TH and CS subsets, respectively. Concretely, the dataset has one TH-CS training
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set, two validation sets: dev-th and dev-cs, and two testing sets: test-th and test-cs.
More details are shown in Table 5.3. The YouTube channels in the test set are different
from the training and development sets. Therefore, speakers in the test set are not in
the training data. Any hyperparameter tunings were done together on the combined

development set.

5.2.2 Experimental setups

We trained Wav2Letter+ models using two-step training strategies and followed
almost every configurations used in Section 5.1. Since CS ASR models have 3 times
larger alphabet sizes than English ASR models, we decreased the initial learning to

le — 4 and used the second learning rate of 4e — 5 to increase training stability.

We curated two corpora with 27M words/145M letters from Thai Wikipedia and
69M words/330M letters from Pantip (Thai Q&A forum). For each corpus, we did word
tokenization using DeepCut (Kittinaradorn et al., 2019) and trained word-based n-gram
models using KenLLM (Heafield, 2011). The final LM is obtained by n-gram interpolation.
A beam width of 64 was used for LM rescoring. LM weights and insertion penalties were

obtained through grid search in the same manner as LibriSpeech in Section 5.1.

5.2.3 Results

Table 5.4 shows the performance of models on the Thai dataset. CCTC®) is also
the best model without LM rescoring. The CCTC®) model outperforms the baseline
by 2.5% on test-th and 2.0% relative on test-cs. With 3-gram LM, CCTCW is slightly
better than CCTC®?). This is expected since the extra contextual constraint provided
by the LM, helps reduce the dependency on the contexts from the model side. Note
that unlike in the English dataset, CCTC outperforms CTC in all decoder settings.
This is due to the fact that context is more important in code-switching data than in

monolingual in order to correctly predict the language being spoken.

Further qualitative analysis shows that CTCC mostly fixes the inconsistencies in

the spelling. Figure 5.1 depicts the word “follower” spelled with a mixture of Thai and
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dev-th dev-cs
Model
argmax beam  3-gram | argmax beam  3-gram
CTC 15.01 14.89 13.14 28.02 27.76 24.17

cCcTCc® | 14.67F  14.58% 13.07 | 27.57 27.43  23.79
CCTC® | 14.62*% 14.55% 13.22 | 27.48% 27.22%  24.09
CCTC®) | 14.70%  14.64* 13.26*% | 27.80 27.69 24.13

test-th test-cs

CTC 15.66 1552  13.22 | 33.85 33.81 30.43
ccTc® | 1530 15.22  13.21 | 33.38* 33.39  30.07
CCTC® | 15.28* 15.20* 13.25 | 33.17*1 33.15%f 30.12*
CCcTC® | 15.28* 15.21*  13.30 | 33.29*  33.35*  30.39f

Table 5.4: The WER (%) results for the Thai YouTube corpus setting. The * and
1 symbols indicate significant differences at p < 0.05 to the baseline CTC and the
CCTCO), respectively. The hypotheses testing were conducted using MAPSSWE two-
tailed tests.

English alphabets in the CTC model, while CCTC model outputs English alphabets
consistently. The phoneme sequence /ol/ only appears in loanwords in Thai, making

the model heavily prefers to output “ol.”

CTC |pu 7 1 folaraas wiea wA %1 Wy

Argmax

CCTC |Au olower Wigd LA 9 W

CTC |pAu 935 Wiled A W WU

| | | b
=2 | T

3-gram LM

CCTC |mu 91 & follower L wa %1 Wu

Ground truth Au 71 3 follower B LA 1 WU

Figure 5.1: Comparison between CS ASR models for selected examples. Aligned differ-
ences are highlighted in different colors.

5.3 English HTR

In this section, we studied the feasibility of applying CCTC loss on HTR, showing
the greater usability of the proposed method across sequence modeling with different
input data modalities. From the model point of view, end-to-end FCN HTR models are
close but not the same as end-to-end FCN ASR models. There can be some distinctions
in features extracting layers, of which different sizes of receptive fields may be necessary
for enabling task-specific features extraction. However, from the optimization point of
view, both tasks can be defined as the same sequence modeling problem that can be

addressed by both CTC and CCTC losses.
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5.3.1 Dataset

We employed standard English HTR dataset, IAM (Marti and Bunke, 2002). It
is composed of grayscale line-level handwritten images from 657 writers. IAM has 79
characters in total, including 26 English lowercase, 26 English capital letters, 10 Arabic
numbers, and 17 special symbols. There are several versions of data splitting for TAM.
We chose the one with 6482 training images, 976 validation images, and 2915 test images,
similar to (Coquenet et al., 2020). We also followed the data preprocessing methods in
(Coquenet et al., 2020), including grayscaling the images, normalizing the heights to 64

pixels, and standardizing the intensity values.

5.3.2 Experimental setups

We used GFCN proposed in (Coquenet et al., 2020) as the base model for the IAM
dataset. The model comprises 12 2D-depthwise separable convolutional (Chollet, 2017)
and 18 2D-convolutional layers. We added the context heads to the pretrained networks,
provided by the authors?, and resumed the training for an additional 400 epochs. We
followed the training batch size of 2, the learning rate of 1le — 4, and all other training
hyperparameters as described in the original paper. The model was implemented using
PyTorch (Paszke et al., 2019). We selected the checkpoint with the best validation CER

for the comparison.

5.3.3 Results

The results on the IAM dataset are summarized in Table 5.5. It is common on the
TAM dataset to present both the CER and WER metrics with only greedy decoding to
measure the performance of the model as a standalone. As the size of context increases
the model becomes better until the context size of 3. CCTC®) improves by 5.3% and

7.5% relative to the baseline CTC model on CER and WER, respectively.

Figure 5.2 shows examples of the differences between model outputs. We found

that CCTC models do noticeably better on hard-to-read handwriting. In Figure 5.2(a),

“https://github.com/FactoDeepLearning/LinePytorchOCR
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Model validation test
CER(%) | WER(%) | CER(%) | WER(%)
CTC 5.03 20.44 7.67 27.77
ccrc 4.94 19.78 7.61 27.13*
ccTc® 4.73 19.14* 7.43 26.59*
ccTc® | 4.69 18.73* 7.26 25.84*
cCcTCc® 4.79 19.31* 7.25 26.27*

Table 5.5: The performance comparison on IAM. The % symbol indicates word-level
significant differences at p < 0.05 to the baseline using MAPSSWE two-tailed tests.

aud it is e opinion of Rossius Abat ﬁeﬂ@ o%/%;w/? %Zf;//cu/ﬂf

CTC and it is the opinion of Bassims Ahat CTC peace of misnd ? Philips pntout
CCTC, and it is the opinion of Bassius Ahat CCTC, peace of misnd ? Philip pntout
CCTC, and it is the opinion of Bassius that CCTC, peace of mind ? Philip putout
CCTC, and it is the opinion of Bassius that CCTC, peace of mind ? Philip put out
Ground truth  and it is the opinion of Bassius that Ground truth  peace of mind ? Philip put out

(a) (b)
o YW ~;\;L\r C‘é\ AL wm’\c&«mg\\ \2 \5-) \node hm()\/uu}‘\s 04{ (‘)Cr\—e—« dc\\,\5 ‘UJAQV\ —\M%S@

CTC as the year of their weddings 18 IS, had CTC tamquets of Cater clays, when the tasle

CCTC, as the year of their wedding,s I815s had CCTC, bamquets of Cater clays, when the tasle

CCTC, as the year of their wedding, 1515. had CCTC, bamquets of later clays, when the tasle

CCTC, as the year of their wedding, 1815, had CCTC, banquets of later clays, when the table

Ground truth  as the year of their wedding, 1815, had Ground truth  banquets of later days, when the table
() (d)

Figure 5.2: Selected prediction examples from the IAM test set. The mispredictions are
highlighted in color.

the letter ¢ is highly ambiguous and looks like A. CCTC™ would observe only the left
space and the right letter h, which are inadequate for predicting the correct transcription.
After we increased the context width, the high-order CCTC models were able to fix the
issue. The sample in Figure 5.2(b) is also very vague, and further contexts are needed
to mitigate this problem. In Figure 5.2(c), CCTC encourages the consistent spellings of
numerical letters. This is expected since context is very important to decipher ambiguous
handwriting. In a sense, CCTC is able to embed the language model into the model
without requiring an explicit LM. It is also interesting to note that the base model has
a horizontal receptive field of 240 pixels, which covers roughly 4-7 characters for this

dataset. This coincides with the best context size of three.
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5.4 Thai HTR

This section presents the performances of CCTC loss for training Thai HTR mod-

els in order to show the robustness of CCTC over languages.

5.4.1 Dataset

We use BEST for Thai HTR, which is a standard benchmark for handwritten text
recognition provided by The National Electronics and Computer Technology Center
(NECTEC) Sinthupinyo (2018); Sinthupinyo as part of the 2019 Thai handwritten text
recognition contest®. BEST corpus has a total of 3550 images, including 417 unique
sentences, 71 unique Thai alphabets, and 10 Arabic numbers. We combined the original
BEST dataset with additional 220 images provided by Chaiyaroj et al. (2021). We
followed the data splitting, augmentation strategies, pre-processing, and data synthesis
methods as proposed in Chaiyaroj et al. (2021). The dataset has two test sets, test-seen
and test-unseen. The test-seen set comes from the same source as the training and

validation sets. However, test-unseen comes from a completely different domain.

5.4.2 Experimental setups

We used the model, with a single prediction head, proposed in (Chaiyaroj et al.,
2021), as the base model. The model consists of 12 layers of 2-dimensional (2D) convo-
lution, 2 layers of 2D depthwise separable convolution (Chollet, 2017), and 4 layers of
1-dimensional convolution. We followed the two-step training methodology. Since we
already had the pretrained model, we attached context heads to the pretrained CTC
network and additionally trained the model for another 400 epochs. Adam optimizer
(Kingma and Ba, 2015) was used with the fixed learning rate of le—4 and batch size of

64. The checkpoints with the best validation CER were selected for the comparison.

5.4.3 Results

For the BEST dataset, CCTC models consistently outperform the CTC model,

as shown in Table 5.6. We opted for CER as the only evaluation metric since BEST

Shttps://www.nectec.or.th/
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Model validation | test-seen | test-unseen
CTC 10.62 11.38 35.03
ccTcw 9.93 10.72 35.15
ccrc® 9.83 10.26 34.79
ccrce® 9.76 10.49 36.42
corc® 9.71 10.42 35.42

Table 5.6: The argmax CER (%) evaluation on the BEST.

. , v s v “
e sdnen b obivle ung Lallg 6100 vownfo
i

cTC wilsdnuauuaudniiuidudaumdon cTC annd duitelifiald Seud lilddes uunsu
CCTC wilsdwmuuauiniufdudaumioy CCTC mnd dsitelisld Boud llvdes wunu
Ground truth ilduaunauniiuiaudaumiu Ground truth armnd dsiteliisld Foud lilvdes wunu
(a) A case with narrow spacing handwriting. (b) A case with ambiguous handwriting,.

Figure 5.3: Output comparison between different Thai HTR models on selected exam-
ples. Highlights indicate prediction differences.

transcriptions were not properly tokenized, and Thai text has no word segmentation
standard. CCTC® model achieves the lowest validation CER of 9.7%. However, this
superior performance does not hold in the test sets. The test-unseen set which comes
from a completely different domain does not work well with the implicit LM learned by
the model. The best scoring model on the unseen test set is CCTC®) which gives a
good middle ground. Note that a context of 2 characters is still considerably weak as
a LM and would not be detrimental even with domain mismatch, since it mostly learns

about legal character sequences in the language.

Further inspections suggest that adding context losses can help improve the per-
formances of character segmentation and ambiguous handwriting. Figure 5.3(a) depicts
handwriting with very narrow spacing between characters. The CTC model predicts
an extra character that has a similar shape to the combination of two characters while
Figure 5.3(b) also shows a similar occurrence where the CCTC can help disambiguate
hard-to-decipher handwriting. These errors might get corrected with a LM. However,
we would like to emphasize again that CCTC yields this improvement without any extra

computation cost during inference.



Chapter VI

DISCUSSIONS

This chapter provides discussions regarding the characteristics and the effects of

using CCTC for training sequence models.

6.1 CCTC learns an implicit language model

Our experiments have shown that CCTC can help improve the performance of
ASR and HTR systems in various settings. In this section we present some supporting
evidence that shows that the model trained with CCTC also learns the LM in the process,
thereby improving the model in sequence prediction tasks. To detect this effect, we
computed the perplexity of the prediction outputs (test set) using the language model
learned from the training text. If the model learns any sequence information in the

training process, this perplexity should decrease.

We used 7-gram character LMs trained on the training sets to compute the per-
plexity. The choice of 7-gram is so that the context size will cover up to the context

size of CCTC®). The text used to train the LM was deduplicated.

Figure 6.1 illustrates perplexities on argmax decoding predictions for each test set.
The baseline CTC model generally has the highest perplexity, and the value tends to
decrease as the context size increases. The lower perplexities of CCTC models indicate
that the predictions of the CCTC models are more congruent to the LM than the baseline
CTC, supporting the claim that CCTC can learn an implicit LM. Note that for Thai
YouTube, the ASR models were trained on the entire training set but tested separately
in two different testing subsets. The Thai YouTube dataset is mostly monolingual Thai,
causing the implicit LM learned by the CCTC models to be more focused on Thai. Thus
the perplexity in the code-switching test set can increase, which is the case for CCTC®).
BEST is also another dataset that does not exhibit the expected trend. A large portion

of the training data for BEST is based on the same set of patterns, which are slight
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Figure 6.1: Perplexity comparisons between different context sizes. Perplexity scores
are computed from the predictions using argmax decoding on each test sets.

different from the seen test set.

6.2 Discrepancy between context predictions and LM rescoring

Even though increasing context sizes for CCTC models can provide performance
gains using argmax and beam search decoding, CCTC models with a shallower context
window tend to be more suitable for external LM rescoring than the wider ones. From
Table 5.1 and Table 5.4, CCTC™M generally had the highest effectiveness when the
external LM was incorporated. However, as context size increased, the performance
might drop, especially in the monolingual setup, in which CCTC models were sometimes

inferior to the baseline CTC.

Figure 6.2 depicts selected samples of the scenario in which the CCTC model
provides a better prediction with argmax but underperforms the baseline with 3-gram
LM. In Figure 6.2(a), the sample from dev-cs of Thai YouTube shows that LM rescoring
cannot fix the bad prediction of the CCTC model, but it can fix CTC’s prediction.
Figure 6.2(b) depicts an example from LibriSpeech dev-clean that the LM causes the

error in the CCTC model.

Aggressive context dependencies from CCTC may cause conflicts between the

internal language representations and the external LM rescorer. Note that we used
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CTC | nfunction #1 14 tu Uow Uow uy Az CTC |LOOK TONNY THAT'S HIS POISON | SAID
Argmax P — - - Argmax
CCTC |function 714 fu Usw Uy uz Ay CCTC |LOOK TONY THAT'S HIS POISON | SAID
CTC |function # 1§ s1u Uos Uow ue ez CTC |LOOK TONY THAT'S HIS POISON | SAID
3-gram LM T — - - 3-gram LM
CCTC |function %14 Hu Use Use Uy Ay CCTC |LOOK TONY THAT HIS POISON | SAID
Ground truth function 7 1% 91 Uee Uos ug ez Ground truth LOOK TONY THAT'S HIS POISON | SAID

(a) CCTC can be too confident in a wrong pre- (b) A correct prediction can be corrupted by

diction. the LM.
CTC  |FIFTEEN OFFICERS OF OUR LITTLE HALF REGIMENT WER DEADTOR WOUNDED
Argmax
CCTC  |FIFTEEN OFFICERS OF OUR LITTLE HALF REGIMENT WERE DEATTOR WOUNDED
CTC  |FIFTEEN OFFICERS OF OUR LITTLE HALF REGIMENT WERE DEAD OR WOUNDED
3-gram LM
CCTC  |FIFTEEN OFFICERS OF OUR LITTLE HALF REGIMENT WERE DEAR WOUNDED
Ground truth FIFTEEN OFFICERS OF OUR LITTLE HALF REGIMENT WERE DEAD OR WOUNDED

(¢) Incompatibility between CCTC and LM scores.

Figure 6.2: Selected samples showcasing the possible mismatch between CCTC and LM
rescoring. The words of interested are highlighted.

word level language models. Further investigation on methods that can learn CCTC

jointly with the external LM might reduce this discrepancy.

6.3 Relations between performance gain and training time

Since the inference time for CCTC is always the same as the regular base model, we
discuss the trade-off between the gain in evaluation metrics and the increase in training
time in this section. Table 6.1 summarizes the trade-offs between gains and runtimes in
the argmax decoding setup. The gains are shown in relative improvements of WER, and
CER for ASR corpora and HTR corpora, respectively. The runtime performances were
measured using the ratio between the CTC and CCTC training time (higher is faster)

and were averaged over ten batch training, excluding data loading steps.

As expected the training speed of CCTC models reduces as the context size in-
creases. Considering the trade-off, a context size of two seems to offer most of the benefit.
The increase in training time varies across datasets due to the differences in encoders,
input lengths, and alphabet sizes. For datasets with more input frames (LibriSpeech),

a large proportion of the computation is used to compute the gradients, lessening the
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LibriSpeech | Thai YouTube IAM BEST
Model gain | perf | gain perf gain | perf | gain | perf

(%rel) | (x) | (%rel) (x) (%rel) | (x) | (%rel) | (x)
CTC 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0

ccTe® | 3.0 | .80 1.4 76 0.8 88 | 58 | .79
CCcTC® | 3.3 71 2.2 .69 3.1 79 | 9.9 78
CCTC® | 2.7 65 1.5 61 5.4 72 7.8 77
ccTcW - - - - 5.5 68 | 84 | .75

Table 6.1: The trade-off between the accuracy gains and runtime performances (perf).
Gains are reported in relative improvement over the original CTC (%rel). Performances
are reported as the ratio between training times using the CTC’s runtime as the baseline.

effect of adding context heads on the computation cost. Note that, the label generation
process is not optimized to work in GPU memory in our implementation. With proper
implementation, the performance drops should be further reduced, just like in the CTC

loss (Amodei et al., 2016).

6.4 Adaptive weight assignments for context losses

To reduce the efforts of manual weight searching, we attempted to use adaptive
task balancing methods such as DTP (Guo et al., 2018) and DWA (Liu et al., 2019).
However, we found no improvement due to the distinctive role of context prediction
subtasks in comparison to subtasks of other multi-task learning setups, which require
subtasks to perform well independently on their respective metrics (Vandenhende et al.,

2021; Sener and Koltun, 2018).

In CCTC frameworks, the performance of the main task was exclusively consid-
ered. The context prediction tasks of CCTC are sided tasks, which intend to complement
the main CTC task and heavily depend on the main CTC task. The degradation of sided
tasks is also acceptable for gaining the performance of the main task. To the best of
our knowledge, existing frameworks with similar setups also employ fixed weights tuning

(Watanabe et al., 2017; Povey et al., 2016).
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6.5 Optimal size for context losses

We found that the different models, trained on different datasets, had different
optimal context sizes. In ASR, we reached the best performance with CCTC®), but
CCTC GFCN, which was trained on IAM, had the best results using the context size
of 3. We hypothesize that large context sizes would benefit the performance if the
models have proper loss weights and sufficient receptive fields. Since we used static
manual-searched weights throughout the training, we might miss the optimal weight,
hence encountering dissimilarities between experiments. Moreover, optimizing many
loss functions at the same time can be unstable. A more sophisticate algorithm that

stabilize the training process might also help.

6.6 Generalization of CCTC models

In experiment 5.4.3, we found mismatches between the performance on validation
and test sets as we increased the context sizes. As presented in Table 5.6, CCTC models
with large context sizes had the lower validation CER, but the CER of test-seen got
worse after the context size was wider than 2. This mismatch implies overfitting, and
it was more severe on the test-unseen, on which both the baseline and the proposed
methods underperformed the pretrained model. The situation here might raise the
concern that context losses may encourages remembering niche patterns, which could

not be generalized.

Nevertheless, BEST was an extreme case since its training and validation sets were
closely related, but the test-unseen was very distinct. Moreover, the dataset comprises
plenty of duplication of few unique sentences. On the other hand, the overfitting was
less likely to happen on LibriSpeech, Thai YouTube, and IAM, of which the training

sets had diversity and were closer to the test sets.

Besides, these results also show that CCTC loss actually raises context awareness,
which can lead to poor generalization if the diversity in the training data was not enough,

supporting Section 6.1. In typical datasets, CCTC loss works perfectly fine.
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dev-clean test-clean
Model
argmax beam J3-gram | argmax beam 3-gram
CTC 7.09 6.48 4.46 7.53 6.88 4.76
CCTC® | 6.86 6.44  4.65 7.01 6.57 4.88

Table 6.2: The WER (%) comparison for from-scratch training of QuartzNet-5x5 on
LibriSpeech 960 hours.

6.7 Necessity of pretraining for CCTC loss

Since references of context heads were obtained from predictions of the model,
two-step training has been proposed to reduce the problem of noisy labels. Concretely,
a random network is firstly trained using only CTC loss. CCTC loss is added afterward

to continuing train the pretrained CTC model.

Nevertheless, we found that the two-step training is unnecessary. Table 6.2 shows
that the CCTC® model, which is the best setting, surprisingly achieves a better WER
than the CTC model in a from-scratch training setup. Therefore, we can use CCTC in
both settings: training models from the ground up and improving the existing pretrained

models.



Chapter VII

CONCLUSION

In this thesis, we proposed the novel CCTC loss for training NAR sequence model-
ing, specifically ASR and HTR. CCTC allows frame-level context conditioning without
requiring ground truth alignments. We showed that the existing pretrained CTC net-
works could be continuing trained using CCTC loss, which generally provides more im-
provements than continuing trained using the original CTC. We illustrated that CCTC
can leverage context conditioning for addressing ambiguous samples, resulting in more
consistent predictions in CS ASR and less misspellings in ASR and HTR models. We
also showed that CCTC models with wider context sizes are usually superior to the
shallow ones but have more chance to inconsistent with the scores of the external LM.
Moreover, we demonstrated that letters in the predicted sequences of CCTC models
have tighter dependencies and share more information with LM than the regular CTC
models. In the future, we plan to investigate joint training with the language model in

order to fully utilize the implicit LM learned by CCTC.
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Appendix 1

TRAINING OVERHEADS

We measured the dataset-specific training overheads of CCTC compared to CTC
models, supporting Section 6.3. In each dataset, before we started the clock, we pre-
loaded training samples into memory and trained the model for one iteration to warm
up the caching system. Then, we conducted benchmarking and profiling on another
ten iterations of training. Note that identical training samples were used throughout
the ten training iterations. Therefore, the performance ratio results could be sensibly
interpreted as averages of ten batch training. As CCTC loss is only compatible with
CPU devices, we studied two different setups, calculating CTC loss on GPU and CPU,
in order to get a sense of potential improvement from using CCTC on GPU. Remark

that forward and backward passes were still done on GPU.

Table A.1 shows the periods consumed by ten batch training for different models.!
The models for BEST are not compatible with CPU computing for CTC loss, hence
showing only CTC GPU results. The duration was summed over ten training batches.
We also showed the proportion of computation used by each operation using PyTorch
Profiler? in Table A.2. The cuda sync prevents the CPU from proceeding with further

executions until every GPU thread finishes, waiting for GPU bottlenecks.

Note that LibriSpeech and Thai YouTube models are identical, except for the
number of output units. Utterances in LibriSpeech are generally longer than utter-
ances in Thai YouTube by a factor of three. The performance ratios cannot be directly

compared across datasets.

!The time consumption of CT and CTC losses for BEST was measured using our own implementation
of a timer wrapper. For other datasets, we gathered the number using PyTorch Profiler.
’https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html


https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
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Appendix 11

RANDOMLY PICKED PREDICTION SAMPLES

This appendix depicts the differences between the predictions of CTC and CCTC

models for each dataset using five random selections. The CER comparisons for the

total 30 random samples indicate that CCTC®) is better than, on par with, and worse

than CTC on 14, 6, and 10 examples, respectively. The predictions are illustrated below.

LibriSpeech test

() DO NOT THEREFORE THINK THAT THE GOSSIC SCHOOLS NEASY
ONE

CCTC(1) DO NOT THEREFORE THINK THAT THE GOSSIC SCHOOL S A
NEASY ONE

CCTC(2) DO NOT THEREFORE THINK THAT THE GOFIC SCHOOLS NEASY
ONE

CCTC(3) DO NOT THEREFORE THINK THAT THE GOSSIC SCHOOL NEASY
ONE

Truth DO NOT THEREFORE THINK THAT THE GOTHIC SCHOOL IS AN
EASY ONE

cTc IT FOUND | GOL THA COUNT IT STRANGE AND ALL THE MORT
HAR BECAUSE IT HIS NANE CONDITION AND WHICH WAS

CCTC(1) IT FOUND A DOLL THAT COUND IT STRANGE AND ALL THE
MORT HARE BECAUSE IT HIS ANE CONDITION AND WHICH WAS

CCTC(2) IT FOUND AD DOLL THAT FOUND IT STRANGE AND ALL THE
MORT HAE BECAUSE IT HIS ANE CONDITION AND WHICH WAS

CCTC(3) IT FOUND A DOLL THAT FOUND IT STRANGE AND ALL THE
MORT HARE BECAUSE IT HIS ANE CONDITION WHICH WAS

Truth [T SOUNDED DULL IT SOUNDED STRANGE AND ALL THE MORE
SO BECAUSE OF HIS MAIN CONDITION WHICH WAS

CcTC FOR AT THE PERIL OF HER OWN EXISTENCE THAND WHEN
THE OTTER HALINGS HAD DESERTED HER SHE REPELLED THEN
VADOR AND AFTHER OWN ACCORD GAVE LIBERTY TO ALL THE
NATIONS WITHIN THE PILLARS

CCTC(1) FOR AT THE PERIL OF HER OWN EXISTENCE THAN WHEN THE
OTTER HALLINGS HAD DESERTED HER SHE REPELLED THEN
VADER AND OFTHER OWN ACCORD GAVE LIBERTY TO ALL THE
NATIONS WITHIN THE PILLARS

CCTC(2) FOR AT THE PERIL OF HER OWN EXISTENCE THAN WHEN THE
OUTTER HELLINGS HAD DESERTED HER SHE REPELLED THEN
VADOR AND OF HER OWN ACCORD GAVE LIBERTY TO ALL THE
NATIONS WITHIN THE PILLARS

CCTC(3) FOR AT THE PERIL OF HER OWN EXISTENCE THAND WHEN
THE OTTER HELLINGS HAD DESERTED HER SHE REPELLED
THEN VADOR AND OF HER OWN ACCORD GAVE LIBERTY TO
ALL THE NATIONS WITHIN THE PILLARS

Truth FOR AT THE PERIL OF HER OWN EXISTENCE AND WHEN THE
OTHER HELLENES HAD DESERTED HER SHE REPELLED THE
INVADER AND OF HER OWN ACCORD GAVE LIBERTY TO ALL
THE NATIONS WITHIN THE PILLARS

()@ HIS WIFE NOW LIES BESIDE HIM AN THE WHITE SHAFT THAT
MARKS THEIR GRAVES GLEAMS ACROSS THE WHEET VIELDS

CCTC(1) HIS WIFE NOW LIES BESIDE HIM AND THE WHITE SHAFT THAT
MARKS THEIR GRAVES GLEAMS ACROSS THE WHEAT VIELS

CCTC(2) HIS WIFE NOW LIES BESIDE HIM AND THE WHITE SHAFTE THAT
MARKS THEIR GRAVES GLEAMS ACROSS THE WHEET VIELS

CCTC(3) HIS WIFE NOW LIES BESIDE HIM AN THE WHITE SHAFT THAT
MARKS THEIR GRAVES GLEAMS ACROSS THE WHEET VIELS

Truth HIS WIFE NOW LIES BESIDE HIM AND THE WHITE SHAFT THAT
MARKS THEIR GRAVES GLEAMS ACROSS THE WHEAT FIELDS

cTc BUT A WORD FURTHER CONCERNING THE EXPEDITION IN
GENERAL

CCTC(1) BUT A WORD FURTHER CONCERNING THE EXPEDITION IN
GENERAL

CCTC(2) BUT A WORD FURTHER CONCERNING THE EXPEDITION IN
GENERAL

CCTC(3) BUT A WORD FURTHER CONCERNING THE EXPEDITION IN
GENERAL



Truth ~ BUT A WORD FURTHER CONCERNING THE EXPEDITION IN
GENERAL

Thai YouTube test-th

CTC  duTng) sTu 9z T 503 drdny 959 939 ASU sz 91 N3 Aese fu
fu 1u Ses on

CCTC(1) dau Tng) sTu 9z T 303 ddny 939 939 ASU W91z 31 N3 ek
w1 Ju Bes on

CCTC(2) dw lugy sTu 92 § Bos d1Ary 933 93¢ ASU sz 91 n1s fnde Ay
w18 Ges w0

CCTC3) dau ng) w9 § Fos drdgy 959 933 AU 91w 21 N3 fase M
w18 Ges on

Truth  dau Tng) dfu 93 § Foe d1Aty 959 939 ASU sz 91 N5 Aese (u
u 1u Ses on

CTC TR R
CCTC(1) wlgeun
CCTC(2) iesn
CCTC(3) s 11

Truth i 390

P = Y oo aa v a '
137 A9 179 LaBY 11/1 AU 1IN UdY LNU 1U ANUIN

o

CTC 939939 Ui

151 @879 9 den T Au 3 dew 1A TU dewnn

D

CCTC(1) 939939 Ui

CCTC(2) 939939 ud A 197 @59 e Bes T Au Fm tew 1A W dnavmnn

<

CCTC(3) 234359 ud A 1571 @519 e des 9 fu Faw dos 1iu TU denn

Truth 939939 U&7 A 1571 @519 e 3es 1F AU Fim ee 1A TU e

CtC 1 Su nguinne el 1 $u Uy w1 T ngrane e Td ya Use
Yeyay1 mat e m wz oz B

ccTc) 16 $u nguune ust 1a $u Yayeyr e 1w ngane Tae Td 9n we
Yeyay AU LA AN Uy AY B9

CCTC2) 16 $u nguune ust I $u USeyayn 19 v ngvane e 1d 40
Uy MU A @01 Uy Az

CCTCB) 1a $u nguune ust 16 $u Ygyeyr e hu ngane Tne 1d gn Usy
Yayey1 A LA @A UL AL T3

Truth 16 $u nguinne 16 5u Useyeyr vine du ngviane Tae 1d g §u
YTy M LNA @09 B9

CTC U1 ud 151 des 99 101 13 19 Au wan 0 ¢ ASU vsng azilu

CCTC(1) U1 Wi 151 fva A o1 13 19 AU wan w1 9% ASU vsng azilu

CCTC2) U1 wda 151 des A 1o 13 19 AU wan w1 oy ASU s asil

=

CCTC(3) U1 uda 151 fes 99 101 13 19 fu wan w1 o ASu sy agtiu

Truth 99 101 13 T ffu wan w1 8z Ay sy avtiu

o7

Thai YouTube test-cs

CTC Ao awa d valad waed fu

CCTC(1) Aoy umeu A 3§l oalad e fu

CCTC2) A Annay Ly i asllad LHe A

CCTC(3) A s 1 wou W 3 unlad e 7

Truth  Adu Aa 31 Aouwiust § Ay like wozuy

CTC w1 Au usl nn g i u wn Sen 4l ga o2
CCTC(1) 151 Au usl Wn 0819 U 11 Ben 1 la v oy

CCTC2) w1 Au ust n 881 ulf u wr Sen 4 e Tya gy
CCTC3) 151 fiu usd Wn 0619 1 Fu 1 w1 Bon 4 layn e
Truth 137 A us v 9819 e 18w w1 Sen 91 dead food oy

CTC 2 wu 3 Uz A3U 91 T 91 parion T 193 UL 82

CCTC(1) wavdu fs ug A3U 1 9 91 pacranu W o9 Uy gy
CCTC2) wan V3u Ha ug A3U 71 T8 31 pacron T 1o Uy oy
CCTC3) wa whiu fs ug A3U 1 39 91 pacrim Wu 199 Uy oy

Truth  udu s ug o2 9 e 91 patreon T 109 Uz By

CTC i fhe ¢ 30 2du il wadh 16 31 197 Tu aw 1 dale Tu andu
ccTa(t) 9 dhe /31 v e wendu 18 41 51 Tw e s ddla Tu anash
CCTC2) 3 fhe ¢ 31 du il v 16 31 157 a0 s dela T andih
CCTCB) 3 fhe f 31 du il wetu 16 31 157 Tuanu 51 date Tu andth

Truth  defy A 31 w8 ug 9du 1a 41 157 Asla

CTC 919 98 919 N5 WAL HUTR ves USEM Mg u Uy Az A 7 157 9
fi A 1 151 92 & clas preaning dwsu

CCTC(1) 019 98 919 15 Wiy 1BVl Ve USEM faeen e dug Ay &9 91157
911 fi Ao 91 191 92 1 clas preaning dw3u fi

CCTC2) 019 98 419 15 fy Huln ves USEM Mgt Ae U us Ay &9 9
15790 A A9 91151 9 4 crlas frenning dwisu

CCTC(3) 019 98 919 M5 Wy iUl ves USEM fed Av Uy Az 89 91 151
v A @o 1 157 2% § class freaenning & w3

oA A o

Truth 813 98 41 191 N3 Hivle ¥ USEW fedn Ay & 9 15790 A Ao
71151 9% § class training 13U first

BEST test-seen
qﬁ?i\unWMM“}fﬁqu Qafvﬁfwwaqc\;q’\b%‘l«é‘i\}'\?jmf\l

CTC  gfuimnuingnis egranwenygauanining
CCTC(1) dMemuimuiens egwhsatgqadushdnilas

CCTC2) Sreiuimuinmnis sgriananggudusiidnilas



CCTC3) reiuimunioning sgrihematgequghdnilas

Truth  awhiluiundvins egrdrsmansywushdniles

‘1%(134'15%1.\29') 9 ‘jLﬁwﬁ:)

crc dlildudain agldlids
ccTc(1) Hladlsiudads agllalda
CCTC(2) Hladuvads axlulaida

ccTc@) Hlailsiudads azldlalda

Truth 41 Tadleuwdadn aglulads

whly Aoy WoSkum=shH ol

e edwldimnily Woasazianiudna
ccTc) agmilsinnuity Woasasidnduln
ccTc2) egmlladaritu Weoaseidnitiln
CcTC3) eeldimnuity Woasazianddln

Truth  egilsanuiiu disawsizddnidulng

[IVENY

cTC g
CCTC() W
CCTC2) vinga
CCTC3) g

o

Truth  Wnge

sty uaals  sndousa izt fldsns

CTC  nsntieeula anBouseslalildanss
CCTC(1) nsntioauaila anBoumelaladlvaues
CCTC(2) wnsntiauwals inSoumelaladlvaues
CCTC3) nsatioauaila anBoumelaladlvaues

Truth  insatiesuaile anBeumelaladldaues

BEST test-unseen

o 2
alw M W) L) WA 91

e gamudwsugasiu
ccTc(1) gamudauseuzaiu
CCTC2) ganudauseuzaiu

ccTC3) gamudauseuzaiu

o8

Truth  guamudauseugaiiu

q#:u:\iuﬁiuu’:ﬁqn;’%m;ﬁ

CTC  ninszaNaudanniiunoy
CCTC(1) mMTEIE@RIMNNTURBY
CCTC2) 59MSEasEmMdInNunou
CCTC(3) sumszdseadmniuneu

Truth  Tinsgdnainaudayndunou

cTC wulsusgffiowuunlagan
3 1

ccTc(1) mandeuegifonvudlagan

i

CCTC2) Amndeuegfiowuualagen

CCTC(3) Timallguagifouuudiagan

Truth  7nuiBeueglfeuuuatlagne

d
ek Rt

CTC  duiinauundiiassnsanysugel
CCTC(1) auhndauudimainmysugel
CCTC2) windauuddidasnsnnysugel
CCTC3) duhnSauundiidesissamasugal

Truth  Bufindawuddadanamysysal

FUN
émg VNI ’l@"—\ﬂﬁ‘m’\ S

CTC  gnenmuneayUyansyun
CCTC(1) gnermuneayuynnsyun
CCTC2) gnormmneayUynnsyun
CCTC(3) gnormuneaUynnsyun

Truth @978 Lvwe auvgam susn

IAM test

TTV dowe pord peqed Haleo Lo Mu/Jjér;o/jefy ”/ffp%[hﬂzm/ ué

e I TV have postponed Malcoln Mnggeridge's " Appointment

with,

| TV have postponed Malcolm Muggeridge's " Appointment
CCTC(1) postP ssencs FP

with

| TV have postponed Malcolm Mnggeridge's " Appointment
CCTC(2) ith poste ssencs PP

wi



I TV have postsoned Malcolm Mnggeridge's " Appointment

ccra3)
with
Truth I TV have postponed Malcolm Muggeridge's " Appointment
ru
with

wns . WS is ¥ee WoAcke ¢odnce G- CnGient

CTC coluuns. This is the invariable practice of oncient
CCTC(1) coluuns. This is the nvariable practice ot oncient
CCTC(2) coluuns. This is the nvariable practice of oncient
CCTC(3) coluuns. This is the invariable practice of cncient

Truth  columns. This is the invariable practice of ancient

%fzz% @/ & ot _//%M//// //‘ﬂ&wﬂ/ st

CTC froh at a certain spawning ground may
CCTC(1) fioh at a certain spawning ground may
CCTC(2) fioh at a certain spawning ground may
CCTC(3) fioh at a certain spawning groend may

Truth  fish at a certain spawning ground may

o? bloco! an the wound . Ardena! olicalole 1§

CTC of blood fron the wand. Arterial diastole is
CCTC(1) of blood from the wand. Arterial diastole is
CCTC(2) of blood fron the wand. Arterial diastole is
CCTC(3) of blood fron the wond. Arterial diastole is

Truth  of blood from the wound. Arterial diastole is

. (bwj apansl dabope Lowdws didl e o

CcTC being flung apainst the huge boulders did the rndge
CCTC(1) being flung apainst the huge boulders did the ndge
CCTC(2) being flung apainst the huge boulders did the nndge
CCTC(3) being flung apainst the huge boulders did the ndge

Truth  being flung against the huge boulders did the judge

99



60

Biography
Name Burin Naowarat
DATE OF BIRTH November 1996
PLACE OF BIRTH Thailand

INSTITUTIONS ATTENDED Chulalongkorn University
HOME ADDRESS 184/11 M. 3 T. Bueng Phra Phitsanulok 65000



	Contents
	List of Tables
	List of Figures
	Introduction
	Main contribution
	Thesis overview

	Background
	Sequence Modeling
	Connectionist Temporal Classification
	Automatic Speech Recognition
	Traditional ASR
	End-to-End ASR
	Language Modeling

	Handwritten Text Recognition
	Deep Neural Network
	Generic properties
	Fully-connected Neural Networks
	Recurrent Neural Networks
	Convolutional Neural Networks

	Performance Evaluation
	Levenshtein based Error Rate
	Perplexity

	Significance Testing
	Matched-Pair Test


	Related Works
	Context for ASR
	Context for HTR
	Context-dependent CTC
	Summary

	Contextualized Connectionist Temporal Classification
	Motivation
	CCTC training loss
	Acquiring context labels
	Model Initialization
	Context loss weights

	Experiments
	Monolingual ASR
	Dataset
	Experimental setups
	Results

	Code-Switching ASR
	Dataset
	Experimental setups
	Results

	English HTR
	Dataset
	Experimental setups
	Results

	Thai HTR
	Dataset
	Experimental setups
	Results


	Discussions
	CCTC learns an implicit language model
	Discrepancy between context predictions and LM rescoring
	Relations between performance gain and training time
	Adaptive weight assignments for context losses
	Optimal size for context losses
	Generalization of CCTC models
	Necessity of pretraining for CCTC loss

	Conclusion
	References
	Training overheads
	Randomly picked prediction samples

